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In this paper, we study the structure around the pp̄ threshold that appears in η0πþπ−, 3ðπþπ−Þ and
K0

SK
0
Sη invariant mass spectra in the processes of relevant J=ψ radiative decays. The NN̄ rescattering is

taken into account, and the distorted-wave Born approximation is applied to get the decaying amplitude
through a two-step process: J=ψ → γNN̄ → γη0πþπ−, γ3ðπþπ−Þ, and γK0

SK
0
Sη. The NN̄ scattering

amplitudes are obtained by solving the Lippmann-Schwinger equation with the potentials given by chiral
effective field theory. To fix the unknown couplings, we fit the amplitudes to the datasets of the latest
measurements on the invariant mass spectra of J=ψ radiative decays, as well as the phase shifts and
inelasticities given by partial wave analysis. We vary the cutoffs (R ¼ 0.9, 1.0, and 1.1 fm) and find that the
solutions are stable. The structures around pp̄ threshold found in the processes of J=ψ → γη0πþπ−,
J=ψ → γ3ðπþπ−Þ, and J=ψ → γK0

SK
0
Sη can be attributed to threshold behavior of NN̄ intermediate states.

DOI: 10.1103/PhysRevD.107.034030

I. INTRODUCTION

Physicists have long been interested in 6-quark dibaryons
and 3-quark-3-antiquark baryonium states. They can be one
new kind of inner structure of matters and give clues to
experimentalists to find new resonances. One possible
candidate of the baryonium, Xð1835Þ first discovered in
the invariant mass spectrum ofMη0πþπ− near the pp̄ threshold
in the process of J=ψ→ γη0πþπ− by BES collaboration [1],
attracts both theoretical and experimental attention as the
proton and neutron are the basic components of nucleus. Its
mass and width are given as M ¼ 1833.7� 6.1 MeV=c2

and Γ ¼ 67.7� 20.3 MeV=c2 [1]. Subsequently, this res-
onance is also observed in decays of J=ψ → γ3ðπþπ−Þ [2],
J=ψ → γK0

SK
0
Sη [3], and J=ψ → γϕ [4], while it is faintly

supported by a few other experiments [5,6]. A few years
ago, BESIII increased the statistics of their measurements
on the J=ψ → γη0πþπ− and observed a clear structure
around pp̄ threshold, but it does not look like a Breit-
Wigner type peak around 1835 MeV. Indeed, the anoma-
lous behavior around pp̄ threshold has also been observed
in quite a bit other processes such as B� → K�pp̄ and
B̄0 → D�0pp̄ by Belle collaboration [7,8], J=ψ → γpp̄ by

BES collaboration [9], eþe− → pp̄=nn̄ by BABAR [10]
and SND [11] collaborations, and eþe− → 2ðπþπ−π0Þ;
3ðπþπ−Þ by BABAR collaboration [12]. Consequently,
one would wonder about the internal links between the
structure around pp̄ threshold in the energy region around
the Xð1835Þ and NN̄ rescattering. There are many relevant
theoretical researches which focused on eþe− → pp̄=
nn̄ [13,14], J=ψ → γpp̄ [15–17], and eþe− → 2ðπþπ−π0Þ;
3ðπþπ−Þ [18], etc..
In the previous paper [16], the NN̄ final-state interactions

(FSI) [19] have been included to study the structure
around pp̄ threshold in the process of J=ψ → γη0πþπ−.
The strategy is following a two-step process, J=ψ→
γNN̄→ γη0πþπ−, with the quantum number of NN̄ being
1S0. The distorted-wave Born approximation (DWBA) is
used to implement FSI of NN̄. The underlying physics
behind the first process J=ψ → γNN̄ is following the
experimental measurements of anomalous energy-dependent
behavior near the pp̄ threshold in J=ψ → γNN̄. See, e.g.,
Ref. [9], where there is an apparent threshold enhance-
ment near the pp̄ threshold in the decay of J=ψ → γpp̄ as
observed by BES collaboration. Echoing these measure-
ments, some theoretical models do find that the structure
around pp̄ threshold discovered in η0πþπ− invariant mass
spectrum of J=ψ → γη0πþπ− and/or the cross-section of
electron-positron annihilation into multipions is caused by
the intermediate NN̄ rescattering [15,16], while no reso-
nance pole is found in the 1S0 partial wave.
Recently, BESIII collaboration performed the latest mea-

surements on J=ψ → γη0πþπ− again, and the uncertainty of
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the η0πþπ− invariant mass spectrum has been reduced near
thepp̄ threshold [23]. Thus, it would be necessary to include
these new datasets and update the research of Ref. [16].
Also, there are clear structures around pp̄ threshold in the
measurements of the processes of J=ψ → γ3ðπþπ−Þ and
J=ψ → γK0

SK
0
Sη. If the structure is caused by the NN̄

threshold behavior, the DWBA method discussed above
should give a compatible data description. Thus we will
include all these processes and give a systematic discussion.
Further, in the previous work, only one cutoff (R ¼ 0.9 fm)
was considered, and it is essential to check whether the
structure is stable with different cutoffs.
This paper is organized as follows. In Sec. II, the

formulas to calculate the reactions of J=ψ→ γη0πþπ−,
J=ψ → γ3ðπþπ−Þ, J=ψ→ γK0

SK
0
Sη, J=ψ→ γpp̄, pp̄→

η0πþπ−, pp̄ → 3ðπþπ−Þ and pp̄ → K0
SK

0
Sη are given.

Through solving a set of coupled channel equations,
e.g., Lippmann-Schwinger equation (LSE) and DWBA
equations, one can get the scattering and decaying
amplitudes. Then the fit results and discussions are given
in Sec. III. The J=ψ → γpp̄ amplitude is fixed by fitting to
the pp̄ invariant mass spectra and the phase shifts of 1S0
partial waves of NN̄ scattering. The amplitudes of pp̄
scattering into η0πþπ−, 3ðπþπ−Þ and K0

SK
0
Sη are fixed by

fitting to the invariant mass spectra and/or branching
ratios. The J=ψ → γη0πþπ−, J=ψ → γ3ðπþπ−Þ, and
J=ψ → γK0

SK
0
Sη amplitude is then fixed by fitting to the

corresponding invariant mass spectra of J=ψ radiative
decays. The effects of varying cutoffs are also discussed.
Finally, a summary is given in Sec. IV.

II. FORMALISM

As mentioned above, the J=ψ → γη0πþπ−, J=ψ →
γ3ðπþπ−Þ, and J=ψ → γK0

SK
0
Sη decaying amplitudes are

obtained through two-step processes of J=ψ → γNN̄ →
γη0πþπ−, γ3ðπþπ−Þ, and γK0

SK
0
Sη. The NN̄ off-shell

scattering amplitude is the kernel to be input into
DWBA equations, which is solved by LSE [24],

TNN̄→NN̄ ¼ VNN̄→NN̄ þ VNN̄→NN̄G0TNN̄→NN̄; ð1Þ

where TNN̄→NN̄ is the NN̄ scattering amplitude. Here the
relevant partial waves are of 1S0, with isospin I ¼ 0, 1. G0

denotes the free propagator of the nucleon, VNN̄→NN̄ is the
nucleon-antinucleon interaction potential, which is calcu-
lated from chiral effective field theory (ChEFT) up to next-
to-next-to-next-to leading order (N3LO). See Ref. [24]
for details. The other amplitudes of the processes of
J=ψ → γNN̄, NN̄ → ν, and J=ψ → γν, are obtained by
solving the following set of coupled equations established
by DWBA,

FNN̄→ν ¼ VNN̄→ν þ TNN̄→NN̄G0VNN̄→ν;

FJ=ψ→γNN̄ ¼ A0
J=ψ→γNN̄ þ A0

J=ψ→γNN̄G0TNN̄→NN̄;

FJ=ψ→γν ¼ A0
J=ψ→γν þ FJ=ψ→γNN̄G0VNN̄→ν; ð2Þ

where ν denotes the final states with η0πþπ−, 3ðπþπ−Þ, and
K0

SK
0
Sη, respectively. The transition amplitudes A0

J=ψ→γNN̄

and A0
J=ψ→γν, and the annihilation potential VNN̄→ν are

parametrized as

A0
J=ψ→γNN̄ðpÞ ¼ C̃J=ψ→γNN̄ þ CJ=ψ→γNN̄p

2;

VNN̄→νðpÞ ¼ C̃NN̄→ν þ CNN̄→νp
2;

A0
J=ψ→γνðQÞ ¼ C̃J=ψ→γν þ CJ=ψ→γνQ; ð3Þ

where p is the center-of-mass momentum of the nucleon-
anti-nucleon system, and Q is the invariant mass Mη0πþπ− ,
M3ðπþπ−Þ and MK0

SK
0
Sη

for different processes, respectively.
Notice that for the processes of J=ψ → γ3ðπþπ−Þ and
pp̄ → 3ðπþπ−Þ, we consider πþπ− as a whole particle with
the mass 2mπ . Then these multipion final states are
simplified into “three body” final states and have similar
formalism as other processes. The decay rates and cross
sections of these processes can be obtained through

dΓ
dQ

¼
Z

tþ
1

t−
1

dt1

Z
tþ
2

t−
2

dt2
ðm2

J=ψ −Q2ÞjMJ=ψ→γνj2
6144Ñπ5m3

J=ψQ
;

dΓ
dQ

¼
λ1=2ðm2

J=ψ ; Q
2; m2

pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 4m2

p

q
27π3m3

J=ψ

jMJ=ψ→γpp̄j2;

σðQÞ ¼
Z

tþ
1

t−
1

dt1

Z
tþ
2

t−
2

dt2
jMpp̄→νj2

1024Ñπ3Q3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 4m2

p

q ; ð4Þ

where MJ=ψ→γν, MJ=ψ→γp̄p and Mp̄p→ν are the Lorentz
invariant amplitudes of corresponding progresses. Ñ is the
normalization factor caused by the property of identical
particles, with Ñ ¼ 1, 2, 6 for final states of η0πþπ−,
K0

SK
0
Sη, and 3ðπþπ−Þ, respectively. One has

MJ=ψ→γν ¼ −32π7
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EγEJ=ψE1E2E3

p
FJ=ψ→γν;

MJ=ψ→γpp̄ ¼ −8π2EN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EγEJ=ψ

p
FJ=ψ→γpp̄;

MNN̄→ν ¼ −32π7
2EN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1E2E3

p
FNN̄→ν: ð5Þ

where one has E1;2;3 ¼ Eη0;πþ;π− , E1;2;3 ¼ Eη;K0
S;K

0
S
, and

E1;2;3 ¼ Eðπþπ−Þ;ðπþπ−Þ;ðπþπ−Þ for different processes,
respectively.
Notice that the meaning of invariant mass Q has been

extended: it can be either Q ¼ Mν for the processes of
J=ψ → γν and NN̄ → ν or Q ¼ Mpp̄ for J=ψ → γpp̄. The
relations between the energies and the invariant massQ are
given as
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EJ=ψ ¼ m2
J=ψ þQ2

2Q
;

Eγ ¼
m2

J=ψ −Q2

2Q
;

E1 ¼
Q2 − t1 þm2

1

2Q
;

E2 ¼
Q2 − t2 þm2

2

2Q
;

E3 ¼
t1 þ t2 −m2

2 −m2
1

2Q
; ð6Þ

where the subscripts “1, 2, and 3” have the same meaning
as those appear in Eq. (5). The upper and lower limits of the
integrals of Eq. (4) are

t−1 ¼ 4m2
2;

tþ1 ¼ ðQ −m1Þ2;

t−2 ¼ 1

4t1

�
ðQ2 −m2

1Þ2 − ðλ1=2ðQ2; t1; m2
1Þ

þλ1=2ðt1; m2
2; m

2
2ÞÞ2

�
;

tþ2 ¼ 1

4t1

�
ðQ2 −m2

1Þ2 − ðλ1=2ðQ2; t1; m2
1Þ

−λ1=2ðt1; m2
2; m

2
2ÞÞ2

�
; ð7Þ

with the Källén function defined as λðx; y; zÞ ¼
ðx − y − zÞ2 − 4yz. The explicit set of coupled equations
to solve the scattering and decaying amplitudes are as
follows

TNN̄→NN̄ðp0; p;EpÞ ¼ VNN̄→NN̄ðp0; pÞ þ
Z

∞

0

dkk2

ð2πÞ3

VNN̄→NN̄ðp0; kÞ 1

2Ep − 2Ek þ iϵ
TNN̄→NN̄ðk; p;EpÞ;

FJ=ψ→γNN̄ðQÞ ¼ A0
J=ψ→γNN̄ðpÞ þ

Z
∞

0

dkk2

ð2πÞ3

A0
J=ψ→γNN̄ðkÞ

1

Q − 2Ek þ iϵ
TNN̄→NN̄ðk; p;EpÞ;

FNN̄→νðQÞ ¼ VNN̄→νðpÞ þ
Z

∞

0

dkk2

ð2πÞ3

TNN̄→NN̄ðp; k;EkÞ
1

2Ek −Qþ iϵ
VNN̄→νðkÞ;

FJ=ψ→γνðQÞ ¼ A0
J=ψ→γνðQÞ þ

Z
∞

0

dkk2

ð2πÞ3

FJ=ψ→γNN̄ðEkÞ
1

Q − 2Ek þ iϵ
VNN̄→νðkÞ; ð8Þ

where Ep, Ek are the energy of the nucleon or antinucleon
in the center of mass frame, with Ep ¼ Q=2 for the
processes of J=ψ → γNN̄ and NN̄ → ν. The transition
potentials given in Eq. (3) are multiplied with an expo-
nential regulator in the actual calculations, which is
consistent with the regularization of NN̄ potentials, see
Ref. [16] for details. This also ensures that the integrations
in Eq. (8) are converging.

III. RESULTS AND DISCUSSIONS

In this section, we will discuss the fit to the experimental
data and the physics underlying the structure around pp̄
threshold. Since the decaying amplitude of J=ψ → γν is
constructed based on a two-step process, it would be
convenient to divide this section into four parts: one is
about the physics of the process of J=ψ → γpp̄; The
second part is of J=ψ → γη0πþπ−; The third part is about
the results of J=ψ → γ3ðπþπ−Þ; And the last part is
about J=ψ → γK0

SK
0
Sη.

A. Analysis of J=ψ → γpp̄

First, we focus on the process of J=ψ → γpp̄. As
discussed above, the NN̄ final state interactions should
be considered. It is reasonable to assume that the relative
angular momentum between γ and pp̄ should be the
lowest one, i.e., S-wave. Then the relevant partial wave
of NN̄ should be 1S0, with isospin to be either one or
zero according to the unfixed isospin of the photon. Here
we follow the previous work [16] and set the ratio
between different isospin components to be TNN̄→pp̄ ¼
0.4T0 þ 0.6T1. Indeed, this ratio gives the best χ2d:o:f: for
fitting to the data. In the previous work [16], the process of
J=ψ → γpp̄ has been analyzed at R ¼ 0.9 fm. To study the
stability of the solutions with different cutoffs, we analyze
the process again with a set of cutoffs, e.g., R ¼ 0.9, 1.0,
and 1.1 fm. Here the corresponding cutoffs in the momen-
tum space are given by Λ ¼ 2R−1, see Ref. [24].
TheNN̄ scattering amplitudes are solved by LSE. Similar

to Ref. [16], the phase shifts of 1S0 NN̄ partial wave with
isospin I ¼ 1 are refit to reproduce the invariant mass
spectra of J=ψ → γpp̄. The values of the low-energy
constants (LECs) of the chiral NN̄ scattering potential of
I ¼ 1 1S0 partial wave are listed in Table. I. The fitting
results of NN̄ scattering phase shifts and inelasticity at
N3LO for different cutoffs are at the top of Fig. 1. The results
of N2LO and N3LO with cutoff R ¼ 1 fm are at the bottom
of Fig. 1. Both are consistent with the phase shifts and
inelasticity of partial wave analysis (PWA) [25] in the low-
energy region (T lab below 100 MeV). This is guaranteed by
the fact that we fit the first four points to constrain the low
energy behavior of the off-shell NN̄ scattering amplitudes
TNN̄→NN̄ , which will be input in the DWBA. While in the
high energy region, there is an apparent difference between
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ours and PWA’s. The reason is that the phase shifts are the
same in the low energy region for the processes of J=ψγ →
NN̄ and NN̄ → NN̄, but they do not need to be the same in
the high energy region. This is required by the final state
interactions, e.g., the Watson theorem. See Refs. [20,21,26]
for more discussions. Also, the pp̄ invariant mass spectra of
J=ψ → γpp̄ are smooth and decrease slowly in the high
energy region, which requires the phase shifts to have
similar behavior. For nucleon-antinucleon system, the
relation between T lab, plab and the nucleon’s energy, EN
in the center of mass frame, is given as follows:

T lab ¼
2ðE2

N −m2
NÞ

mN
; plab ¼

2EN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
N −m2

N

p
mN

:

With the NN̄ scattering amplitude, one can obtain the
J=ψ → γNN̄ decaying amplitude according to Eq. (2).
Here we set CJ=ψ→γpp̄ ¼ 0 as a constant transition ampli-
tude A0

J=ψ→γNN̄ is enough to describe the data well. Also, we

fix C̃J=ψ→γpp̄ ¼ 1 due to the overall normalization factor for
the events data. Notice that the phase shifts and inelasticity
of I ¼ 1 1S0 partial wave and the invariant mass spectra
from BESIII [27], BES [9], and CLEO [28] are fitted
simultaneously. The fitting results of the decay rate of the
process of J=ψ → γpp̄ are shown in Fig. 2. The top graphs
of Fig. 2 are those of N3LO with different cutoffs: The
purple dashed, black solid, and brown dotted curves are for
cutoffs R ¼ 0.9, 1.0, and 1.1 fm, respectively. All curves
with different cutoffs are consistent with the experimental
data. The results with R ¼ 0.9 and 1.0 fm are somewhat
similar to each other, and they have only a slight difference
with the result of R ¼ 1.1 fm. The comparison between the

FIG. 1. Fit to the PWA’s. The top graphs are the I ¼ 1 phase
shifts of 1S0 partial wave of N3LO with cutoffs R ¼ 0.9, 1.0, and
1.1 fm. The red points represent the results of PWA [25]. The
bottom graphs are the results for N2LO and N3LO, with cutoff
R ¼ 1.0 fm. The pink and sky blue bands are their uncertainties,
respectively.

TABLE I. The values of low energy constants of the NN̄
scattering potentials of I ¼ 1 1S0 partial wave. All parameters are
multiplied with a factor 104.

LECs N2LO N3LO

R (fm) 1.0 0.9 1.0 1.1

C̃31S0ðGeV−2Þ 0.0480 0.3535 0.2674 0.0664

C31S0ðGeV−4Þ −1.8397 −3.7566 −5.1411 −5.3367
D1

31S0
ðGeV−6Þ … −7.9227 −15.0857 −25.0000

D2
31S0

ðGeV−6Þ … 11.1314 20.0000 25.0000

C̃a
31S0

ðGeV−1Þ −0.0102 −0.0120 −0.0907 −0.1154
Ca
31S0

ðGeV−3Þ −4.5259 −3.0480 −3.8174 −4.6828

FIG. 2. Fit to the J=ψ → γpp̄ decay rate. At the top, they are of
N3LO with cutoffs R ¼ 0.9, 1.0, and 1.1 fm. The sky blue band is
the error estimation of the results with R ¼ 1.0 fm. The data are
from BESIII [27], BES [9], and CLEO [28]. At the bottom, the
graphs are the results for N2LO and N3LO, with cutoff
R ¼ 1.0 fm, respectively. The pink and sky blue bands are the
uncertainties for N2LO and N3LO, respectively.
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decay rates of N2LO and N3LO are given in the bottom
graphs of Fig. 2, shown as the dashed blue and solid black
curves. The error bands of the results with R ¼ 1.0 fm
are given by the pink and sky blue bands for N2LO and
N3LO, respectively. The estimation is based on a Bayesian
method [24,29]. In the next sections, we will also use this
method to estimate the uncertainties. Though the fit of
N2LO is not as good as that of N3LO, especially in the
energy region around the threshold, both are compatible
with the experimental measurements.
As observed by the experiments, there is a clear thresh-

old enhancement near the pp̄ threshold. This inspires
people to believe that there is a baryonium state related
to the NN̄, e.g., the Xð1835Þ. In our analysis, such a state is
not found in the origin NN̄ scattering amplitudes, neither in
I ¼ 0 nor in I ¼ 1 1S0 waves. Nonetheless, with the modest
modified I ¼ 1 1S0 partial wave, such a bound state can be
found below the pp̄ threshold. For instance, the pole
location for R ¼ 1.0 fm is EB ¼ −49.8 − i49.2 MeV of
N3LO, and EB ¼ −1.0 − i100.2 MeV of N2LO, which are
compatible with those found in Refs. [15,16]. Nevertheless,
the width (Γ ¼ 2ImEB) of the state is large, and thus it is
not easy to conclude that the anomalous structure around
NN̄ threshold of other processes is purely caused by the
Xð1835Þ. It should be stressed that the pole found here may
not be suitable to be treated as evidence of confirming the
baryonium origin of the Xð1835Þ [30], as the data above the
NN̄ or BB̄ threshold could determine the amplitudes below
threshold unreliably.

B. Analysis of J=ψ → γη0π +π −
As mentioned above, to determine the J=ψ → γη0πþπ−

decay amplitude, one needs to know the amplitudes of two
processes, J=ψ → γNN̄ and NN̄ → η0πþπ−. The former
decaying amplitude has been given in the previous sub-
section, and the latter is calculated out by the first equation
of Eq. (2). Notice that only isoscalar 1S0 wave is needed.
The unknown couplings C̃NN̄→η0ππ (CNN̄→η0ππ is set to
be zero) is fixed by fitting to the cross section,
σðpp̄ → η0πþπ−Þ ¼ 2.23 mb, which is obtained by multi-
plying the measured branching ratio BRðpp̄ → η0πþπ−Þ ¼
0.626% [33] and the total annihilation cross section of
pp̄ [34]. With these two amplitudes, we can now use
DWBA to get the decaying amplitude of J=ψ → γη0πþπ−.
Note that the parameters C̃J=ψ→γNN̄ , C̃NN̄→η0ππ and nor-
malization factors for the Mη0πþπ− invariant mass spectra
are multiplied together. Therefore, we can set C̃J=ψ→γNN̄ ¼
1 again. Finally, one only needs to determine three
parameters by fitting to the J=ψ → γη0ππ invariant mass
spectra, i.e., C̃J=ψ→γη0ππ , CJ=ψ→γη0ππ and a normalization
factor. Notice that C̃J=ψ→γη0ππ and CJ=ψ→γη0ππ can be
complex numbers, and hence there are four degrees of
freedom for them. In the previous work [16], these two

parameters are taken as real numbers. However, in this
analysis, for cutoffs R ¼ 1.0 and 1.1 fm, the complex
parameters would give a better quality of the fits. The
parameters of our solutions are shown in Table II.
Recently, BESIII collaboration performed a new meas-

urement on the invariant mass spectra of the decay rate of
J=ψ → γη0πþπ− [23]. In this new measurement, two ways
to collect the events of the final state η0 are considered: one
is from η0 → γπþπ−, and the other is from η0 → πþπ−η.
Correspondingly, there are two different datasets, and we
label them as BESIII 2022 (I) and (II), respectively. These
new datasets have smaller errors than that of the previous
measurement [35], and thus it is necessary to include them
in the present analysis. The fitting results are shown in
Fig. 3. The fitting results of N3LO with cutoffs R ¼ 0.9,
1.0, and 1.1 fm are shown in the top graphs of Fig. 3,
denoted by dashed purple, solid black, and dotted brown
curves, respectively. It can be found that all our solutions
are consistent with the datasets. The difference between the
results of different cutoffs is relatively tiny, revealing that
the solutions are somewhat cutoff independent. The error
bands of R ¼ 1.0 fm, both for N2LO and N3LO, are shown
by the pink and sky blue bands as plotted in Fig. 3. The
error estimation method is again from the Bayesian method
as Ref. [24,29]. Interestingly, the solution of N2LO has
almost the same quality as that of N3LO. This is because
we have let the parameters of the transition amplitude
A0
J=ψ→γη0πþπ− , C̃J=ψ→γη0ππ , and CJ=ψ→γη0ππ be complex, and

thus the degrees of freedom of the fit have been increased.
Also, notice that the results of J=ψ → γpp̄ at N2LO are
worse than that at N3LO. Nevertheless, the mechanism of
how the structure around pp̄ threshold is generated would
be similar to that of the previous paper [16]. See dis-
cussions below.
To study the structure around pp̄ threshold in theMη0πþπ−

invariant mass spectra of J=ψ → γη0πþπ−, we separate two
contributions to the Mη0πþπ− spectra: one is from NN̄
rescattering (J=ψ → γN̄N → γη0πþπ−), and the other is

TABLE II. Values of the real parameter C̃p̄p→η0ππ and complex
ones C̃J=ψ→γη0ππ and CJ=ψ→γη0ππ appearing in Eq. (3). For the
complex parameters, the first line corresponds to the real part, and
the second line to the imaginary part. All these parameters are in
units of 104.

N2LO N3LO

R (fm) 1.0 0.9 1.0 1.1

C̃p̄p→η0ππ (GeV−2) 0.0075 0.0069 0.0072 0.0075

C̃J=ψ→γη0ππ (GeV−2) −0.2498 −0.1072 −0.1561 −0.2283
þ0.0105i −0.0844i −0.0342i þ0.0177i

CJ=ψ→γη0ππ (GeV−3) 0.0881 0.0360 0.0538 0.0830
þ0.0101i þ0.0462i þ0.0249i þ0.0025i
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the background, i.e., the contribution from the transition
amplitude A0

J=ψ→γη0ππ. The individual contributions of these

two parts are calculated by Eq. (2), with one part switched
on while the other switched off. The results are shown
in Fig. 4.
As can be seen, the backgrounds are pretty smooth and

more prominent, while the NN̄ rescattering term contrib-
utes little except for a cusplike structure around the pp̄
threshold. This confirms our conclusion, i.e., the structure
around the pp̄ threshold in the Mη0πþπ− invariant mass
spectra of J=ψ → γη0πþπ− should be generated by the
interference between the background and the NN̄ rescatter-
ing. On the other hand, there is no pole (NN̄ bound state or
resonance) found in the I ¼ 0 1S0 partial wave of NN̄
scattering amplitude for any of these cutoffs, neither in the
N2LO case nor in the N3LO case [36]. Hence, our analysis
indicates that there is no need for a NN̄ bound state to
quantitatively describe the structure around the pp̄ thresh-
old in Mη0πþπ− invariant mass spectra of J=ψ → γη0πþπ−.

C. Analysis of J=ψ → γ3ðπ +π − Þ
As discussed above, the decaying amplitude of J=ψ →

γ3ðπþπ−Þ is constructed by DWBAwith the amplitudes of
J=ψ → γNN̄ and NN̄ → 3ðπþπ−Þ. The former has been
given in the previous sections, and the latter is fixed by
fitting the relevant cross section. In Ref. [39], the pp̄ →
3ðπþπ−Þ cross section is measured in the momentum range
plab ¼ 374–680 MeV=c. In the low energy region, one
can obtain σðpp̄ → 3ðπþπ−ÞÞ ¼ 7.52� 0.89 mb at plab ¼
106.6 MeV=c by combining the branching ratio
BRðpp̄ → 3ðπþπ−ÞÞ ¼ 21.0� 2.5% [40] and the total
pp̄ annihilation cross section [34]. With the amplitudes
of J=ψ → γNN̄ and NN̄ → 3ðπþπ−Þ, we can construct the
decay amplitude of J=ψ → γ3ðπþπ−Þ according to Eq. (2).
The unknown couplings of the Born term of J=ψ →
γ3ðπþπ−Þ and the potential of NN̄ → 3ðπþπ−Þ will be
fixed by combination fitting the cross section of pp̄ →
3ðπþπ−Þ and the invariant mass spectrum of J=ψ →
γ3ðπþπ−Þ [2].
The unknown parameters are C̃p̄p→3ðπþπ−Þ, Cp̄p→3ðπþπ−Þ,

C̃J=ψ→γ3ðπþπ−Þ, and CJ=ψ→γ3ðπþπ−Þ, see Eq. (3). Note that
only the isoscalar 1S0 partial wave is taken into account
according to ignoring higher partial waves. For
C̃J=ψ→γ3ðπþπ−Þ and CJ=ψ→γ3ðπþπ−Þ, they can be complex
numbers, resulting in four degrees of freedom. For
Cpp̄→3ðπþπ−Þ that corresponds to momentum dependence
of the potential, we include it and find a better fit. Besides,
one also needs a normalization factor for the decay rates of
J=ψ → γ3ðπþπ−Þ in the full range. The values of param-
eters of our fit are given in Table III.
The results of fitting to the cross section of pp̄ →

3ðπþπ−Þ are shown in Fig. 5. The top graphs show the
results of N3LO with different cutoffs, R ¼ 0.9, 1.0, and

FIG. 3. Fit to the J=ψ → γη0πþπ− decay rate. The top graphs
are of N3LO with cutoffs R ¼ 0.9, 1.0, and 1.1 fm. The bottom
graphs are for N2LO and N3LO, with cutoff R ¼ 1.0 fm. The
datasets labeled BESIII 2022 (I) and BESIII 2022 (II) are from
Ref. [23] and the one labeled BESIII 2016 is from Ref. [35]. The
pink and sky blue bands are the error estimation of the results for
N2LO and N3LO, respectively, with R ¼ 1.0 fm. The vertical line
is the pp̄ threshold.

FIG. 4. The individual contribution to Mη0πþπ− invariant mass
spectra of J=ψ → γη0πþπ−, either from the background (upper
lines) or from the NN̄ rescattering (lower lines with cusplike
behavior around pp̄ threshold). The contributions are of N3LO
for cutoffs R ¼ 0.9, 1.0, and 1.1 fm, respectively.

QIN-HE YANG, DI GUO, and LING-YUN DAI PHYS. REV. D 107, 034030 (2023)

034030-6



1.1 fm. Our solutions are consistent with the data. Indeed,
there is almost no difference between the solutions with
different cutoffs. The results for N2LO and N3LO, with the
cutoff R ¼ 1.0 fm, are shown in the bottom graphs. As can
be found, they are consistent with the data, and the one of

N2LO (the dashed blue line and pink band) overlaps with
that of N3LO (the solid black line and sky blue band). From
this aspect, one can conclude that the higher order
correction on NN̄ rescattering at N3LO has little influence
on the scattering of pp̄ → 3ðπþπ−Þ. The reason may be that
there are only a few data points for this process, so the
N2LO description on the NN̄ rescattering is enough.
The results of fitting to the J=ψ → γ3ðπþπ−Þ decay rates

are shown in Fig. 6. In the top graphs, the dash-dotted
green, solid black, and dashed blue lines are the solutions
with cutoffs R ¼ 0.9, 1.0, and 1.1 fm of N3LO, respec-
tively. In the bottom graphs, the dashed blue and black solid
lines are for N2LO and N3LO with cutoff R ¼ 1.0 fm.
Notice that we only focus on the energy region around the
pp̄ threshold. One would notice that our solutions around
the NN̄ threshold behaves like a cusp, while two data
points, one around 1.84 GeV and the other around
1.90 GeV, are not fitted well. Nevertheless, taking into
account the large uncertainties of the data, our solutions are
still compatible with the data of theM3ðπþπ−Þ invariant mass
spectrum of J=ψ → γ3ðπþπ−Þ. The difference between the
solutions with different cutoffs is tiny. See the green, black
and blue curves in the top graphs. This implies that our
solutions of J=ψ → γ3ðπþπ−Þ are stable by varying cutoffs.

FIG. 5. Fit to the pp̄ → 3ðπþπ−Þ cross section. The top graphs
are of N3LO with cutoffs R ¼ 0.9, 1.0, and 1.1 fm. The bottom
graphs are for N2LO and N3LO, with cutoff R ¼ 1.0 fm. The pink
and sky blue bands are the uncertainties for the solutions of N2LO
and N3LO, respectively. Here the F. Sai et al. data are from
Ref. [39]. The data point labeled as PS197þ CERN is taken from
Refs. [34,40].

TABLE III. As in Table II but for the real parameters
C̃p̄p→3ðπþπ−Þ, Cp̄p→3ðπþπ−Þ and the complex ones C̃J=ψ→γ3ðπþπ−Þ
and CJ=ψ→γ3ðπþπ−Þ.

N2LO N3LO

R (fm) 1.0 0.9 1.0 1.1

C̃p̄p→3ðπþπ−Þ (GeV−2) 0.0124 0.0108 0.0113 0.0117

Cp̄p→3ðπþπ−Þ (GeV−2) 0.1246 0.0980 0.1245 0.1555

C̃J=ψ→γ3ðπþπ−Þ (GeV−2) 0.3578 0.1491 0.1453 0.2015
−0.1786i −0.0477i −0.1257i −0.1080i

CJ=ψ→γ3ðπþπ−Þ (GeV−3) −0.2009 −0.0350 −0.0522 −0.1021
þ0.0592i þ0.0149i þ0.0447i 0.0291i

FIG. 6. As in Fig. 3 but for the J=ψ → γ3ðπþπ−Þ. Here the
BESIII data are from Ref. [2].
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The results of N2LO and N3LO also have slight differences.
See the blue and black curves at the bottom. The reason
may be that the data statistics need to be higher.
Like what is done in the previous subsection, we present

the individual contributions from the background and the
NN̄ rescattering [J=ψ → γNN̄ → γ3ðπþπ−Þ]. See Fig. 7.
The dash-dotted green, solid black, and dashed blue lines
are for cutoffs R ¼ 0.9, 1.0, and 1.1 fm, respectively. The
contributions from the background are smooth, and the
structure around the pp̄ threshold is caused by the NN̄
rescattering. This supports that the structure of M3ðπþπ−Þ
invariant mass spectrum around the pp̄ threshold should be
originated from the NN̄ threshold behavior.

D. Analysis of J=ψ → γK0
SK

0
Sη

The amplitude of J=ψ → γK0
SK

0
Sη is constructed through

a two-step process of J=ψ → γNN̄ → γK0
SK

0
Sη. The ampli-

tude of pp̄ → K0
SK

0
Sη is fixed by the cross section, which is

obtained from the branching ratio BRðpp̄ → K0
SK

0
SηÞ ¼

ð0.25� 0.04Þ × 10−3% [41] and the total annihilation cross
section of pp̄ [34]. One has σðpp̄ → K0

SK
0
SηÞ ¼ 0.89�

0.14 μb at plab ¼ 106.6 MeV=c. Combined the amplitudes
of J=ψ → γK0

SK
0
Sη and pp̄ → K0

SK
0
Sη through DWBA, one

can fix the amplitude of J=ψ → γK0
SK

0
Sη by fitting to the

MK0
SK

0
Sη
invariant mass spectrum. Notice that in Ref. [3], the

structure around the Xð1835Þ become more prominent by
requiring MK0

SK
0
S
< 1.1 GeV=c2. Correspondingly, we set

the upper limit tþ1 ¼ ð1.1 GeV=c2Þ2 in Eq. (4) for the decay
rate of J=ψ → γK0

SK
0
Sη. Notice that the f0ð980Þη channel is

quite far away from NN̄ threshold, and it will only supply a
background in the energy region concerned.
The unknown parameters are given in Eq. (3), i.e.,

C̃J=ψ→γK0
SK

0
Sη
, CJ=ψ→γK0

SK
0
Sη
, C̃p̄p→K0

SK
0
Sη
, and Cp̄p→K0

SK
0
Sη
.

Since there is only one data point for the pp̄ → K0
SK

0
Sη

cross section, we set Cp̄p→K0
SK

0
Sη

to be zero and

then C̃p̄p→K0
SK

0
Sη

can be fixed. For C̃J=ψ→γK0
SK

0
Sη

and
CJ=ψ→γK0

SK
0
Sη
, they could be complex numbers, but in

practice, we can set them as real numbers and the fit is
in high quality. Thus there are only two degrees of freedom.
In addition, an overall normalization factor to the data
of MK0

SK
0
Sη

invariant mass spectrum in the J=ψ radiative
decay is needed. The values of these parameters are
shown in Table IV. One would notice that C̃p̄p→K0

SK
0
Sη

are

much smaller than that of C̃p̄p→η0πþπ− , C̃p̄p→η0πþπ− , and
C̃p̄p→3ðπþπ−Þ. This is because the cross section of pp̄ →
K0

SK
0
Sη is almost three orders smaller than that of pp̄ →

η0πþπ− and pp̄ → 3ðπþπ−Þ. For C̃J=ψ→γK0
SK

0
Sη

and
CJ=ψ→γK0

SK
0
Sη
, it is difficult to discuss why its magnitude

is smaller than those of C̃J=ψ→3ðπþπ−Þ, CJ=ψ→3ðπþπ−Þ,
C̃J=ψ→η0πþπ− , and CJ=ψ→η0πþπ− , because these transition
potentials interfere with the NN̄ rescattering parts. Their
magnitudes are fixed by fitting to the invariant mass
spectra. Notice that the whole amplitudes should also
multiply an overall normalization factor to fit the
events data.
Our solutions fitting to the MK0

SK
0
Sη

invariant mass
spectrum are shown in Fig. 8. As can be found, our
solutions fit the experimental data rather well. However,
it should be noted that there are only 8 data points in the
energy region of [1.80–1.95] GeV that we focus on. The
top graphs in Fig. 8 are the results of N3LO. The dash-
dotted green, solid black, and dashed blue lines are for
cutoffs R ¼ 0.9, 1.0, and 1.1 fm, respectively. These curves
of different cutoffs almost overlap, implying that the results
are not sensitive to the cutoffs. The bottom graphs are the
results of N2LO (dashed blue) and N3LO (black solid) with
cutoff R ¼ 1.0 fm. The results of N2LO and N3LO overlap
with each other, and this is again caused by lacking enough
statistics on the data. It would be rather helpful if there are
future measurements on the invariant mass spectrum of
J=ψ → γK0

SK
0
Sη, especially those around the pp̄ threshold

to get apparent structure.
The individual contributions from background and NN̄

rescattering to MK0
SK

0
Sη

invariant mass spectra of J=ψ →

γK0
SK

0
Sη are shown Fig. 9. The smooth lines at the bottom

FIG. 7. The individual contribution to M3ðπþπ−Þ invariant mass
spectra of J=ψ → γ3ðπþπ−Þ.

TABLE IV. The values of the real parameters, C̃p̄p→K0
SK

0
Sη
,

C̃J=ψ→γK0
SK

0
Sη
, and CJ=ψ→γK0

SK
0
Sη
as given in Eq. (3). All parameters

are in units of 10.

N2LO N3LO

R (fm) 1.0 0.9 1.0 1.1

C̃p̄p→K0
SK

0
Sη

(GeV−2) 0.4659 0.4514 0.4573 0.4607

C̃J=ψ→γK0
SK

0
Sη

(GeV−2) 6.8187 0.9990 4.4638 6.1870

CJ=ψ→γK0
SK

0
Sη

(GeV−3) −4.2018 −0.5561 −2.6581 −3.7904
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are from backgrounds [Born terms as given in Eq. (3)], and
the ones with cusps around the pp̄ threshold are from NN̄
rescattering. It shows clearly that the structure around the
pp̄ threshold is caused byNN̄ threshold behavior. Note that
in some other models, the origin of the structure around pp̄
threshold could be caused by some bound states. See, e.g.,
Refs. [15,17]. As a short summary, in all the processes of
J=ψ radiative decays, J=ψ → γη0πþπ−, J=ψ → γ3ðπþπ−Þ,
and J=ψ → γK0

SK
0
Sη, the structure around pp̄ threshold are

caused by the NN̄ rescattering. While there is no resonance
found in the isoscalar 1S0 wave.

IV. CONCLUSION

In this paper, we analyzed the J=ψ radiative decays of
the processes of J=ψ → γη0πþπ−, J=ψ → γK0

SK
0
Sη,

J=ψ → γ3ðπþπ−Þ, and J=ψ → γpp̄ with chiral effective
field theory and distorted wave Born approximation. The
latest measurements on the Mη0πþπ− , M3ðπþπ−Þ, and MK0

SK
0
Sη

invariant mass spectra are taken into account. Our results
show that the structures around the pp̄ threshold found in
all these processes are caused by the NN̄ threshold effect,
while no bound state or resonance is found in the relevant
I ¼ 0 1S0 partial wave. To check the reliability, we test the
effects of different cutoffs and find that our conclusion is
not sensitive to the cutoffs. It would be helpful to refine the
analysis if there are future measurements on the invariant
mass spectra around the pp̄ threshold of the J=ψ radiative
decays.
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