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In this paper, we analyze the exclusive photoproduction of heavy quarkonia pairs in the collinear
factorization framework. We evaluate the amplitude of the process for the J/y — 5. quarkonia pair in the
leading order of the strong coupling a,, and express it in terms of generalized parton distributions (GPDs)
of gluons in the proton. We make numerical estimates in the kinematics of the Electron Ion Collider and find
that, in the photoproduction regime, when the virtuality of the photon is much smaller than the quarkonia
mass, the cross section of the process is sufficiently large for experimental studies. We demonstrate that the
study of this channel can complement existing studies of gluon GPDs from other channels.
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I. INTRODUCTION

Understanding the proton structure presents one of the
central problems in high-energy physics. Usually this
structure is parametrized in terms of partonic and multi-
partonic distributions of different flavors. In view of the
nonperturbative nature of strong interactions, it is not
possible to evaluate these distributions theoretically from
first principles, and thus we have to extract them from
experimental data. For exclusive processes, the amplitudes
are usually controlled by the generalized parton distribu-
tions (GPDs) of the target [ 1-6]. However, extraction of the
GPDs from experimental data suffers from a number of
technical challenges and, at present, inevitably requires the
use of model assumptions, even for Compton scattering and
meson production, which are considered as references in
nucleon tomography [7]. Many observables might obtain
simultaneous contributions of GPDs with different helicity
and flavor states, albeit with different, process-dependent
weights. For this reason, the extraction of partonic dis-
tributions of individual flavors inevitably requires analysis
of multiple channels, and thus the extension of the number
of possible channels for study of GPDs is strongly desired
[8—11]. Recently a new class of 2 — 3 processes has been
suggested in the literature [12-23], as potential new probes,
which should complement existing studies, provide more
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stringent constraints on existing phenomenological models,
and in this way diminish theoretical uncertainty. Most of
these studies focused on the production of light mesons and
photons. Such processes are dominated by quark GPDs
(both in chiral odd and chiral even sectors). A factorization
for such processes has been proven in the kinematics when
the relative transverse momenta of the produced hadrons
and photon (~ pairwise invariant masses) are large enough
to avoid soft final-state interactions [24,25].

In these analyses, special attention should be paid to the
extraction of gluon GPDs. Since the gluons do not couple
directly to photons, they contribute to many processes only
as higher-order corrections, which adversely affects the
precision of the extracted gluon GPDs. However, knowl-
edge of the gluon GPDs is important for solving many
puzzles (see [1-6] for overview). The best channel for the
study of gluon GPDs is the production of heavy quarkonia.
Because of the expected smallness of intrinsic heavy parton
densities, the process gets a dominant contribution from
gluon GPDs, which might therefore be studied in detail.
The heavy mass of quarkonia plays the role of a natural
hard scale in the problem [26,27], relaxing the conditions
on other kinematic variables and potentially opening
the possibility to use perturbative methods even in the
photoproduction regime. A modern nonrelativistic QCD
(NRQCD) framework allows one to systematically incor-
porate various perturbative corrections [28—39]. The use of
single quarkonia production for constraining the gluon
GPDs has been discussed in detail in [40-43], and the
coefficient functions have been evaluated, taking into
account next-to-leading (NLO) order and some higher
twist corrections. However, the amplitude of this process
provides information only about GPDs convoluted with
process-dependent coefficient functions, and, as mentioned
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earlier, an inversion of the procedure might be impossible,
especially when the complicated structure of higher-order
corrections is taken into account. For this reason, it is
important to complement the analysis with data from other
channels. A natural and straightforward extension of these
studies is the production of multiple quarkonia (e.g., heavy
quarkonia pairs). Such processes have been the subject of
theoretical studies since the early days of QCD [44-47]
and recently got renewed interest due to the forthcoming
launch of high-luminosity accelerator facilities, as well
as being a potential gateway for the study of all-heavy
tetraquarks, which might be molecular states of quarkonia
pairs [48-58].

Previously, the exclusive production of quarkonia pairs
has been studied for J/wJ/w production, which might
proceed only via a two-photon mechanism yy — MM,
[59—-64] due to C-parity constraints and thus cannot be used
for studies of gluon GPDs. Recently, we analyzed the
production of quarkonia pairs with opposite C-parities,
which proceeds via photon-pomeron fusion and thus have
larger cross sections [65]. However, our study was realized
in the framework of the color glass condensate approach
and relied on an underlying eikonal picture, which is valid
in the small-x domain. At smaller energies, as well as in the
kinematics of large photon virtuality Q, the assumptions
of this picture are not well justified, and it makes sense
to analyze this process in the complementary collinear
factorization approach, which is expected to give reason-
able predictions in this kinematics and give access to
the aforementioned gluon GPDs of the target. This kin-
ematic regime might be studied in low-energy electron-
proton collisions at the forthcoming Electron Ion Collider
(EIC) [66-69].

The paper is structured as follows. Below, in Sec. II, we
discuss in detail the kinematics of the process and the
framework for the evaluation of the amplitude of the
process. In Sec. III, we present our numerical estimates
for the cross sections, in EIC kinematics. Finally, in Sec. IV,
we draw conclusions.

II. EXCLUSIVE PHOTOPRODUCTION
OF MESON PAIRS

Previously, the exclusive production of light meson
pairs was analyzed in Bjorken kinematics in [70-74], with
the additional constraint that the invariant mass of the
meson pair should be large. There it was demonstrated
that the amplitude of that process might be represented
as a convolution of the quark and gluon GPDs of the
target, with novel two-meson distribution amplitudes.
However, the extension of those results to quarkonia pairs
is not straightforward, since quarkonia masses and the
invariant mass M, are very large, so the Bjorken regime
(Q > M ,) is achieved in the kinematics where the cross
section is negligibly small. For this reason, it makes sense
to analyze the quarkonia pair production by treating the

heavy mass of the quark and the photon virtuality Q as
two independent hard scales, with the photoproduction
(Q < M,,) and Bjorken (Q > M,,) regimes as limiting
cases. In the following Sec. II A we discuss in detail the
kinematics of the process, and in Sec. II B we discuss the
evaluation of the amplitudes in the collinear factorization
approach and their relation to the target gluon GPDs.

A. Kinematics of the process

In order to facilitate the comparison with experimental
data, in what follows we will present our results in the
frame whose axis z coincides with the photon-proton
collision axis, so the light-cone decomposition of the
momenta is given by

o _ /
- <_2q_’q 70l ) C] :E]/+ E}%+Q2s (1)
P= (P+ L ) Pt =E,+\/E} - 2)
— ’2P+7 1 | mN’

MJ_
Pa = ( 2” e‘ya,Male-V",pj) a=1,2, (3)

M =\/M2 + (o, 4)

where ¢ is the (virtual) photon momentum, P and P’ are the
momenta of the proton before and after the collision, and
P1, D> are the 4-momenta of the produced heavy quarkonia;
the latter are expressed in terms of the rapidities and
transverse momenta (y,,ps) of these heavy mesons.
This frame allows for straightforward analysis down to
the photoproduction limit (Q — 0). The relation of this
frame to the so-called symmetric frame [2,3,73,75-79],
which is used for the analysis in Bjorken kinematics
(Q — ), is discussed in detail in Appendix A. In the
limit Q — 0, this frame, up to a trivial longitudinal boost,
coincides with the frame used in earlier studies of exclusive
photoproduction yp — yMp [12-21]. In this frame, the
polarization vectors of the longitudinally and transversely
polarized photons are chosen respectively as'

I AN

We also will use the notations

'We have chosen the longitudinal vector in the light-cone
gauge, so the contribution of the longitudinal photons in the ep
amplitude might be reinterpreted as an instantaneous part of the
photon propagator. The results will not change under any
redefinition of polarization vectors &,(q) — €,(g) + const g,
in view of the Ward identity (in this problem, it remains valid
even for off-shell photons, since all amplitudes with an omitted
photon vertex vanish due to C parity).
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A=P —-P=qg-p —p,= (A", A" AL, (6)
Ab _sz_MlLe‘yl _Mng—yz
2 2 2
A~ =g —Mie —Mye:, A =-pt-py (7)

for the four-vector of momentum transfer to the proton and
its components, and the notation ¢ for its square,

= AZ = —(q_ — M%eyl — leeh)

2
(qQ +Mye™ + Mye ‘M) =P +py)°

=—Q* + Mi + M5 — g~ (M{e™ + Mye™)

After the interaction, the 4-momentum of the proton is
given by

2 2

— — L Ly Q

_P+A—<q +F_M e’ — Mzeyz’PJr_g
Mie™ + Mie

and the on-shellness condition (P + A)? = m3; allows one
to get an additional constraint

m12v +t n m,zv
2 4P+

q_P+ = P+(Mf~e)’l + M%eyZ) —

2
2 - o, 2
Q E (Mien + Mien) (Ml M4 Mie™ + = > (10)
61
Ll L.yl
+2(My M cosh Ay —py - py). (8) Solving Eq. (10) with respect to g~, we get
|
2 2
_ Mie +Myen — i ALaNY % (Mie™ + Mye™2)
q = )
1 mi 4+t m 2 0Pm3
L,y 1y N N 1- 1,y N
) \/<M1 My = g T gpry (M Mye y2)> Ao an
which allows us to express the energy of the photon E, ~ M3, = (p1 + p2)* = M? + M3
g~/2 in terms of the kinematic variables (y,,ps) of the Ll oL
produced quarkonia. For asymptotically large energies +2(MyM; cosh Ay —pi - py)
g~ P> {0,M,, my,+/|t|}, the result (11) reduces to =1 — Q% +2M{ Qcosh(y, + 8y,)
+2M3 Q cosh(y, + 8y,). (16)
g~ ~Mieh + Mye”, (12)
_ +
and in this limit the variable ¢ merely reduces to Oy =In(Q/q7). (17)
respectively. Finally, the Bjorken variable xp might be
(i +p3) (13) o e e e relation b e

In the photoproduction regime, the expression for ¢~
simplifies to

my -+t omy
2Pt 4(PT)?

X (Mie™ + Mye™2).

q = Mlig}'l _f_leeyz —
(14)

The invariant energy W of the yp collision and the
invariant mass M, of the produced heavy quarkonia pair
in terms of these variables might be rewritten as

2 _
W= = Syp

=(q+P)*=-Q*+my+2q-P, (15)

evaluated using the relation

2 2 2
M, 2 +Mu e +@e‘yz.
Q*+ W2, —m} 2¢ Pt P* Pt

Xp ~
(18)

The cross section of electroproduction is dominated by
single-photon exchange between leptonic and hadronic
parts, and for this reason might be represented as

(L)
daypﬁMlep

aQ,

do-e —eM, Qem
. M2M2p =— 2 (1-y)
dInxpdQ-dQ, =70

(T)
y dayp—>MM2p
1- — = 19
+( y+2> a0, (19)
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where y is the inelasticity (fraction of electron energy that
passes to the virtual photon, which should not be confused
with the rapidities y;, y, of produced quarkonia); d€2,
represents the phase volume of the produced quarkonia
pair and will be specified below. In (19) we assumed that
the incident protons and electrons are not polarized, and
do'"), do) are the contributions of the transversely
and longitudinally polarized virtual photons. While the
former is expected to dominate for longitudinal photons,
the latter might get pronounced contributions at large
virtualities.

The photoproduction cross section is related to the
amplitude via

dyidp} dysdp} dg| AT

(L.1)
do,.", =
mMIRE 4 0n) (WP Q2 — m})” + 407m],

x8((q 4+ Py — pi — p2)* — my). (20)

where the 6 function guarantees on shellness of the recoil
proton. Taking into account that the vectors ¢, P; do not
have transverse momenta, we may rewrite the argument of
the & function as

(q+P,—p—py)?—m}
2
= (a+Pi=pl=pl) — ot +pb)? -k
2
= (q +P —pl - pg) —((p1)* + (p3)?
+2pipy cos ) — my, (21)

where ¢ is the azimuthal angle between the transverse
momenta of quarkonia pi, py. We may rewrite the &

¢o = arccos

2 function in (20) as
5(¢p — o)
S((g+P —p1—p2)—my) =5———, (22
|
2
(q+Prﬁﬁ—pQ —((p1)*+ (p3)* + my) )

which allows us to integrate out the dependence on ¢.
The restriction |cos¢y| < 1 imposes an additional con-
straint on possible (y;, p;, ) and (y,, po,) values, at fixed
photon-proton energy. In Fig. 1, we illustrate the typical
kinematically allowed region for a fixed choice of E,,
E,, in EIC kinematics, as a function of rapidities and
transverse momenta of quarkonia. At very high energies
P*,q~ > M;,, the domain turns into a narrow strip
surrounding the curve (10) and has a typical width
~1/P". In this regime, the longitudinal momentum of
the projectile remains almost constant, so it corresponds to
the kinematics xz ~ £ < 1, which is outside the scope of
our study. The color of each point in Fig. 1 illustrates the
value of the invariant mass M, of the quarkonia pair. As
we will show below, the dominant contribution to the cross
section comes from the region |f|,,;, < |f| < 1 GeV?; for
this reason, we have also shown the line = —1 GeV? (the
line t = t,;, corresponds to the upper border of each
colored domain). The observed anticorrelation between
|f| and M, might be understood if we take into account
that, for fixed-energy of the quarkonia pairs, the variable |7|
reaches its minimum (and M, reaches its maximum) for
quarkonia moving in opposite directions; vice versa,
quarkonia moving in the same direction, will minimize
M, but maximize [7|. In the experiment, due to finite
resolution in the measurement of the photon energy W and
the quarkonia kinematics (y;,, p; ), the narrow domains
shown in Fig. 1 will get smeared. Because of this, the

2pipy

values of M?, and ¢ are not uniquely defined, but rather
are distributed in some interval. The size of this effect
depends crucially on the experimental setup, so we will not
discuss it here with more detail. However, for any reason-
ably narrow bins in rapidity (Ay) or transverse momenta
(Ap,), the variables y;,, p;, remain restricted to some
finite domain.

In electroproduction experiments, instead of conven-
tional fixing of the photon energy, it might be easier to treat
the quarkonia variables (yq, p11, Y2, P21, ¢) as independent
variables and express the photon energy in terms of these
variables. The § function in (20) can be rewritten as

5((g+ Py = p1 — p2)* —m3)
=8(W2+ M3, —2(q+ Py) - (p1 + pp) —m%)
S(W —Wy) + 8(W + Wy)

- 2W, ’ 4
W5 =2(qg+P1) - (p1+ pa) +my — Mi,
_ - mIZV MJ_ -y MJ_ )
=1lq +2Pﬁ S(Mie™ + Mye™)

5 L,y 1 2 2

+2<P+—§)-(M1e5’1+M2eY2)+mN—M12,

(25)
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FIG. 1.

The colored bands represent kinematically allowed regions for quarkonia pair production at fixed photon energy E,, virtuality
0, and proton energy E,. The left plot illustrates the allowed values of transverse momenta for different fixed rapidities y; » = v, ¥y,
of both quarkonia. An increase of rapidities of both quarkonia leads to higher longitudinal components of their momenta and thus, in
view of energy conservation, leads to smaller transverse momenta of quarkonia. The right plot illustrates the allowed values of rapidities
at different fixed transverse momenta |p; ,| = p,,. p,. . Akin to the left plot, in view of energy conservation, bands with smaller p
require larger longitudinal components of both quarkonia, which translates into higher quarkonia rapidities. In both plots the color of
each point encodes the value of the invariant mass M, of the quarkonia pair, as given in the color bar legend on the right side. The red
dashed line inside each band corresponds to fixed momentum transfer to the proton t = A> = —1 GeV? (see the text for more
explanation).

and ¢~ can be fixed from (11). After integration over all
possible energies W (equivalent to integration over all
possible xz), we get for the electroproduction cross section

to express the amplitude in terms of the target GPDs [1-6].
We will assume that both the photon virtuality Q% and the
quark mass m, are large parameters and also disregard the
transverse momenta A ,p,; in the coefficient function.

d6,pem,m,p _ em (1- )d&l(,]]“,)_) M Myp Furthermore, we Will assume that the quarlfonia pairs are
d0%dQ, 4702 y aQ, always produced with sufficiently large relative momentum
2\ d5'")
Yy yp—=M M,p (ZI’HQ>U 1
+ (1 -y +7> 7({9}: : ] . (20) Prel “Tvr; Z ag(mg)my.
rel
LT 2 2.2
d(_y(L,T) _ dyldp%Ldy2dp%Ld¢|A;(/p—>3WlM2p| Vel = 41— _Pip; .
MM A O W (W2 + QF — m)? + 4Q7m (P1-p2)

(27) 4AM3 M

— /1= ,
\/ (M, = M} = M3)°

both with respect to each other, as well as with respect to

(28)
where now (yq, p11, Y2, P21, @) are independent variables,

_(L.T) .
and d6,,_ ) y,, corresponds to the photoproduction cross

section with the photon’s energy evaluated using (10).

B. Amplitudes of the meson pair
production process

. . (L.T) .
For the evaluation of the amplitudes A, "} 1/, ., we will
use the collinear factorization framework, which allows us

recoil proton, to avoid potential factorization breaking by
the exchange of soft gluons in the final state. We expect that
the factorization should remain valid both in the Bjorken
and in the photoproduction regimes.

The GPDs are conventionally defined in the symmetric
frame specified in Appendix A, so for the coefficient
functions evaluation we will temporarily switch to that
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FIG. 2. The contour plot illustrates the relation of the skewedness variable £ = —(PJT

rapidities y,, y,, for different proton energies £,

— P[)/(P; + P) to the rest-frame quarkonia

, in EIC kinematics. For the sake of simplicity, we consider J/y#, production in the

kinematics with zero transverse momenta and zero photon virtuality Q, which gives the dominant contribution to the total cross section.

Labels on contour lines stand for the values of £&.

frame.” In this frame, the momenta of the active parton
(gluon), before and after interaction, are given explicitly by

h:(@+@ﬁﬁr%%,

b= (- op0.5), (29)

where x is the light-cone fraction of average momentum,
x = (kf +kf)/2P", and the skewedness variable ¢ is
related to xp defined in (18) via the relations [3]

A+ XB 25

§=—F:2_XB’ xp=1=- (30

In exclusive photoproduction, due to relation (18) it is
possible to express £ in terms of the produced quarkonia
momenta. In Fig. 2, we illustrate the relation of the variable
£ to the rapidities y,, y, of the quarkonia in the reference
frame introduced in Sec. I A.

In Bjorken kinematics, the leading-order contribution to
the amplitudes of quarkonia production comes from the
gluon GPDs. The contributions of the light quark GPDs
appear only via higher-order loop corrections and thus will
be omitted in what follows. Furthermore, we will disregard
the contributions of the transversity gluon GPDs H%., EY.,

2We need to mention that, in early studies [2,3,75,76], the
GPDs were defined in an asymmetric frame, in which the
momentum transfer of the incident photon is zero. Up to a trivial
longitudinal boost, this frame essentially coincides with the frame
introduced in Sec. IT A. It is possible to relate the GPDs defined in
different frames using some transformation of the arguments.
However, since this frame is not widely used in the recent
literature dedicated to GPD properties, we abstain from using it in
what follows.

HY., Ef, since at present there is no phenomenological
parametrizations for these GPDs, and existing experimental
bounds suggest that they should be negligibly small (see,
e.g., explanation in [10,80]). By their definition, the
transversity GPDs appear in the amplitudes multiplied
by the momentum transfer to the proton A, which is small
in the kinematics of interest, so we expect that their
omission should be numerically justified. The contribution
of the chiral even GPDs to the square of amplitude is
given by

1 S
Z‘AHHM sz p) [4(1 —xp)(HoHa +HoHy)

spins <2 —XB )

— X3 (Ho &%+ EqHE 4+ HLEL + EJHLL)

t
(xB (2-xp)* W)Eagﬁ
N
I - o
—X%mgaé’a}, a:L,T, (31)

where the index a refers to longitudinal or transverse
photons, and, inspired by similar analysis of Compton
scattering and single-meson deeply virtual production
[81,82], we introduced the double-meson form factors

Ha(y1, y2, )=/ dxco(x, y1,y2)Hy(x, &, 1),

ldxca X, V1 ¥2)Ey(x, &, 1), (32)

S yl7y27

ldxca X,y 02)Eg(x. &, 1), (33)

g y17y27

~ 1
Ho(y1,y2:1) / dx@o(x,y1, y2)H,(x. &, 1),
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FIG. 3.

A
A

Schematic illustration of the single quark loop (“type-A”) diagrams that contribute to the meson pair production. In all plots it

is implied inclusion of diagrams that might be obtained by inversion of heavy quark lines (charge conjugation).

where the variable £ should be understood as a function of
Y1, Y2, as defined in (30). The corresponding partonic
amplitudes c¢,, ¢, might be evaluated perturbatively, taking
into account the diagrams shown in Figs. 3 and 4. Since we
assume that produced quarkonia are well separated from
each other kinematically, the final Fock state of the system is
a direct product of Fock states of individual quarkonia, and
thus it is possible to express the amplitudes c,, ¢, in terms
of the objects that encode the nonperturbative structure of
individual quarkonia. This structure might be described in

terms of the nonperturbative long-distance matrix elements
(LDMEs) of NRQCD [28-39] or, alternatively, in terms of
light-cone distribution amplitudes (LCDAs). The equiva-
lence of the two approaches has been discussed in detail in
[83—85]. For the sake of definiteness, in what follows we will
use the NRQCD approach for our evaluations. We briefly
summarize the relation of this picture with the description in
terms of LCDAs in Appendix B.

In the heavy quark limit, the relative velocity of heavy
quarks inside the quarkonia is suppressed as ~a;(mg) < 1,

034037-7
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FIG. 4. Schematic illustration of the double quark loop (“type-B”’) diagrams that contribute to the meson pair production. In all plots it
is implied inclusion of diagrams that might be obtained by inversion of heavy quark lines (charge conjugation) in the first loop; diagrams
2, 4, 6 are related to diagrams 1, 3, 5 by charge conjugation (symmetry z, — 1 — z,).

and for this reason both heavy quarks inside each quarkonia
carry approximately half of its momentum. Furthermore,
according to NRQCD, for the evaluation of the functions
Cq> Cq, We should project the final-state quark-antiquark
pairs onto the states with definite quantum numbers,
multiplying them by appropriate LDMEs. For this reason,
we expect that these functions can be represented as

ZC
ZC

where summation is done over different possible quantum
numbers #, j of QQ pairs inside both quarkonia. According
to both NRQCD and potential models, the dominant Fock
1]

NERIIY! (X, 1. ¥2),

(X, y1,¥2) X, Y1, )2) (34)

state in charmonium is the color singlet ¢c pair in the 3§ [1

state for J /y, and the ISE J state for 1., SO we expect that the
sums (34) might be approximated as

3S[1] ls[ ]

Caly1.32) A CC 0 (31 30) = Calrayrya), (35)
_ ~(3S[1] 1S[1]) ~
Ca(X,y1,y2) R Ca ' (X, y1.32) = Cox,y1.y2), (36)

where at the last step in both equations we introduced a
simplified notation without explicit quantum numbers.
These functions C,, C, might be evaluated in perturbative
QCD. Assuming equal sharing of quarkonium momentum
between constituent quarks, it is possible to show that the
typical virtuality of the gluon connecting different heavy
lines is parametrically of order ~M?, /4 for the diagrams in
Fig. 3 and of order ~min (M3, M3) for the diagrams in
Fig. 4. This justifies the applicability of perturbation theory
for evaluation of C,, C,, even for the diagrams that include
three-gluon vertices in Fig. 3. The full expressions for the
amplitudes and some technical details of its evaluation are
provided in Appendix C.

The contribution of longitudinal photons to C, vanishes
in the limit of small p,;, < M, Q in view of combined
Lorentz and P parity. The contributions of the longitudinal
photons to C, do not vanish in this limit, although in the
cross section it appears in convolution with numerically
small helicity flip gluon GPDs H, E,. Since for quasireal
photons the contribution of longitudinal photons is sup-
pressed by a factor Q/m,, we will disregard it altogether in
the total (unpolarized) cross section.

The dependence on the variable x in the coefficient
functions might be represented as a linear superposition of
rational expressions

Pf(x)
(x— xk ) 10)

Calrayiya) ~ Y — (37)

4 k=1

where P, (x) is a smooth polynomial of the variable x, and
the denominator of each term in the sum (37) might include
a polynomial with up to n, = 5 nodes x,(f) in the region of
integration. The integral near the poles exists only in the
principal value sense and is evaluated using

1
> —ind(x — x,(f)

1
_— = P'V'<7(f) ).
+ i0 X=X

(38)
X — xi )

The position of the poles xk depends on all kinematic
variables yq, y,, Q. In Fig. 5, we show the density plot that
illustrates the behavior of the coefficient function
Cr(x,&,y1,y,) as a function of its arguments. While in
the convolution integrals (32)—(33) we need to take the
integral over all x € (—1,1), we expect that a sizable
contribution comes from the region near the poles of the
coefficient function. From Fig. 5, we can see that in the
coefficient function there are several poles, whose location
depends on the kinematics of produced quarkonia. For the
special case Q = O and y; = y,, itis possible to express the
position of these poles in terms of the variable & as

034037-8



EXCLUSIVE PRODUCTION OF QUARKONIA PAIRS IN ... PHYS. REV. D 107, 034037 (2023)

20" 1lc(x .l 20 TC(x )l 20° e, D)l
10° 10° 10°

15 15 15/}
1.0 100 10 1w W 10f

s < ‘

I 05 05
= 10° < | 100 < 108

0.0 0.0 0.0
-05 102 —05 102 —05 102
-1.0 . | . —10 . —1.0f M : }
-04 —-02 00 02 04 10 —-04 —-02 00 02 04 10 —-04 —-02 00 02 04 10

X X X

FIG. 5. Density plot which illustrates the coefficient function C (in relative units) as a function of the variables x and quarkonia
rapidities yy, y,. Left, central and right plots correspond to y; = y,, y; = y» + | and y; = —y, respectively. Rapidities are taken in the
reference frame introduced in Sec. IT A, for proton energy Efyl) =41 GeV; for other proton energies rapidities should be shifted by
Ay=In(E,/ EE,I) ). For the sake of definiteness, we considered the photoproduction regime (Q = 0) in all plots. White lines effectively
demonstrate the position of the poles x7, of the coefficient function (37). For reference, we marked with red dashed lines the poles which

correspond to x = £, where the skewedness & = &(yy, y,) was evaluated using (18), (30).

1 1 1 2 1 1 1 1 1
R e B (e I (e B (B e . (R Ty | Y

[
Varying the rapidities y,, y, of the observed quarkonia and  different choice of the spin-color projections. However,
virtuality Q2 of the photon, it is possible to probe the gluon ~ according to phenomenological estimates, the color octet
GPDs in the full kinematic range (x, ). For this reason, the ~ LDMEs of J/y mesons are very small [38],
information about the gluon GPDs extracted from this

process is complementary to what could be extracted from <O I (35[18])> ~2.32 x 1074 GeV3, (42)
single quarkonia production or deeply virtual Compton

scattering, which are mostly sensitive to gluon GPD near 8 B
b (03 (1)) ) # 835 x 107 Gev?, (43
According to NRQCD [28-39], the color octet QQ states
might also contribute to quarkonia production, so the <(’) n (3P([)8])> ~ 0, (44)
expression (31) should be generalized as
) and the color octet LDMEs of the 7, should be of the same
<a) ~ (‘,/l’/) (’7(:) 1 ] L .
Z‘Aﬂ’_’]/‘/’ﬂc}’ ~ Z<0i ><(9j > order in view of the heavy quark mass limit relations [28]
spins
1
2 0, ('s8)) =5 (0 (81")). a=18 (s
x 'Ayrw[QQMQQw‘ . (40) (on. (56 3\ #3)
(M) . . O BS[S] e ls[g] (46)
where (O;"’) are the nonperturbative color singlet and ne\ Pl Jw\ 2o )/
octet LDMESs corresponding to a given state i of the 0Q. In
the heavy quark mass limit, the series (40) is expected to <(f)”_ (1 P[18]>> = 3<(’) i (3P([)8]) > (47)

converge rapidly, so for numerical evaluations usually
only the first few terms are relevant. As mentioned earlier,
the dominant color singlet contribution is controlled by
the LDMEs (O, /V,(3S[1“])), (O, (IS[O“] )), which according to
phenomenological estimates have comparable values [86]

For this reason, in what follows we may safely omit the
color octet contributions.’

*We need to mention that, at very large transverse momenta

pr 2 5-10 GeV, it is known that color octet contributions might

<OJ/V/(SS[1Q])> ~ <O,7 (ISE"]» ~ 0.3 GeV3, (41) give relevant contribution to inclusive quarkonia production

¢ [33,34,40]. However, in our evaluations, we do not consider

. . such large values of pr, since the exclusive cross section is

The evaluation of the color octet amplitudes A}ﬁ-p—’[QQ]g[QQ]gﬂ strongly suppressed in that kinematics due to suppression of
is very similar to the color singlet case and differs only due to  gluon GPDs at large |¢| ~ p3 .
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III. NUMERICAL RESULTS

For the sake of definiteness, for our predictions we use
the Kroll-Goloskokov parametrization of the gluon GPDs
[80,87-91]. This parametrization effectively takes into
account the evolution of the gluon distributions, introduc-
ing a mild dependence of the model parameters on the
factorization scale up. In what follows, for the sake of
definiteness, we will choose the scale up = ur=

,/Mi/w+ Q?, which interpolates smoothly between

ur = My, in the photoproduction regime and pp ~ Q in
the Bjorken regime. In Fig. 6, we show the dependence of
the typical cross section on the choice of this factorization
scale. We may observe that this dependence is mild at

104"'|""|""|""|'
‘% ........ W=141 GeV  Y1=Y, Q=0
g 103_ ----- W=63 GeV 4
2 —— W=286GeV ...
S by
a 2L o 4
g0
5 -
T
101...|....|....|....|.
2 3 4 5
HF» GeV

FIG. 6. Dependence of the cross section on the choice of
factorization scale up. The frame label do/dQ;, on the vertical
axis is a shorthand notation for do/dy,dp3dy,dp3dgp. Chosen
values of W correspond to photon-proton energies E, x E,, =
18 x 275, 100 x 10, and 5 x 41 GeV respectively. In the photo-
production regime, these values of W correspond to values of the
Bjorken variable xz ~ 1.9 x 1073, 9.4 x 1073, and 4.5 x 1072,
respectively. All frame-dependent variables are given in the
reference frame described in Sec. IT A.
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3 107%
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moderate energies, but becomes very pronounced at very
high energies (small xz). Such behavior is not surprising: it
is known from studies of single quarkonia photoproduction
[40-43] that this dependence is due to omitted loop
corrections, and these corrections become especially pro-
nounced in the small-x kinematics.

We would like to start the presentation of results with a
discussion of the cross section (27) dependence on the
virtuality Q, shown schematically in Fig. 7. This depend-
ence is very mild in the photoproduction regime
(Q < My,), since the hard scale in this kinematics is
controlled by the quarkonium mass. In the Bjorken regime
(Q> M,;,,), the virtuality Q plays the role of the hard
scale, which leads to a pronounced dependence on Q. We
can see that the cross section is strongly suppressed, so the
experimental studies of this regime become very challeng-
ing. For small Q < M, the cross section is dominated by
the transversely polarized J/y mesons, similar to single
J /y production. This contribution is sensitive to the gluon
GPDs H,, E, The contribution of the longitudinally
polarized J/w mesons is controlled by the helicity flip
gluon GPDs H 9 Eg, which are less known phenomeno-
logically, although they are clearly significantly smaller
than the unpolarized GPDs. We also observe that the GPDs
H ,, E, might contribute to longitudinally polarized photons
via ~O(p 1/, corrections, although a systematic analysis
of this contribution would also require us to take into
account currently unknown twist-three gluon GPDs. In
view of these uncertainties, we abstain from making
predictions for the longitudinal polarization.

In Fig. 8, we show the dependence of the cross
section (27) on the transverse momenta p;, p,,. In the
collinear factorization approach, this dependence is largely
due to the gluon GPD dependence on the invariant
momentum transfer # (8): most of the phenomenological
models implement a pronounced (nearly exponential)

T T T -]

"""""""""""""""""""""""" EIC -+

¥o=d /e p

q 01f — E,=41Gev ]

1020 - E,=100 GeV k

E 08 E,=275 GeV =

5 107 :

R L I
s 1 10

Q, GeV

FIG. 7. Dependence of the photoproduction cross section (27) on the virtuality Q of the photon. On the left and right, we compare
predictions for different rapidities y,,,,y, and different proton energies E,. Both plots clearly illustrate the transition from
photoproduction to Bjorken regime in the region Q ~ 1-2M . In both plots, the photon energy is evaluated from (1) and (11). All
frame-dependent variables are given in the reference frame described in Sec. IT A.

034037-10



EXCLUSIVE PRODUCTION OF QUARKONIA PAIRS IN ... PHYS. REV. D 107, 034037 (2023)
D S — ————————— . . . o 8 ni4 3r/8 ni2
v 20T Ha 20 1 1iF T T 3
[ I T Y] 1 T

s [ W T R EIC s ypo>JdMnep E EIC
S1s Yo—=d 1Y 16 Tl S5k ] o8 — PyyEPy=0.5 GeVi
& Ep=41 GeV $=0 N Ep=41 GeV 1 o 6: ..... Pyy=Pn=1 GeV
510 o PwePaser ¢=ris {5 10F Q=0 Pyu=pn, Bt Pyiy=Py.=2 GeV

N ) Yyiy=Yn=0 —71/2 N Yi=Yn=0 1€

2 e =1, 3 0.4t Yi=Ya=0 4
Né: 5 ¢=3r1/4 N& s — 0s¢<TT 1 E

T —¢=17 ] 0.2f 3
- -

5 | 5 ]

i T T 1% G N 0.5 P -
T 1. 1.5 s 0. 0.5 1 0. 0.5 1. 1.5

pr, GeV It], Gev? ¢

FIG. 8.

Dependence of the photoproduction cross section (27) on the transverse momenta p; of the quarkonia (left), invariant

momentum transfer 7 to the proton (center), and the angle ¢ between the quarkonia (right). Since the cross sections at different p differ
quite significantly, in order to facilitate the comparison of their ¢ dependence, in the right plot we normalized them to unity in the
maximum (angle ¢ = z). For the sake of definiteness, we considered the case of photoproduction (Q = 0) at central rapidities

V==

0) in the frame described in Sec. II A; for other virtualities and rapidities, the p and ¢ dependence have very similar shapes.

All frame-dependent variables are given in the reference frame described in Sec. IT A.

behavior at small 7. At large angles ¢ ~ 7 between trans-
verse momenta of quarkonia (back-to-back kinematics), the
cross section has a sharp peak, which might be understood
from the definition (8): this point minimizes || at fixed
[P, As discussed in Sec. IT A, the transverse
momenta p; ,p,, also appear in other observables (e.g.,
via kinematic constraints, “transverse” masses MIL_Z) and
thus a mild p; dependence exists even for p;| = —p,, as
could be seen from the long red dashed line in the left panel
of Fig. 8. Since in the collinear approach we neglected the
pr dependence in the coefficient functions, the results are
valid only for small p; < max (Q,mg); in the opposite
limit (wide angle scattering kinematics), the cross section
will be strongly suppressed as a function of the variable
pr even for pr =p;;, = —p,,. The central panel in
Fig. 8 clearly demonstrates that, for any fixed ¢ # =, the
cross section has the same dependence on invariant
momentum transfer z. This happens because in collinear
approach we disregard the transverse momenta in evalu-
ation of the coefficient function, so ¢ dependence exists
only due to ¢ dependence of the gluon GPDs. In Fig. 9,
we illustrate the uncertainty of these cross sections due
to choice of the scale up, varying it in the range

ur € (My),/2,2M,,,,). As discussed earlier, this uncer-
tainty is very moderate at low energies, yet becomes very
pronounced (up to a factor of 2) at high energies. This
indicates that loop corrections might give pronounced
contribution in that kinematics.

In Fig. 10, we show the dependence of the py-integrated
cross section on the rapidities of the produced quarkonia. In
the left panel, we show the dependence of the cross section
on the average rapidity y; = y,. As expected, the cross
section grows with y due to the increase of photon energy
W2, the corresponding decrease of xp, &, and the growth of
the gluon GPDs in that kinematics. In the right panel, we
show the dependence on the rapidity difference Ay at
central rapidities. The cross section decreases as a function
of Ay, because the variables xp, £, the longitudinal recoil to
the proton, and the longitudinal momentum transfer |7,;,|
grow as a function of Ay at fixed ¥ = (v, + y,)/2, and the
amplitude decreases due to suppression of gluon GPDs
with |#]. Finally, in Fig. 11, we show the distribution of the
produced J/wn, pairs over their invariant mass M ,. The
distribution has a pronounced peak near M, ~7 GeV,
which demonstrates that the quarkonia pairs predominantly
are produced with a small relative momentum ~2-3 GeV.

%L 207 E,xE,=5x41 GeV{%, 80 E,xE,=10x100 Ge\€<r> """"" I g";‘g;:;g"‘g;g”gg{,"
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o 1 Q E Q=0, XB—9.4"10 E| [E==~o i
10l ¢=311/4] 2 40: i'2 200 ¢=371/4
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) 13 20 1S 100 ]
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FIG. 9. Uncertainty of the cross section due to choice of factorization scale up. In all plots, the central dashed line corresponds to
up = M, whereas upper and lower limits of the colored bands correspond to yy = 2M,,, and uy = M, /2, respectively. For the
sake of definiteness, in all plots we considered that the angle between J/y and 7, is ¢p = 3x/4; for other angles, the uncertainty due to

choice of up has the same magnitude.
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FIG. 10. Dependence of the cross section on the rapidities y;, y, of the two quarkonia for several proton energies in EIC kinematics.
Left: we illustrate the dependence on the average rapidity (y; = y,). Right: we consider the dependence on the rapidity difference at

central rapidities (y; = —y, = Ay/2).
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FIG. 11. Distribution of the produced quarkonia pairs over their

invariant mass M, for several fixed invariant energies W of the
yp collision.

IV. CONCLUSIONS

In this paper, we studied, in the collinear factorization
approach, the exclusive photoproduction of heavy charmo-
nia pairs with opposite C parities (J/w#..). In our analysis,
we focused on the kinematics of moderate values of xp,
achievable with low-energy ep beams at the Electron Ion
Collider. This regime corresponds to values of the Bjorken
variable xz € (1073,107"). We performed evaluations in
leading order, assuming that higher-order corrections are
suppressed at least as a (). We focused on the photo-
production regime (Q? ~ 0) and found that the dependence
of the photoproduction cross section on the virtuality Q is
quite mild up to Q < my ~ 1.2-1.5 GeV. The cross section
has a pronounced dependence on the invariant momentum
transfer ¢ and vanishes for 7| > 1 GeV?2. This implies that
the quarkonia pairs are produced predominantly in back-to-
back kinematics (with oppositely directed transverse
momenta), which minimizes |¢|. The produced J/y mesons
are predominantly transversely polarized, and the

amplitude of the process obtains the dominant contribution
from the unpolarized gluon GPD H,. The coefficient
function (partonic amplitude) has several poles (in addition
to the classical x = £¢£), whose positions depend on the
kinematics of the produced quarkonia. In view of the
complexity of the coefficient function, the deconvolution
(direct extraction of GPDs from amplitudes) is apparently
not possible. Nevertheless, we believe that the process
might be useful to constrain existing models of phenom-
enological GPDs, especially outside the x = £¢& line.

The results presented here complement our earlier
analysis [65] done in the color dipole framework in the
kinematics xp <1 and agrees with it by an order of
magnitude if extended to the region of common validity
(largest energy ep beams at EIC, small xz < 1). However,
the collinear factorization approach might be not reliable
there due to large NLO corrections and onset of saturation
effects.

Numerically, the evaluated cross sections are on par with
similar estimates for 2 — 3 processes (y*p — yMp, M = =«
p) suggested recently in the literature [12-21]. This happens
because the emission of a photon in the final state leads to a
suppression by the fine-structure constant a.,,, on par with
the suppression due to heavy quark mass in the production of
heavy quarkonia pairs. For this reason, both y*p — yMp
and heavy quarkonia production could be used as comple-
mentary tools for the study of both quark and gluon GPDs.
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APPENDIX A: SYMMETRIC FRAME

In the collinear factorization framework, the evaluations
in Bjorken kinematics are frequently performed in the
so-called symmetric frame [2,3,73,75-79], in which the
vectors of photon momentum ¢ and P = (P; + Pr)/2
(the average momentum of the target before and after
collision) do not have transverse momenta. This frame
differs from the reference frame introduced in Sec. I A by a
transverse boost, supplemented by a rotation in the trans-
verse plane [3]. In this paper, we focus on the kinematics of
small transverse momenta A ;, which eventually will be
disregarded during evaluations of the coefficient functions,
so the parameters of the boost and rotation are also small,
~A, /P*, and will give only O(A%) corrections to =+
components of light-cone vectors. For this reason, in what
follows, we will abuse notations and disregard possible
differences of + components in these two frames.

Explicitly, the light-cone decomposition of photon and
proton momenta is given by

_ 0?
q= (ZP+7_ZZF)+’0L>1 (Al)
- Pf+P,' - m12v ) 2 t
P=mm - <P+ zp+"”>’ WS Ty
(A2)
A=P—P = ( _2£P*, i’fN Al) (A3)

so the momenta of the proton before collision (P;) and after

collision (P) are given explicitly by

A _ 2 A
Pf,,»:Piiz ((1¢5)P+,(li§)2’7ﬁ,i ;) (A4)

and the invariant momentum transfer to the proton is

48my + A7

t—AZ——4§2<m12v—£>—A2L__ -2 (AS)

The variable P* might be related to variables defined in
Sec. IT A as

Pt — p+t _’_q+ _Mf_e_y' —M%‘e_yz
2
mi% g —Mie™ — Mye™
=3p 5 . (A6)

The variable Z might be fixed from conservation of plus
components of momenta as

+
7=9 _ 5 M

P+ 1L e N + —= ZJ' e 2,

A7
2P+ ¢ 2P+ (A7)

APPENDIX B: RELATION OF QUARKONIA
DISTRIBUTION AMPLITUDES AND NRQCD

In this appendix, for the sake of completeness, we
discuss briefly the relation between the descriptions of
quarkonia structure in terms of light-cone distribution
amplitudes and NRQCD, summarizing the findings of
[83—85]. The definitions of the spin-0 quarkonia distribu-
tion amplitudes are straightforward extensions of general
results formulated for light quarks [92—-96]. For the spinless
n. meson, at leading twist, there is only one distribution
amplitude defined as

el (1]
xw(g) nc(p)>,
L(—%%) = Pexp <i /_ :Z dgAﬂg)), (B2)

where z is the fraction of the quarkonium momentum
carried by the ¢ quark, and £ is the standard path-ordered
gauge link. The spin-1 J/y meson is characterized by
two independent leading-twist distributions @, and @
defined as

(B1)

o

o= [z {ifo () e(32)
(e

®;), (2 /—e”” "< ‘ < > —io™"ey,, . (P))
X£<—Zsz>w<2)’1/w(l7)>,

where it is assumed that the J/y meson moves in the
plus direction, ¢,,,(p) is the polarization vector of J/y
mesons, and in (B4) the polarization vector ¢, satisfies
n-gp, =p-e /Wl(p) =0. Sometimes the definitions
(B1)~(B4) might include distribution amplitudes normal-
ized to unity and, for this reason, might contain additional
normalization factors (quarkonia decay constants) f/,,
Sy, In what follows and up to the end of this section, for the
sake of brevity, we will use a common notation ®,, for the
distribution amplitude of quarkonium state |M(p)) and f,
for the corresponding decay constant.

The complementary NRQCD approach constructs the
description of quarkonia states M in terms of long-distance

(B3)

(B4)

matrix elements with structure (0|0, |M(p)), where O, is
a set of local operators built from operators of quarks,
antiquarks, and their covariant derivatives. The relation of
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the two approaches has been discussed in detail in [83-85].
The distribution amplitudes might be expressed in terms of
NRQCD LDMEs as

(010w M (p))

Y1 06)

Dy (z) = Dy (2) (B5)

where ®(z) is the perturbative (partonic-level) distribution
amplitude, and the denominator is conventionally added to
take into account the difference between normalizations of
Fock states used in LCDA and NRQCD pictures. In the
heavy quark mass limit, it is possible to make a systematic
expansion over the velocities v ~ a,(m,) < 1 of the quarks
in the quarkonium rest frame, and in the leading order over
v the distribution amplitude is simply given by

&, (2) ~ fub (z - %) + O(v?). (B6)

Because of NLO corrections, the amplitude (B6) obtains
nontrivial dependence on z, which might be found in [83].
We will eventually disregard this dependence, since for-
mally it is a higher-order correction in a,. Conversely, the

color singlet long-distance matrix elements (0|O,,|M(p))
might be expressed in terms of the moments of the
distribution amplitude ®,,(z), thus demonstrating that it
is possible to construct a correspondence between the two
approaches.

Finally, we would like to discuss a modification of the
expressions (34) when the finite width of z distribution is
taken into account. In view of the expected dominance of
the leading-twist distribution amplitudes, the functions c,,
¢, might be represented as

Ca(X.y1,72) —/dzlezCa(x,Z1,Zz,y1,yz)

x @, (2))®) (22), (B7)
ColX,y1.32) —/dZIdZZCa(x’ZIvZ%yl’yZ)
x @, (2)0Y) (25). (BS)

(a)
Iy
nally polarized photons and as CDJL/

where @/ should be understood as (I)U 1, for longitudi-

” for transverse photons.
The evaluation of the functions C,(x,z;,2,Y1,¥2),
Co(x.21.22.¥1,y,) might be done perturbatively and
largely follows the same steps as similar evaluation in
NRQCD (see Appendix C). From the Dirac structure of
(B1)-(B4), we may deduce that the corresponding spin
projectors for QQ states onto 7, and J/y in leading twist
are given by

1

ne — Zi)y57

>

,PJ/W_L — Zﬁéj/w
(B9)

. 1.
Pl =2 P

As we will see below, these expressions, up to mass terms
(formally higher twist corrections), coincide with similar
NRQCD projectors (C13) and (C14). Because of space
limitations, we will not provide here the analytic expres-
sions for Cq(x,21,22.¥1.¥2)s Ca(¥.21,22,1,Y2). In the
approximation (B6), the integrals over z;, z, in (B7) and
(B8) may be evaluated analytically, so these expressions
simplify as

11
ca(X, 1, ¥2) R frpfn.Ca <X,§,EJ’1’)’2> + O(ay(m,)),
(B10)

11

Ca(X, 1, ¥2) zfJ/y/fmCa (x,2,2,y1,y2> + O(ay(m,)),

(B11)

where the decay constants f7 1y and f%c are proportional
to the color singlet LDMEs ((9[11/]w(3S[1“])>, ((9£,1(:](IS£)M])>,
respectively [40,62]. These results allow us to understand
the relation of the functions C,(x, 2y, 22,1, 2)» Ca(. 21,
Z2.¥1,y2) with the NRQCD functions C,, C, from (35)
and (36).

APPENDIX C: EVALUATION OF THE
COEFFICIENT FUNCTIONS

The evaluation of the coefficient functions (partonic
amplitudes) relies on standard light-cone rules formulated
in [1,3,45,73,97,98]. We assume that both photon virtuality
Q and the quark mass mg, are large parameters,
Q~mg~ /s, tacitly disregarding the proton mass
and momentum transfer to the proton ¢. As we discussed
in Sec. II B, in the heavy quark mass limit it is possible to
disregard internal motion of the quarks inside quarkonia,
assuming that the momentum of the quarkonium is shared
equally between the quarks, and disregard the difference
of J/w and 7. masses, assuming M, ~ M, ~2m,. The
evaluation of the partonic amplitudes requires computation
of the Feynman diagrams shown in Figs. 3 and 4 and was
done using the FeynCalc package for Mathematica [99,100].
This evaluation resembles similar studies of the single
quarkonia photoproduction well known from the literature
[40-43]. Below we provide some technical details that
might help to understand the main steps and assumptions
needed for derivation of the final result.

Since GPDs are conventionally defined in the symmetric
frame, we perform evaluation of the coefficient function in
that frame, assuming that all momenta might be related
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using the transformations described in Appendix A. The
momenta of partons (gluons) in this frame, before and after
interaction, are given, respectively, by

kij = <(x £5PT 0.k F A;) (C1)

Furthermore, to simplify further notations, we will
shift the rapidities of quarkonia and rewrite their
momenta as

(g e

po= (P P ) a=12 (@

Yo =—Ys+ In (Mi‘/Zf_H»)

1
Pt

(C3)
|

dz

P60 =55 [ 5

—(wmhwmmu@ﬂ+mmgi%

dz wcP+
2

e =5 [ 5

(WPWM¢WW”@§

<P/|G+;m<

Syva[i Ga

ap’

. 1
Gra =
2

where £ is the standard path-ordered gauge link. The
skewedness variable £ was defined in (30); for quarkonia
pair production, it might be expressed as a function of yy,
¥, Q7. In the light-cone gauge A* = 0, we may rewrite the
two-gluon operators in (C5) and (C6) as

G114(2)) G (22) = G (0T AF29(21)) (0T A9 (2,)),

(C8)

GH9(21)Gh(22) = GT#+9(21)GY,, (20)

1
T2 s_hauGﬂ“'a (Zl )G(w'a (ZZ)

= €+, GT(2) G (2))

= 5, GM19(2))GT7(2,)

= £, (0" A"4(2,))(97A"(2)).  (C9)
After taking the integral over z in (C5) and (C6), we
effectively switch to the momentum space, where the
derivatives 07, 07 will turn into the factors & ,~

(x £ &)PT, so we may rewrite (C5) and (C6) as [40]

eleJr <P/|G+/4a <_

Z
‘(‘zz

This modification allows us to suppress numerous factors
~ML/P*, so the coefficient functions will depend only on
two independent dimensional variables, m7, and Q7. For
example, the variable Z defined in (A7) will turn into a
simple expression

=26+ + eh. (C4)
Since we consider that formally both M, and P are large
parameters of the same order, the variables y, and y, are
also of the same order, and thus switching from y, to J,
does not require modification of the underlying count-
ing rules.

The chiral even gluon GPDs, which are expected to give
the dominant contributions, are defined as [3,40]

Je(-5 e ()

Z

2

UP)EED). (©3)
n)e(53)a (o
1)+ U(P) émf U(P)E9(x, ¢, t)), (C6)
) Pwp([ﬁ%ﬁ@ﬁ, )
[
L[ el
e (b BRI e

We may see that it is possible to extract the coefficient
functions C, and C,, convoluting Lorentz indices of
t-channel gluons in diagrams of Figs. 3 and 4 with gj,,
and s,,,,, respectively, and following [40] we assume that the
variable £ in the denominator is always replaced as & —
£ —i0 in order to define proper contour deformation near
the poles of the amplitude.

For evaluation of the coefficient functions, we also need
to make proper projections of the QQ pairs onto the states
with definite color and spins. According to potential
models and NRQCD, the dominant Fock state in quarko-

nium is the color singlet QQ pair in the 5] W state for J Jw

and the 'Sg] state for 7. As discussed in [33,34,40], the
projectors on color singlet and color octet states are given,
respectively, by
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FIG. 12. Schematic illustration of the diagrams with direct and permuted #-channel gluons, which are related to each other by inversion
of sign in front of light-cone fraction x <> —x and permutation of the Lorentz indices y < v.

(PU)yy == (Py); = V2, b=1....8.

(C11)

A 1 p (P
Pgs. _Z<2 232|SS> <2—61,S2>M<5+(]’S1) =

51,852

where p is the momentum of the produced quarkonium,
g ~ 0 is the momentum of relative motion of the quarks
inside the quarkonium, and ¢, is the polarization vector
of J/yw mesons. Combining these projectors with proper
|

1] . R
(1 (On) 6 P . P, .
1)y =\ g Sg (Tq “moJrs\g it me |~
ol )Y S N
~[1] . ( J /v ij P . A~k P
(VJ/V’)I'J' T mg 8N.mg <2 4T mQ) & (P) (

where <O£;,]> are the corresponding color singlet long-
distance matrix elements for J/w and 7, mesons. These
objects can be related to the radial wave functions in
potential model, and for the S-wave quarkonia [32,40] this
relation has a form

(C15)

Phenomenological estimates, for example, based on analy-
sis of the partial decay width of J/y — e™e™, suggest that
(03}, 081)) ~ (04)(5))) % 0.3 GeV? [86].

In evaluation of the diagrams from Figs. 3 and 4, we
should take into account that each diagram should be

I~

S
>

The projections onto a state with definite total spin S and its
projection S, in the NRQCD picture might be found using
proper Clebsch-Gordan coefficients [33,34,40],

—
[NS]a T

(
(

color singlet LDMESs and disregarding momentum of the
relative motion ¢, after some algebra we may obtain
effective projectors of heavy quarks onto J/w and 7,
states,

—Q—mg)}’s(§+51+mg), §=0,

—@—mg)éj/u/(l’)@JrflﬂLmQ)v §=1,

—_

(o s,

(On) 0 (P _ , C13

<O[1]

J /> ij o ﬁ

[

accompanied with another diagram with permuted final-
state mesons 1 <> 2 (equivalently, a diagram with inverted
direction of quark lines), as well as a diagram with
permutation of 7-channel gluons, as shown in Fig. 12.
The latter permutation gives contributions that differ only
by change of the sign in front of the light-cone variable x
and interchange of the Lorentz indices u <> v. According to
(C10), we need to contract the free Lorentz indices u, v with
symmetric g,f,, or antisymmetric s,f,, in order to single out
the contributions of F9 or FY; for this reason, eventually, we
conclude that the coefficient functions C,, C, will be even
or odd functions of the variable x, respectively. Since we
disregard internal motion of quarks inside quarkonia, the
momenta of all partons are fixed by energy-momentum
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conservation and could be expressed as linear combinations
of the momenta of the quarkonia and t-channel gluons.
Taking into account (C10), (C13), and (C14), we may
obtain for the coefficient functions

Co(X,51,52) + Co(=x,51.52)
(x—C+i0)(xtE—i0)

Co(x.51.52) =k (C16)

~ oy Con 1. 52) = Co(—x,51.52)
Caleedido) =K e Ok + £~ i0)

(C17)

where the constant x is defined as

1 1 1 1
el eshelesy
K = (47[as) eQ 5 (g;/ . gT )’

4NCmQ L

(C18)

and the factors x = & = i0 in denominators of (C16) and
(C17) stem from (C10). The contribution of each diagram
from Figs. 3 and 4 to functions C, and éa might be obtained
taking Dirac and color traces over the heavy quark loop and
contracting free Lorentz indices u, v with g, or &,
respectively; this operation was done using the FeynCalc
package for Mathematica [99,100]. We need to mention
that gluon GPDs HY, EY are even functions of variable x,
whereas HY, EY are odd functions [3]; for this reason, in

|

convolution over x both terms in the numerators of (C16)
and (C17) give equal nonzero contributions. Numerically,
the dominant contribution comes from GPD HY, whereas
contribution of HY is negligibly small. As we will see
below, the functions C,, @a might have other poles as a
function of x, so the structure of the functions C,, C, might
be represented schematically as a sum (37).

The explicit expressions for the functions C,, C, depend
on polarizations of the photon and are given by

CL = O(puL/Q’ pul/mQ) ~ 05

k=1 k=1 k=1 k=1
(C20)

. ON2-1¢ I <. N.& 1< -
CT_ < &k— bk+—c 5k+_ dk,
(C21)

where the contributions a;, b;, @;, b; stem from the dia-
grams without three-gluon vertices in Fig. 3, the terms c;, ¢;
come from the diagrams that include at least one three-
gluon vertex, and the terms d;, d; stem from the diagrams in
Fig. 4. Explicitly, these contributions are given by

a; =4I Z(eI 12 Q 4 d(eh 4 e2)m{Z) (x + &) [mQ(4e5’1m2Q(eS’1 —Z)Z + (¥ + 2% () = Z)) (V1 Q* 4 4mpZ))

1

a, =

X (e Q* +4m{Z) (P + 2672 (e¥ —x = Z = §)) + 4V mpyZ (M —x = Z = &))(1 + cosh(§, — )72))} L, (C22)
2e292 (ef’l + eyz)Z(€§’1+5‘2 0%+ 4m2QZZ) o)
mQ(eyl + ¥ — 22)(65’1+i2Q2 + 2(65’1 + eiz)mZQZ>(_eZ}~’2Q2 + eS’zQZZ + 4m2QZZ)§’ (
ay = 8V Z(eI1 122 Q% — 8V im{ 77 — 2072 Z(eM O + 2mpZ)) [(e«Vl + e2)my (e Q* — 2 Q*Z — Amy7?)
X ((2€% + 51 =27Z)eh 12 Q% 4+ dmy Z(eM (&)1 — 2Z) + 2 — 2(Z — Ml)))] - (C24)
a, = =8N 227 (et Q? 4m2QZ2) [mQ(eyl + e =27)(eP2 Q% - 27 Q%7 - 4m2QZ2)
x (267 + e = 22)e3 Q2 4 4md Z(eM (31 — 2Z) + ¥ — e72(Z — 2eh )))} - (C25)

as = 820112 Q2 Z (512 Q% +- AmYZ(-x + Z + £)) [mQ(eyl+y2 Q% +2(e + eM)myZ) (—e™2 Q% + 22 Q*Z + 4my Z?)

X (&M + €% +2x =27 = 28) (=1 Q> = 26N Q*(x = Z — &) + AmpZ(—x + Z + ‘f))} o

(C26)
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ag = 16612y 72 (Q%e% (22 — 2N Z + 2 (e = 2(x + Z + £))) — 4mpZ* (1 + €72))
X [(e?'*f2 Q% +2(M + €2)myZ) (2 Q% — 272 Q*Z — Am{HZ?) (e + 72 = 2(x + Z + §))

X (eP2(eMQ* +4myZ) + 4e" myZ(eM —x — Z — &) + 2652 (eN Q + dmpZ) (¢V —x - Z - é‘))} - (C27)

= 0D (C28)
= mo(2e2Q*Z — Q% + 4my7*) (272 Q* (x + Z + &) — 2 Q> + 4myZ(x + Z + £))(1 + cosh(51 — 3))
_863?1+§ZQZZ
b= mo(eN 202 +2(eM + e2)myZ) (e Q* — 26N Q°Z — 4my 27 ) (¥ 4 €2 + 2x — 27 = 2¢) (€29)
b 4eN 02 (¥ Q* 4 2my7Z) 30
2T (@ + e my (P QP = 2" QP(x + Z+ &) —4mHZ(x + Z +E)) (C30)
b 1 865’1+9zz(_e3§1 Q% — 211202 4 251152027 4 26 Qz(x +Z4+E)+ 4m2QZZ(65’1 + ei‘z))
T+ ) my (QX(D — 26 Z) —4myZ%)(e¥ + €2 4 2x = 28)(Q* (et —=2eM (x + Z + &) —dmpZ(x + Z + &)
(C31)
¢ = 2en [6@2(_3)6 +&) =22 (e (6x = 28) + &(=5x + &) + e (e¥ — 48)(2(x = £)E + M (=3x + &)
— 265772 (M1 (6x — 28) + €M1 E(—19x + TE) + 2E(=2x% + 5x& + 7)) — 272 (21 (9x — 3¢)
+ €N E(—=1Tx + 58) + 4E(x2 + x& — 52))} {(6&1 - e52)2m (e¥ + eh (&0 — 28) + 2e72(eM - 28))
< (¢34 (e = 48) + 267(e — E)(x = P + e ~2x+ )] . x2)

cy = 2N H {6591 (x = 3&) + 32 (e — 4&) (%> = 2&) (—x + &) + 2371 (eP2(x — TE) — 2e% (5x — 11E)E + 12(x — £)&2)
+ M (M (B — 11&) + 2E(=5x + 9¢)) + 17272 (4e¥2 (3x — )& + eP2(=3x + &) — 4E(=2x% + 3x¢ + £2))
— 2eM1452 (2692 (x — TE)E + €2 (x + 3E) + 2£(2x% — 5x&E + 752))} [(e?l + €2 )mpy (e 4 e¥ (e - 2¢)

+ 272 (&M —28)) (&M + €2 — 4E) (€22 + V1 (&M — 4E) + 272 (e — &)) (&M 4 &2 + 2x — 28) (x — f)} - (C33)

= (0 + &2 2mE (M + & = 2(x + &) (€37 + €32 4 26572 — 26V (x 4 &) — 2 (x + &) (C34)
262(5’1+92>
4T T e ) m (@ + & — 2(x + &)
" A4e1E 4 4?2 E 4 8V TE — 41 E(x + £) — 27 (x + &) (x + 3E)

(e2iz + eV (M —28) + 2652 (M — 25))(32?1 4 €22 4 eVt — ¥ (x + &) —2e"(x + &))
_ (r+ £)(€¥: 4 26 (&3 = &) + &3 (&M = 23+ £)) 59

(625’2 + e (65’1 —48) + 26" (M1 — 5))(62)71 + e £ DVt D (x + &) —e” (x+&)) ’
or = 2917252 (5(eV1 + %) 4 4(x + 48)) (C36)
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dy = =4 Z(eN 2 0? — éleylszZ2 + e (=1 Q% + 4m2QZ2 + e Q?*(x —2Z + §)))

X [mQ(zeiz Q%Z — 2 Q% + 4my 7% ) (5 — x — &) (€2 (e O — 4myZ)

—4e"myZ(e —x+Z — &) =267 (eN Q* —d4myZ) (e —x + Z - f))} - (C37)

g 8eNT2Z(e2 Q% —AmHZ? — €72 Q*(x 4+ 2Z 4 &) (©38)
2T mp(2e20°Z — 207 + 4myZ*) (e —x — &) (2eRQ*(x + Z + &) — e Q> +dmpZ(x + Z 4+ §))’

i) = 82U Z (M52 Q2 4 deP m Z + deVmB Z) (x + €) [(691 + €72 mg(e¥ (M QF + 4m?)Z)
+ el myZ(eM —x —Z = &) + 27 (eM Q* + 4mpZ)(eh —x - Z = §))

X (e22(e Q* +4m{Z) + 2e%2 (M — Z) (€M Q* + Am{Z) + 4e¥ mpy (e — Z)Z)] - (C39)

2e2(e M) Z (20 + 4md Z2)

= - - — - - - - , C40
= mo(eh 4 e =27)(eV 12 Q% 4+ 2mp Z(eM + e72)) (e Q% — 272 Q7 — AmyZ%)E (C40)

ay = 8V Z(eV1 122 Q% — 8T impZ? — 2072 Z (e Q* + 2mp 7)) [(ey'l + e2)my (e Q* = 272 Q7 — 4my7?)
X (4e¥rmp (e = 2Z)Z + 22 (M Q* + 2myZ) + €% (1 Q% — 2e71 (—4my, + 0*)Z — 4m2QZ2))} - (C41)

ay = 8N TIZ (N2 Q% + Amfy 77) [mQ(ey' + €% = 27)(eP2Q? = 26" Q*Z — 4m}7?)

X (4e¥imp (e —27)Z + 272 (M1 Q% + 2myZ) + €% (e*1 Q% — 2e7 (—4mp + Q*)Z — 4m2QZz))} L (ca2)

as = 82N TR QZ (N2 Q% + AmYZ(—x + Z + §)) [mQ(eWiz Q* +2mHZ (" + €%2))(—e?2 Q% + 272 Q%7 + 4my7?)
X (&M 4 e +2x =27 = 28) (=1 Q> = 26N Q*(x = Z — &) + AmpZ(—x + Z + f))} o (C43)

ag = —16712my 72 (32 Q% — 4eMmy 2% — 2671 Z(eM1 Q% + 2myZ) + €2 Q% (V1 = 2(x + Z + £)))
X [(ei’lﬁ'z Q% +2mpZ(eh 4 e7))(e*2Q* = 272 Q°Z — 4my Z%) (e (e Q* + 4mZ)
+ 4ey1m2QZ(e5’1 —x—=Z =& +2e"(eMQ* + 4m2QZ)(e~v1 —x—7Z-=9))

x (M + &% —2(x+Z+§))} _1, (C44)

B 8 T2027(x + &) (C45)
d7 = —— - - - - - ,
! (&7 + 72)mp (€2 Q% = 272 Q*Z — 4myZ%) (™2 Q> = 27 Q*(x + Z + &) — 4myZ(x + Z + §))

by = 8eM 17072 (C46)
L= mQ<e§1+9zQ2 + 2m2QZ(€y‘ + e,Vz))(625’1Q2 — e QZZ _ 4m%2Z2)(€y‘ + e +2x — 27 — 25) ’

. 4eM 102 (eN Q* 4 2mp7) ca7
P+ ) my (M0 = 26N QX (x + Z+ &) —4mpZ(x + Z +£)) o

5 865’1‘*‘5’22(@3% Q% + 12 Q2 — 265112027 — 4<35’1 + ef’z)mZQZZ — 220 Qz(x +Z+ 5))(65’1 + ef’z)—l
P mg(eDQF 2N Q77 - 4myZ*) (&M + € + 2x = 28)(Q* (e =2 (x + Z + &) —4mpZ(x + Z 4 &)’

(C48)
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G = —2eX1th [e‘% + e (V1 —4&) (5 = 28) + 46392(6.91 - &)
+ 222 (32 — TeV1 & = 26(2x + €)) + 412 (&2 — 41 E 4 E(2x + 55))]
% {(65’1 + €72 (e%2 + €1 (&1 — 2€) + 2e% (M1 — 28))

X (625‘2 +eVi(eM —4E) +2e2 (e — &) (e + &2 —2(x + 5))} _1’

Ty = =251 h [655*1 + % (5¢% — 6&) + 635*2(65*2 — 45)(65’2 —28) + 2e31 (56292 4 en (4x — 9¢) + 452)
+ V11202 (5252 4 2% (4x — 9E) 4 8£(—=3x + &)) 4 271172 (56D + 4e¥2(2x — 3E) + 6&(—2x + f))}
X |:(3P1 + eS’z)m3Q(625’z + eh (65’1 —28) + 2e¥2 (65’1 — 25))(62}72 + e (65’1 —4¢)

+ 265'2(6_\71 - 5))(65’1 + %2 — 45)(65’1 + ¥ + 2x — 25)} _1’ (C49)

Gy = 4eh1th [655’1 + % (565‘2 +x =58+ eV 120 (Seﬁz +2(x— 75))(65’2 —2¢)
+ 2 (&% 4 x — 3E) (e — 2&) + 21152 (52 + 72 (x — 198) — 2(x — 8£)¢)
+ 2391 (56252 + €72 (x — 128) + &(—x + 35))} [(ey' + eM2)mjy (e 4 eV (et - 2¢)

+ Zeh(ej" — 25))(8% + e — 45)(62&2 + e (eiw —48) + zeiz(eil — 5))(6% + €% 4+ 2x — 25)} _1, (C50)

_ 2e2V1t7 (2625’1 + 2622 4 4511V — DN (x+&) - eh2 (x+&))
Cy = = = = = = = = = = N
4 (ey} _|_ eyZ)zm}Q(eyl _|_ eyZ —2(X+§))(62y1 _‘_62)72 +2€y1+y2 _2eyl(x+£) — eyZ(x+§))

(C51)

22(31+52)
(M +e")mp(eh + e = 2(x +¢))
" < —4ePE — 4P E — 8V H2E 4 4oV E(x + &) + 272 (x + &) (x + 3¢)
(€272 4 eV (&M — 28) + 2e2 (e — 28))(eP1 + P2 4 2eM17V2 — V1 (x + &) — 2e%2(x + &))
+ (3 (¥ + 267 (e = )+ &3 (e8 = 2x+ 8)) )
(2% + eV (&M — 4€) + 272 (e — &)) (1 + P2 + 251152 — 2671 (x + &) — &2 (x + &) )’

C5; = —

(C52)

2ieN D2 (5(eM + €72) + 4(x + 48))
(&7 + e¥2) m(eM + €2 + 48) (e + €2 + 2x 4 6£)

Ce =

(C53)

dy = 4e*Z(eN Q2 — 4ey1m2QZ2 + e (=1 Q% + 4m2QZ2 + e Q%(x —2Z + §)))
X [mQ(—ezy2 Q* +2e2Q%Z + 4my7%) (e — x = &)

x (eP2(eNQ? —4m{Z) — 4V mpZ (M —x + Z — &) =262 (eM Q* —4m{Z) (" —x + Z — 5))} - (C54)

5 8e™2Z (e Q% — Am{Z* — e Q*(x +2Z 4 &)
2T (=€ 0 + 27 Q%Z + 4mZ%) (e — x — &) (=e2 QP + 267 QX (x + Z + &) + 4mbZ(x + Z + §))

(C55)

[

We may see that all the contributions, as a function of x,
include poles; for this reason, all the integrals that include
convolution of these coefficient functions with GPDs
should be understood in the principal value sense, taking
into account the above-mentioned & — & — i0 prescription

[40] for contour deformation near the poles. Special points
of concern are the contributions c¢;,c,, which stem from
the three-gluon diagrams 11-14 in Fig. 3 and contain
singularities ~(x —&)~!. These singularities apparently
overlap with similar singularities in (C16), leading to the
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second-order poles. The integral in the vicinity of such
singularities is defined via integration by parts [101],

L N (N
/_1 T eriof /_1 dxHi(x.8) 50 <x et i0>

HIx) |
xFELIO

-1

I 0.HI(x,§)
d T o A
+/_1 XTELI0

and exists only if the derivative d,HY(x, £) is a continuous
function near the points x = 3. Fortunately, in the process
under consideration, such second-order poles cancel, since
near the point x = £ we have for residues

(C56)

A careful analysis demonstrates that such singularities
occur only in the z; =z, = 1/2 approximation. Beyond
that limit, the two poles are separated from each other by a
distance i—(%za — z,)e% or an equivalent expression, which
might be found by the replacement z, — 1 — z,.

Finally, we need to mention that in the limit Q =0
it is possible to express the coefficients (C22)—(C55) in a
compact form, as a function of skewedness variable & and
rapidity difference Ay = y; — y,. Since photoproduction
gives the dominant contribution to the cross section and
might present special interest for future phenomenological
studies, in the following we provide explicit expressions for
this case:

a5:a7:b1:&5:&721~91:0, (C58)
Resc; = —Resc;. (C57)
x=¢£ x=¢&
|
a, = — 2e2Ay(€ + 1)(5 + X) (C59)
L T 2N (E+ 1) 41 3)(E(E(E T 1) 281 1) — (¥ + 2)(E+ L)
1
© gl T PAE 76T 3) (Co0)
- 2e47(2e% + 1)
e I EE ) 1 2E T ) o
= 2e% (C62)
T (e TP+ +3) +2E+ )
2t
A6 =3 Ay 2 A Ay ) (C63)
my(e® + 12828+ 1) = 2(& + 1)x) (E(eM(E+ 1) + 28 + 1) = (e® +2) (& + 1)x)
by — 3 (C64)
27 mj(1 + cosh(Ay))(=& + éx +x)
- 2€Ay§2
b = e+ DRE — Er D@+ 1) 2E + D)’ (c65)
2€2Ay
a= (e + 1)3m3Q(eAy(2§ + 1) +4E+3) (A (4E+3) + 25+ 1) (x = &) (E+2(E + Ex + x))
x [52(—e2Ay(2§ +1)(4E+3) + 26 (2E(E+4) +5) —2£(4E+T) = T) — 8(eD = 1)(E+ 1)247
126D Ex((8E + 46 — 1) cosh(Ay) — 2(& + 1) sinh(Ay) + 2&(5¢ +4) + 1)} , (C66)
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sech? (%)
2m (48 +3)(x — &) (2(E + 1)x — E(2& + 1))((§+ 1)tanh(%) - 35—2) ((§+ 1)tanh(%) + 3§+2)

" {5((45 + 3)(sinh(Ay)(2£(2¢ + 1) — (4£ + 3)x) + cosh(Ay)(£(28 +1) = 2(£ + 1)x)) + & +2(£ +1)(28” + &x +x))
cosh(Ay) + 1

Cyr =

—8(& + 1)2sinh (%) csch’(Ay) (& — zﬁ)] , (C67)

20MAVE((2eDY + 1)(E2 + Ex + x) = &)
(e +1P°my (£ +2(8 + &x+x))(eM(E+2(8 +&x+x)) + & +&x+x)

C3y = (C68)

(e® 4 1)(£ + 1)sech* (%)
8m (e (26 + 1) + 46+ 3)(e™ (46 +3) + 26+ 1)(E+2(E + &x +x)) (e +2)(E + &x + x) + &)
x [eZAy(§3(6O§3 +78E% 4+ 326 +5) + 2(E+ 1)2x3 4+ 2E(E + 1)(3E + 4) (10 4 7)x?)
+ 2DV E2(DE(3E(20E + 43) 4 83) + 31)x + eV EX(2E(E(24E + 41) + 14) — 3)x
+ M (E(E12EQ2E+ 1) =5) = 2) = 2(E+ 1)2x3 + E(E+ 1)(4E(6E + 11) + 17)x%)
+ (28 + 1)(=E(28(E+4) +3) +2(8+ 1)°° +28(E + 1)°x% — £2(28(£ +4) + T)x)
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(C70)

1

4¢* sinh (%) (cosh (%) (4 2(& + éx + x)) — Esinh (%))_
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(C72)

i 2628 (E+1)(€+ x) (73)
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o 1
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. 264722 4 1)
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52
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o 52
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