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In this work, we treat Λcð2910Þþ and Λcð2940Þþ as the conventional udc cores dressed with the D�N
channel. We provide a possible interpretation to both Λcð2910Þþ and Λcð2940Þþ within the same
framework. In the study, we consider not only the effects between the conventional triquark core and the
D�N channel but also the D�N-D�N interactions. The mass of the Λc state with JP ¼ 1=2− is larger than
that with JP ¼ 3=2− in this unquenched picture, which is very different from the prediction of the
conventional quenched quark model. Based on the mass spectrum, the spin parity of Λcð2940Þþ is more
likely to be 1=2−, while Λcð2910Þþ prefers 3=2−. We look forward to the future experiments that can test
our results with more precise experimental data.

DOI: 10.1103/PhysRevD.107.034036

I. INTRODUCTION

Until now, a growing number of charmed baryons
have been reported with the accumulation of experi-
mental data [1]. Many of them can properly fit into
the conventional charmed baryon spectrum [2–8], such
as Λcð2286Þþ, Λcð2595Þþ, Λcð2625Þþ, Λcð2760Þþ,
Λcð2860Þþ, Λcð2880Þþ, Σcð2455Þ0;þ;þþ, Σcð2520Þ0;þ;þþ,
Σcð2880Þ0;þ;þþ, and so on. The advanced experimental
progress has motivated theorists to explore their properties
in many theoretical methods [9–15]. We believe the studies
of the charmed baryons can deepen our understanding of the

nonperturbative behavior of the QCD in the low-energy
regions.
Months ago, the Belle Collaboration reported a new

structure called Λcð2910Þþ, via the B̄0 → Σcð2455Þπp̄
decay process [16]. Its mass and width are measured to
be 2913.8� 5.6� 3.8 MeV and 51.8� 20.0� 18.8 MeV,
respectively. In fact, the observed Λcð2910Þþ is a continu-
ation of the experimental studies of Λc baryons in the past.
In 2006, the BABAR Collaboration released the observa-
tion ofΛcð2940Þþ in theD0p invariant mass spectrum [17].
Later, Belle confirmed Λcð2940Þþ in the decay mode
Λcð2940Þþ → Σcð2455Þ0;þþπþ;− [18]. In 2017, the LHCb
Collaboration also observed it [19] and preferred its
possible assignment with JP ¼ 3=2−. Till now, the
Particle Data Group [1] has listed its mass and width as
M ¼ 2939.6þ1.3

−1.5 MeV and Γ ¼ 20þ6
−5 MeV, respectively.

In theory, the newly observed Λcð2910Þþ is studied in
several works. Λcð2910Þþ was interpreted as Λcð2P; 1=2−Þ
with the QCD sum rule [20]. In Ref. [21], the
authors treated Λcð2910Þþ as a good candidate of ΛcjJP ¼
5=2−; 2iρ by investigating the strong decay of the low-
lying 1P-wave of the ρ mode excitation; however, the
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ΛcjJP ¼ 3=2−; 2iρ and ΛcjJP ¼ 1=2−; 1iρ assignments
cannot be excluded. The authors in Ref. [22] arranged
the Λcð2910Þþ as the 2P-wave of the λ mode excitation
with JP ¼ 1=2− or 3=2− by examining its strong decay.
In the past, the charmed baryons Λcð2P; 1=2−Þ

and Λcð2P; 3=2−Þ have already been studied in the
quenched quark model [2–8], while the strong decays of
Λcð2P; 1=2−Þ and Λcð2P; 3=2−Þ were also studied in
Refs. [22–28]. It is hard to explain Λcð2940Þþ with simple
bare udc structure because its experimental mass is usually
about 100 MeV smaller than the theoretical expecta-
tions [2–4]. Thus, it has stimulated great interest of theorists
in studying the inner structure of Λcð2940Þþ.
An important fact is that Λcð2940Þþ is located below the

D�N threshold about 6 MeV, so several theoretical groups
treat Λcð2940Þþ as a D�N molecular state [29–38].
For example, within the one-boson-exchange model,
Λcð2940Þþ was treated as the D�N molecular state with
IðJPÞ ¼ 0ð1=2þÞ or 0ð3=2−Þ [39]. The D�N bound state
was also found in the ½D�N�I¼0

J¼3=2 channel within other
models, such as the QCD sum rule, constituent quark
model, and chiral quark model [40–43]. In Refs. [44,45],
the chiral effective field theory was applied to the D�N
interaction, and two bound solutions were found with a
little mass gap for the isospin I ¼ 0 channels, which shows
the Λcð2940Þþ could be either ½D�N�I¼0

J¼1=2 or ½D�N�I¼0
J¼3=2.

Thus, the interaction between D�N plays a key role in
forming this physical state.
Therefore, we conclude that the bare triquark states

and the D�N channel should be equally important for
Λcð2940Þþ and Λcð2910Þþ. Under an unquenched quark
model, the authors in Ref. [46] study Λcð2P; 1=2−Þ and
Λcð2P; 3=2−Þ considering the coupling to the D�N chan-
nel. They conclude that the mass in spin 1=2 becomes
larger than that in spin 3=2 in the unquenched picture, so
that the mass relation is reversed compared to the quenched
picture (see Fig. 1).

The coupled-channel effects among a bare triquark state
and hadron-hadron channels are widely studied in the case
of Λð1405Þ0, D�

s0ð2317Þ�, D�
s1ð2460Þ�, Xð3872Þ, etc.

[47–61]. In Refs. [57,62–64], they studied the structure
of Xð3872Þ with coupled DD̄� channel and obtained it as a
mixture of bare cc̄ core and DD̄� component. Moreover, in
Refs. [65–68], the D�

s0ð2317Þ� and D�
s1ð2460Þ� were also

studied by the unquenched quark model, and their structure
information was revealed as the mixture of bare cs̄ cores
and Dð�ÞK component. In addition, taking into account the
S-wave Dð�ÞK interaction, the authors in Ref. [69] studied
the Ds states under the Hamiltonian effective field theory
and found the Dð�ÞK interaction can cause significant mass
shifts and lower the mass. According to their investigation,
we think including the hadron-hadron interaction is impor-
tant in the coupled-channel studies.
In the present work, we try to interpret Λcð2910Þþ

and Λcð2940Þþ at the same time within a consistent
framework with the coupled-channel effects between the
bare triquark states and the D�N channel, as well as the
D�N-D�N interactions. The physical states Λcð2910Þþ and
Λcð2940Þþ can be produced as a competition between the
bare 2P-wave udc cores and S-waveD�N components. We
believe our effort can lead us to disclose the true natures of
Λcð2910Þþ and Λcð2940Þþ.
This article is organized as follows. After the

Introduction, we present the details of the theoretical
framework in Sec. II, which includes the full
Hamiltonian and coupled-channel equation involving the
interaction of the hadron-hadron channel. The detailed
interactions will be given in Sec. III within the chiral
effective field theory and quark-pair-creation model. In
Sec. IV, we present our numerical results and discussion. A
short summary follows in Sec. V.

II. FRAMEWORK

If we consider the mixing between the bare state jΨ0i
and jBC;pi channel, the physical state [64,70–80] can be
represented by

jΨi ¼ c0jΨ0i þ
Z

d3pχBCðpÞjBC;pi: ð2:1Þ

Here, c0 is the possible amplitude to discover the bare state
jΨ0i in the physical state jΨi, χBCðpÞ denotes the relative
wave function in the hadron-hadron channel jBC;pi, and
the normalizing condition is given by

jc0j2 þ
Z

jχBCðpÞj2d3p ¼ 1: ð2:2Þ

Then, the full coupled-channel equation can be formally
expressed as

FIG. 1. The masses comparison between the undressed conven-
tional baryons [46], the conventional baryons dressed by D�N
without considering D�N interaction [46], the dressed states with
the D�N interaction in this work, and the experimental baryons
[1,16–19].
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�
Ĥ0 ĤI

ĤI ĤBC

��
c0jΨ0i

χBCðpÞjBC;pi

�
¼ M

�
c0jΨ0i

χBCðpÞjBC;pi

�
:

ð2:3Þ

By expanding Eq. (2.3), one obtains

Ĥ0c0jΨ0i þ ĤIχBCðpÞjBC;pi ¼ Mc0jΨ0i ð2:4Þ

and

ĤIc0jΨ0iþĤBCχBCðpÞjBC;pi¼MχBCðpÞjBC;pi: ð2:5Þ

Here, Ĥ0 only works on the bare state jΨ0i, i.e.,

Ĥ0jΨ0i ¼ M0jΨ0i; ð2:6Þ

where M0 is the bare mass, which can be well determined
by the traditional potential models, such as the nonrela-
tivistic three-quark model [46,81–84], quark-diquark
model [2,3,13], Capstick-Isgur model [4], and so on. For
the most low-lying singly charmed baryons, these tradi-
tional potential models have good predictive powers in
studying the mass spectra. Ĥ0 is usually written as a sum of
two parts, i.e.,

Ĥ0 ¼
X
i

Ei þ
X
i;j

Vij; ð2:7Þ

where Ei is free energy for ith constituent quark and the
Vij is the effective potential between two quarks where the
form depends on specific potential models.
In addition, ĤI in Eq. (2.3) represents the transition

Hamiltonian between the bare state and the intermediate
BC channel. ĤBC is the Hamiltonian describing BC-BC
interaction. With the above definitions, multiplying hΨ0j on
each side in Eq. (2.4), one obtains

M0c0 þ
Z

χBCðpÞH�
Ψ0→BCðpÞd3p ¼ Mc0: ð2:8Þ

Then, c0 can be obtained

c0 ¼
Z χBCðpÞH�

Ψ0→BCðpÞ
M −M0

d3p: ð2:9Þ

On the other hand, multiplying hBC;p0j on each side of
Eq. (2.5), we have

c0HΨ0→BCðp0Þ þ
Z

hBC;p0jĤBCχBCðpÞjBC;pid3p

¼ MχBCðp0Þ: ð2:10Þ

The ĤBC is the Hamiltonian of the intermediate BC
channel, which includes two parts, i.e., the free and inner

interactions. Explicitly, the matrix element sandwiching the
ĤBC can be expressed as

Z
hBC;p0jĤBCχBCðpÞjBC;pid3p

¼
Z

hBC;p0jEBCðpÞδ3ðp−p0ÞχBCðpÞjBC;pid3p

þ
Z

hBC;p0jVBC→BCðp;p0ÞχBCðpÞjBC;pid3p

¼EBCðp0ÞχBCðp0Þþ
Z

VBC→BCðp;p0ÞχBCðpÞd3p; ð2:11Þ

where EBCðp0Þ ¼ mB þmC þ p02
2mB

þ p02
2mC

is the free energy
of the intermediate BC channel and VBC→BCðp;p0Þ is the
hadron-hadron interaction in the momentum space. With
Eqs. (2.9)–(2.11), we can obtain the following coupled-
channel equation:

EBCðp0ÞχBCðp0Þ þHΨ0→BCðp0Þ
Z

χBCðpÞH�
Ψ0→BCðpÞ

M −M0

d3p

þ
Z

χBCðpÞVBC→BCðp;p0Þd3p ¼ MχBCðp0Þ: ð2:12Þ

It is equivalent to the following expression:

Z �
H�

Ψ0→BCðpÞHΨ0→BCðp0Þ
M−M0

þVBC→BCðp;p0Þ
�
χBCðpÞd3p

þEBCðp0ÞχBCðp0Þ¼MχBCðp0Þ: ð2:13Þ

Thus, the final χBC-coupled-channel equation (2.13) con-
tains the interaction between hadron B and C. By solving
Eq. (2.13), we can get the physical mass that includes the
contribution of both the hadron BC channel and the bare
state. The two terms inside the parentheses of Eq. (2.13) are
responsible for the mass shift.
For obtaining the solution of Eq. (2.13), we use a set of

the complete base expansion method, where the complete
basis can be chosen as the harmonic oscillator basis,
the Gaussian basis, and so on. For example, we use the
Gaussian basis to replace the χBCðpÞ in Eq. (2.13) [85,86],

χBCðpÞ ¼
XNmax

i¼1

Cilϕ
p
ilmðpÞ; ð2:14Þ

where Cil is the coefficient of the corresponding basis and
ϕp
ilmðpÞ is the Gaussian basis. In the coordinate space,

ϕr
nlmðνn; rÞ ¼ Nnlrle−vnr

2

Ylmðr̂Þ; ð2:15Þ

where Nnl is normalization constant. By the Fourier
transform, the Gaussian basis in momentum space can
be written as
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ϕp
nlmðνn;pÞ ¼ ð−iÞlϕr

nlm

�
1

4νn
;p

�
: ð2:16Þ

In Eqs. (2.15) and (2.16), vn is the Gaussian ranges, i.e.,

vn ¼ 1=r2n; rn ¼ r1an−1 ðn ¼ 1; 2…NmaxÞ: ð2:17Þ

With the above Gaussian basis, all the Hamilton matrix
elements can be expressed in simple forms. We define

Tfi ¼
Z

d3p0ϕp�
flmðνf;p0ÞEBCðp0Þϕp

ilmðνi;p0Þ;

Mfi ¼
Z

d3p0d3p
H�

Ψ0→BCðpÞHΨ0→BCðp0Þ
M −M0

× ϕp�
flmðνf;p0Þϕp

ilmðνi;pÞ;

Vfi ¼
Z

d3p0d3pϕp�
flmðνf;p0ÞVBC→BCðp;p0Þϕp

ilmðνi;pÞ;

Nif ¼
Z

d3r0ϕr�
flmðνf; r0Þϕr

ilmðνi; r0Þ: ð2:18Þ

With the above matrix elements, Eq. (2.13) is equivalent to
following general eigenvalue equation

XNmax

i¼1

CilðTfi þMfi þ VfiÞ ¼ M
XNmax

i¼1

CilNfi: ð2:19Þ

Here, the coefficient Cil can be solved by the Rayleigh-Ritz
variational principle. Because both sides of Eq. (2.19)
depend on M, we are dealing with a special eigenvalue
equation. First, we replace M with ME on the right side.
Then, we scan all possible M on the left side of the new
equation in a reasonable range and obtain the eigenvalues
ME. At last, the solution comes as M equals ME.
If the interaction VBC→BCðp;p0Þ of the direct hadron-

hadron channel is neglected, we can extract the approxi-
mate mass M,

M ¼ M0 þ
Z jHAbare→BCðpÞj2

M − EBCðpÞ
d3p; ð2:20Þ

and obtain approximate wave function χBCðpÞ,

χBCðpÞ ¼
HΨ0→BCðpÞ
M − EBCðpÞ

c0: ð2:21Þ

III. DETAILED INTERACTIONS

In this section, we provide the D�N interaction in
Sec. III A and the coupling between the bare state and
theD�N in Sec. III B. These determine the coupled-channel
effects of Λcð2940Þþ and Λcð2910Þþ.

A. D�N interaction

First, we focus on the detailed potential VBC→BC for the
S-waveD�N interaction, and we employ the chiral effective
field theory, which is a powerful instrument to study the
hadron-hadron interaction [45,87–95]. In the heavy-flavor
hadron systems, the application of the chiral effective field
theory has led to some achievements for predicting
the bound states of B̄ð�ÞB̄ð�Þ, DD�, DD̄�, ΣcD̄ð�Þ, and so
on [45,96–105]. With the experience in these works, the
D�N interaction can also be studied within the chiral
effective field theory.
Wewill investigate four channels in theD�N system, i.e.,

isospin I ¼ 0, 1 and spin J ¼ 1=2, 3=2. Therefore, we
consider the following flavor wave functions:

j1; 1i ¼ jpD�þi;

j1; 0i ¼ 1ffiffiffi
2

p ðjpD�0i − jnD�þiÞ;

j1;−1i ¼ jnD�0i;

j0; 0i ¼ 1ffiffiffi
2

p ðjpD�0i þ jnD�þiÞ:

In the following, we first give the chiral Lagrangians and
Feynman diagrams including tree and one-loop diagrams of
the D�N system. Then, we provide the D�N effective
potentials in momentum space at the next-to-leading order
Oðϵ2Þ. They include the contact term, one-pion-exchange,
and two-pion-exchange contributions, which approxima-
tively correspond to the short-range, long-range, and
middle-range interactions, respectively. In addition, we
also consider the Δð1232Þ contribution. Through the
Fourier transformation, we also obtain the effective poten-
tials in coordinate space.
The leading-order πN Lagrangian [106–108] is given by

LNφ ¼ N̄ ðiv ·Dþ 2gaS · uÞN ; ð3:1Þ

where N ¼ ðp; nÞT denotes the large component of
the nucleon field under the nonrelativistic reduction,
v ¼ ð1; 0; 0; 0Þ stands for the 4-velocity of the nucleon,
Dμ ¼ ∂μ þ Γμ is covariant derivative, ga is the axial-vector
coupling constant, and Sμ ¼ i

2
γ5σ

μνvν denotes the Pauli-
Lubanski spin vector. The chiral connection Γμ and axial-
vector current uμ are expressed as

Γμ≡1

2
½ξ†;∂μξ�≡τiΓi

μ; uμ≡ i
2
fξ†;∂μξg≡τiωi

μ; ð3:2Þ

where τi is a 2-component Pauli matrix in the isospin
space, i.e.,
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ξ2 ¼ U ¼ exp

�
iϕ
fπ

�
; ϕ ¼

�
π0

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
; ð3:3Þ

and fπ is the pion decay constant.
The Dð�Þπ Lagrangian at the leading order is given

by [109–112]

LHφ¼ ihHv ·DH̄i−1

8
δbhHσμνH̄σμνiþghH=uγ5H̄i; ð3:4Þ

where h� � �i denotes the trace in the spinor space and δb is
mass shift between D� and D, i.e., δb ¼ mD� −mD, and it
does not disappear in the chiral limit. g stands for the axial
coupling constant. The H represents the superfield for the
charmed mesons, which reads

H ¼ 1þ =v
2

ðP�
μγ

μ þ iPγ5Þ;

H̄ ¼ γ0H†γ0 ¼ ðP�†
μ γμ þ iP†γ5Þ

1þ =v
2

; ð3:5Þ

with P ¼ ðD0; DþÞT and P� ¼ ðD�0; D�þÞT , respectively.
The leading-order contact Lagrangian describes the short

distance interaction between the nucleon and charmed
meson [44], which can be written as

LNH ¼ DaN̄N hH̄Hi þDbN̄ γμγ5N hH̄γμγ5Hi
þ EaN̄ τiN hH̄τiHi þ EbN̄ γμγ5τiN hH̄γμγ5τiHi;

ð3:6Þ

where Da, Db, Ea, and Eb are four low-energy con-
stants (LECs).
Finally, considering the strong coupling between

Δð1232Þ and πN [113–117], the Lagrangian of the
Δ-N-π coupling [118] is given by

LΔφ ¼ −T̄ μ
i ðiv ·Dij − δijδa þ 2g1S · uijÞgμνT ν

j ; ð3:7Þ

LΔNφ ¼ 2gδðT̄ μ
i gμαω

α
iN þ N̄ωα†

i gαμT
μ
i Þ; ð3:8Þ

where δa ¼ mΔ −mN and g1 ¼ 9
5
ga [118]. gδ is the

coupling constant for the ΔNπ vertex. The matrix form
of T μ

i reads

T 1
μ ¼

1ffiffiffi
2

p
�Δþþ − 1ffiffi

3
p Δ0

1ffiffi
3

p Δþ − Δ−

�
μ

;

T 2
μ ¼

iffiffiffi
2

p
�Δþþ þ 1ffiffi

3
p Δ0

1ffiffi
3

p Δþ þ Δ−

�
μ

;

T 3
μ ¼ −

ffiffiffi
2

3

r �
Δþ

Δ0

�
μ

: ð3:9Þ

Here, T μ
i denotes the spin-3=2 and isospin-3=2 field

Δð1232Þ in the nonrelativistic reduction.
In the framework of the heavy hadron chiral perturbation

theory, the scattering amplitudes of the D�N system can be
expanded order by order in powers of a small quantity
ε ¼ q=Λχ ∼ 1 GeV, where q is either the momentum of
Goldstone bosons or the residual momentum of heavy
flavor hadrons and Λχ represents either the chiral breaking
scale or the mass of a heavy hadron. The expansion respects
the power counting rule [106,107]. The Feynman diagrams
of Oðϵ0Þ contact term, Oðϵ0Þ one-pion-exchange, and
Oðϵ2Þ two-pion-exchange are illustrated in Fig. 2.
With the chiral Lagrangians and these Feynman diagrams,

we can obtain their Feynman amplitudes M. Then, we use
the Breit approximation V ¼ −M=ðΠi2miΠf2mfÞ1=2 to
relate the scattering amplitude M to the effective potential
V [44], where mi and mf are the masses of the initial and
final states, respectively. These effective potentials of
the Feynman diagrams in Fig. 2 consist of the following
parts:

FIG. 2. The Feynman diagrams of contact term at Oðϵ0Þ, one-pion-exchange at Oðϵ0Þ, and two-pion-exchange at Oðϵ2Þ. The thin,
double-thin, thick, heavy-thick, and dashed lines denote the D, D�, N, Δð1232Þ, and pion field, respectively.
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V total ¼ VLO
contact þ VLO

1−π þ VNLO
2−π ; ð3:10Þ

where VLO
contact, VLO

1−π , and VNLO
2−π denote Oðϵ0Þ contact term,

Oðϵ0Þ one-pion-exchange, and Oðϵ2Þ two-pion-exchange
potentials, respectively.
The VNLO

2−π is the sum of the football diagram,
triangle diagram, box diagram, and crossed box diagram
potentials in Fig. 2, i.e., VNLO

2−π ¼ Vfootball þ V triangleþ
Vbox þ Vcrossed−box. These two-pion-exchange diagrams
need some loop functions JFij, JTij, JBij, and JRij, which
can be found in Refs. [96–98,102,105]. To obtain the
effective potentials, the two-particle-reducible contribution
should be subtracted from these crossed box diagrams by
the principal value integral method in Appendix B of
Ref. [102]. Additionally, the divergent parts in two-pion-
exchange diagrams can be absorbed by unrenormalized
LECs in Ref. [44]. In this work, all the parameters for the
D�N interaction are from Ref. [44].

In Fig. 3, we give the D�N effective potential in
momentum space, which can help us to understand the
D�N interaction clearer. For the ½D�N�I¼0

J¼1=2 channel in

Fig. 3(a), theOðϵ0Þ one-pion-exchange potential andOðϵ2Þ
two-pion-exchange potential are both repulsive. But their
repulsive interaction is rather weak. The attractive inter-
action is dominantly provided by the Oðϵ0Þ contact
interaction. In Fig. 3(b), the Oðϵ0Þ one-pion-exchange
potential is attractive, and the Oðϵ2Þ two-pion-exchange
potential is repulsive, but both of them are rather weak.
However, the potential of Oðϵ0Þ contact term has strong
attractive interaction. For the ½D�N�I¼1

J¼1=2 channel in

Fig. 3(c), the potential of Oðϵ0Þ contact term and Oðϵ2Þ
two-pion-exchange are both repulsive, but the Oðϵ0Þ one-
pion-exchange is attractive. The total potential has
rather weak attraction. From Fig. 3(d), the total potential
are not attractive enough. Therefore, the two isoscalar
channels IðJPÞ ¼ 0ð1=2−Þ and IðJPÞ ¼ 0ð3=2−Þ provide
the stronger attractive interaction in momentum space, and

FIG. 3. The D�N interaction potential in momentum space with the cutoff parameter Λ ¼ 0.4 GeV, and q ¼ jqj is the transfer
momentum between D� and N. Here, the green, blue, and red dotted lines describe the contact term potential at Oðϵ0Þ, one-pion-
exchange potential at Oðϵ0Þ, and two-pion-exchange potential at Oðϵ2Þ, respectively, while the black solid line denotes the total
potential.

ZHANG, LIU, LUO, WANG, WANG, and XU PHYS. REV. D 107, 034036 (2023)

034036-6



we identify the attraction in two I ¼ 1 channels is weak. In
the following parts, we mainly consider the two isospin
I ¼ 0 channels. Furthermore, the Δð1232Þ plays a particu-
lar role in the D�N interaction because the coupling
between Δð1232Þ and πN system is very strong. The total
potential is sensitive to Δð1232Þ, which determines its
importance in the D�N interaction.
Based on the obtained effective potential in momentum

space VðqÞ, the effective potential in coordinate space VðrÞ
can be obtained by the following Fourier transformation:

VBC→BCðrÞ ¼
Z

d3q
ð2πÞ3 e

iq·rVðqÞF ðqÞ: ð3:11Þ

Here, F ðqÞ ¼ e−q
2n=Λ2n

is the form factor with Gauss form
to suppress the high momentum and renormalize the
potential [44,97].
When we employ the chiral effective field theory and use

some approximation, such as the transferred energy q0

between D� and N, and the residual energies of N and
D� are all set to zero, then the effective potential of D�N
will have the simple form of VBC→BCðp0 − pÞ. Thus, the
VBC→BCðp0;pÞ in Eq. (2.11) can be defined as

VBC→BCðp0;pÞ ¼ 1

ð2πÞ3
Z

VBC→BCðrÞeiðp0−pÞ·rd3r:

In this scheme, the matrix element Vfi in Eq. (2.18) can
be conveniently calculated by

Vfi ¼
Z

d3rϕr�
flmðνf; rÞVBC→BCðrÞϕr

ilmðνi; rÞ: ð3:12Þ

B. Interaction between the bare state and D�N channel

For the interaction Hamiltonian ĤI between the bare
state and D�N in Eq. (2.3), we employ the quark-pair-
creation model [119,120], which has the expression

ĤI ¼ g
Z

d3xψ̄ðxÞψðxÞ: ð3:13Þ

Here, g ¼ 2mqγ, mq is the mass of the creation quark, and
the dimensionless parameter γ describes the strength of the
quark and antiquark pair creation from the vacuum, which
can be determined phenomenologically by the Okubo-
Zweig-Iizuka (OZI) allowed decay widths of charmonia.
In the nonrelativistic limit, ĤI is equivalent to [13]

ĤI ¼−3γ
X
m

h1;m;1;−mj0;0i
Z

d3pμd3pνδðpμþpνÞ

×Ym
1

�
pμ−pν

2

�
ωðμ;νÞϕðμ;νÞχðμ;νÞ−m b†μðpμÞd†νðpνÞ: ð3:14Þ

Here, ω, ϕ, χ, and Ym
1 describe the color, flavor, spin, and

orbital angular momentum functions of the quark pair,
respectively. b†μ and d†ν are quark and antiquark creation
operators, respectively. In this work, we fit the dimension-
less parameter γ as 9.45 from the total decay width of
Σcð2520Þ [1].
The masses of bare Λcð2P; 1=2−Þ and Λcð2P; 3=2−Þ

can be obtained by the traditional quark potential
models combined with the Gaussian expansion method
by solving Eqs. (2.6) and (2.7). In this work, we use different
bare masses as input and collect them in Table I. In
addition,H�

Ψ0→BCðpÞ in Eq. (2.13) can be obtained by calcu-
lating the transition amplitude HΛbare

c ð2P;1=2−Þ→D�NðpÞ ¼
hD�N;pjĤIjΛbare

c ð2P; 1=2−Þi and HΛbare
c ð2P;3=2−Þ→D�NðpÞ ¼

hD�N;pjĤIjΛbare
c ð2P; 3=2−Þi with the quark-pair-crea-

tion model.

IV. RESULTS AND DISCUSSIONS

Using the formalism described in Sec. II and the detailed
interaction in Sec. III, we can now study the dynamical
coupling between the S-wave D�N channel and bare
charmed baryon core Λcð2PÞ. In the quenched quark
model, the charmed baryons are simply treated as the
three-quark udc baryons [2–4,13,46]. In the unquenched
picture, the physical states Λcð2940Þþ and Λcð2910Þþ
consist of both udc core and the S-wave D�N component.
In the former works, the authors of Ref. [46] considered the
coupling between udc and D�N but did not involve the
D�N interaction, while this work contains them both. We
list the results of the three approaches in Table II.
From the left column in Table II, the masses of the

Λcð2P; 1=2−Þ and Λcð2P; 3=2−Þ from quenched quark
model are much larger than those of Λcð2940Þþ and
Λcð2910Þþ. From the middle columns in Table II, the
theoretical masses decrease due to the coupling between the
udc core and D�N, but neither can reach the mass of lower
state Λcð2910Þþ [46]. Among them, we can see the
coupled-channel effects between the Λcð2P; 1=2−Þ and
S-wave ½D�N�I¼0

J¼1=2 channel are relatively weak, and thus
the mass is only suppressed by about 20 MeV and is still
above the D�N threshold. Neither Λcð2940Þþ nor
Λcð2910Þþ can match to it. Meanwhile, the coupled effects
between the Λcð2P; 3=2−Þ and S-wave ½D�N�I¼0

J¼3=2 channel
is strong, and the mass decreases by about 70 MeV and is
located below the D�N threshold.

TABLE I. The mass of bare udc core in Λcð2P; 1=2−Þ and
Λcð2P; 3=2−Þ in the different potential models. The masses are in
units of MeV.

JPðnLÞ Ref. [3] Ref. [13] Ref. [2] Ref. [46] Ref. [4]

1=2−ð2PÞ 2989 2980 2983 2996 3030
3=2−ð2PÞ 3000 3004 3005 3012 3035
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From the right columns in Table II, the D�N interaction
further lowers the theoretical masses of the Λcð2P; 1=2−Þ
and Λcð2P; 3=2−Þ, which now become very close to those
of Λcð2940Þþ and Λcð2910Þþ, respectively. Thus, we
assign Λcð2910Þþ with JP ¼ 3=2− and Λcð2940Þþ with
JP ¼ 1=2−. As we can see, the attractive D�N interaction
plays a crucial role in reproducing the experimental
Λcð2940Þþ and Λcð2910Þþ.
In the unquenched pictures with or without D�N

interaction, the mass for JP ¼ 1=2− is larger than that
for 3=2−, which is different from the quenched case. Such a
mass-inversion phenomenon also happens in the
Nð1535Þ-Nð1440Þ case [58,59]. The mass-inversion phe-
nomenon comes from the two factors in this work: 1)
under the chiral effective field theory [44], the energy
level in S-wave ½D�N�I¼0

J¼1=2 channel is larger than that

in the ½D�N�I¼0
J¼3=2 channel, and 2) the coupling between

Λcð2P; 3=2−Þ and ½D�N�I¼0
J¼3=2 is stronger than that between

Λcð2P; 1=2−Þ and ½D�N�I¼0
J¼1=2 [46]. These lead to the mass

inversion between Λcð2P; 1=2−Þ and Λcð2P; 3=2−Þ.

In Fig. 4, we present the physical massM dependence on
the bare mass M0 in Λcð2P; 1=2−Þ and Λcð2P; 3=2−Þ. One
can notice that the physical masses increase as the bare
masses. There are differences between the vertical axis and
horizontal axis values of points in the curves, which shows
that the bare udc core has a significant mass shift due to the
effects of S-wave D�N channel.
By solving Eq. (2.13), one can obtain the radial wave

function of D�N channel and the probability amplitude of
bare udc core, which can help us to reveal the role of D�N
channel and bare udc core in the physical state Λcð2940Þþ
and Λcð2910Þþ. In Table II, we also provide the root-mean-
square radius of D�N component and the probability of
bare udc core in the bound state, and we can see the 3=2−

state is a little thinner and contains more bare udc core than
the 1=2− one.
If neglecting the triquark core, the pure D�N can also

form bound states with masses around 2940 MeV with
JP ¼ 1=2− and 3=2− [44]. But such assumptions make it
difficult to place the bare 2P udc states. In Fig. 5, we
present the D�N radial wave functions for the three

TABLE II. Comparison among the results from quenched quark model [2–4,13,46], unquenched picture withoutD�N interaction [46],
and unquenched picture withD�N interaction in this work. Here, rRMS refers to the root-mean-square radius of theD�N component, and
PðudcÞ ¼ c20 represents the probability of bare udc core in the bound state.

Cases Quenched picture Unquenched picture without D�N interaction Unquenched picture with D�N interaction

JP M0 (MeV) M (MeV) rRMS (fm) PðudcÞ (%) M (MeV) rRMS (fm) PðudcÞ (%)

1=2− Ref. [3] 2989 2974 ✗ ✗ 2936 1.93 16.2
3=2− 3000 2933 1.67 39.7 2908 1.31 29.4
1=2− Ref. [13] 2980 2955 ✗ ✗ 2934 1.83 21.9
3=2− 3004 2935 1.74 37.0 2909 1.31 27.9
1=2− Ref. [2] 2983 2962 ✗ ✗ 2935 1.87 19.8
3=2− 3005 2935 1.76 36.3 2909 1.32 27.5
1=2− Ref. [46] 2996 2985 ✗ ✗ 2937 2.00 13.4
3=2− 3012 2937 1.95 31.4 2911 1.33 25.2
1=2− Ref. [4] 3030 3036 ✗ ✗ 2940 2.32 5.08
3=2− 3035 2943 2.93 15.8 2916 1.38 18.7

FIG. 4. The physical mass M dependence on the bare mass M0 in Λcð2P; 1=2−Þ and Λcð2P; 3=2−Þ, respectively.
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circumstances: the pure D�N molecule, the udc core
dressed by D�N without considering D�N interaction,
and the dressed state with D�N interaction. From
Fig. 5, we can find that the existence of the bare state
can make theD�N bind more tightly. These wave functions
can be used to analyze other properties of charmed baryons,
and it can help us to distinguish which model is better in
future.
As mentioned earlier, the Δð1232Þ plays an important

role in these two physical states. If ignoring the contribu-
tion of Δð1232Þ, the two-pion-exchange potential becomes
smaller. We list the results in Table III if turning off
Δð1232Þ. From the table, the masses of dressed states
decrease by about 10 MeV. In two isoscalar states
½D�N�I¼0

J¼1=2 and ½D�N�I¼0
J¼3=2, the total potentials become

more attractive, which bring these two states thinner.
How to get rid of the cutoff dependence in nonpertur-

bative calculations is still an outstanding problem both in
hadron physics and nuclear physics. To investigate the
cutoff dependence of our results, we list the charmed
baryon masses with two different cutoffs in Table IV.
One can see that the unquenched masses all become
lower with the cutoff becomes larger, and the results at
Λ ¼ 0.4 GeV are more in line with the experimental data.
Currently, we can only provide reasonable results in a very
narrow range of cutoff due to the restriction of the validity
region of the chiral effective field theory.
Moreover, Λcð2910Þþ and Λcð2940Þþ have small decay

widths [1,16–19]. In our unquenched calculation, the

Λcð2910Þþ and Λcð2940Þþ lie below the D�N threshold
(see Fig. 1). Thus, the decays to D�N channel are
kinematically forbidden, which may result in small decay
widths of these two states. The strong decay widths of
Λcð2P; 1=2−Þ and Λcð2P; 3=2−Þ have been studied in
Ref. [22], and the results are consistent with our assign-
ment, i.e., Λcð2910Þþ with spin 3=2 and Λcð2940Þþ with
spin 1=2.
In our calculation, we gave the possible interpretation

that the JP for Λcð2940Þ is 1=2−, which is in clear conflict
with the preferred 3=2− assignment from the LHCb experi-
ment [19]. However, our results cannot be completely ruled
out by the current experiment, and some other articles also
agree with the JP ¼ 1=2− assignment [2,7,29,34,37,38,44].
Moreover, the LHCb Collaboration concludes that
the other solutions with spins 1=2 to 7=2 cannot be
excluded [19].
TheD0pmass region in the amplitude fit is 2.8–3.0 GeV

in Ref. [19], but only Λcð2940Þ was included. Two
resonances Λcð2940Þ and Λcð2910Þ should be taken into
account at the same time, and the conclusion may be
changed from the new fit in experiment. The JP assignment
for Λcð2940Þ should further be measured the other way
like the partial wave analysis. Our results should also be
further checked by analyzing their other properties in
theory.

FIG. 5. The D�N radial wave functions for the pure D�N molecule (‘D�N molecule’), udc core dressed by D�N without considering
D�N interaction (‘udcþD�N, approximate’), and the dressed state with D�N interaction (‘udcþD�N, full’). Here, the cutoff
parameter Λ ¼ 0.4 GeV and the bare masses are adopted from Ref. [46].

TABLE III. The results with Δð1232Þ turned off.

JP (MeV) M0 (MeV) M (MeV) rRMS (fm) PðudcÞ (%)

1=2− 2996 2930 1.67 12.7
3=2− 3012 2902 1.26 22.4

TABLE IV. The cutoff dependence of the charmed baryon
masses in units of MeV. The quenched masses are taken from
Ref. [46].

JP Λ ¼ 0.4 GeV Λ ¼ 0.6 GeV

1=2− 2937 2924
3=2− 2911 2869
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V. SUMMARY

With the accumulation of experimental data, a series of
charmed baryons has been reported in the past decades.
However, some cannot be fitted into the charmed baryon
family very well. Inspired by the reported Λcð2910Þþ and
Λcð2940Þþ [1,16–19], we use an unquenched picture to
study them by considering S-wave D�N channel coupled
with the bare udc core (Λcð2PÞ), which gives a unified
description of Λcð2910Þþ and Λcð2940Þþ.
We take into account two important factors in this work,

i.e., the D�N interaction and the triquark-D�N coupling.
In our unquenched picture, we reproduce the masses of
Λcð2910Þþ and Λcð2940Þþ and assign Λcð2910Þþ to
JP ¼ 3=2− and Λcð2940Þþ to 1=2−. The results show
the unquenched effects lead to the mass inversion phe-
nomenon in the two states, and the D�N channel is
important.
In the present work, we find the D�N interaction is

crucial in forming the physical states. Let us look at Fig. 1
again. There are large gaps between the quenched quark
model results and the experimental masses. The 3=2−

mass is pulled down more than the 1=2− one by the
coupling between the triquark core and the D�N, which
causes the mass inversion phenomenon. The mass spectrum
moves down farther after considering the attractive
D�N interaction and is eventually consistent with the
experiments.

From our obtained results, we see Λcð2910Þþ and
Λcð2940Þþ contain a significant D�N component, and
the bare state can cause the D�N to bind more compactly.
In addition, we also study the influence of Δð1232Þ in the
D�N interaction. If neglectingΔð1232Þ, the dressed masses
would be about 10 MeV smaller than before.
Revealing the mixed structure of Λcð2910Þþ and

Λcð2940Þþ in the unquenched picture, we expect it can
be further verified by other theoretical approaches like
lattice QCD simulations. In addition to mass, other proper-
ties of these two states should also be analyzed within this
picture in the future. More importantly, we strongly suggest
an experiment to give a further study in the future, which
can provide more hints to uncover the nature of Λcð2910Þþ
and Λcð2940Þþ.
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