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We study the threshold effect for neutral and charged Drell-Yan productions, associated production of
Higgs boson with a massive vector boson and Higgs production in bottom quark annihilation at the Large
Hadron Collider to the third order in QCD. Using the third order soft-virtual results for these processes and
exploiting the universality of the threshold logarithms, we extract the process-dependent coefficients for
these processes and resum large threshold logarithms to next-to-next-to-next-to leading logarithmic (N3LL)
accuracy. By matching our results to the recently available N3LO results, we provide the most precise
theoretical predictions for these processes. We present numerical results for invariant mass distribution and
total production cross sections. We find the conventional scale uncertainties of about 0.4% at N3LO level in
the fixed order results get reduced to as small as less than 0.1% at N3LOþ N3LL level in the high invariant
mass region.
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I. INTRODUCTION

Color singlet production processes are important to
understand properties of elementary particles, the proton
structure, as well as to extract fundamental quantities like
coupling and masses at the colliders [1] like the Large
Hadron Collider (LHC). From a theoretical point of view,
they are relatively easier to understand, and experimentally
they often provide clear signatures. Processes like the
Drell-Yan (DY) productions [2] are standard candles at
the hadron colliders and are important for luminosity
monitoring. On the other hand processes like Higgs-
strahlung where a Higgs boson (H) is produced in

association with a massive vector boson (V ¼ Z, W) are
important to understand Higgs boson properties and also
to search new physics beyond the Standard Model (SM).
In this article we focus our study on a few such processes.
In particular, we studied the neutral Drell-Yan (nDY)
production where a Z boson or virtual γ decays to a
lepton-antilepton pair, charged DY (cDY) where aW boson
decays to a lepton and neutrino, associated production of
Higgs boson with a vector boson like Z or W, and Higgs
boson production through bottom quark annihilation. All
these processes are produced through quark annihilation at
the born level. The next-to-leading order (NLO) QCD
corrections to the DY production process were computed
about 40 years ago [3–8], and the next-to-next-to-leading
order (NNLO) QCD results are now known [9] for quite
some time. The higher order QCD corrections have also
been studied in the BSM context [10–12].
Recently the fixed order (FO) predictions have been

improved to next-to-next-to-next-to leading order (N3LO)
[13–20] and public codes are available [14,21–24] which
provide the flexibility of studying N3LO cross section with
different parameters, parton distribution functions (PDFs),
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and scales. There is also recent progress on the EW
corrections which could be competitive as the QCD
correction in the higher orders. At NLO, the EW correc-
tions for massive gauge bosons have been performed
in [25–33], whereas mixed EW-QCD corrections are also
studied recently at NNLO [34–37] and are known to give
contribution as large as −1.5% of NLO QCD corrections in
the high invariant mass region. The mixed QCD-QED
corrections for bb̄H can be found in [38].
While improving the FO calculations, it is essential to

push precision frontiers, for often they are not sufficient
to correctly describe the data. In particular, FO predic-
tions are plagued by the large logarithmic contributions
which appear at each order of perturbation theory. A
particular class of these enhanced logarithms appear in
the threshold region when partonic threshold variable
z → 1. Truncated FO predictions at a relatively lower
order are insufficient to capture the dominant contribu-
tions from the large threshold logarithms. On the other
hand, the universality of these logarithms allows us to
resum them to all orders and capture significant con-
tribution which is essential to compare to the experi-
mental predictions.
The singular part of the fixed order contribution viz.

the soft-virtual (SV) corrections to these processes are
known for a long time through N3LO and beyond [39–50].
Some of these results have been used to perform threshold
resummation up to N3LL. Threshold resummation has
been well studied from the early days of QCD for a wide
range of processes [51,52]. This is possible due to
refactorization [53–65] of partonic cross sections in terms
of soft and hard functions in the threshold region.
For color-singlet productions, they are extensively studied
to N3LL accuracies [22,42,47,66–72] and even to
N4LL [48–50] for some processes in the SM. In general
the inclusion of threshold resummation results into better
perturbative convergence with an improved scale uncer-
tainty. In [69], it was pointed out that the threshold
resummation is important in the DY invariant mass
distribution in the moderate and high invariant regions
and results 2% correction to the fixed order. The scale
uncertainty reduces to below 1% in the high invariant
mass region Q > 1500 GeV where a matching at third
order was limited only to the SV part. A general
framework has been provided for arbitrary color singlet
production in [73,74]. Beyond the SM (BSM), these are
also studied for a wide range of models and stringent
bounds have been obtained with models parameters with
precise N3LL results [75–85]. However, one also needs to
match the threshold logarithmic contributions with the FO
results to capture the subleading terms which become
important at higher orders as well. The recent results on
the FO frontiers allow us to study this with the availability

of a fixed order code N3LOXS [21] shipped with a range of
color-singlet processes at N3LO.
The purpose of the present article is thus to perform a

complete study with properly matching N3LL resummed
results with the newly available N3LO results. We extract
all the process-dependent and universal coefficients needed
for N3LL resummation following the formalism developed
in [59–63]. It is worth mentioning that the Higgs boson
production in gluon fusion at the LHC has been studied
extensively in the literature. The mass of the Higgs boson
being around 125 GeV, the underlying parton fluxes at high
energy hadron colliders are large. In addition to the fact that
the lowest order dominant contribution comes from the
gluon fusion channel, the QCD corrections cannot be
neglected even beyond NNLO in QCD. This led to the
computation of higher order QCD corrections to N3LO
QCD in the fixed order and to N3LL accuracy in the context
of resummation, in order to achieve the robust precision
studies for this process. The details of these precision
studies can be found in [22,39,40,67,75,86–91]. Hence, we
will not repeat them here but rather focus on the other color-
singlet production processes at hadron colliders. The article
is organized as follows: in Sec. II, we briefly lay out the
theoretical framework providing the essential formulas to
perform threshold resummation and the matching. In
Sec. III we present the phenomenological results for
different color-singlet processes in the context of LHC,
and finally we conclude in Sec. IV.

II. THEORETICAL FRAMEWORK

The hadronic cross section for colorless production at the
hadron collider is given by,

σðQ2Þ ¼
X

a;b¼q;q̄;g

Z
1

0

dx1

Z
1

0

dx2 faðx1; μ2FÞfbðx2; μ2FÞ

×
Z

1

0

dz σ̂abðz;Q2; μ2FÞδðτ − zx1x2Þ; ð1Þ

where σðQ2Þ≡Q2dσ=dQ2 for the DY-type processes and
σðQ2Þ≡ σðM2

HÞ for bb̄H process. Note that for the total
production cross section for VH, we integrate this over the
invariant mass Q of the final state VH. The hadronic and
partonic threshold variables τ and z are defined as

τ ¼ Q2

S
; z ¼ Q2

ŝ
; ð2Þ

where S and ŝ are the hadronic and partonic center of mass
energies, respectively. τ and z are thus related by τ ¼ x1x2z.
The partonic coefficient σ̂ab can be further decomposed as
follows,
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σ̂abðz;Q2; μ2FÞ ¼ σð0ÞðQ2ÞðΔsv
abðz; μ2FÞ þ Δreg

ab ðz; μ2FÞÞ: ð3Þ

The term Δsv
ab is known as the soft-virtual (SV) partonic

coefficient and captures all the singular terms in the z → 1

limit. The Δreg
ab term contains regular contributions in the

variable z. The overall normalization factor σð0Þ depends on
the process under study. In particular, the processes under
consideration take the following forms,

σð0ÞDYðQ2Þ ¼ π

nc
½F ð0Þ

DYðQ2Þ�;

with DY ∈ fnDY; cDY; ZH;WHg;

σð0Þ
bb̄H

¼ πm2
bðμ2RÞτ

6M2
Hv

2
; ð4Þ

where,

F ð0Þ
nDYðQ2Þ ¼ 4α2

3S

�
Q2

q −
2Q2ðQ2 −M2

ZÞ
ððQ2 −M2

ZÞ2 þM2
ZΓ2

ZÞc2ws2w
QqgVe gVq

þ Q4

ððQ2 −M2
ZÞ2 þM2

ZΓ2
ZÞc4ws4w

ððgVe Þ2 þ ðgAe Þ2ÞððgVq Þ2 þ ðgAqÞ2Þ
�
;

F ð0Þ
cDYðQ2Þ ¼ 4α2

3S

�
Q4jVqq0 j2

ððQ2 −M2
WÞ2 þM2

WΓ2
WÞs4w

ððg0Ve Þ2 þ ðg0Ae Þ2Þððg0Vq Þ2 þ ðg0Aq Þ2Þ
�
;

F ð0Þ
ZHðQ2Þ ¼ α2

S

�M2
ZQ

2λ1=2ðQ2;M2
H;M

2
ZÞð1þ λðQ2;M2

H;M
2
ZÞ

12M2
Z=Q

2 Þ
ððQ2 −M2

ZÞ2 þM2
ZΓ2

ZÞc4ws4w
ððgVq Þ2 þ ðgAqÞ2Þ

�
;

F ð0Þ
WHðQ2Þ ¼ α2

S

�M2
WQ

2jVqq0 j2λ1=2ðQ2;M2
H;M

2
WÞð1þ λðQ2;M2

H;M
2
WÞ

12M2
W=Q

2 Þ
ððQ2 −M2

WÞ2 þM2
WΓ2

WÞs4w
ððg0Vq Þ2 þ ðg0Aq Þ2Þ

�
: ð5Þ

Here, Vqq0 are the CKM matrix coefficients with
Qq þQq0 ¼ �1 and

gAa ¼ −
1

2
T3
a; gVa ¼ 1

2
T3
a − s2wQa;

g0Aa ¼ −
1

2
ffiffiffi
2

p ; g0Va ¼ 1

2
ffiffiffi
2

p ; ð6Þ

where Qa is the electric charge and T3
a is the weak isospin

of the fermions. Here, MV and MH are the masses of the
weak gauge boson and Higgs boson respectively, mb is the
mass of the bottom quark and v being the vacuum
expectation value. The function λ which appears in the
VH case is defined as

λðz; y; xÞ ¼
�
1 −

x
z
−
y
z

�
2

− 4
xy
z2

: ð7Þ

The singular part of the partonic coefficient has a universal
structure which gets contributions from the underlying hard
form factor [92–96], mass factorization kernels [97,98],
and soft radiations [62,63,99–102]. All of these are infrared
divergent which, when regularized and combined, give
finite contributions. The finite singular part of these has the
universal structure in terms of δð1 − zÞ and plus-distribu-
tions Di ¼ ½lnð1 − zÞi=ð1 − zÞ�þ. These large distributions
can be resummed to all orders in the threshold limit
(z → 1). Threshold resummation is conveniently performed

in the Mellin (N) space where the convolution structures
become a simple product.
The partonic coefficient in the Mellin space is organized

as follows:

σ̂N
nLL

N ¼
Z

1

0

dz zN−1ΔsvðzÞ≡ g0 expðGNÞ ð8Þ

The factor g0 is independent of the Mellin variable, whereas
the threshold enhanced large logarithms are resummed
through the exponent GN . The resummed accuracy is
determined through the successive terms from the exponent
GN which up to N3LL takes the form,

GN ¼ lnðN̄Þḡ1ðN̄Þ þ ḡ2ðN̄Þ þ aSḡ3ðN̄Þ þ a2Sḡ4ðN̄Þ; ð9Þ

where N̄ ¼ N exp ðγEÞ. These coefficients are universal
and only depend on the partonic flavors being either quark
or gluon. Their explicit form can be found in, e.g., [56,59]
and are also given in the Appendix.
In order to achieve complete resummed accuracy one

also needs to know the N–independent coefficient g0 up to
sufficient accuracies. In particular, up to N3LL, it takes the
form,

g0 ¼ 1þ aS g01 þ a2S g02 þ a3S g03: ð10Þ

All these coefficients g0i are given in the Appendix. It is
also possible to resum part (or all) of the g0 by including
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them in the exponent [22,49,58,67,69], which however
have subleading effect as these contributions are not
dominated in the threshold region.
To obtain the results in z space, one needs to do the

Mellin inversion as

σN
nLL¼σð0Þ

X
a;b∈fq;q̄g

Z
cþi∞

c−i∞

dN
2πi

τ−Nfa;NðμFÞfb;NðμFÞσ̂NnLL
N :

ð11Þ

While doing this complex integral, one encounters the
Landau pole at N ¼ expð1=ð2aSβ0Þ − γEÞ, and hence the
choice of the contour becomes crucial. We choose the value
of c in the minimal prescription [53] so that the Landau
pole will be on the right of the integration contour and all
other singularities will be on the left side of the contour.
The Mellin inversion can then be performed [103] along the
contour N ¼ cþ x expðiϕÞ, where x is real variable, and c
and ϕ determine the contour. We choose c ¼ 1.9 and
ϕ ¼ 3π=4 to obtain a stable result. The final matched result
can be written as,

σN
nLOþNnLL ¼ σN

nLO þ σð0Þ
X

a;b∈fq;q̄g

Z
cþi∞

c−i∞

dN
2πi

τ−N

× fa;NðμFÞfb;NðμFÞ
× ðσ̂NnLL

N − σ̂N
nLL

N jtrÞ: ð12Þ

The fa;N are the Mellin transformed PDF similar to the
partonic coefficient in Eq. (8) and can be evolved, e.g., using
the publicly available code QCD-PEGASUS [103]. However,
for practical purposes, it can be also approximated by
directly using z–space PDF following [52,56,104]. The last
term in the bracket denotes that the resummed partonic
coefficient in Eq. (8) has been truncated to the fixed order to
avoid double counting the singular terms already present in
the fixed order through σN

nLO.

III. NUMERICAL RESULTS

In this section, we present numerical results for various
color singlet production processes discussed in the previous
section in the context of the LHC. Unless specified other-
wise, in our numerical analysis we use MMHT2014 [105]
parton distribution functions (PDFs) throughout taken from
the LHAPDF [106]. The LO and NLO cross sections are
obtained by convolving the respective coefficient functions
with MMHT2014lo68cl and MMHT2014nlo68cl PDFs,
while the NNLO and N3LO cross sections are obtained
with MMHT2014nnlo68cl PDF sets. In all these cases,
the central set (iset ¼ 0) is the standard choice. Our
default choice of the aS is the same as the one used in
the N3LOXS code, and it varies order by order in the
perturbation theory. The fine structure constant is
α ≃ 1=132.184142. The masses of the weak gauge bosons

beingmZ ¼ 91.1876 GeV andmW ¼ 80.379 GeVwith the
corresponding total decay widths of ΓZ ¼ 2.4952 GeV
and ΓW ¼ 2.085 GeV. The Weinberg angle is sin2 θw ¼
ð1 −m2

W=m
2
ZÞ and is calculated internally. This corresponds

to theweak couplingGF ≃ 1.166379−5 GeV−2. Themass of
the Higgs boson is taken to be mH ¼ 125.1 GeV
and the vacuum expectation value is v ¼ 246.221 GeV.
Finally, the pole masses of the bottom and top quarks
are taken to be mb ¼ 4.78 GeV and mt ¼ 172.76 GeV,
while their running masses are mbðmbÞ ¼ 4.18 GeV and
mtðmtÞ ¼ 162.7 GeV. The default choice of center mass
energy of the incoming protons is 13 TeV, unless it is
mentioned otherwise.
The unphysical renormalization and factorization scales

are chosen to be μR ¼ μF ¼ Q, where Q is the invariant
mass of the dilepton or the invariant mass of the vector and
Higgs bosons in the final state. For the case of Higgs
production in bottom annihilation, however, the default
scale choice is μR ¼ mH and μF ¼ mH=4 following
the suggestion from Ref. [17]. For all the processes we
have considered here, the scale uncertainties are estimated
by varying the unphysical scales in the range so that
jlnðμR=μFÞj < ln 4. The symmetric scale uncertainty is
calculated from the maximum absolute deviation of the
cross section from that obtained with the central/default
scale choice. To estimate the impact of the higher order
corrections from FO and resummation, we define the
following ratios of the cross sections which are useful in
the experimental analysis:

KNiLO ¼ σNiLO

σLO
and Rij ¼

σNiLOþNiLL

σNjLO
with

i; j ¼ 0; 1; 2 and 3· ð13Þ

A. Neutral DY production

For the neutral DY case, the fixed order results and the
associated uncertainties have been discussed in Ref. [21] in
greater detail. Hence, we will not repeat them here, instead
we focus on the resummed results. In the left panel
of Fig. 1, we present the invariant mass distribution
Q2dσ=dQ2 up to N3LOþ N3LL by varying Q from
250 GeV to 3000 GeV. The corresponding Ri0-factors
defined above are given in the right panel. It can be seen
that R20 is larger than R30 here up to aboutQ ¼ 2000 GeV,
and then they slowly converge to each other, while R10

being smaller than these two for the entire Q region
considered. We also present the Rii-factors which estimate
the contribution of higher order threshold logarithms over
the respective FO results. The effect of threshold resum-
mation is prominent at NLO. However, its contribution
at N3LO level is very small. This is expected as the FO
results for DY case are converging already at NNLO level
onwards, unlike the case of Higgs production in gluon
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fusion channel [13,86,87,91]. Here, the resummed results
at N3LOþ N3LL demonstrate excellent convergence of the
perturbation theory.
At this level of precision, it is also important to consider

effects from power corrections. As a first step, one can
consider the next-to-soft-virtual (NSV) corrections by
taking into account the logarithms of the kind lnið1 − zÞ.
In the context of the nDY process, a detailed phenom-
enology at LHC has been studied in Refs. [71,107]. In
Ref. [71], these NSV logarithms have been resummed to
next-to-next-to-leading logarithmic accuracy and a com-
parison of the same has been carried out with the SV
resummed result. It is found that the differences between
the SVand NSV resummations are about 4% at LL, 2.84%
at NLL and 0.85% at NNLL accuracy for Q ¼ 1000 GeV.
At higher invariant mass, the differences do not change
much, e.g., at Q ¼ 2000 GeV, the differences are about
4%, 2.8%, and 0.89% respectively. A general observation is
that the difference between SV and NSV resummations is
less sensitive to the value of Q and that this difference
decreases with higher logarithmic accuracy. If this trend
were to continue, at N3LL the difference between SV and
NSV resummed results could be about 0.1%. This trans-
lates to a rough estimate of the order of 0.1% theory
uncertainty due to the missing power corrections. It is also
worth noting that the NSV logarithms from other partonic
channels will also contribute to the cross section. However,
a detailed study of such power corrections is beyond the
scope of the present work.

B. Charged DY production

Similar to the neutral DY case, we present in Fig. 2, the
invariant mass distribution (left panel) for charge DY(W−�)
case up to N3LOþ N3LL accuracy and the corresponding
Ri0 factors (right panel). For the case of charged DY, the

corresponding parton fluxes are different from those of
neutral DY case. This will clearly result in a slightly
different behavior of the higher order corrections. This
together with the NLL enhancement of the cross sections
can explain the behavior of the R-factors noticed.
Quantitatively, the impact of QCD corrections in the high
invariant mass region (Q ≥ 2500 GeV) are smaller than the
corresponding ones for neutral DY case.
Similar results have been obtained for Wþ� and the

corresponding Ri0 factors are shown in Fig. 3. Again,
owing to the different underlying parton fluxes that are
different starting from the Born level, the behavior of these
Ri0-factors is expected to be different from those of both
neutral DY and W−�.
Besides, the resummed results at N3LOþ N3LL play a

significant role in reducing the conventional 7-point scale
uncertainties. The scale uncertainties in the resummed
predictions up to N3LOþ N3LL accuracy are given in
Fig. 4 for neutral DY (left panel), for W−� (middle panel),
and forWþ� (right panel). While the FO scale uncertainties
for neutral DY case at Q ¼ 3000 GeV are found to get
reduced from about 1.5% at NNLO level to about 0.4% at
N3LO level, the same in the resummed results are found to
get significantly reduced from about 0.2% at NNLOþ
NNLL level to almost about 0.1% at N3LOþ N3LL level.
Thus, DY process is one of the processes for which the
theoretical predictions available to-date are the most
precise, any uncertainties that can still be present in these
cross sections are only due to the PDFs. We will discuss the
uncertainty due to PDFs later. It should be noted here that
the scale uncertainties in the resummation context will not
show improvement over the FO results in the lowQ-region,
say below 1000 GeV, where the threshold logarithms are
not the sole dominant contributions to the cross sections.
However, the scale uncertainties in the resummed results

FIG. 1. Invariant mass distribution for the enhancement in the resummed cross section of DY for 13 TeV LHC (left panel) and the
resummed cross section over fixed order LO are shown here (right panel) through Rij is defined in Eq. (13).
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will get reduced in the high Q region. To elaborate on this,
we compare and contrast the 7-point scale uncertainties in
FO and resummed results at third order in QCD (see Fig. 5).
The scale uncertainties in the low Q region (where regular
terms and other parton channel contributions are non-
negligible) are smaller for FO case, while they are smaller
for resummed case in the high Q region (where the
threshold logarithms are important).
To see the effects of resummation over FO results at a

given order, it is quite useful to use the factors Rii defined in
Eq. (13). We plot in Fig. 6 these factors R11, R22, and R33

for all three different DY processes as a function of the
invariant mass of the dileptons. In all these plots, we can see
the R11 contribution is dominant particularly in the high Q

region, while the R33 is almost unity except for a small
contribution in the high invariant mass distribution.

C. VH production

In this section, we present the numerical results for the
Higgs production in association with a massive vector
boson V ¼ Z;W−;Wþ. We present results for both the
invariant mass distribution and the total production cross
sections at hadron colliders for different center of mass
energies. However, for invariant mass distribution our
results are confined to only DY process, i.e., the production
of an off-shell gauge boson followed by its decay to on-
shell V and H.

FIG. 3. Invariant mass distribution for the enhancement in the resummed cross section of charge current DY (Wþ�) for 13 TeV LHC
(left panel) and the resummed cross section over fixed order LO are shown here (right panel) through Rij is defined in Eq. (13).

FIG. 2. Invariant mass distribution for the enhancement in the resummed cross section of charge current DY (W−�) for 13 TeV LHC
(left panel) and the resummed cross section over fixed order LO are shown here (right panel) through Rij is defined in Eq. (13).
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It is worth noting that the total production cross sections
for these processes up to NNLO are available through the
public code VH@NNLO [108]. The updated version
VH@NNLO 2.1 [109] of the code can handle both the SM
Higgs and other BSM scenarios where Higgs can be

produced in association with a gauge boson. In this version,
the code is also interfaced with MCFM [110] to produce
invariant mass distributions up to NNLO level.
In the present context, we provide the invariant mass

distribution up to third order (N3LOþ N3LL). To achieve

FIG. 4. The 7-point scale uncertainty for neutral DY [nDY] (left panel), charged DY [cDY] W−� (middle panel), and Wþ� (right
panel).

FIG. 5. Comparison of 7-point scale uncertainty between resum and fixed order results for neutral DY [nDY] (left panel), charged DY
[cDY] W−� (middle panel), and Wþ� (right panel).

FIG. 6. Resummed enhancement over respective fixed order are shown here for neutral DY (left panel), charged DY W−� (middle
panel), and Wþ� (right panel) through Rij defined in Eq. (13).
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this we use the invariant mass distributions of DY processes
available at N3LO level through the N3LOXS [21] code, and
we numerically incorporate the decay of the off-shell vector
boson to V and H instead of to leptons, using the Eq. (2)
and Eq. (3) of Ref. [109]. For consistency, we reproduce the
results obtained from VH@NNLO 2.1 up to NNLO for VH
invariant mass distribution. We then extend our analysis to
the fixed order N3LO level. For the resummation case, we
use our in-house numerical code, similar to the one used for
dilepton production case discussed in previous sections.
In Fig. 7, we plot the invariant mass distribution of VH at

FO (left panel) and at resum level (right panel) up to third
order (N3LOþ N3LL) for ZH production process by
varying Q from 250 GeV to 3000 GeV. Because the
branching of off-shell V� to VH is different from that to
dileptons, the production cross sections will certainly be

different from that of the neutral DY production of
dileptons. However, the corresponding K-factors and
R-factors are defined in Eq. (13), expected to be almost
same as those of neutral DY case due to the cancellation of
the branching part in these ratios.
In Fig. 8, we present these K-factors (left panel) and

R-factors (right panel) up to third order (N3LOþ N3LL).
The corresponding scale uncertainties for the ZH produc-
tion case are shown for FO in Fig. 9 and for the resum case
in Fig. 10. We notice that the behavior of the scale
uncertainties for FO is the same as that for the neutral
DY case. For completeness, in Fig. 9, we show separately
the uncertainties due to the 7-point scale variations (left
panel), those due to only μR for fixed μF ¼ Q (middle
panel) and those due to only μF for fixed μR ¼ Q (right
panel) for FO results. We find that the factorization scale

FIG. 7. Invariant mass distribution of ZH for 13 TeV LHC fixed order (left panel) and the resummed (right panel).

FIG. 8. K-factor for fixed order of ZH for 13 TeV LHC (left panel) and the enhancement in the resummed cross section over fixed
order LO are shown here (right panel) through Rij is defined in Eq. (13).
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uncertainties at higher orders, namely, at NNLO and N3LO
level, are smaller than those due to the renormalization
scale. In Fig. 10, we show similar plots as those in Fig. 9
but for resummed results. However, here we find that the
factorization scale uncertainties are larger than the uncer-
tainties due to the renormalization scale variations. This is
expected because in the resummation case, the factorization
scale dependence is included only from the threshold
regions and that too in the qq̄ channel. However, at the
fixed order at N3LO level, this is not the case as the full μF
scale dependence is included in the coefficient functions
at this order. We also notice that in general the scale
uncertainties in FO results in the highQ region increase but
very slowly. On the contrary, the scale uncertainties in the
resummed predictions decrease with increasing Q. This is
because in the high Q region the bulk of the cross sections
are dominated by threshold logarithms and are resummed
to all orders in the perturbation theory.
In Figs. 11 and 13, we show the results for invariant mass

distribution of W−H and WþH production processes,
respectively. The corresponding K-factors and Ri0-factors

are shown in Figs. 12 and 14. The results for the invariant
mass distribution differ from those of the respective
dilepton production processes through off-shell W− and
Wþ gauge bosons. However, the ratios K and R-factors are
almost the same. Due to the underlying parton fluxes, these
K-factors and R-factors for WH production case, on the
other hand, will certainly be different from those of ZH
case. In Fig. 15, we show the 7-point scale uncertainties
in the invariant mass distribution of W−H and WþH
processes.
For these new results, i.e., the invariant mass distribution

for VH process at N3LO and N3LOþ N3LL, we compare
the 7-point scale uncertainties in FO and in resum results
Fig. 16. The behavior of the scale uncertainties is almost
identical to that of the neutral DY case (see Fig. 5), namely,
the scale uncertainties are smaller in the low Q region
for FO case, while the same is true for resum case in
the high Q region. There is a very small and negligible
difference between ZH case and neutral DY case, which is
mostly due to the presence of photon contribution in the
latter case.

FIG. 9. The 7-point scale uncertainty (left panel), μR scale uncertainty (middle panel), and μF scale uncertainty (right panel) up to
N3LO for ZH production.

FIG. 10. The 7-point scale uncertainty (left panel), μR scale uncertainty (middle panel), μF scale uncertainty (right panel) up to
N3LOþ N3LL for ZH production.
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FIG. 11. Invariant mass distribution of W−H for 13 TeV LHC fixed order (left) and the resummed (right).

FIG. 12. K-factor for fixed order ofW−H for 13 TeV LHC (left) and the enhancement in the resummed cross section over fixed order
LO are shown here (right) through Rij is defined in Eq. (13).

FIG. 13. Invariant mass distribution of WþH for 13 TeV LHC fixed order (left panel) and the resummed (right panel).
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FIG. 14. K-factor for fixed order of WþH for 13 TeV LHC (left panel) and the enhancement in the resummed cross section over fixed
order LO are shown here (right panel) through Rij is defined in Eq. (13).

FIG. 15. The resummed 7-point scale uncertainties for W−H (left panel) and WþH (right panel) up to N3LOþ N3LL.

FIG. 16. The 7-point scale uncertainty comparison for different Higgs associated production ZH (left panel), W−H (middle panel), and
WþH (right panel) between resum and fixed order results.
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We also present in Fig. 17, the ratios Rii for i ¼ 1, 2, 3
for ZH, W−H and WþH cases. It is also worth noting that
with the automation of most of the NLO calculations
[111,112], the NLO results are readily available for these
processes and hence it will be particularly useful to estimate
the Ri1 for i ¼ 1, 2, 3. We plot these Ri1 factors for all these
VH processes in Fig. 18 as a function of Q. We notice that
in general approximately for Q > 2000 GeV, both R21 and
R31 merge with each other. However, their values are
different for different processes. In the high Q region
around 3000 GeV, R31 being the largest for W−H case and
is about 1.105 while it is the smallest and is about 1.03 for
WþH case, whereas the corresponding one for ZH case is
about 1.065.
For the VH production process, we also give the total

production cross sections obtained by integrating the
invariant mass distributions over the entire Q region that
is kinematically accessible. First, we give these total cross
sections for DY type ZH production processes from LO to
N3LOþ N3LL for different center of mass energiesffiffiffi
S

p ¼ 7; 8, 13, 13.6 and 100 TeV in Table I. The corre-
sponding 7-point scale uncertainties are also provided for

each case. For the total production cross sections, the bulk
of the contribution comes essentially from the lowQ region
and hence the corresponding scale uncertainties in the
resummed results are predominantly due to those coming
from the FO results that enter through matching procedure.
Hence, the scale uncertainties are smaller for FO case than
those for the resum case. However, one can clearly see
these scale uncertainties decrease for any center of mass
energy as we go from LO to N3LO in FO, or as we go from
LOþ LL to N3LOþ N3LL in the resummation series. For
example, for the 13.6 TeV case, the scale uncertainties at
LO are 4.06% and get reduced to about 0.33%, while those
at LOþ LL are 4.44%, and they get reduced to about
0.58% at N3LOþ N3LL. In Table III, we present similar
results for W−H case and in Table V for WþH case. In all
these results, the general observation is that the scale
uncertainties do increase with the center of mass energyffiffiffi
S

p
of the incoming hadrons.

Finally, in the context of VH production, we note that the
DY type contributions do not fully give the complete FO
predictions for VH case. Starting from Oða2SÞ, particularly
the ZH process receives contributions from the gluon

FIG. 17. The enhancement in the resummed cross section over fixed order are shown here for different Higgs associated production
ZH (left panel), W−H (middle panel), and WþH (right panel) through Rij is defined in Eq. (13).

FIG. 18. Enhancement resummed cross section over NLO are shown here for different Higgs associated production ZH (left panel),
W−H (middle panel), and WþH (right panel). The factor Rij is defined in Eq. (13).
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fusion channel [113], bottom annihilation channel as well
as the heavy top-loop contributions [114]. For the gluon
fusion channel, the LO order contribution formally comes
at the same order as NNLO of DY type ZH production
process and the results for this channel are available

already. The higher order NLO corrections to this gluon
fusion channel which contribute at Oða3SÞ level appear at
the same order as the N3LO of DY type corrections, and
these NLO corrections to the gluon fusion channel in the
effective theory [115] have been computed already. It is

TABLE I. ZH production cross section (in pb) for different
ffiffiffi
S

p
with 7-point scale uncertainty.

ffiffiffi
S

p ðTeVÞ 7.0 8.0 13.0 13.6 100.0

LO 0.2363� 0.36% 0.2908� 1.00% 0.5934� 3.81% 0.6324� 4.06% 8.1105� 13.57%
NLO 0.3164� 1.55% 0.3878� 1.50% 0.7754� 1.36% 0.8245� 1.36% 9.1445� 4.40%
NNLO 0.3280� 0.41% 0.4017� 0.37% 0.8005� 0.35% 0.8508� 0.36% 9.1215� 0.94%
N3LO 0.3266� 0.25% 0.3996� 0.27% 0.7943� 0.32% 0.8441� 0.33% 8.9790� 0.49%
LOþ LL 0.2706� 1.48% 0.3319� 1.45% 0.6721� 4.20% 0.7158� 4.44% 9.0406� 13.86%
NLOþ NLL 0.3260� 4.34% 0.3992� 4.33% 0.7966� 4.31% 0.8469� 4.31% 9.3550� 5.39%
NNLOþ NNLL 0.3295� 1.40% 0.4034� 1.43% 0.8036� 1.53% 0.8542� 1.53% 9.1500� 1.77%
N3LOþ N3LL 0.3266� 0.46% 0.3996� 0.49% 0.7943� 0.57% 0.8441� 0.58% 8.9795� 0.75%

TABLE II. ZH production cross section (in pb) of DY-type N3LO, DY-type N3LOþ N3LL, total N3LO and total resummed N3LOþ
N3LL which are defined in Eq. (14) and Eq. (15) for different

ffiffiffi
S

p
with 7-point scale uncertainty.

ffiffiffi
S

p ðTeVÞ σDY;ZH
N3LO

σDY;ZH
N3LOþN3LL

σtot;ZH
N3LO

σtot;ZH
N3LOþN3LL

7.0 0.3266� 0.25% 0.3266� 0.46% 0.3534� 1.25% 0.3534� 1.17%
8.0 0.3996� 0.27% 0.3996� 0.49% 0.4373� 1.36% 0.4373� 1.28%
13.0 0.7943� 0.32% 0.7943� 0.57% 0.9112� 1.79% 0.9112� 1.67%
13.6 0.8441� 0.33% 0.8441� 0.58% 0.9728� 1.86% 0.9728� 1.75%
100.0 8.9790� 0.49% 8.9795� 0.75% 13.2674� 4.57% 13.2678� 4.39%

TABLE III. W−H production cross section (in pb) for different
ffiffiffi
S

p
with 7-point scale uncertainty.

ffiffiffi
S

p ðTeVÞ 7.0 8.0 13.0 13.6 100.0

LO 0.1625� 0.46% 0.2021� 1.27% 0.4262� 4.04% 0.4553� 4.28% 6.1486� 13.49%
NLO 0.2144� 1.55% 0.2660� 1.50% 0.5524� 1.37% 0.5891� 1.44% 6.9628� 4.39%
NNLO 0.2234� 0.39% 0.2769� 0.35% 0.5716� 0.38% 0.6093� 0.39% 6.9645� 0.97%
N3LO 0.2223� 0.28% 0.2752� 0.30% 0.5667� 0.36% 0.6039� 0.36% 6.8460� 0.54%
LOþ LL 0.1872� 1.56% 0.2320� 1.68% 0.4847� 4.42% 0.5175� 4.65% 6.8494� 13.71%
NLOþ NLL 0.2214� 4.55% 0.2744� 4.53% 0.5863� 4.46% 0.6059� 4.46% 7.1248� 5.39%
NNLOþ NNLL 0.2245� 1.49% 0.2782� 1.52% 0.5741� 1.60% 0.6118� 1.61% 6.9867� 1.79%
N3LOþ N3LL 0.2223� 0.53% 0.2752� 0.55% 0.5667� 0.63% 0.6039� 0.63% 6.8464� 0.81%

TABLE IV. W−H production cross section (in pb) of DY-type N3LO, DY-type N3LOþ N3LL, total N3LO and total resummed
N3LOþ N3LL which are defined in Eq. (16) and Eq. (17) for different

ffiffiffi
S

p
with 7-point scale uncertainty.

ffiffiffi
S

p ðTeVÞ σDY;W−H
N3LO

σDY;W−H
N3LOþN3LL

σtot;W
−H

N3LO
σtot;W

−H
N3LOþN3LL

7.0 0.2223� 0.28% 0.2223� 0.53% 0.2245� 0.09% 0.2245� 0.34%
8.0 0.2752� 0.30% 0.2752� 0.55% 0.2781� 0.08% 0.2781� 0.36%
13.0 0.5667� 0.36% 0.5667� 0.63% 0.5739� 0.13% 0.5739� 0.42%
13.6 0.6039� 0.36% 0.6039� 0.63% 0.6117� 0.13% 0.6117� 0.42%
100.0 6.8460� 0.54% 6.8464� 0.81% 6.9963� 0.35% 6.9967� 0.61%
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worth noting that in the recent past, there has been a
significant amount of progress toward the computation of
the NLO corrections to this gluon fusion process consid-
ering the finite top quark mass effects [116–122]. The top-
loop contributions are available at the a2S level [114] and are
implemented in the VH@NNLO 2.1 code. In the present
context, we consider all these three contributions to the ZH
production process and define the total production cross
section defined as

σtot;ZHN3LO ¼ σDY;ZHN3LO þ σggða3SÞ þ σtopða2SÞ þ σbb̄ ð14Þ

σtot;ZHN3LOþN3LL ¼ σDY;ZHN3LOþN3LL þ σggða3SÞ þ σtopða2SÞ þ σbb̄

ð15Þ

where the power of aS in the parenthesis denotes the
highest order up to which the respective contribution has
been taken into account. We present these results for the
ZH case in Table II. For the caseWH production, there will
be no contribution from gluon fusion as well as bottom
annihilation processes, however, there will be contribution
from top-loops from NNLO onwards. Hence, we define the
total production cross sections for WH case as

σtot;WH
N3LO

¼ σDY;WH
N3LO

þ σtopða2SÞ ð16Þ

σtot;WH
N3LOþN3LL ¼ σDY;WH

N3LOþN3LL þ σtopða2SÞ· ð17Þ

These production cross sections up to N3LOþ N3LL are
given in Table IV forW−H and in Table VI forWþH cases.
We also note that at this level, the electroweak corrections

[123,124] are also competitive. For the current LHC
energies, they are about −5.28% for ZH and −6.88%
for WH total production cross sections. This can easily be
implemented in the analysis, however, we did not consider
them for simplicity and focus only on the QCD corrections.
Finally, we estimate the uncertainties in our predictions

for VH invariant mass distributions due to the choice of
the PDFs used in our analysis. For this, we compute the
invariant mass distributions at N3LOþ N3LL using differ-
ent choice of PDFs: ABMP16 [125], CT18 [126],
NNPDF23 [127], and PDF4LHC15 [128]. All these sets
are considered at NNLO level and the invariant mass
distributions are obtained for central set (iset ¼ 0). We
obtain these results normalized with respect to those
obtained from our default choice of MMHT2014nnlo
PDFs (iset ¼ 0) and for the central scale choice and present
them in Fig. 19 for ZH (left panel), W−H (middle panel)
and for WþH (right panel). The bands for each of the PDF
sets in these figures represent the corresponding 7-point
scale uncertainties, which are found to get reduced with Q
for all the PDF sets considered here except those for
NNPDF23 sets. For the latter choice of PDF sets, the scale
uncertainties are found to decrease first with Q up to about
1500 GeV, and then they slowly increase with Q. The
uncertainty in these predictions due to the choice of
different PDF sets is smaller in the low Q-region and is
at the most 4%, but these uncertainties tend to increase with
Q. In the high Q region Q > 2000 GeV, the deviations
fromMMHT2014 results are in general larger for ABMP16
and CT18 PDF sets for ZH and W−H processes. The
deviations at Q ¼ 2000 GeV for ZH case are about 4.2%,
6.6%, 5.3% and 4.0% for ABMP16, CT18, NNPDF23 and

TABLE V. WþH production cross section (in pb) for different
ffiffiffi
S

p
with 7-point scale uncertainty.

ffiffiffi
S

p ðTeVÞ 7.0 8.0 13.0 13.6 100.0

LO 0.2820� 0.30% 0.3409� 1.08% 0.6583� 3.77% 0.6983� 4.00% 7.7331� 13.06%
NLO 0.3805� 1.57% 0.4582� 1.53% 0.8676� 1.40% 0.9183� 1.40% 8.7881� 4.38%
NNLO 0.3944� 0.42% 0.4750� 0.39% 0.8975� 0.37% 0.9497� 0.38% 8.7460� 1.01%
N3LO 0.3927� 0.25% 0.4725� 0.27% 0.8906� 0.33% 0.9422� 0.34% 8.6026� 0.54%
LOþ LL 0.3201� 1.39% 0.3861� 1.49% 0.7409� 4.14% 0.7856� 4.37% 8.5904� 13.33%
NLOþ NLL 0.3911� 4.13% 0.4707� 4.12% 0.8897� 4.12% 0.9416� 4.12% 8.9811� 5.26%
NNLOþ NNLL 0.3960� 1.34% 0.4768� 1.37% 0.9008� 1.46% 0.9532� 1.47% 8.7719� 1.68%
N3LOþ N3LL 0.3927� 0.45% 0.4725� 0.48% 0.8907� 0.56% 0.9423� 0.57% 8.6032� 0.79%

TABLE VI. WþH production cross section (in pb) of DY-type N3LO, DY-type N3LOþ N3LL, total N3LO and total resummed
N3LOþ N3LL which are defined in Eq. (16) and Eq. (17) for different

ffiffiffi
S

p
with 7-point scale uncertainty.

ffiffiffi
S

p ðTeVÞ σDY;WþH
N3LO

σDY;WþH
N3LOþN3LL

σtot;W
þH

N3LO
σtot;W

þH
N3LOþN3LL

7.0 0.3927� 0.25% 0.3927� 0.45% 0.3965� 0.11% 0.3965� 0.27%
8.0 0.4725� 0.27% 0.4725� 0.48% 0.4774� 0.09% 0.4774� 0.29%
13.0 0.8906� 0.33% 0.8907� 0.56% 0.9017� 0.13% 0.9017� 0.36%
13.6 0.9422� 0.34% 0.9423� 0.57% 0.9541� 0.13% 0.9542� 0.36%
100.0 8.6026� 0.54% 8.6032� 0.79% 8.7865� 0.37% 8.7871� 0.60%
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PDF4LHC15 PDF sets respectively. The similar numbers
for Q ¼ 3000 GeV are about 9.0%, 8.3%, 2.9% and 4.3%,
respectively. The deviations are largest for the caseW−H in
the high Q region and are about 20% for ABMP16 sets.
It is worth studying the intrinsic PDF uncertainties

in our resummed predictions due to the parametriza-
tion of the PDFs themselves. For this, we use the
MMHT2014nnlo68cl PDF sets and compute the cross
sections due to all the 51 different sets and estimate the
asymmetric uncertainties as provided by the LHAPDF
routines. We present these uncertainties in our resummed
results for VH productin cross sections at N3LOþ N3LL
accuracy normalized with respect to those obtained with the
central set. These results are shown in Fig. 20 for the ZH,
W−H, and WþH processes, with uncertainties reaching
about 5% in the high invariant mass region.

D. bb̄H production

As a final process, we consider the Higgs boson
production in bottom quark annihilation process at the

LHC. This process has already been studied up to NNLOþ
NNLL by some of the authors in [42] including a detailed
uncertainty analysis. In [42], the work also has been
extended to N3LOþ N3LL including the estimation of
uncertainties only due to unphysical renormalization scale.
However, in this work, we complement these studies by
considering the bb̄ → H production cross sections along
with a detailed 7-point scale uncertainties for the choice of
parameters given before. We present in Fig. 21 these
production cross sections from LOþ LL to N3LOþ
N3LL along with the respective scale uncertainties at
hadron colliders for different center of mass energy

ffiffiffi
S

p
values from 7 TeV to 100 TeV. For

ffiffiffi
S

p ¼ 13.6 TeV, we

FIG. 19. Behavior of invariant mass distributions at N3LOþ N3LL for ZH (left panel), W−H (middle panel), and WþH (right panel)
with 7-point scale variation in band for different PDF groups (central value) normalized to the default choice of MMHT2014.

FIG. 20. The intrinsic PDF uncertainties in the resummed
predictions for VH production processes at N3LOþ N3LL,
obtained from MMHT2014nnlo68cl PDF sets.

FIG. 21. The bb̄H cross section for different center of mass
energy at different order and the corresponding K-factor with
respect to LOþ LL.
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find that these 7-point scale uncertainties is 5.26% at N3LO
and is 4.98% at N3LOþ N3LL. The scale uncertainties are
found to get reduced with higher logarithmic accuracy in
resummation while at any given order in perturbation
theory they are in general found to increase with

ffiffiffi
S

p
.

IV. CONCLUSIONS

We have studied the threshold effect on the color singlet
processes DY, associated VH productions and Higgs
production through bottom quark annihilation. To achieve
this, we have used the universal and process dependent
resum coefficients that are known by some of us up to
N3LL. Thanks to the recent publicly available N3LOXS code
that we are able to perform the complete matching at the
third order in QCD thus incorporating missing regular
contributions at this order. We performed a detailed
phenomenology for neutral DY, charged DY production
of dileptons, Higgs production in association with massive
vector boson ðV ¼ Z=WÞ in the DY-type process as well as
for the Higgs production in bottom quark annihilation
process. We presented our results for the dilepton and VH
invariant mass distributions as well as the total production
cross sections for VH and bb̄H processes. For the case of
VH production process, the resummed corrections over the
fixed order N3LO results are found to be very small, thus
demonstrating a very good convergence of the perturbation
series. We observe that the FO results have smaller scale
uncertainties in the low Q region. However, the resumma-
tion gives significant reduction of the conventional 7-point
scale uncertainties to as small as 0.1% in the high invariant
mass region Q ≥ 1500 GeV of VH production processes.
For the associated Higgs production with a Z boson, the
gluon fusion channel and top-loop contributions from
NNLO onward are also important [116–122] at the accu-
racy that we considered here. We have included these

contributions in our inclusive total production cross sec-
tions for VH processes. To tame down the uncertainties
further, we note that the resummation in gluon fusion
channel is equally important. For the DY and DY-type VH
production processes we have considered here, the theory
uncertainties after the resummation to N3LL accuracy has
been achieved are very much under control. However, the
PDF uncertainties are still large which can be reduced with
the availability of N3LO level PDFs and more experimental
data. Further, at this precision level the electroweak
corrections are also important to bring the total theory
uncertainties under control.
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APPENDIX: RESUMMATION COEFFICIENTS

The process-dependent g0 coefficients defined in
Eq. (10) are given as [defining Lqr ¼ ln ðQ2=μ2RÞ,
Lfr ¼ ln ðμ2F=μ2RÞ],

g01 ¼ CFf−16þ 16ζ2 þ ð−6ÞLfr þ ð6ÞLqrg; ðA1Þ
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Here N4 ¼ ðn2c − 4Þ=nc and nfv is proportional to the charge weighted sum of quark flavors [95].
The process-independent universal resum exponent defined in Eq. (9) which are used for DY-type processes are

given as,

ḡ1 ¼
�
A1

β0
f2 − 2lnð1 − ωÞ1þ 2lnð1 − ωÞ1ω−1g

�
; ðA4Þ

ḡ2 ¼
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D1
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�
1
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Here Ai are the universal cusp anomalous dimensions, Di are the threshold noncusp anomalous dimensions, and
ω ¼ 2aSβ0 ln N̄. Note that all the perturbative quantities are expanded in powers of aS. The cusp anomalous dimensions Ai
are given as (with the recently known four-loops results [129–131]),

A1 ¼ CFf4g; ðA8Þ

A2 ¼ CF

�
nf

�
−
40

9

�
þ CA

�
268

9
− 8ζ2

��
; ðA9Þ

A3 ¼ CF

�
nf2

�
−
16

27

�
þ CFnf

�
−
110

3
þ 32ζ3

�
þ CAnf

�
−
836

27
−
112

3
ζ3 þ

160

9
ζ2

�

þ C2
A

�
490

3
þ 88

3
ζ3 −

1072

9
ζ2 þ

176

5
ζ22

��
; ðA10Þ
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The quartic casimirs are given as

dabcdA dabcdA
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¼ n2cðn2c þ 36Þ

24
;
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¼ ncðn2c þ 6Þ

48
; ðA12Þ
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48
;
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96n3c
; ðA13Þ

with NA ¼ n2c − 1 and NF ¼ nc, where nc ¼ 3 for QCD. The coefficients Di are given as,
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