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This work is a continuation in our series of papers that addresses quark models of hadronic structure on
the light front, motivated by the QCD vacuum structure and lattice results. In this paper we focus on the
importance of diquark correlations, which we describe by a quasilocal four-fermion effective ’t Hooft
interaction induced by instantons. The same interaction is also shown to generate extra quark-antiquark
pairs of the “sea.” Its higher order iteration can be included via “pion mediation”: both taken together yield
a quantitative description of the observed flavor asymmetry of antiquarks sea. Finally we discuss the final
step needed to bridge the gap between hadronic spectroscopy and parton observables, by forward DGLAP
evolution toward the chiral upper scale of ∼1 GeV2.
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I. INTRODUCTION

Since this paper is the fifth in our series [1–4], it does not
need an extended introduction, other than for issues not
considered in the previous papers. So, we start directly by
outlining its content.
The two introductory Secs. I A and I B are devoted to

diquark correlations in baryons and multiquark hadrons,
respectively. Diquark “spectroscopy” has a rather long
history which includes empirical facts and dynamical
calculations [Nambu and Jona-Lasinio (NJL) model,
instantons, lattice]. Furthermore, by identifying certain
four-quark effective interactions, one naturally can proceed
to the evaluation of their role not only in the 2 ↔ 2
channels, but also in the 1 → 3 channel, and in the coupling
of the three-quark and five-quark sectors in baryons.
The introductory Sec. I B outlines our general strategy to

“bridge” hadronic spectroscopy and partonic observables.
The 1 → 3 processes are the first step towards the creation
of the “hadronic sea” of quarks and antiquarks, which
complements perturbative DGLAP evolution, as is clear
from the flavor asymmetry of antiquarks.
We start our studies of diquark correlations from the

nonrelativistic setting in Sec. II A, where we compare the
effects of the perturbative Coulomb and instanton-induced

’t Hooft interactions using some simple variational
approaches. Its main conclusion is that diquark correlations
are strong, and that the ’t Hooft interaction is dominant. In
Sec. III, the diquark problem is treated on the light front, by
a Hamiltonian similar to the meson one, using a quasilocal
qq interaction. In Sec. IV we present a simplified analysis
of baryons in the center-of-mass (CM) frame, using
Coulomb and ’t Hooft interactions only.
The next section deals with baryons on the light front; it

startswith Sec.VAwherewe derive theLFWFsdeformation
by a heavy quark mass. Note that in our previous analysis
in [4], we only considered flavor symmetric baryons
qqq; sss; ccc; bbb. Here instead, we consider heavy-light
baryons such as ΛQ ¼ Qud with a single diquark in
Sec. V B, before addressing the diquark pairing in the
nucleon in Sec. VI. We further elucidate the observable
consequences of this pairing by calculating the form factors
for the isobar delta and the nucleon in Sec. VII.
In Sec. VIII A we show how to bridge the gap between

the spectroscopic analysis and the partonic observables,
using the chiral processes discussed in Sec. VIII. More
specifically, in Sec. VIII Awe motivate the selection of the
scale where the chiral theory and perturbative DGLAP
evolution match. In Sec. VIII B we detail the empirical
information on the flavor asymmetry of the antiquark sea of
the nucleon. We present two mechanisms for this effect,
one using the first-order ’t Hooft Lagrangian in Sec. VIII C,
and the other a pion-mediated process in Sec. VIII D, each
of which is illustrated in Fig. 1. The matching of the chiral
and perturbative evolutions are discussed in Sec. VIII E.
Section IX summarizes the main results of our series of

papers. A number of more technical issues are discussed in
the appendices.
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A. Diquark correlations

Diquark correlations of light quarks in nucleons and
hadronic reactions have been extensively discussed in the
literature in the past decades, see e.g. [5,6], and more
recently in the review [7]. Here, we will not cover their
phenomenological contributions to various hadronic reac-
tions but rather address some theoretical considerations
about their dynamical origins based on semiclassical
instantons. We will also cover recent lattice advances in
diquark studies.
In two-color QCD with Nc ¼ 2, diquarks are baryons. In

the chiral limit, QCD with two colors and flavors admit
Pauli-Gursey symmetry, an extended SU(4) symmetry that
mixes massless baryons and mesons. In three-color QCD
with Nc ¼ 3, diquarks play an important role in the light
and heavy light baryons.
The simplest way to understand diquark correlations in

hadrons is in single-heavy baryons where the heavy
spectator quark compensates for color, without altering
the light diquark spin-flavor correlations. A good example
is Qud baryons, with ΣQ composed of a light quark with a
flavor symmetric assignment I ¼ 1; JP ¼ 1þ, and ΛQ

composed of a light quark pair with a flavor asymmetric
assignment I ¼ 0; JP ¼ 0þ state, the so-called bad and
good diquark states. Note that the latter has no spin, and
thus no spin-dependent interaction with the heavy quarkQ,
while the former does. However, assuming that the standard
spin-spin interactions are of the form ðσ⃗1σ⃗2Þ, this spin
interaction can be eliminated as follows:

Mð1þudÞ −Mð0þudÞ
≈ ðð2MðΣ�

QÞ þMðΣQÞ=3Þ −MðΛQÞ ≈ 0.21 GeV ð1Þ

where the numerical value thus obtained from experimental
masses of cud; bud baryons yields the binding of two types
of light quark diquarks. We note that the mass difference
between heavy-light baryon and meson of mðQudÞ −
mðQuÞ ≈ 329 MeV is close to a constituent quark mass
but does not seem to include any extra contribution to the
kinetic energy of the extra quark. Apparently, it is cancelled
by some attraction.
With antisymmetric color and spin wave function, scalar

diquarks must also be antisymmetric in flavor, so those can
only be ud; us; sd pairs. Those are called “good” diquarks
in the literature, in contrast to the “bad” ones made of same
flavor dd; uu;…bb and, by Fermi statistics, with symmet-
ric spin S ¼ 1 wave functions.
The role of the light fermionic zero modes induced by

instantons at the origin of the ’t Hooft effective Lagrangian
for chiral symmetry breaking, and their importance for
pions and other aspects of chiral symmetry breaking are
well known; for a review see e.g. [8]. Diquark correlations
induced by the ’t Hooft interaction were found in studies of
the nucleons in instanton ensembles in [9]. In particular, the
good diquark mass was found to be mð0þÞ ≈ 420 MeV,
while the bad vector diquark mass was found to be
mð1þÞ ≈ 940 MeV, with a difference as large as 500 MeV.
Although only a Fiertz transformation is needed

from a meson to a diquark channel, this phenomenon
has been originally considered only by a few [10–12],
before the realization that diquarks would turn to
Cooper pairs in dense quark matter, as pointed out in
[13,14]. (For subsequent review on color superconduc-
tivity see Ref. [15].)
Theoretically, it was important to note that in SUð2Þ

color theory, the scalar diquarks are massless partners
of the Goldstone mesons [13]. By continuation to SUð3Þ
color, one then expects good scalar diquarks to be deeply
bound as well. The ratio of the color factors between the
pseudoscalar meson (pions or η0) channels and the scalar
diquark channel is the same for the perturbative one-gluon
exchange and the instanton-induced ’t Hooft vertex,

Gqq

Gq̄q
¼ 1

Nc − 1
: ð2Þ

Note that it is 1 for SUð2Þ color, supporting Pauli-Gursey
symmetry between diquarks (baryons in this theory) and
mesons. It is 1=2 for the SUð3Þ color case of interest, and
zero in the Nc → ∞ limit.
Calculation of (pseudoscalar and vector) meson and

(scalar and vector) diquark DAs using the Bethe-Salpeter
equation with NJL kernels were originally covered in [12]
and more recently in [16].
Lattice studies of light diquarks have also a long history,

with the early analyses in [17] to recent studies in [18].
Diquarks are either studied inside dynamical baryons
or by tagging a Wilson line to a qq pair as a heavy-light

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Top row (a),(b): gluon-mediated quark pair production.
Middle row (c),(d): instanton-induced ’t Hooft four-fermion
interaction; Bottom row (e),(f): pion-mediated quark pair pro-
duction, or iterated ’t Hooft Lagrangian in s and t channels.
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Qqq-type baryon. We already noted the mass difference
between the vector and scalar ud diquarks, with the lattice
estimate putting it at mð1þÞ −mð0þÞ ≈ 200 MeV. The
lattice studies show that in a Qud baryon, the light
quarks are correlated together, but in a region of about
r0 ≈ 0.6 fm size, which is twice larger than suggested in
earlier papers.
To complete our introduction to diquarks, we briefly note

the issue of heavy diquarks, e.g. made of two charmed
quarks cc. This issue reappeared after the recent discovery
of the tetraquark Tþþ

ccū d̄
by the LHCb Collaboration. If the

only force is Coulomb, the QQ coupling is half of that in
Q̄Q. Now, since for a 1=r potential the binding scales as the
square of the coupling, we readily get BðQQÞ ¼ 1

4
BðQ̄QÞ.

Yet we do know that charm quarks are not heavy enough to
ignore the confining forces in charmonium, and so this
relation is not expected to hold. The static potentials
between heavy quarks were discussed in detail in our
previous paper [4].
Karliner and Rosner [19,20] conjectured a different

relation

BðQQÞ ¼ 1

2
BðQ̄QÞ ð3Þ

which turned out to be phenomenologically successful.
[While it resembles what we called in our previous paper
“Ansatz A” for the quark-quark static interaction, it is not
the same; a half for potentials is not half for bindings. For
charmonium binding in their analysis BðQ̄QÞ≈−258MeV,
so BðQQÞ ≈ −129 MeV, which led them to predict a mass
of MðTþþ

ccū d̄
Þ ¼ 3882 MeV just 7 MeV above the sub-

sequent experimentally measured value.]
Currently we have not performed any calculations for

tetraquarks. We had done some preliminary studies of
heavy-heavy-light QQq baryons with some model wave
functions, and concluded that for two charm quarks QQ ¼
cc their separation into quasi-two-body (heavy diquark
plus light “atmosphere”) is not really justified. This is in
qualitative agreement with the relatively small binding of a
cc diquark in the Karliner-Rosner conjecture. So, in this
work, we will focus on the light-light good diquarks known
to be more strongly bound.

B. Bridging the gap between hadronic
spectroscopy and partonic physics

In this subsection we outline our plan for bridging
this gap.
Our starting point is the well-known traditional quark

model used in hadronic spectroscopy. The main phenome-
non included in this model is the phenomenon of chiral
symmetry breaking, with an effective mass for the “con-
stituent quarks.” For light quarks it is mq ∼ 1=3 GeV. This
mass is much smaller than the induced mass on gluons, so
hadronic spectroscopy is traditionally described as bound

states of these constituent quarks, with gluonic states or
excitations described as “exotica.” The traditional states are
two-quark mesons and three-quark baryons, but of course
there are also tetraquarks q3q̄ and pentaquarks q4q̄ states,
recently discovered with heavy quark content.
The first arc of the bridge (described in detail in this

series of works) is to transfer such quark models from the
CM frame to the light front. For some simplest cases—like
heavy quarkonia—it amounts to a transition from spherical
to cylindrical coordinates, with subsequent transformation
of longitudinal momenta into Bjorken-Feynman variable x.
But in general, it is easier to start with light-front
Hamiltonians HLF and perform its quantization. One of
the benefits is that no nonrelativistic approximation is
needed; therefore, heavy and light quarks are treated in
the same way.
The second arc of the bridge is built via chiral dynamics,

which seeds the quark sea by producing an extra quark-
antiquark pair. In Sec. VIII we discuss how it can be done,
in the first order in ’t Hooft effective action as well as via
intermediate pions.
We will then argue that as the third arc of the bridge one

should use the well-known DGLAP evolution of the PDFs
(perhaps modified), down to the scale at which there are no
gluons. There the qq̄ sea should be reduced to only the part
generated by chiral dynamics (step two). The antiquark
flavor asymmetry d̄ − ū is the tool allowing us to tell gluon
and chiral contributions, as it cannot be generated by
“flavor blind” gluons.

II. DYNAMICAL BINDING OF DIQUARKS

A. Nonrelativistic studies of the role of Coulomb
and ’t Hooft attractions

In the previous papers of this series we have shown how
two basic nonperturbative phenomena can be included in
the light-front formulation:

(i) Chiral symmetry breaking represented by constitu-
ent quark masses.

(ii) Confinement represented by classical relativistic
string.

By adding the light-front form of the kinetic energy of
the constituents, we derived our basic Hamiltonian,
modulo Coulomb, spin-spin, and spin-orbit effects. The
eigenstates of this Hamiltonian, were evaluated using
different methods.
Now we are going to focus on the residual interactions,

namely:
(iii) Perturbative Coulomb interactions.
(iv) Various forms of quasilocal operators descending

from ’t Hooft effective Lagrangian, or, more gen-
erally, from instanton-induced zero modes for light
fermions

(v) Effects due to the gauge fields of the instantons via
nonlocal correlators of Wilson lines.
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The traditional starting point is the nonrelativistic
Schrödinger equation in the CM frame. As a compromise
needed for the use of both a nonrelativistic approxi-
mation and the ’t Hooft Lagrangian, we focus initially
on the strange quark channel, with a constituent mass
ms¼0.55GeV. As for any compromise, it is not really
accurate, yet it will provide preliminary information on the
relative role of all the interactions listed above.
Since the ’t Hooft interaction must be flavor asymmetric,

we have to invent another quark flavor s0 with the same
mass. (This idea is not ours; it originated in lattice studies
where it was used to eliminate two-loop diagrams. The
pseudoscalar s̄s0 meson even has an established name ηs.)
We start with a variational approach, using simplified

trial wave functions of two types,

ψA ∼ e−αr
2

; ψB ∼ e−βr
3=2 ð4Þ

to be referred to as trial functions A and B. The former
(Gaussian) form leads to simple analytical expressions for
the mean kinetic energy, h1=ri; hri; hδ3ðr⃗Þi. However, the
trial function B with the power of the distance in the
exponent following from its semiclassical asymptotics
turns out to be closer in shape to the numerical solution.
Some details about these variational functions can be found
in Appendix A.
Let us summarize the qualitative lessons we obtained

from these variational studies. First, we demonstrate that
the contributions of both attractive forces—the Coulomb
and the ’t Hooft ones—are comparable for the strange
quark mass. The light diquark binding and the rms size
suggested by phenomenology and observed on the lattice
can be explained with the conventional values for the
Coulomb and ’t Hooft couplings.
Second, we find the following distinction between these

interactions: their contribution to the binding can change
significantly if these values are changed. For example, if the
diquark size is reduced by a factor of 2, h1=ri increases by a
factor of 2, while hδ3ðr⃗Þi increases by a factor 23 ¼ 8 and
becomes dominant. So a reported balance between pertur-
bative and nonperturbative contributions to the binding is in
fact only valid for a strange quark mass, and is very
sensitive to the actual quark masses.
Of course, in the current setting, there is no problem to

solve the Schrödinger equation numerically. For conven-
ience, we represent the ’t Hooft quasilocal term −Gqqδ

3ðr⃗Þ

by a smeared delta function. In Fig. 13 the resulting ground
state wave functions are compared for four values of the
coupling Gdq ¼ 0; 10; 20; 30 GeV−2. As expected, an
increase in the negative potential near the origin leads to
a large wave function at small r.
In Table I we give the corresponding rms sizes and

binding energies for the lowest four states. One can see that
in order to get a binding of ∼ − 0.2 GeV and a size of
∼ 0.6 fm, indicated by lattice studies, the coupling needs to
be Gqq ∼ 20 GeV−2. Recall that by Fiertzing the ’t Hooft
operator from the q̄q to qq channel, there is an additional
factor of 1=ðNc − 1Þ ¼ 1=2. So this value corresponds to
the coupling in mesons of ∼ 40 GeV−2. Finally, we note
that both the ’t Hooft and Coulomb bindings are only strong
for the ground state, and their effect is strongly decreasing
with n, as is listed in Table I.

III. DIQUARKS ON THE LIGHT FRONT

In order not to use the nonrelativistic approach for the
light quark systems, in the previous papers of this series we
have advocated the use of the light-front Hamiltonians. The
confining forces were reduced by the einbein trick. The
resulting Hamiltonian HLF ¼ H0 þ V consists of H0

which is the sum of a harmonic oscillator in transverse
momenta plus a Laplacian for longitudinal momenta, and
of V which includes transverse momenta in the numerator
and longitudinal ones in the denominator. One strategy of
solving this Hamiltonian, following our predecessors [21],
is to express V as a matrix in the eigenbasis of H0, with its
subsequent diagonalization. In Paper II [2] we have
checked the wave functions obtained by this method with
direct 3d numerical solutions, with very good agreement
between the two.
Here we propose another method of solution for HLF,

relying on the approximate factorization of the transverse
and longitudinal degrees of freedom. Treating the mean
square of the transverse momentum as a parameter, we
focus on the longitudinal wave equation following from the
relevant part of HLF, which is proportional to

−
d2ψðxÞ
dx2

þ A

�
M2

1 þ hp⃗2⊥i
x

þM2
2 þ hp⃗2⊥i
1 − x

− 2ðM2
1 þM2

2 þ 2hp⃗2⊥iÞ
�
ψðxÞ: ð5Þ

TABLE I. Root-mean-square sizes (fm) and additional binding energies (GeV) for the lowest four states of ss0 diquarks, for four values
of the qq ’t Hooft coupling.

Gqq GeV−2 Rr:m:sfm E0 − E0ðGqq ¼ 0Þ E1 − E1ðGqq ¼ 0Þ E2 − E2ðGqq ¼ 0Þ E3 − E3ðGqq ¼ 0Þ
0 0.67 � � � � � � � � � � � �
10 0.62 −0.082 −0.044 −0.032 −0.026
20 0.56 −0.187 −0.089 −0.063 −0.051
30 0.50 −0.318 −0.132 −0.093 −0.074
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The second derivative comes from the confining term (with
parameter a inherited from the einbine trick) following the
substitution of the longitudinal coordinate as rl → id=dx.
The “potential” is written for two distinct masses, to keep it
general. The mean squared transverse momentum is used as
an external parameter, together with the quark masses. The
last term with the minus sign in the potential is artificially
subtracted here, and added in the remaining part of the M2

for convenience (it is independent of the longitudinal
momentum fraction x).
The constant A ¼ a=σT in front of the potential contains

the string tension σT ¼ ð0.4 GeVÞ2 and a parameter a from
the einbine trick we have used (which is fixed by
minimizing the total mass squared).
In Fig. 2 we show the shape of the corresponding

effective potentials for four cases:
(i) A pair of light constituent quarks qq with masses

M1 ¼ M2 ¼ 0.28 GeV with comparable mean
squared transverse momentum hp⃗2⊥i ¼ ð0.3 GeVÞ2.

(ii) A strange-light pair (e.g. K� vector mesons).
(iii) A charm-light pair (e.g. D� vector mesons).
(iv) A charm-ud diquark, an approximation to

cud or Λc baryon. We use here the diquark mass
mud¼0.5GeV.

As one can see, the potential is small and symmetric in
the qq case (i), except near the edges of the physical
domain, x ¼ 0, and x ¼ 1. Yet the potential becomes very
asymmetric if the two masses are different.
We solved the longitudinal wave equation following

from (5) for two light quarks (case (i) and compared the
solution [shown by a black line in Fig. 3(e)] to two
functions which are often used as simple approximations
to these wave functions.
[Note that in the approximation of constant p⊥ dis-

tribution, these functions directly coincide with the dis-
tribution amplitudes (DAs). Therefore we have used here a

normalization traditionally used for DAs, by putting to
unity the integral of its first power rather than the integral
of the square, which is more appropriate for the wave
functions.]
It is then straightforward to solve Eq. (5) for the

remaining three cases. All these ground state wave func-
tions are shown in Fig. 4, in the upper plot as numerical
solution ψðxÞ and in the lower plot as its Fourier transform
ψðPrlÞ. The asymmetric potentials lead to rather asym-
metric wave functions, shifting toward larger x of the first
(heavier) particle. This makes sense, since the pair binding
requires that the constituents move with the same relative
velocity, which translates to a larger momentum fraction
carried by the heavier quark.
For completeness, let us give the (dimensionless) values

of the ground state eigenvalues,

12.78; 14.23; − 8.10; − 0.23;

for these four cases respectively.
The wave function’s dependence on the transverse

momenta is (near) Gaussian and can be readily Fourier
transformed. So, with the longitudinal wave functions
Fourier-transformed into the coordinate representation,
we can calculate the matrix elements of any coordinate-
dependent operators, such as the perturbative Coulomb.
However in this paper we would not do so. We will only
consider the quasilocal ’t Hooft operator, which can be
done without any Fourier transform.

IV. SIMPLIFIED BARYONSWITHCOULOMBAND
’T HOOFT INTERACTIONS IN THE CM FRAME

In this section we proceed from two quarks in a diquark
to three quarks in a baryon, including the “residual”

0.0 0.2 0.4 0.6 0.8 1.0

–40

–20

0

20

40

60

80

100

FIG. 2. Effective potentials in the longitudinal Hamiltonian (5)
for a qq pair (black curve), an sq pair (blue dashed curve), a cq
pair (red dashed curve), and a c − ðudÞ charm-light diquark case
(brown dash-dotted curve).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

FIG. 3. Longitudinal wave function for a diquark made of
identical light quarks (black line, upper curve at the central point
x ¼ 1=2). For comparison we also show the lowest harmonic
function sinðπxÞ by a blue line and the “asymptotic” wave
function xð1 − xÞ by the red line.
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interactions beyond confinement. As for diquarks, we start
with a preliminary study of three nonrelativistic quarks
with equal masses in the CM frame, and proceed in three
steps: (i) a “basic” three-body problem, with only kinetic
and confining energies; (ii) adding Coulomb interaction;
(iii) adding quasilocal ’t Hooft interaction.
To discuss the three-body Hamiltonians and wave

functions, we first recall how the three coordinate vectors
x⃗i are redefined in terms of two Jacobi vectors ρ⃗i; λ⃗i [see
Ref. (16) for their longitudinal analog], with the kinetic
energy

Hkin ¼ −
1

2M
∂
2

∂X⃗2
−

1

2m

�
∂
2

∂ρ⃗2
þ ∂

2

∂λ⃗2

�
: ð6Þ

The first term represents the center of mass motion and is
factored out. The remaining dynamics is performed in the
remaining six dimensions.

We start with the basic problem, with only the kinetic
and confining energy. In this case the problem is spherically
symmetric in 6d and one can define the hyperspherical
radius

R2 ¼ ρ⃗2ij þ λ⃗2ij ð7Þ

(with any pair combination ½ij�, over which no summation
will be assumed). Equation (6) is the 6-d Laplacian

Hkin ¼ −
1

2

�
∂
2

∂R2
þ 5

R
∂

∂R

�
þ L2

2R2
ð8Þ

where L includes derivatives over the angles. The ground
state wave function may be assumed to depend only on the
hyperradius R.
However, since we will consider a case in which one

quark pair 1-2 will have a ’t Hooft attraction, there is no
such symmetry, and we expect a different dependence on
ρ ¼ jρ⃗j and λ ¼ jλ⃗j. We will use the following two-
parameter Gaussian Ansatz:

ψðρ; λÞ ¼ ð2αβ=πÞ3=2e−α2ρ2−β2λ2 : ð9Þ

The kinetic energy is then

Ekin ¼
3

2m
ðα2 þ β2Þ: ð10Þ

The confining energy is then

Econf ¼ σTh
ffiffiffi
2

p
ρþ

ffiffiffiffiffiffiffiffi
3=2

p
λi ¼ σT

ffiffiffi
3

p
αþ 2βffiffiffi
π

p
αβ

ð11Þ

where the first term includes the distance between the
quarks 1 and 2, and the second term the distance from quark
3 to the CM of the first pair. Here and below, the angular
brackets stand for the averaging over the wave function.
Using our standard set of parameters, with the strange

quark mass m ¼ 0.55 GeV, and the string tension
σT ¼ ð0.4 GeVÞ2, we minimize these expressions and
get variational wave function for the “basic” baryons, with
only the confining force written in this approximation. The
minimum of the energy is αmin¼ 0.32;βmin¼ 0.31GeV−1,
and the minimal values of the kinetic and confining
energies are Ekin ≈ 0.38; Econf ≈ 1.07 GeV. (The slight
asymmetry is caused by the asymmetric geometry of the
confining string.)
Now we include the residual interactions, and minimize

the total energy. The Coulomb interaction for the pair 12
includes the distance between these two quarks r12 ¼

ffiffiffi
2

p
ρ,

with

ECoulomb ¼ −
2αs
3

�
1

r12

�
¼ −

2αs
3

2αffiffiffi
π

p : ð12Þ
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FIG. 4. The wave functions as a function of the momentum
fraction ψðxÞ (top) and their Fourier transform into coordinate
space ψðP � rlÞ (bottom). The markings of the four curves in both
plots are the same and identical to those used in Fig. 2: for the qq
pair it is the black curve, for the sq pair it is the blue dashed curve,
for the cq pair it is the red dashed curve, and for the c − ðudÞ
charm-light diquark case it is the brown dash-dotted curve.
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The ’t Hooft Lagrangian induces a quasilocal four-fermion
operator, which we regulate using a Gaussian form with an
fixed instanton size ρ0,

E0tHooft ¼ −Gqq

�
e−ρ

2=ρ2
0

π3=2ρ30

�

¼ −Gqqα
3

�
2

π þ 2πα2ρ20

�
3=2

: ð13Þ

Using our standard set of parameters, the strange quark
mass m ¼ 0.55 GeV, the string tension σT ¼ ð0.4 GeVÞ2,
the Coulomb coupling from charmonium fit 4αs=3 ≈ 0.7,
the instanton size ρ0 ≈ 0.3 fm ≈ 1=ð0.6GeVÞ and the
quark-quark coupling Gqq ¼ 20 GeV−2, we minimize the
total energy, the sum of the terms mentioned above, over
the parameters of the Ansatz. With the Coulomb and ’t
Hooft terms acting only between particles 12, we found that
the minimum is at

αmin ¼ 0.430 GeV−1; βmin ¼ 0.306 GeV−1: ð14Þ

Note that parameter alpha has changed significantly as
compared to the basic model above.
Using it, one finds the relative contributions of different

terms in the Hamiltonian to be in this case (in GeV)

Ekin ≈ 0.76; Econf ≈ 0.93;

ECoulomb ≈ −0.17; Et0Hooft ≈ −0.28: ð15Þ

The main lesson from this variational estimate is that,
again, we see that the instanton-induced ’t Hooft effect is
somewhat larger than the Coulomb interaction, and that
together they can generate significant diquark binding
comparable to the quark constituent mass ∼ 0.35 GeV.
We conclude this section with the following comments:
(i) The main lesson from this variational calculation is

that the asymmetry induced by the residual Coulomb
and ’t Hooft interactions is quite substantial, and
therefore their perturbative account is not justified.

(ii) The Coulomb and ’t Hooft attractions are so far
included only for one pair of quarks 1-2, out of
three. If those were to be multiplied by three, the
attraction could basically cancel the kinetic and
confinement energy, leaving the total mass close
to its naive nonrelativistic value 3m.

(iii) In our older paper [22] we developed a schematic
model with certain “quasisupersymmetry” between
masses of constituent quarks and light good di-
quarks. (Not between the number of states, as
needed for true supersymmetry.) In particular, it
put certain mesons and baryons into some (approxi-
mate) multiplets. A similar meson-baryon symmetry
has been developed in [23] based on a hybrid
holographic approach. Naively the same multiplets

would include tetraquarks, as diquark-diquark
states; yet those were not observed. It implies that
diquark-diquark interaction is strongly repulsive,
violating this quasisupersymmetry.

V. HEAVY-LIGHT BARYONS WITH DIQUARKS

A. Asymmetry induced in the longitudinal
LFWFs by a heavy quark mass

In Paper IV [4] we studied flavor-symmetric baryons,
qqq; sss; ccc; bbb. Such choice was motivated by both the
additional kinematical symmetry in each case, as well as
the absence of an instanton-induced flavor-antisymmetric ’t
Hooft interaction.
The three-body kinematics was discussed there in detail

and will not be repeated here. For completeness, we briefly
recall our notations. We use the momentum representation
and six Jacobi coordinates p⃗λ; p⃗ρ. Their longitudinal
momenta, normalized to total hadron momentum called
momentum fractions xi; i ¼ 1, 2, 3 are expressed in two
coordinates ρ, λ as follows:

x1 ¼ 1=6ð2þ
ffiffiffi
6

p
λþ 3

ffiffiffi
2

p
ρÞ;

x2 ¼ 1=6ð2þ
ffiffiffi
6

p
λ − 3

ffiffiffi
2

p
ρÞ;

x3 ¼ 1=3ð1 −
ffiffiffi
6

p
λÞ: ð16Þ

The physical domain of the ρ, λ variables is an equilateral
triangle, with corners corresponding to one of the momen-
tum fractions reaching one, and the others zero.
The light-front Hamiltonian considered in [4] included

the kinetic energy of quarks and confining term only. The
latter term, with certain tricks, is made proportional to the
6-d quadratic form in coordinates. After those are changed
to derivatives over momenta, it is amenable to transverse
and longitudinal Laplacians. (This is so for both the Y
confining model, with three strings and a color junction, as
well as for the A Ansatz with slightly different numerical
coefficients.) Here we will focus on the longitudinal
momenta, so our main differential operator takes the form
∂
2=∂ρ2 þ ∂

2=∂λ2, defined on the equilateral triangle with
corners at

ðρ; λÞ ¼ ð0;−
ffiffiffiffiffiffiffiffi
2=3

p
Þ; ð1=

ffiffiffi
2

p
; 1=

ffiffiffi
6

p
Þ; ð−1=

ffiffiffi
2

p
; 1=

ffiffiffi
6

p
Þ:

In [4], its eigenfunctions were found analytically and
numerically.
The kinetic part of the Hamiltonian,

Hkin ¼
X
i

p⃗2
i⊥ þm2

i

xi
; ð17Þ

depends nontrivially on the longitudinal momentum frac-
tions. It is convenient to subtract and add its value at the
center point x1 ¼ x2 ¼ x3 ¼ 1=3 and call it a “potential” V
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plus a term depending only quadratically on p⃗⊥. The latter
was used for the transverse oscillator part, defining the
basis set of functions. The potential V was included either
in the form of a matrix in that basis, or found numerically
from solving the Schrödinger-like equation.
The confining (Laplacian) part of the Hamiltonian does

not depend on masses, but the potential V does. If masses
of the three quarks are the same (the case discussed in [4]),
the potential V has a discrete symmetry corresponding to
maps of the triangle into itself (rotations by the angle
�2π=3). This symmetry is shared by a Laplacian and thus
the resulting wave functions. In this section we make the
first step toward unequal quark masses, where this
symmetry is absent.
We are aiming first at heavy-light baryons of the typeqqQ

(with light diquarks either flavor symmetric or antisym-
metric), and introduce two dimensionless parameters

AQ ¼ hp2
Q⊥i þm2

Q

σT
; Aq ¼

hp2
q⊥i þm2

q

σT
: ð18Þ

The denominators contain the string tension, while in the
numerators we substituted the squared transverse momenta
by their average. In this approximation the longitudinal
degrees of freedom split from the transverse ones, with the
effective dimensionless potential

Ṽðλ; ρÞ ¼ Aqð1=x1 þ 1=x2 − 6Þ þ AQð1=x3 − 3Þ: ð19Þ

While it is still defined on the equilateral triangle, it no
longer has the triple 2π=3 symmetry. Specifically, we note
that these parameters have very different magnitude for light
and e.g. charmed quarks

ðhp2
q⊥i þm2

qÞ=σT ≈ 1.5; ðhp2
c⊥i þm2

cÞ=σT ≈ 15:

For b quarks the ratio is another order of magnitude larger.
So the triple symmetry is very strongly broken by the leading
term with a large heavy quark mass. The effect is so strong,
even for a charm quark, that one can only keep the
m2

cð1=x3 − 3Þ term in the kinetic energy.
We evaluated the matrix elements of the potential in the

Laplacian basis and obtained the wave function of the ΣQ ¼
QðudÞ1þ baryon. The ground wave functions represented
as a combination of (12) basis states

ΨΣQð1Þ ¼
X
n

Cnψnðρ; λÞ ð20Þ

with the coefficients equal to

CΣ
n ¼ ð0.520; 0.025; 0.736;−0.331;−0.167;−0.189;

− 0.105;−0.009;−0.024; 0.012;−0.014;−0.008Þ:
Note that several of coefficients are comparable, and the
first coefficient is not even the largest. It happens because
the charm quark mass term creates such a large perturbation

that the lowest ΣQð1Þ state is not even close to the lowest
state of the Laplacian.

B. Diquark pairing in ΛQ baryons

Now we make the second step, to ΛQ ¼ QðudÞ0þ
baryons with a flavor-asymmetric ud diquark. In addition
to what was discussed in the preceding section, now there is
also the ’t Hooft determinantal interaction between the ud
quarks. The symmetry 1 ↔ 2 (or ρ ↔ −ρ) of the
Hamiltonian and the light-front wave functions (LFWFs)
remains.
We now make use of a simplified and fully local ’t Hooft

interaction

Hud ¼ −Gudδðr⃗u − r⃗dÞ: ð21Þ

The matrix element of the spatial delta functions is
discussed in Appendix B, see Eq. (B6). Using it in our
set of basis functions, we performed those integrals and
obtained the Hamiltonian in the form of a 12 × 12 matrix.
Multiplying it by the coupling G, adding it to the
Hamiltonian detailed in the previous sections, and getting
the eigensystem, we generated 12 states of the Λc baryons.
We have tuned the coupling so that the ground states have
binding difference between good and bad diquarks fixed by
phenomenology (1).
After this is achieved, we can compare the obtained Σc

and Λc LFWFs. One way to do it is to give the coefficients
of the decomposition in the Laplacian basis functions as we
did above for Σc. Those are

CΛ
n ¼ ð0.625; 0.025; 0.725;−0.249;−0.079;−0.089;

−0.052;−0.004; 0.040;−0.020;−0.0272; 0.004Þ;

see Fig. 5. We can see from the upper plot differences at
larger ρ (lowest curves) that are as big as a factor of 2.
However, a better representation of the shape difference is
given by the lowest plot.

C. Instanton-induced effects in heavy-light hadrons

In the Paper I of this series [1], we addressed the
instanton effects on Wilson lines (heavy quark potentials).
The novel point was the proposal of a “dense instanton
liquid” that also includes instanton–anti-instanton mole-
cules. In Paper II of the series [2] the instanton-induced ’t
Hooft interaction was used for light quarks, in the context
of the pion LFWF. Since this interaction follows solely
from the near-zero fermionic modes, it is natural to limit its
discussion to the dilute instanton liquid as we did, with the
hope of avoiding any confusion.
In this section we review some applications to heavy-

light hadrons. The pioneering study in the original instan-
ton vacuum was authored by Chernyshev, Nowak, and
Zahed [24], on which this section is based. We will provide
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some further discussion, insuring connections to later
papers and the remainder of our series.

1. qQ interaction

The main point is that the instanton field strength (acting
on a static quark Q) and its zero mode (acting on a light
quark q) are correlated. The appropriate setting is again the
dilute instanton liquid.
If the instanton size is small, it can be written as a

quasilocal operator, to be included in a Lagrangian. The
interaction between a single light quark q and a single static
heavy quark Q is

LqQ ¼ −GQq

�
Q̄
1þ γ0

2
Qq̄qþ 1

4
Q̄
1þ γ0

2
λaQq̄λaq

�
:

ð22Þ
The light quark effective vertex is based on the represen-
tation of the propagator as

SZMðx; yÞ ¼
ψ0ðxÞψ0ðyÞ

m� ð23Þ

with some effective “determinantal mass” characterizing
the instanton ensemble. In the original “instanton liquid
model” (ILM) paper [25] this mass was directly related
with the quark condensate

m� ¼ 2

3
π2ρ2jhq̄qij ≈ 170 MeV

(the number is for the empirical condensate value). Further
development followed two directions: the gap equations in
the mean field approximation (see references in [26]) and
numerical simulations of the instanton ensemble. The
former expressions were used in [24] with

m� ¼
ffiffiffiffiffiffiffiffi
n

2Nc

r
Σ0

and the random instanton liquid model (RILM) instanton
density n ¼ 1 fm−4. (Note that in [24] the factor of 1=2Nc,
following from the averaging over the color moduli, was
included in the definition of n.) The explicit form of Σ0 is
quoted in Appendix E, with Σ0 ≈ 240 MeV. The typical
coupling in (22) in the RILM is

GQq ¼
�
ΔMQΔMq

n

�
ð24Þ

with the heavy quark mass shift

ΔMQ ¼−
4π2

3ρ

π2ρ4n
Nc

�
J0ðπÞþ

1

π
J1ðπÞ

�
∼70MeV ð25Þ

and the light quark mass shift ΔMq given in Appendix E.
We recognize in (25) the packing fraction κ ¼ 1

2
π2ρ4n in

the RILM, also used in our earlier papers.
Note that (22) is dominated by the color-matrix

(Coulomb-like) second term and has a proper heavy quark
spin symmetry. The spin-dependent correction is sublead-
ing in ΔMspin

Q ∼ 1=mQ

Lspin
qQ ¼ ΔMqΔM

spin
Q

n
1

4
Q̄
1þ γ0

2
λaσμνQq̄λaσμνq: ð26Þ

For the charm quark

ΔMspin
Q ¼ 8π

mQρ
2

ρ4n
Nc

Z
dx

x2 sin2 fðxÞ
ð1þ x2Þ2 ∼ 3 MeV ð27Þ

with the profile fðxÞ ¼ πx=ð1þ x2Þ12.

2. qq interaction

The instanton-induced ’t Hooft Lagrangian has the form
of a determinant in flavor indices of certain q̄q operators, so
the total numbers of quark legs is 2Nf. Elsewhere in our
works we assumed that either there are only u, d flavors,
Nf ¼ 2 and theLagrangian is of the usual four-fermion form,

–0.8 –0.6 –0.4 –0.2 0.0 0.2 0.4
0

1

2

3

4

FIG. 5. Top: the longitudinal wave functions ΨΣðρ; λÞ of Σc
(blue dashed) and ΨΛðρ; λÞ of Λc (black solid), as a function
of λ. The four pairs of curves are for ρ ¼ 0.0, 0.1, 0.2, 0.3,
top to bottom. The bottom 3D plot shows their difference,
ΨΛðρ; λÞ − ΨΣðρ; λÞ.

HADRONIC STRUCTURE …. V. DIQUARKS, NUCLEONS, … PHYS. REV. D 107, 034027 (2023)

034027-9



or that Nf ¼ 3 and the number of legs is 6, with the strange
quarks contracted in the vacuum hs̄si. However, we may ask
if there are situations in the baryon sector whereby the full
six-fermion operator may contribute. The operator, as any
Lagrangian should be, is flavor SUð3Þ singlet: therefore if
used as a “baryonic current” operator aimed to excite the
vacuum into the uds baryon, such baryon must be SUð3Þ
singlet as well. This condition is not fulfilled for the usualΛ,
Σ baryons which are members of the SUð3Þ octet. There are
known excited Λ�;Σ� SUð3Þ singlets, but those have non-
zero orbital momentum which the Lagrangian would not
excite. Note that averaging a six-quark ’t Hooft Lagranian
over Λ, Σ baryons, generates a “superlocal” interaction (all
three quarks at the same point, similar to Skyrme force in
nuclear physics). We do not pursue this issue quantitatively
and return to the four-quark determinant.
In the rest frame and using nonrelativistic spinors, we

have

Hη0
qq ≈ −

�
ΔM2

q

n

�
1

2
ð1 − τ1 · τ2Þδðr⃗12Þ ð28Þ

with r⃗12 ¼ r⃗1 − r⃗2, in leading order in 1=mQ. The sign
corresponds to the repulsive η0 channel, which is seen to
flip in the pion channel by dropping 1. On the light front,
the reduction of the q̄q interaction in momentum space is
detailed in Appendix G. For a meson with a quark-
antiquark pair and with zero transverse momentum in
and out (PT ¼ P0

T ¼ 0), the 2-particle interaction potential
in momentum space is

det q̄LqR → ð1 − τ1 · τ2Þ
�
mQ111 þ

1

2
σ−1 qR

�

×
�
−mQ212 þ

1

2
σþ2 qR

�
;

det q̄RqL → ð1 − τ1 · τ2Þ
�
mQ111 þ

1

2
σþ1 qL

�

×

�
−mQ212 þ

1

2
σ−2 qL

�
; ð29Þ

with the transverse coordinates qR;L ¼ q1 � iq2 and
σ� ¼ σ1 � iσ2. The contribution of (29) to the light-front
Hamiltonian is in the form of a local two-body interaction.
In the singlet Uð1Þ or η0 channel, it is of the form

Hη0
LFqq ¼ −

�
ΔM2

q

n

�
2ð1 − τ1 · τ2Þ

×

��
mQ111 −

i
2
σþ1 ∇R

��
−mQ212 −

i
2
σ−2∇R

�

þ
�
mQ111 −

i
2
σ−1∇L

��
−mQ212 −

i
2
σþ2 ∇L

��

× δðPþx−12Þδðb⊥Þ ð30Þ

with ∇R;L ¼ ∂1 � i∂2, and Pþx− → id=dx, or equivalently

Hη0
LFqq ¼ −

�
ΔM2

q

n

�
4ð1 − τ1 · τ2Þ

�
−mQ1

mQ2
1112

þ 1

2
ðσ1⊥ · i∇⊥mQ2

12 −mQ1
11σ2⊥ · i∇⊥Þ

−
1

4
∇2⊥σ1⊥ · σ2⊥

�
δðPþx−12Þδðb⊥Þ: ð31Þ

After discussing the form of qq effective Lagrangian,
let us consider the magnitude of its coupling. The mean
field approximation assumes that the instanton vacuum is
homogeneous. Hence, in any expression the effective
determinantal mass m� is treated as the same constant,
as defined from the solution of the gap equation. However,
numerical studies of instanton ensembles show significant
deviations from a homogeneous vacuum. The parameterm�
is substituted by a “hopping matrix” TIJ, with two-fermion
and four-fermion operators proportional to

1

m�
qq

¼
�

1

TIJ

�
;

1

ðm�
ūud̄d

Þ2 ¼
�

1

T2
IJ

�
: ð32Þ

The averages in the right-hand side are subsumed over
instanton and anti-instanton ensembles. Studies of those
averaging in [27] show that these two definitions lead to
different values of the effective mass: while the former one
is about 170 MeVas given by the mean fields, the second is
much smaller, m�

ūud̄d
≈ 90 MeV. This increases the effec-

tive four-quark coupling by about a factor 3.5. Fits to the
empirical pion correlation function also agree with this
enhancement.
On top of light-light forces used in this work, there are

other quasilocal forces induced by instantons, acting
between heavy and light quarks. For future reference, let
us mention those.

3. Q̄Q interaction

As derived in [24], to order 1=mQ and in the planar
approximation this effective interaction among the heavy
quarks is

LQQ ¼ −
�
ΔMQΔMQ

n

��
Q̄
1þ γ0

2
QQ̄

1þ γ0

2
Q

þ 1

4
Q̄
1þ γ0

2
λaQQ̄

1þ γ0

2
λaQ

�
: ð33Þ

The recoil effects are of first order in 1=mQ and renormalize
ΔMQ. The spin effects are of second order in 1=mQ, and
small
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ΔLspin
QQ ¼

�ΔMspin
Q ΔMspin

Q

n

�

×
1

4
Q̄
1þ γ0

2
λaσμν1 QQ̄

1þ γ0

2
λaσμν2 Q: ð34Þ

Note however, that since in this case there are no light
quarks, and following Paper I [1], we do not need well-
isolated zero modes. Hence, we should include contribu-
tions of instanton–anti-instanton molecules. If so, the
original estimate of this interaction in [24] should be
increased by a factor ndense ILM=ndilute ILM ∼ 7.

4. Qqq interaction

For heavy baryons the induced qqQ interaction in
leading order is in mean field [24]

LqqQ¼−2
�
ΔMQΔM2

q

n2

��
Q̄
1þγ0

2
Qðdetq̄LqRþdetq̄RqLÞ

þ1

4
Q̄
1þγ0

2
λaQðdetq̄Lλ

aqRþdetq̄Rλ
aqLÞ

�
ð35Þ

with the shorthand notation for two flavors

detq̄Lλ
aqRþdetq̄Rλ

aqL

¼1

4
ððq̄λaqÞq̄qþðq̄iγ5λaτAqÞðq̄iγ5τAqÞ

−ðq̄λaτAqÞðq̄τAqÞ−ðq̄iγ5λaqÞðq̄iγ5λaqÞÞ: ð36Þ

The 1=mQ spin correction is

Lspin
qqQ ¼ −

�ΔMspin
Q ΔM2

q

n2

�
Q̄
1þ γ0

2
λaσμνQ

× ðdet q̄Lλ
aσμνqR þ det q̄Rλ

aσμνqLÞ: ð37Þ

Since there are two light quark propagators, we should
use the corrected m�

ūud̄d
instead of the mean field m� value.

Again, this increases the effective coupling by about a
factor of ðm�

ūud̄d
=m�̄

qqÞ2 ∼ 3.5.

5. QQqq interactions

The same enhancement due to deviations from the mean
field should also be present in this case. This carries to the
exotics, such as the ccū d̄ tetraquark recently discovered at
LHCb. For the tetraquarks, the induced interaction is

LqqQQ ¼ −2n
�
ΔMq

n

�
2
�
ΔMQ

n

�
2
�
Q̄
1þ γ0

2
QQ̄

1þ γ0

2
Qðdet q̄LqR þ det q̄RqLÞ

þ 1

4
Q̄
1þ γ0

2
λaQQ̄

1þ γ0

2
Qðdet q̄Lλ

aqR þ det q̄Rλ
aqLÞ þ

1

4
Q̄
1þ γ0

2
λaQQ̄

1þ γ0

2
λaQðdet q̄LqR þ det q̄RqLÞ

þ 1

8
dabcQ̄

1þ γ0

2
λbQQ̄

1þ γ0

2
λcQðdet q̄Lλ

aqR þ det q̄Rλ
aqLÞ

�
: ð38Þ

The overall sign is consistent with the naive expectation, that the n-body interaction follows from the (nþ 1)-body
interaction by contracting a light quark line, resulting in an overall minus sign (quark condensate).

6. QQqqq interactions

QQqqq interactions for pentaquarks the quasilocal Lagrangian read

LqqqQQ ¼ þ4n

�
ΔMq

n

�
3
�
ΔMQ

n

�
2
�
Q̄
1þ γ0

2
QQ̄

1þ γ0

2
Qðdet q̄LqR þ det q̄RqLÞ

þ 1

4
Q̄
1þ γ0

2
λaQQ̄

1þ γ0

2
Qðdet q̄Lλ

aqR þ det q̄Rλ
aqLÞ þ

1

4
Q̄
1þ γ0

2
λaQQ̄

1þ γ0

2
λaQðdet q̄LqR þ det q̄RqLÞ

þ 1

8
dabcQ̄

1þ γ0

2
λbQQ̄

1þ γ0

2
λcQðdet q̄Lλ

aqR þ det q̄Rλ
aqLÞ

�
ð39Þ

with the shorthand notation for three flavors is

det q̄LqR ¼

0
B@

ūLuR ūLdR ūLsR
d̄LuR d̄LdR d̄LsR
s̄LuR s̄LdR s̄LsR

1
CA ð40Þ

and
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det q̄Lλ
aqR ¼

0
B@
ūLλ

auR ūLλ
adR ūLλ

asR
d̄LuR d̄LdR d̄LsR
s̄LuR s̄LdR s̄LsR

1
CAþu↔ d↔ s:

ð41Þ

The flavor composition of the light quarks should of
course be uds, but the net color inside the pentaquark
need not be a singlet. There should also be a significant
enhancement over mean field estimates, but h1=T3

IJi is so
far not evaluated.

VI. DIQUARK PAIRING IN THE NUCLEONS

The role of the instanton-induced quasilocal interaction
(diquark pairing) in the wave functions of Δ and N was
already discussed in by one of us [28]. However several
principal and technical tools were different. In particular,
the light-front Hamiltonian HLF was different (constructed
a lamesonic Hamiltonian of Vary et al. [21]), and the set of
basis functions was completely different.
As in the preceding section, we start with baryons

without quasilocal instanton-induced ’t Hooft interaction,
namely Δþþð3=2Þ ¼ uuu, and proceed similarly by
expressing the potential V as a matrix in the Laplacian
basis, and diagonalize HLF ¼ H0 þ V.
Pairing in the proton p ¼ uud takes place in two ðudÞ

channels, which we denote as (13) and (23). For that, it is
more convenient to use alternative Jacobi coordinates
ρ�; λ�, rotated from the original ρ, λ by the “triple
symmetry” matrices of the equilateral triangle

M� ¼
�

cosð2π=3Þ � sinð2π=3Þ
∓ sinð2π=3Þ cosð2π=3Þ

�
: ð42Þ

The Hamiltonian now has two pairing terms, and each can
be written as a matrix in our basis in appropriate coor-
dinates using the same form (16); adding those to the light-
front Hamiltonian HLF and diagonalizing it, we obtain the
spectrum and the wave functions. For one choice of the ’t
Hooft coupling, the results for the squared masses of the
lowest Δ, N baryons are shown in Fig. 6.
Recall that these masses are calculated from a limited

basis set, with only 12 longitudinal eigenfunctions of the
Laplacian. Also note that neither the perturbative Coulomb
nor the spin-dependent interactions are included. The
delta-N splitting is due only to the ’t Hooft operator treated
in a quasilocal approximation.
The lower part of the plot shows the light-front wave

functions of the lowest mass Δ and N baryons. The
attractive and quasilocal interactionmakes thewave function
of the nucleon N wider than that of the isobar Δ, i.e. greater
both at the left and right side of the plot (corresponding
to xd → 1 and xd → 0.). This widening effect is similar to
that observed for mesons. The LFWF of vector mesons is

relatively narrow, while that of the pion is nearly flat.
Furthermore, as d participates in two pairings while each
u only in one, this effect is more pronounced for the d quark.

VII. BARYON FORM FACTORS

In the nonrelativistic formulation, the form factors are
defined as overlap integrals. This carries to the light front,
with the form factors as overlap of the LFWFs. In particular
the helicity preserving Dirac form factor is [29–31]

F1ðq2Þ ¼ hP⃗þ q⃗;↑jJþ=2PþjP⃗;↑i: ð43Þ

To evaluate (43), we select the momentum transfer to be
q in the transverse x direction, and select the struck quark to
be number 3 (d quark). More specifically, the transverse
momenta in the struck baryon (with prime) are related to
those in the nonstruck one (without prime) by
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FIG. 6. Top: squared masses of the delta (open points) and N
(closed) resonances versus their successive quantum number n.
The two straight lines shown for comparison are the Regge
trajectories fitted to the experimental values of M2ðJÞ versus the
total angular momentum J with the slope α0 ¼ 0.88 GeV2.
Bottom: LFWFs for the lowest delta (dashed lines) and N (solid
lines). The plots are shown versus the Jacobi coordinate λ, for
fixed ρ ¼ 0, 0.1, 0.2, 0.3, top to bottom.
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k1
0

x ¼ k1x − x1q; k2
0

x ¼ k2x − x2q;

k3
0

x ¼ k3x þ ð1 − x3Þq: ð44Þ

The three transverse momenta k⃗i and longitudinal frac-
tions xi need to be reexpressed in terms of two Jacobi
momenta, in our notations p⃗λ; p⃗ρ and ρ, λ, on which
LFWFs depend.
For illustration, let us take the example of a LFWF with a

Gaussian transverse momentum dependence. For the struck
LFWF it takes the form

exp

�
−A

X3
1

ðk⃗i0 Þ2
�

→ exp

�
−A½p⃗λ

2þ p⃗ρ
2−

2

3
ðp⃗λ · q⃗Þð

ffiffiffi
6

p
þ3λÞ

−2ðp⃗ρ · q⃗Þρþ q⃗2ð2þ2
ffiffiffi
6

p
λþ3λ2þ3ρ2Þ=3�

�
: ð45Þ

Selecting the momentum units such that A ¼ 1, and
convoluting it with various longitudinal wave functions
(defined as always on the equilateral triangle), we can see
how the form factor depends on their shape. In Fig. 7 we
present the results of LFWF convolution for two extreme
cases: “Neumann” wave function flat (constant) on the
physical triangle, and “Dirichlet”wave function ψ ∼ x1x2x3
satisfying linear boundary conditions on all sides of
the equilateral triangle. As expected, the Neumann wave
function with sharper edges produces a larger form factor
at large q2, although the overall difference is not that
large. Note that this methodical example (not expected
to be realistic) is well reproduced by the dipole form
1=ð1þ C2q2Þ2, by which the nucleon form factors were
originally fitted decades ago.

We now show the form factors calculated with the
longitudinal wave functions for the delta and proton,
following from our analysis in the preceding section. In
order to see better the most interesting region of large q2,
we plot Q4Fd

1ðQ2Þ in Fig. 8.
Experiments are of course done with protons and

neutrons, but using them one can extract separate form
factors for u or d quarks. This was done e.g. in [32], and the
red circles in Fig. 8 are from Fig. 8 of this work. (For clarity
we do not show the data points in the range Q2 < 1 GeV2,
as the error bars for these points are �0.02 on average.)
From the plot, we see that this form factor does not appear
to reach a constant limit at large Q2, with the measured
points slowly decreasing towards the right-hand side. Old
dipole parametrization Q4F ¼ Q4=ð1þQ2=m2

ρÞ2 asymp-
totes a constant at large Q2 from below.
Remarkably, our longitudinal proton wave functions

convoluted with (45) reproduces such a trend, and (with
the parameter A ¼ 4 GeV−2) they follow the shape indi-
cated by the data rather well. The calculated form factor for
the case when the struck quark is u has a similar shape.
Unfortunately, according to [32], the experimental trend is
different, the constant at Q2 → ∞ is approached from
below. By the Drell-Yan relation this flavor difference is
also seen in the PDFs of u and d at x → 1. Flavor
asymmetry must be related with the asymmetry of the
spin-orbit part of the wave function, which in our approx-
imations is so far ignored.
Note that the corresponding form factor for delta

(triangles) is significantly softer, as one would expect from
the size of the wave function. Recall that the large differ-
ence between the delta and proton form factors (so well
seen in this plot) is completely due to the ’t Hooft
quasilocal pairing ud interaction. While we do not have
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FIG. 7. The form factors for Neumann (open points) and
Dirichlet (closed points) wave functions defined in the text
versus the momentum transfer q2. A line, shown for comparison,
corresponds to the dependence 1=ð1þ q2=4Þ2.
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FIG. 8. Q4Fd
1ðQ2Þ; ðGeV4Þ versus the momentum transfer

Q2ðGeV2Þ. The triangles and closed points correspond to the
delta and proton LFWFs, respectively. The red circles are
extraction from the experimental data on the p and n form
factors mentioned in the text. The solid line, shown for com-
parison, corresponds to the dipole form factorQ4=ð1þQ2=m2

ρÞ2.
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delta targets for experiments, perhaps its form factor can be
calculated on the lattice, or in other models.
Let us now make a more general comment on possible

improvements of the LFWFs calculated in this work, and in
particular their consequences for form factors at large
Q2 → ∞ and PDFs at large x → 1. We treated light quarks
as constituent quarks with fixed mass M ∼ 400 MeV
everywhere, including the cup potential ∼M2=x diverging
at kinematical edges. As a result, our LFWFs vanish at
these edges in a smooth way. However it is known that M2

decreases with virtuality of the quark and vanishes if it is
highly virtual. The instanton-based theory of chiral sym-
metry breaking shows how it is related to the instanton zero
modes and describe smooth transition from on-shell con-
stituent quarks to near-massless quark-partons. We are
planning to include this effect in subsequent works.
Completing the section on form factors and trying to

avoid any confusion, let us comment on the relation
between our results and those in the literature on “hard
regime” Q2 → ∞ limit. The terminology is used in liter-
ature in very different settings. One is physics of heavy
boson or quark production W, Z, H, t or jet observables at
colliders: here Q2 ∼ ð100 GeVÞ2 and pQCD is fully
accountable for those.
A completely different situation is with exclusive proc-

esses, such as elastic scattering and form factors. Specific
powers of 1=Q2 and powers of αsðQ2Þ follow from the
lowest orders pQCD diagrams [33]. Furthermore, in some
cases (e.g. the pion form factor) even the constant in the
hard limit can be expressed in terms of fπ , so the pQCD
asymptotic prediction is fully known. It is further known
for decades that in the “semihard” domain of current
experiments Q2 < 10 GeV2 the form factors are not
dominated by pQCD mechanisms. In our paper on form
factors [34] we included the instanton contributions in the
hard blocks. While important in the semihard domain, at
large Q2 those become exponentially small ∼ expð−QρÞ at
Qρ ≫ 1. In this series of papers, we used the ’t Hooft
Lagrangian as a quasilocal operator. This means the
opposite regime, where the distance scales considered
are large compared to the instanton size hri ≫ ρ.

VIII. BRIDGING THE GAP BETWEEN HADRONIC
AND PARTONIC DYNAMICS

A. The matching scale

Before building a bridge, one should have a good
assessment of both sides of the river. Therefore let us
start with a brief summary of what we know on the two
extremes.
Since the 1970s we have known that hard processes

defined at some high scale Q2 ≫ 1 GeV2 can be described
as a set of independent “partons,” g; q; q. The probabilities
to find those in target (or beam) hadrons are known as PDFs
qðx;Q2Þ. Due to high resolving power in this regime, the

pointlike quark partons and gluons can emit each other with
splitting functions following directly from the QCD
Lagrangian. So PDFs and structure functions at different
Q are related by perturbative DGLAP evolution.
Combining these with fits to experimental data on various
partonic processes has mushroomed into a large body of
work. For a recent summary see e.g. reviews by CTEQ
collaboration such as [35].
(While the partonic PDFs definitely represent a very

solid end of the bridge, they are not constructed without
certain approximations. Subsequent gluon emissions are
assumed to be incoherent, i.e. the DGLAP equations are
probabilistic kinetic equations. As noted in [36], this
assumption generates an entanglement entropy. However,
hadrons are pure states, and their consistent treatment
should be based on their complete LFWFs, without
entanglement.)
By evolving DGLAP to a sufficiently low normalization

point, one finds a scale at which gluons can no longer be
emitted. The lowest glueball masses have a mass scale
Mglueballs ∼ 2 GeV, and so a crude estimate for this limiting
scale is the gluon effective massMeffðgluonÞ ∼ 1 GeV. We
expect the lower end of the DGLAP evolution to be located
at Q2 ∼MeffðgluonÞ2.
On the other side (lower Q2), chiral symmetry breaking

puts special emphasis on the lightest mesons, the Nambu-
Goldstone modes—the pions—and the condensate σ.
Instead of the QCD Lagrangian, one has a chiral effective
Lagrangian and its higher order descendants. Its upper
cutoff scale can be identified with the original cutoff of the
NJL model Λχ ∼ 1 GeV. Later its mechanism was related
to instantons [25], and this cutoff had the typical instanton
size ρ ∼ 1=3fm.
So, our preliminary assessment suggests a nice plan for a

bridge, with a hope that its “arcs”—the chiral and the pQCD
ones—will join relatively smoothly at the 1GeV scale. In this
sectionwe are going to investigate if thePDFs evaluated from
both sides do indeed join there. (Needless to say, there are
many other observables for which one may need more
sophisticated strategy than a jump fromone theory to another.
Here, we would like to emphasize the efforts by many, to
include both perturbative and nonperturbative effects, among
which our own discussions ofmeson form factors in [34] and
spin-dependent forces in [1].)
In Fig. 1 we illustrate the processes affecting the PDFs.

Perturbatively, an extra q̄q pair can be mediated by virtual
gluons, see (a) and (b). Since gluons are “flavor blind,” they
produce ūu; d̄d in equal number. Another process shown in
Figs. 1(c) and 1(d) uses the instanton-induced ’t Hooft four-
fermi interaction in the production channels. As first noted
in [37], it is “maximally flavor antisymmetric” due to the
Pauli principle for instanton zero modes of fermions. Also,
since there are two u and one d valence quarks, in the first
order in this mechanism the simple prediction for antiquark
flavors would be
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d̄
ū
→ 2; ð46Þ

and for Δþþ with valence uuu only, the sea should consists
of only d̄, without ū.
The flavor asymmetry of the sea is a very convenient tool

to discriminate what part of the sea (multiparticle/multi-
parton sectors of the LFWFs) come from chiral (step 2)
processes and which from pQCD (step 3), because it can
only come from the former.

B. Phenomenology of the nucleon antiquark sea

Let us now briefly describe what is known about the
flavor asymmetry of the antiquark sea. First discovered as
“violation of Gottfried sum rule” (an assumption that the
sea is produced entirely by gluons) three decades ago, it is
still being developed. For reference, at 4 GeV2 scale, the
NMC Collaboration found

Z
1

0

dxðd̄ðxÞ − ūðxÞÞ ¼ 0.147� 0.039: ð47Þ

Indeed, experiments have shown a surprisingly strong
violation. The NuSea experiment [38] gives for this ratio
≈1.5 at x ∼ 0.2. The more recent SeaQuest experiment [39]
has found that the asymmetry persists to larger momentum
fractions, at least up to x ∼ 0.4, see Fig. 3 in [39]. Also
shown in this figure are the CT-parametrizations from the
CTEQ collaboration of the previous data, the so called
MMHT14 PDF polynomial parametrization [40], and some
theoretical predictions. A model based [41] (green strip)
uses a model based on the “pion cloud” of the nucleon is
also shown [41,42].
In Fig. 10 we show the difference d̄ðxÞ − ūðxÞ as a

function of x from NuSea=866 experiment. It shows that
the effect is localized at x < 0.2, but strongly grows
towards small x.
Having briefly reviewed the experimental situation, let

us outline the related theory efforts. The LF wave functions
of the baryons (Δ and N) with the five-quark sector was
studied in [28]. This paper included the four-quark ’t Hooft
interaction to first order, and obtained antiquarks PDFs
from rather complicated wave functions. Its overall shape
and scale reproduced the data shown in Fig. 10. Yet there
were visible oscillations, coming perhaps from the rather
limited functional basis set used.

C. The qq̄ pair production, to the first order
in ’t Hooft Lagrangian

The first study of the five-quark sector of the baryon
wave functions has been done by one of us in [28]. In it the
diagrams of Figs. 1(c) or 1(d) were used to calculate the
matrix of basis matrix elements relating three-quark and
five-quark states, and the Hamiltonian was then diagonal-
ized. This procedure includes diagrams of all orders.

However, the set of basis states used in that paper was
based on a nonlinear map of momentum fractions xi, from 5
to 4, and the procedure was rather complicated.
In fact, there is no need to follow this path, as the

(modified) Jacobi coordinates provide a linear map. The
physical domain of the 5-momentum fraction with a
condition

P
5
1 xi ¼ 1 is the 4-d manifold called penta-

choron (or 5-cell or 4-simplex), which is one dimension
higher than tetrahedron. For the case of five quarks such
map is detailed in Appendix D. The four coordinates α, β, γ,
δ play the same role as ρ, λ for three quarks. We conjecture
that the eigenstates of the Laplacian on the 5-simplex can
also be worked out analytically using some set of standing
waves; see Ref. [3] for discussion and for the ground state
in this form.
The PDF is the integral of the squared wave function

projected onto a single variable of the set. For N constitu-
ents with N − 1 Jacobi coordinates, the integral has
dimension N − 2, by tracing over the coordinates called
generically “ρ”

PDFð”λ”Þ ¼
Z

dN−2”ρ”jψð”ρ”; ”λ”Þj2: ð48Þ

If for a crude estimate we take the wave function to be flat
over the manifold, then PDFðxÞ ∼ ð1 − xÞN−2. For N ¼ 3
the power is linear, while for N ¼ 5 it is a cube.
In this work we carry all the way to the evaluation of the

five-quark LFWF in Jacobi coordinates. Instead, we pro-
vide some estimates of the probability of the process to
lowest order in the ’t Hooft vertex. It follows the same spirit
as DGLAP treatment of extra gluons and sea quarks. More
specifically, the interaction among the emitted quarks is
ignored, motivated by the observation that the kinematical
domain for the newly produced quarks corresponds to x
much smaller than those of the valence quarks. So, their
production is treated as in free space, by a diagram with free
phase space integration.
Let us denote by A1 the amplitude of the qq̄ pair

production in the first order in the ’t Hooft vertex,
corresponding to diagrams in Figs. 1(c) or 1(d). Since it
uses a process with fermionic zero mode of the instanton, it
should be proportional to a small instanton packing fraction
κ ¼ ðπ2=2Þρ4nIþĪ ∼ 1=10 of the original instanton liquid
model which sets the order of magnitude of the effect.
All u- and d-quark emissions yield the final states

u → A2
1uþ A2

1ðdþ d̄Þ;
d → A2

1dþ A2
1ðuþ ūÞ: ð49Þ

If we note that the probability for a quark to do nothing is
1 − A2

1, then the proton composition after one interaction is

ð2þ A2
1Þuþ ð1þ 2A2

1Þdþ A2
1ūþ 2A2

1d̄ ð50Þ
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which is valence quark preserving with uv ¼ u − ū ¼ 2

and dv ¼ d − d̄ ¼ 1. The parton distribution for the neu-
tron follows by isospin symmetry. In this schematic
description of the proton and neutron sea contributions
to first order in A2

1, the Gottfried sum rule reads

1

3
þ 2

3
ðū − d̄Þ ¼ 1

3
−
2A2

1

3
→ 0.227: ð51Þ

More specifically, the simplified and ultralocal ’t Hooft
vertex

GtHooftðdetðq̄RqLÞ þ detðq̄LqRÞÞ ð52Þ

reduced to u, d flavors is characterized by the coupling

GtHooft ≈ 35 GeV−2; ð53Þ

see the related discussion in Appendix E. For the process

uðKuÞ → uðKuÞ þ dðKdÞ þ d̄ðKd̄Þ ð54Þ

we define the 4-momenta in the infinite momentum
frame as

Ku ¼ ðP;P; 0⊥Þ;

Kd ¼
�
xPþ k⃗2⊥

2xP
; xP; k⃗⊥

�
;

Kd̄ ¼
�
zPþ p2⊥

2zP
; zP; p⊥

�
;

Ku ¼
�
ð1 − x − zÞPþ ðp⃗⊥ þ k⃗⊥Þ2

2ð1 − x − zÞP ;

× ð1 − x − zÞP;−ðp⃗⊥ þ k⃗⊥Þ
�
: ð55Þ

Assuming the produced d̄ in an unpolarized u, we calculate
the probability of the process as a square of the amplitude
defined by old-fashion perturbation theory

dNd̄=u ¼
G2

t Hooft

2

jVu→udd̄j2
ðEu − Eu − Ed − Ed̄Þ2

×
1

2Eu

1

2Ed̄

1

2Eu

1

2Ed

d3Ku

ð2πÞ3
d3Kd

ð2πÞ3 ð56Þ

with the energy denominator, and the bar on the matrix
element refers to spin averaging over the ’t Hooft vertex. In
the vertex there are terms proportional to constituent quark
masses squaredm2

q and to momenta squared p⃗2. As we will
show in more detail in Appendix F, the momenta are
regulated by the instanton form factors and therefore
p⃗2 ∼ 1=ρ2. For simplicity we have ignored all terms with

masses because ðρmqÞ2 ∼ 1=4 can be considered small.
With this in mind, the spin averaging gives

jVu→udd̄j2 ¼
1

2
16ðKu · KuÞðKd · Kd̄Þ ð57Þ

with (56) taking the form

dNd̄=u ¼
G2

tHooft

4

×

2
64
ðk⃗⊥þp⃗⊥Þ2
2ð1−x−zÞ

h
k⃗2⊥
2x þ

p⃗2⊥
2z þ ð1 − 1

xþzÞ ðk⃗⊥þp⃗⊥Þ2
2ð1−x−zÞ

i
ðxþ zÞ	

k⃗2⊥
2x þ

p⃗2⊥
2z þ ðk⃗⊥þp⃗⊥Þ2

2ð1−x−zÞ


2

3
75

×
1

z
dx
x

dz
ð1 − x − zÞ

d2k⃗⊥
ð2πÞ3

d2p⃗⊥
ð2πÞ3 : ð58Þ

The sea distribution of d̄ in an unpolarized constituent
quark u is given by

Nd̄=uðz;Q2Þ ¼
Z
p⊥

Z
k⃗⊥

Z
x

dNd̄=u

dz
ð59Þ

with the integrals carried sequentially in the ranges
0 ≤ x ≤ 1 and 0 ≤ p2⊥ ≤ Q2. The sea distribution ū in an
unpolarized constituent quark d is identical with dNd̄=u ¼
dNū=d. For its evaluation see Appendix F. Using the value
of the coupling of the ’t Hooft operator (53), one finds the
probability of the process A2

1 ≈ 0.11, which sets the scale of
the “primary sea” produced by a 1 → 3 instanton-induced
process. (The regulator on which the dependence is
logarithmic is taken to be ϵ ¼ 0.01.)
The next issue we address is the shape (x dependence) of

the PDFs of these sea (anti)quarks produced by the
processes in Figs. 1(c) and 1(d). Those can be obtained
by convolution of this squared amplitude, treated as a
splitting function with the original (valence) distributions
dNðyÞ; uNðyÞ (e.g. those calculated from the LFWFs in the
three-quark sector above). The unpolarized sea ū; d̄ dis-
tributions in the nucleon are then

ūNðx;Q2Þ ¼
Z

1

x

dy
y
dpðy;Q2

0ÞNū=d

�
x
y
;Q2

�
;

d̄Nðx;Q2Þ ¼
Z

1

x

dy
y
upðy;Q2

0ÞNd̄=u

�
x
y
;Q2

�
; ð60Þ

where qpðxÞ is the unpolarized flavor f ¼ u, d distribution
in a proton p, at the low resolution point which we
argued above is Q2

0 ≈ ð2=ρÞ2. In Fig. 9 we plot the ratio
of the produced sea PDF to the one which initiated it,
d̄NðxÞ=uNðxÞ. The sea is strongly shifted to small x ∼ 1=10.
At large x, if the initial PDF uNðxÞ ∼ ð1 − xÞa has a certain
power a, the produced one has power aþ 1. [While both of
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these features are clearly steps in the right direction, the
reader is perhaps aware that the observed sea PDF has at
small x negative power singularities, and a much larger
difference between powers of (1 − x) in upðxÞ and d̄pðxÞ,
being approximately 3 and 7, respectively. These features
however are known to be generated by subsequent DGLAP
evolution from Q0 to the scale Q at which experiments
are done.]

D. The sea induced by the “pion cloud”

The “pion-induced” contributions to the PDFs, see
Figs. 1(e) and 1(f) (written in DGLAP-like form), were
proposed in [43] three decades ago. Note that the π0

diagrams (e) for the specific in and out quark pairs have
a factor of ð1=2Þ2, while the πþ diagram (f) leads to flavor
transition u → ud̄ with a larger factor 1. The former
changes the flavor of the recoil quark, but the latter does
not. Because these two diagrams have different probabil-
ities, they together lead also to a flavor asymmetry of the
sea. Note that these pion-induced diagrams can also be
considered to be higher order iterations of the ’t Hooft
vertex, in different channels.
Here we evaluate the contribution of the pion-induced

antiquark production, following [43]: Let the probability of
the pion-generated pair production process be Pπ , then all
valence uud quarks together produce a sea with probability
Pπð7=4ūþ 11=4d̄Þ, or

d̄
ū
¼ 11

7
≈ 1.57 ð61Þ

which is in good agreement with the ratio reported
experimentally. Using the absolute observed magnitude
of d̄ − ū (47), one finds that in order to explain its
integrated magnitude one would need Pπ ≈ 0.2.

The expression for Pπ from the chiral Lagrangian [43]
(20) contains the following dimensionless combination of
pion constants (in their notations)

g2am2
q

8π2f2π
≈ 0.09 ð62Þ

times certain integral being Oð1Þ (mildly depending on
upper cutoff Λchiral). As a result, Pth

π given by the pion
diagrams gives about half of the empirical effect.
In summary, we conclude that the first-order in the ’t

Hooft interaction, and the iterated (pion) diagrams give
comparable contributions to integrated flavor asymmetry of
the antiquark sea. Unfortunately, at this time it is not
possible to make a more quantitative evaluation includ-
ing both.
The next question is how the antiquarks produced by the

intermediate pions are distributed in x. For that we adopt
the expression (18) in [43], using the convolution of the
quark PDFs in the nucleon qNðyÞwith the splitting function
PðzÞ, followed by a convolution with the pion PDF
qπðx=yzÞ. Unlike Eichten et al., however, we do not use
here the PDFs fitted from experiments at some high Q2,
since our intension here is to build another–chiral—arc of
the bridge. So we take qNðyÞ ¼ 12yð1 − yÞ2 (approxi-
mately corresponding to the wave functions derived for
three quarks with the quasilocal attraction above). We also
take the symmetric PDF for the pion qπðxÞ ¼ 6xð1 − xÞ
corresponding to a two-quark semicircular wave function.
Convoluting those with the splitting function PðzÞ, we get
the shape of the pion-induced antiquark PDF shown in
Fig. 10 (bottom). As one can see by comparing it to the
upper experimental plot, it does reproduce the observed
shape quite well.
Finally, let us briefly discuss the issue of flavor asym-

metry of valence quark distribution. The empirical PDFs
are such that uvðxÞ=2dvðxÞ > 1 at large x → 1. As was
explained in Sec. VI, the quasilocal pairing interaction
makes the LFWFs “flatter” (larger at large x) and, since
the d quark in the proton participates in two of those, one
finds the opposite, uvðxÞ=2dvðxÞ < 1 at x → 1. However,
chiral processes leading to the sea quark production
work in the opposite direction, toward the one observed.
Let us single out the last diagram of Fig. 1(f) with an
intermediate πþ. (Its contribution is larger than diagram
(e) with π0 by a factor 4, the flavor factors.) It inter-
changes the flavors of the leading quarks: if the original
one is u (as shown in this figure) then the recoil one—the
one at larger x—is d.

E. Evolution down to the matching point

The PDFs describing the experimental and lattice data
are professionally fitted to certain analytic forms, and
connected to each other via perturbative DGLAP evolution.
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FIG. 9. The ratio of the “produced” sea PDF to the one which
initiated it d̄NðxÞ=uNðxÞ as a function of x following from (60).
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For definiteness, we will rely on a sufficiently complete
global fit called CTEQ18, in Ref. [35], Appendix C. It is
defined at their lowest scale

Q2
CTEQ ≈ 1.7 GeV2:

The reason we need to discuss it at the end of this paper is
that we are going to evolve it further down, to the matching
point discussed in Sec. VIII A.
We will not repeat those expressions here, just show

their plot for valence quarks and gluons in the proton in
Fig. 11. Unlike many other similar plots, we have not
reduced the gluons by any artificial factor, to fit it better in
the plot. Our aim is to remind the reader that, even at this
scale Q2

CTEQ, the proton contains a significant amount
of glue. In fact, as is obvious from the plot, the gluons are
dominant at x < 0.2. Integrating these curves, one gets
the corresponding momentum fractions at scale Q2

CTEQ,
hxgi ¼ 0.385; hxuvi ¼ 0.325; hxdvi ¼ 0.134. So, at this
scale gluons are by no means subleading.
We have recalled these details to stress once more that

the scale Q2
CTEQ is not low enough to match to the hadronic

spectroscopy. Indeed, it operates in terms of constituent
quarks and has no gluons. So, what happens with the
gluons when one performs DGLAP evolution downward,
say to our “matching scale” 1 GeV2?
Despite the fact that the amount of corresponding

DGLAP evolution time is not long, logðQ2
CTEQ=Q

2
matchingÞ≈

0.52, dramatic changes take place for the gluons. Using the
lowest order splitting function

PggðzÞ ¼ 6

�
z

1 − z
þ 1 − z

z
þ zð1 − zÞ

�

convoluted with CTEQ18, we have evolved the gluons
downward to our matching scale: the results are shown in
Fig. 12. As expected, we see the gluons (and in particular
hxgi) practically disappear [except at small x where gðxÞ
gets negative, which of course makes no sense]. Obviously,
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FIG. 11. CTEQ18 PDFs of the gluons xgðx;Q2
CTEQÞ (black

solid curve), valence up xuvðx;Q2
CTEQÞ and down xuvðx;Q2

CTEQÞ
quarks (blue and red dashed curves).
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FIG. 12. Black solid line is the CTEQ18 gluon distribution
xgðx;Q2

CTEQÞ and red dashed line is its version evolved down-
ward by DGLAP to Q2

matching ¼ 1 GeV2.
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FIG. 10. Top: the difference of sea antiquark PDFs d̄ðxÞ − ūðxÞ
from experiments. Bottom: the calculated shape of sea antiquark
distribution (arbitrary units) described in the text.
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the same downward evolution increases u, d momentum
fractions roughly to 2=3; 1=3.
Furthermore, the same perturbative downward evolution

practically erases the quark-antiquark sea at the matching
scale. However, what is left there is the sea generated by
chiral dynamics, as discussed in the two preceding sub-
sections, generating observable flavor asymmetry of the
antiquarks. Note further that the mean momentum fractions
hxq̄i generated there are at about 2%–3% level, and of
course they are complemented by the gluon-generated sea
at higher scale.
The use of DGLAP in this section is by necessity very

crude. The analysis can be improved, to make our bridging-
the-gap goal smooth. It should eliminate artifacts (like
negative PDFs) automatically. Some modifications are
rather obvious, e.g. the inclusion of quark and gluon
masses in the splitting functions. Others may include the
transition from kinetic equations to LFWFs.

IX. SUMMARY

This is the concluding paper of the series of five papers,
and it is fitting to briefly overview here the main goals and
results of the whole program, with some specifics about
each of them.
When starting this program we had two general goals:
(1) One was to bring the quark models used in hadronic

spectroscopy to the light front.
(2) The other was to connect the obtained LFWFs to

partonic observables as deduced from various hard
scattering processes.

The first goal is basically accomplished. Somewhat
unusual, the LF Hamiltonians create technical problems,
but those were solved. We have shown how one can
include the confining forces and solve the corresponding
Schrödinger equation for mesons and for baryons (on
equilateral triangle). This construction reproduces the
masses of multiple lowest states in each channel, in
agreement with empirical Regge trajectories. We also were
able to include the “residual” quasilocal binary attraction in
a nonperturbative way, describing “good diquark” corre-
lations in a nucleon. Of course, a lot of work remains to be
done, such as the inclusion of the spin-dependent potentials
and the mixing between the various spin-orbit components
of the wave functions. Clearly, this can be done in a
relatively straightforward way.
The second goal is accomplished only partly. By adding

the five-quark sector to baryons via certain approximate
methods of chiral dynamics, we found a reasonable magni-
tude of the antiquark sea, as well as its distribution in x. The
observed flavor asymmetry of the sea is explained.
However matching the experimental data on the PDFs,

DAs, GPDs, etc. at high scale to those we calculated from
the LF wave functions at low scale can so far be done only
at the level of average quantities, e.g. hxqi but is not yet
quantitative for their x dependence. We attempted to bring

downward the DGLAP to a scale as low as 1 GeV2, where
we see that hxgi → 0. However, we need to tweak the
DGLAP evolution to accommodate switching off the
gluons in a consistent manner. Also this probabilistic
description is only justified when x of the produced partons
is small compared to that of their parents, otherwise we
need to develop a coherent Hamiltonian description for the
quark-gluon sector.
This is now a good place to remind the reader of the

specific content of these five papers. We started in Paper I
[1] with discussion of the physical origin of the confining
and spin-dependent potentials for heavy quarkonia in a
traditional setting, in which they are defined via some
correlators involving Wilson lines. Specifically, we focused
on instanton-induced effects. Following our earlier paper
on mesonic form factors [34], we did so in a novel “dense
instanton liquid” which includes both instantons forming
the quark condensate (a subject of studies in the previous
four decades) and close instanton–anti-instanton mole-
cules. We have shown that such a vacuum model repro-
duces the phenomenological confining potential up to
distances of r ∼ 0.8 fm. The spin-dependent potentials
are defined via Wilson lines with added magnetic field
strengths. The perturbative and instanton-induced effects
are both short-range and were shown to have comparable
magnitude for charmonia, with instanton effects dominat-
ing for light quark systems.
Paper II [2] starts the derivation and usage of the light-

front Hamitonians HLF for the description of meson light-
front wave functions. Here we developed the “einbine
trick,” by means of which a potential linear in coordinates
turns into a quadratic one. Then, writing the coordinates as
derivatives over momenta, we net Laplacian-like confining
terms, while the kinetic energy ∼ ðp2⊥ þm2Þ=x is treated as
a certain potential energy. The masses of the obtained states
were shown to be close to the expected Regge trajectories,
with novel LFWFs to follow. In this paper we also managed
to put the instanton-related Wilson lines from Euclidean
time into the light cone, by analytic continuation from
Euclidean angle to Minkowskian rapidity (the hyperbolic
angle). We have derived the spin-dependent terms of HLF
following from Wilson lines (nonzero fermionic modes),
and ’t Hooft effective Lagrangian (zero modes). The latter
was shown to generate massless pion: as a benefit we have
its LFWF.
Paper III [3] was also devoted to mesons on the light

cone, focusing on spin-spin and spin-orbit forces. Starting
with heavy quarkonia (bottomonium), we compared the
traditional Schrödinger equation in the CM frame and
spherical symmetry to the HLF-based approach in which
the symmetry is just axial. We do get the correct spectrum
of bottomonia, in agreement with its Regge trajectory.
Using the fact that HLF has full relativistic kinematics, in
which there is no principal distinction between heavy and
light quarks, we extended the latter to strange and light
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mesons. We focused on spin and orbital momentum
mixing on the LF, in which both are represented just
by their longitudinal projections. We studied the role
of the tensor forces and mixing in vector mesons, gen-
erating their quadrupole moments (both in the CM and on
the LF frames). At the end, we studied the relations
between LFWFs and the PDFs and distribution ampli-
tudes of the mesons.
In Paper IV [4] we proceeded to three-quark baryons,

with heavy and light quarks. However, in this paper we
restricted our analysis to flavor-symmetric baryons
(bbb; ccc; sss; uuu) in which the ’t Hooft four-fermion
effective Lagrangian does not operate. One novel feature
was the detailed calculation of the instanton-induced three-
static-quark potentials, which were also compared with
available lattice data for the same geometries. Our con-
clusion is that all of them seem to favor the model we call
“Ansatz A,” half the sum of binary two-quark potentials.
Another feature of this work, separating it from others in
literature on baryon LFWFs is that we used (modified)
Jacobi coordinates and thus have as many coordinates as
necessary, without spurious center-of-mass motion. The
longitudinal momentum fractions x1, x2, x3 are then
defined on an equilateral triangle in two Jacobi coordinates.
The natural basis functions are therefore those of a
Laplacian on such triangle. We were able to give analytic
form for this set. Solving the full Hamiltonian requires
numerical approaches: one of them uses matrices in terms
of basis functions, another is a direct numerical solution of
2d Schrödinger-like equations (provided the transverse and
longitudinal motion can be approximately factorized).
Now we summarize the main content of this paper, the

fifth in the series. It is devoted to two very different issues.
The first is the flavor-asymmetric “good diquarks”
ud; us; ds with JP ¼ 0þ quantum numbers. Multiple phe-
nomenological and lattice results show that those are rather
deeply bound, in comparison to two constituent quarks or
“bad diquarks” with other JP values. We calculated the
LFWFs including the pairing correlations induced by the
instanton-induced ’t Hooft operator, in its quasilocal form.
(We showed how to do so without fully Fourier trans-
forming our momentum wave functions into coordinate
representation.) We did so for the heavy-light baryonsΛc ¼
cud with a single diquark, and the nucleon with its two
pairing ud channels. The masses and, most importantly
LFWFs of those, were compared to states without good
diquarks, Σc and Δ respectively. These differences of
LFWFs due to quasilocal pairing are found to be rather
significant.
The second issue is in fact the underlying reason why all

of these papers were written. Two important subfields of
hadronic physics—the spectroscopy (done in the rest frame
with the wave functions and constituent quarks) and the
partonic physics (done in terms of density matrices PDFs
and pointlike quarks and gluons on the LF), have not been

unified. The previous four papers make the first step,
exporting the spectroscopy to the light front. Here we
made the second step, by adding to the three-quark baryons
“the sea,” again using the ’t Hooft four-fermion operator,
but now in 1-to-3 channel. One way to do that would be to
use Jacobi coordinates for five-quark systems, which we
detailed. However, we do not follow this path to calculate
the five-quark LFWFs. Rather, we have proceeded a la
perturbative DGLAP evolution, treating this Lagrangian to
the lowest order, and evaluated the appropriate splitting
function and probability. The higher orders are approxi-
mated by pion cloud contribution, already known in the
literature. We show that these effects do account for flavor
asymmetry of the antiquark sea, both in magnitude and in x
dependence.
The final point of this paper is “matching” the valence

quark and sea PDFs to phenomenological ones. We think
that the matching scale should beQ2 ≈ 1 GeV2, being both
the upper scale of chiral (instanton) physics, and the lowest
scale at which the gluon components of the PDFs dis-
appear. We show that these three subsequent steps do
indeed provide a bridge between spectroscopy and partonic
PDFs, in so far as the semiquantitative level.
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APPENDIX A: VARIATIONAL STUDY
OF ss0 DIQUARKS

Starting from diquarks as a spherically symmetric two-
quark system in 3d, and quadratic confinement, one is in an
oscillator setting, with a Gaussian wave function for the
ground state

ϕ0ðrÞ ¼
e
− r2

2β2

π3=4β3=2
ðA1Þ

where r is the relative distance between quarks. The rms
distance is Rrms ¼

ffiffiffiffiffiffiffiffi
3=2

p
β.

The simplest interaction between u and d quarks is the
local form of the ’t Hooft Lagrangian

V 0t Hooft ¼ −
G0t Hooft

2
δ3ðr⃗Þ ðA2Þ

where the coupling constant is the one in mesonic (pion or
η0) channels. The − 1=2 stems from the Fiertz transforma-
tion in the diquark channel; see Ref. [44] for details.
Averaging it over a simplified wave function one gets
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hV 0tHoofti ¼ −
G0tHooft

2π3=2β3
: ðA3Þ

The Coulomb interaction in the diquark channel has also
half of the strength compared to the mesonic channel
VCðrÞ ¼ −ð2=3Þαs=r. Its average using the same wave
function is

hVCi ¼ −
2αs
3

2ffiffiffi
π

p
β

ðA4Þ

which for the same Rrms gives about −0.15 GeV. (The
additional nonperturbative component—instanton gauge
fields—will be evaluate later.)
The wave functions dependence on the strength of the ’t

Hooft coupling is shown in Fig. 13. The diquarks get more
compact as the pairing strength grows. This effect is
nonlinear in binding, and grows stronger.

APPENDIX B: FROM THE WAVE FUNCTIONS
IN MOMENTUM REPRESENTATION TO LOCAL

AND COULOMB INTERACTIONS

The generic two-body interaction, assumed to be
between u and d quarks, is of the form

hVi ¼
Z

d3r⃗ud3r⃗djψuðr⃗uÞψdðr⃗dÞj2Vðjr⃗u − r⃗djÞ ðB1Þ

with a potential depending on the relative coordinate
rud ¼ jr⃗u − r⃗dj, while the WFs depend on the individual
coordinates. The average of the local potential (A2) takes
the form

hδ3ðr⃗u − r⃗dÞi ¼
Z

d3rud3rdjψðr⃗uÞj2jψðr⃗dÞj2δ3ðr⃗u − r⃗dÞ

¼
Z

d3rjψðr⃗Þj4; ðB2Þ

familiar in few-body physics, with the fourth power of the
single-body wave functions in the CM frame.
In order to use a more general potential, it us customary

to proceed to the momentum representation via Fourier
transform ψðr⃗Þ → ψðp⃗Þ, and introduce the so-called over-
lap function

Sðq⃗Þ ¼
Z

d3p
ð2πÞ3 ψ

�ðp⃗Þψðp⃗þ q⃗Þ: ðB3Þ

In these notations, the interaction (B1) can be rewritten as a
convolution of overlap functions squared with the Fourier
transform of the potential

hVi ¼
Z

d3q
ð2πÞ3 jSðq⃗Þj

2VðqÞ: ðB4Þ

For color Coulomb interaction between quarks VðqÞ ¼
ð2=3Þαs=q2. This approach is a so-called t-channel descrip-
tion of scattering.
Now, the difficulty we have is related to the fact that the

LFWFs are defined in momentum representation, while the
binary interactions is given in coordinates. However, since
the ’t Hooft interaction can be approximated by a local form
(21), we can avoid the cumbersome Fourier transforms, and
use an alternative s-channel description without oscillating
exponents.
Let us explain it first using the simplest example of a

meson. In this case the wave function is a function of the
relative coordinates r⃗ ¼ r⃗1 − r⃗2 already, so the local
interaction is just proportional to the coordinate wave
function at the origin −Gjψðr⃗ ¼ 0Þj2. (For example, such
an approximation is in fact exact for perturbative spin-spin
interactions, in atoms, nuclei, and baryons.) The point is
that it has a simple expression in terms of the wave function
in momentum representation

ψðr⃗ ¼ 0Þ ¼
Z

d3p
ð2πÞ3ΨðpÞ: ðB5Þ

The problem discussed in Sec. V uses binary local
interaction only between particles 1 and 2. In terms of
Jacobi coordinates, it is proportional to ∼ δðr⃗ρÞ, while
particle 3 (related to the coordinate r⃗λ) is not affected. Its
matrix element in the momentum representation has two
integrals over p⃗ρ; p⃗0

ρ but only one over p⃗λ, as the momen-
tum of particle 3 does not change
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FIG. 13. Comparison of the shapes of thewave functions ψdqðrÞ
vs rðGeV−1Þ for ss0 diquarks, forGqq¼30;20;10;0GeV−2, black,
blue, red, and brown curves, respectively.
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hδðr⃗ρÞi¼
Z

d3pλ

ð2πÞ3
�Z

d3pρ

ð2πÞ3Ψðρ;λÞ
��Z

d3p0
ρ

ð2πÞ3Ψ
�ðρ0;λÞ

�
:

ðB6Þ

APPENDIX C: THE LONGITUDINAL BASIS
FUNCTIONS ON THE EQUILATERAL

TRIANGLE

The analytic form for these functions were found in [4],
and they were also obtained numerically using a
Mathematica 2d solver. In parts of this paper we used
them as a basis, expressing the nontrivial parts of the
Hamiltonian as matrices. Therefore, it is helpful to show the
shapes of the lowest ones (actually 12 lowest) that we used
as our reduced basis; see Fig. 14.

APPENDIX D: MODIFIED JACOBI
COORDINATES FOR FIVE-BODY SYSTEMS

The standard form of the Jacobi coordinates
r⃗i; i ¼ 1..5 is

r⃗1 ¼ x⃗1 − x⃗2; r⃗2 ¼
1

2
x⃗1 þ

1

2
x⃗2 − x⃗3;

r⃗3 ¼
1

3
x⃗1 þ

1

3
x⃗2 þ

1

3
x⃗3 − x⃗4;

r⃗4 ¼
1

4
x⃗1 þ

1

4
x⃗2 þ

1

4
x⃗3 þ

1

4
x⃗4 − x⃗5;

r⃗5 ¼
1

5
ðx⃗1 þ x⃗2 þ x⃗3 þ x⃗4 þ x⃗5Þ ðD1Þ

with the determinant of this matrix—the Jacobian—being
1. The last coordinate r⃗5 is the location of the center of

FIG. 14. Twelve lowest eigenfunctions of the Laplacian on the equilateral triangle, used as our basis functions. The numbers on the top
of each plot are their respective eigenvalues.
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mass, if those are coordinates, or 1=5 of the total momen-
tum if xi are momentum fractions, and is in any case
redundant.
As for two and three bodies, the simplest “starlike”

potential simplifies to purely a diagonal form

X5
1

x⃗2i ¼
1

2
r⃗21 þ

2

3
r⃗22 þ

3

4
r⃗23 þ

4

5
r⃗24 þ 5r⃗25: ðD2Þ

Further modification of the Jacobi coordinates is done by a
simple rescaling of r⃗i

r⃗1 →
ffiffiffi
2

p
α⃗; r⃗2 →

ffiffiffiffiffiffiffiffi
3=2

p
β⃗; r⃗3 →

ffiffiffiffiffiffiffiffi
4=3

p
γ⃗;

r⃗4 →
ffiffiffiffiffiffiffiffi
5=4

p
δ⃗; r⃗5 →

ffiffiffiffiffiffiffiffi
1=5

p
σ⃗ ðD3Þ

which makes the starlike potential a sum of squares of
greek-letter coordinates.
Another important potential, the Ansatz A is half the sum

of ten binary potentials. If it is assumed quadratic, it is
proportional to the same sum of squares in terms of greek-
letter coordinates

VA ¼ 1

2

X
i>j

ðx⃗i − x⃗jÞ2 ðD4Þ

¼ 5

2
ðα⃗2 þ β⃗2 þ γ⃗2 þ δ⃗2Þ ðD5Þ

except that the σ⃗ term is missing (which is unimportant as it
is constant anyway).
In sum, in proper coordinates, the confining five-body

potentials Vstar and VA can be reduced to the sum of greek-
letter coordinates squared. In our approach to the quanti-
zation of x⃗i → i∂=∂p⃗i, these operators take the form of
Laplacians. The appropriate basis function are eigenfunc-
tions of the Laplacian on the four-dimensional 5-simplex,
the descendants of our basis on an equilateral triangle for
three bodies.

APPENDIX E: THE COUPLING CONSTANT OF
INSTANTON-INDUCED ’T HOOFT VERTEX

’t Hooft standard interaction for two light flavors reads
q ¼ ðu;dÞ

Lqq ¼ 2

�
ΔM2

q

n

�
ðdet q̄RqL þ det q̄LqRÞ: ðE1Þ

The light constituent quarkmass, for the original parameters
of the (dilute) random instanton liquid model is [24,45]

ΔMq ∼
ffiffiffiffiffiffiffiffi
n

2Nc

r �
4π2ρ2

Σ0

�
∼ 420 MeV ðE2Þ

with the zero mode integral

Σ0 ¼
�Z

d4k
ð2πÞ4 k

2φ04
I ðkÞ

�1
2

∼ ð240 MeVÞ−1: ðE3Þ

In singular gauge, the Fourier transform of the fermionic
zero-mode profile is

φ0
IðkÞ ¼ πρ2ðI0ðzÞK0ðzÞ − I1ðzÞK1ðzÞÞ0z¼kρ=2: ðE4Þ

The prime is a z derivative, and I, K are modified Bessel
functions. This function with the canonical value
ρ ¼ 1=3 fm, gives a dependence of the constituent quark
mass on the virtuality k in good agreement with phenom-
enology and lattice studies.
Note that (E2) is not analytic in the packing fraction n, as

expected from the spontaneous breaking of a symmetry
[26]. It differs slightly from the analytic coupling extracted
from a naive random approximation, also used in our earlier
analyses. More specifically, (E2) gives

GtHooft ¼ 2

�
ΔM2

q

n

�
≈ 35 GeV−2 ðE5Þ

which is to be compared to 17 GeV−2 using the naive
approximation (see Eq. (62) in [1]).

APPENDIX F: SEA PRODUCTION, TO THE
FIRST ORDER IN ’T HOOFT VERTEX

The kinematics and the expression for the probability of
the quark sea pair production has been given in (58). This
relatively complicated expression needs to be integrated
over the three-quark phase space, which is basically a five-
dimensional integral over x; z; p⊥; k⊥ and the azimuthal
angle between those two vectors.
The expression as written diverges at large momenta. If

we would use the NJL model, the integrals should go to an
arbitrary UV cutoff Λ. Fortunately, the instanton-induced
coupling is naturally cut off by the instanton size ρ. Its exact
form is given by the Fourier transform of fermionic zero
modes, which at large momenta asymptotes simply
to e−pρ. Since both momentum integrals are basicallyR
e−pρp2ðdp=pÞ, their main contribution is at the scale

p� ≈ 2=ρ ∼ 1.2 GeV. So, the scale of this process is close
to our assumed unification scale of 1 GeV.
Let us consider separately the domains in which p > k

and p < k, and expand in the p=k (or k=p) ratio. It turns
out that the large square bracket in (58) simplifies to

xzð1 − x − zÞÞ
ð1 − xÞ2 þO

�
k2⊥
p2⊥

�

as the first-order term Oðk⊥=p⊥Þ vanishes by angle
average. Therefore the x, z integrals separate from the
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momentum integrals. The former one needs to be taken
over the physical region, meaning that all three xi ∈ ½0; 1�
and their divergencies are regulated by a small ϵ. The result
for the p > k region is the same as for the k > p, and their
total sum is

dN ¼ G2
Hooft

4

1

16π4ρ4
log

�
e2

4ϵ

�
ðF1Þ

where the regulator ϵ corresponds to the minimal momen-
tum fraction ∼mq=P.

APPENDIX G: REDUCTION OF ’T HOOFT
INTERACTION ON THE LIGHT FRONT

To analyze the ’t Hooft determinantal interaction (E1) on
the light front, we use the free particle uðp; sÞ and
antiparticle vðp; sÞ spinors, solutions to the Dirac equation

uðp; sÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2pþp ð=pþmQÞγþχðsÞ;

vðp; sÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2pþp ð=p −mQÞγþχð−sÞ; ðG1Þ

with γþ ¼ γ0 þ γ3 in the chiral representation, and the
particle spin up-down 4-spinors σzχð�Þ ¼ �χð�Þ. The
antiparticle spinor is tied to the particle spinor by
vðp; sÞ ¼ iuð−p;−sÞ, and its conjugate by v̄ðp; sÞ ¼
iūð−p;−sÞ.
To reduce (E1) into a two-body interaction, we formally

factorize the isospin content, and specialize to the particle-
antiparticle channel, with

ð1 − τ1 · τ2ÞðūRuLð1Þv̄RvLð2Þ þ ūLuRð1Þv̄LvRð2ÞÞ ðG2Þ

for the instanton plus anti-instanton contribution. Using the
light-front spinors (G1) in momentum space, we have for
the particle entry

ūLðp2; s2ÞuRðp1; s1Þ

¼

0
BBB@

mQ

ffiffiffiffiffi
pþ
1

pþ
2

r
0

ffiffiffiffiffi
pþ
2

pþ
1

r
p1R −

ffiffiffiffiffi
pþ
1

pþ
2

r
p2R mQ

ffiffiffiffiffi
pþ
2

pþ
1

r
1
CCCA →

�
mQ 0

qR mQ

�

¼ mQ1þ
1

2
σ−qR ðG3Þ

with the convention for the spin entries

½s2s1� ¼
�þþ þ−
−þ −−

�
:

Similarly, for the antiparticle entry, we have

v̄Lðp2;s2ÞvRðp1;s1Þ

¼ i2

0
BBB@
mQ

ffiffiffiffiffi
pþ
2

pþ
1

r
−

ffiffiffiffiffi
pþ
2

pþ
1

r
p1Rþ

ffiffiffiffiffi
pþ
1

pþ
2

r
p2R

0 mQ

ffiffiffiffiffi
pþ
1

pþ
2

r
1
CCCA→

�−mQ qR
0 −mQ

�

¼−mQ1þ
1

2
σþqR ðG4Þ

with qR ¼ p1R − p2R, for a meson with net PT ¼ 0. The
rightmost equation follows from the eikonalization of the
particle line with pþ

2 ≈ pþ
1 but p⊥2 ≠ p⊥1, as per our use of

the straight Wilsonian lines in the general derivation of the
potentials.
To move back to light-front space, we use the inverse

Fourier transform, which gives the local light-front
Hamiltonian (30) since

Z
1

0

dx
π

dk⊥
ð2πÞ2 e

−ixPþx−−ik⊥b⊥ ¼ δðPþx−Þδðb⊥Þ: ðG5Þ

The ultralocal and boost-invariant (G5) is to be compared to

2MδðξxÞ≡ 2Mδðððγx−Þ2 þ b2⊥Þ
1
2Þ ðG6Þ

with the Lorentz factor γ ¼ Pþ=M, which is also
ultralocal and boost invariant. The contribution γx− reflects
on the time dilatation effect on the light front. ξx is
the natural invariant distance, when the light-front
Hamiltonian is extracted from the Wilson lines, using
the analytical construction discussed above and in our
preceding studies [2–4].

APPENDIX H: PDFS AND FORM FACTORS
IN HOLOGRAPHY

The QCD gravity dual or holographic models are not
used or discussed in this series of works. However, to put
our results in perspective with those nonperturbative treat-
ments of QCD in the double limit of large Nc and strong ’t
Hooft coupling, we will briefly comment on some of their
aspects in relation to LFWs and form factors.
Formally, the holographic models provide a description

of hadrons as modes of some bulk (5d) effective fields. The
hadronic masses and wave functions ψnðzÞ are defined
from Schrödinger-like equations in the fifth holographic
coordinate z. Holograms obtained by certain prescriptions
project bulk wave functions to the boundary z ¼ 0. They
yield distributions of certain quantities like e.g. the stress
tensor TμνðxÞ. While such a procedure does define certain
hadronic sizes and shapes, there is no access to their
internal substructure in terms of quarks/gluons.
Holography and pQCD have little in common, and their

predictions do not agree in general. While the latter
describes hard processes in the weak coupling regime,
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the former addresses QCD processes at strong coupling and
large Nc, in the semihard and soft regimes.
In holography, a struck quark with large momentum does

not create a jet but rather a very wide flow of energy [46]. In
its evolution all the partons migrate to small x [47,48],
where the physics is well captured by open and closed
string excitations (pomerons and Reggeons).
Inelastic deep inelastic scattering (DIS) or hard elastic

scattering are well defined in holography [47], with
structure functions and form factors. There is certain
confusion in the literature about the relationship of these
results to pQCD and partonic physics.
Holography and pQCD both have scattering rules for

hard elastic processes, as originally noted in [47]. The hard
elastic turn requires the involvement of the full hadron in
the conformal limit, features that are shared by both
holography and QCD. In pQCD, this follows from the
fact that all the partons in a given hadron have to undergo a
“turnaround” under a hard scattering, which implies the
probability ð1=Q2Þn−1 with n being the number of partonic
constituents in the hadron [33]. In holography, a virtual
photon has extension 1=Q in the holographic z coordinate,
and for a hard hit in bulk, the hadron has also to shrink to a
size 1=Qτ−1 with probability P ∼ ð1=Q2Þτ−1. Here τ is the
bulk dimension of the field describing a hadron (of the
corresponding double trace 5d operators). For the elastic
processes, weak and strong coupling scaling laws are both
known, and they are similar with τ identified as n [47].
In inelatic DIS processes, a virtual photon of size 1=Q

scatters on a quark parton with probability 1 because it is
pointlike. In contrast, a scattering off a hadron can only

happen if it shrinks to the same size. The corresponding
wave function is ð1=Q2Þτ−1. While τ is also sometimes
called anomalous dimension, it depends on the hadron
field behavior in five dimensions, and has nothing to do
with the anomalous dimensions of perturbative operators.
Neither αsðQ2Þ nor quarks or gluons are present in the bulk
fields or actions. In DIS s ¼ Q2ð1=x − 1Þ is constant. So
the F2ðxÞ structure function at largeQ2 and large x → 1 are
related. In fact one can write the structure function in the
generic form

F2ðx;Q2Þ ∼Q2

����
�

1

Q2

�
τ−1

����
2

ðs ¼ Q2ð1 − xÞÞα ðH1Þ

where α is arbitrary. To reproduce the hard scattering rule
asymptotically, we may set it to some value, e.g. α ¼ τ − 2,

F2ðx;Q2Þ →
�

1

Q2

�
τ−1

ð1 − xÞτ−2 ðH2Þ

to reproduce the holographic DIS result on a nucleon with a
“reasonable” τ ¼ 3, or for a meson with τ ¼ 2 [47]. Yet
there is still no Bjorken scaling at large Q2.
Furthermore, the large x behavior in (H2) is different

from that expected from the Drell-Yan-West scaling rule
[29,30]. To reproduce it one would require Q2 independ-
ence of the structure function (H1) as per Bjorken scaling,
which fixes another power of α ¼ 2τ − 3 in (H2). Indeed,
this rule follows from the existence of the LFWFs in terms
of constituents, which is absent in holography.
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