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This work is a continuation in our series of papers that addresses quark models of hadronic structure
on the light front. The chief focus of this paper is the quantum-mechanical solution of the three-quark
model Hamiltonian describing baryons. In Jacobi coordinates, we use a harmonic oscillator basis for the
transverse directions. For the longitudinal momentum fractions xi, the pertinent basis follows from
quantum mechanics in a “triangular cup” potential, which we solve exactly. We calculate the masses and
light-front wave functions for the flavor symmetric 3

2
þ baryons bbb, ccc, sss, uuu.
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I. INTRODUCTION

Since this is the fourth paper of the series [1–4], it does
not need an extensive introduction. Its main goal is to
bridge the gaps between subfields of hadronic physics, with
our general direction being from (i) the vacuum structure in
its Euclidean formulation (instantons and lattice), to (ii) the
hadronic structure and quark-quark interactions and result-
ing spectroscopy, to (iii) the hadronic structure on the light
front with its novel Hamiltonians and wave functions.
The connection between (i) and (ii) is provided by

nonlocal gauge field correlators, such as e.g. correlations
of Wilson lines defining static quark potentials. Using
lattice or semiclassical models of the vacuum fields, one
can evaluate them. The connection between (ii) and (iii) is
less developed, as neither spectroscopists nor people
studying partonic observables were inclined to study them.
(The former community is now living through a deluge of
new hadrons discovered lately, and is rather busy.) So, let us
emphasize some of the reasons for its development.
Standard spectroscopy [in the center-of-mass (c.m.)

frame] uses rather different tools for states made of heavy
and light quarks. The differences stem from both kinemati-
cal and dynamical reasons.
Kinematically, the heavy quarkonia can be treated non-

relativistically, using the Schrödinger equation and pertur-
bative effective theories like perturbative Heavy Quark
QCD, while the light quarks are studied with relativistic

tools such as the Bethe-Salpeter equation and the like. (In
fact, even the standard approaches to heavy quarkonia are
not so accurate, as one might get from textbooks. Say, for
charm quark, the typical velocity is not really small, v ∼ 1

2
or so.)
Dynamically, there are important differences between

heavy and light quark interactions. Indeed, light quark
physics is tightly bound to the issue of chiral symmetry
breaking and its root causes—strong short-range effects
described by Nambu and Jona-Lasinio (NJL) operators or
instanton-based ’t Hooft Lagrangians. Most of that was
well understood in the 1990s and need not be repeated here.
However, as we have shown in [1], a dilute instanton

ensemble is only one part of the vacuum fluctuations
related with gauge topology at low resolution, and when
one studies gauge field observables one finds larger effects
at moderately higher resolution. Even for heavy quarkonia,
we argued that a “dense vacuum” with instanton–anti-
instanton pairs (incomplete tunneling through a topological
barrier) contributes to Wilson line correlators, with and
without magnetic fields, and generates a significant (if not
dominant) fraction of the central and spin-dependent
forces. This raises a question of how one can include
those effects for light quarks.
Fortunately, both of these kinematical and dynamical

issues aremuch less severe on the light front. The kinematics
in this case is fully relativistic for all masses. There are no
sudden changes, as one goes from heavy to light quarks.
Quark masses enter the HLF in a very uniform way and (as
we have shown in the previous papers of the series [1–3]),
one can consistently derive the mesonic properties
from b̄b to light q̄q by the same tools. Indeed, in the first
approximation, the transverse oscillator Hamiltonian gen-
erates near-linear Regge dependences ofM2 on the principal
quantum number n and angular momentum m. Dynamical
issues also get less severe. In particular, on the light front,
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even light quarks can be “eikonalized” as they move along
approximately straight lines.

A. Single-flavor baryons

Baryons are just another application of the tools devel-
oped along the lines mentioned above, but this time for
three-quark systems. There are important technical issues
here as well, as the barrier between “relative motion” in
mesons and baryons is due to the differences between the
obvious variables describing the relative motion of two
particles, and the nontrivial choices of variable for few-
body quantum mechanics. We will address those below, but
before that let us add some general remarks.
In principle, another (nontechnical) issue is related with

the so-called “color junction” of three strings. The quad-
ratic confining potential of a “star” (or Y) model fixes the
junction at the origin, with no dynamics. For static
potentials we can probe the effects of the junction by
changing its location. However, the junction is in general
dynamical, and should be treated as a fourth body. In
general, the effective string Lagrangians carry also boun-
dary terms, and a junction line connecting the three world
volumes should also be added as a boundary contribution.
The dynamics of the junction can only be ignored if it is
heavy, but in so far as there is no empirical indication of
that. This problem remains to our knowledge open.
This not withstanding, one should note that in the last

decade, we have seen discoveries of multiple new hadrons in
the so-called heavy-light sector, includingQQq baryons and
tetraquarks of the type Q̄Qq̄q and QQq̄ q̄. Calculations for
similar states with five and six quarks are ongoing by many
groups.Theywill shedmore light on the issue of quark-quark
interactions. Also, baryons too have a five-quark sector,
responsible for the antiquark sea, well studied experimen-
tally in the case of the proton and neutron. Their flavor
structure has been recently discussed by one of us [5].
Nonrelativistic and semirelativisitc constituent quark

models, have been developed since the 1960s, and they
exist in numerous versions. One well-documented (and still
widely used as a reference point) approach is that by Isgur
and Karl [6], which was updated for heavy quark states, see
e.g. [7]. These authors treated confinement by an oscillatory
potential, which methodically will turn out to be similar to
our HLF (but for squared mass, not energy). A well-known
problem with the model is its predictions of many more
baryonic states than what was experimentally observed.
The focus of this paper is on basic baryons which are

completely symmetric in flavor, such as Δþþ
uuu;Ω−

sss;
Ωþþ

ccc ;Ω−
bbb. Only the first two of them have been observed.

(According to estimates, Ωþþ
ccc will be discovered in the next

LHC run.) The reason is that flavor asymmetric pairs such as
ud; us; ds… have deeply bound diquark correlations which
will be the subject of our next paper [4].
General considerations for these hadrons are well

known, e.g. summarized in the early note by Bjorken [8].

If the color part of the wave function is antisymmetric and
the flavor part is symmetric, then Fermi statistics requires
the spin-orbital part to be symmetric as well. The simplest
one, with no orbital motion, then fixes spins to be e.g. ↑↑↑
and the global quantum number to be 3

2
þ. We will focus on

the sector with zero orbital momentum, thereby avoiding
the inclusion of spin-orbit mixing (on which we focused on
in the previous paper [3] for mesons).
In Table Iwe show the quark and baryonmasses, aswell as

the binding of the lowest 3
2
þ states according to Ref. [7]. We

note that aswemove fromheavy to light baryons, the binding
changes from negative to positive values (relative to the sum
of the masses). This is due to the attractive Coulomb inter-
action at small distances, whose role dramatically decreases
for lighter quarks, as their states become larger in size.
The dependence of the masses and wave functions of

these ground state baryons, on the quark mass is of course
only one issue to be considered. Another is their spectrum,
in particular the dependence on the principle quantum
numbers n and total angular momentum J. It is well known
that confining strings lead to specific Regge trajectories,
both for mesons and baryons. For example, we show in
Fig. 1 that the squared masses of various Δ resonances
follow linear trajectories, versus angular momentum J. Two
further remarkable observations are (i) both plots have the
same slope, and (ii) this slope is the same as for mesons.
This leads to the well-known difficulty of a star (or Y) and
other stringy models: they do not yield the correct Regge
slope, as the tension of three strings is different from that of
a single string in mesons. The qualitative resolution of this
difficulty for the nucleons is believed to be a quark-diquark
configuration, with a single string between them. However,
a dynamical justification of such a configuration for
J ¼ 3=2 baryons is still missing, especially as a function
of the radial quantum number n. Needless to say, we do not
yet have experimental information on many sss and any
ccc baryons.
We start the paper by addressing the static three-quark

potentials, and by evaluating these potentials from the
instanton liquid view of the vacuum fields. The results
obtained will be compared to those calculated on the lattice,
with rather good agreement as we will show. However, for
relevant distances these potentials do not agree with the
popular stringy Y and V models, but are closer to the so-
called “Ansatz A,” with half binary string interactions.

TABLE I. Baryon masses and binding energies (all in GeV) for
different quark flavors. Two baryon masses in the last two rows
are experimental; all other numbers are as used in Ref. [7].

mQ M3=2þ
QQQ M3=2þ

QQQ − 3mQ

b 5.2019 14.834 −0.7717
c 1.8182 4.965 −0.4896
s 0.5553 1.672 0.006
q 0.2848 1.232 0.3776
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This notwithstanding, we still proceed to the light-front
Hamiltonian, starting from a basic stringy pictures as in the
Y and V models. Following our analysis of the mesons
in [2], we derive and solve the light-front HamiltonianHLF
for baryons, by including the kinetic and confining terms
only. We will use Jacobi coordinates, exactly excluding the
spurious c.m. motion, with the ensuing quantum mechanics
in six dimensions. We will use the momentum representa-
tion, in which the kinetic and potential terms exchange
roles. The physical domain of the longitudinal momenta
will be certain triangles. As we will show, quantum
mechanics on such manifolds is nontrivial but solvable.

II. THREE-QUARK POTENTIALS

A. Simplified models

We start by enumerating the stringy models discussed in
the literature.

(1) Y model: The simplest baryon configuration follow-
ing from the quarkonium Cornell potential consists
of a perturbative Coulomb term plus a linear string
potential. This is the Y (or star) model, with three
strings going from quarks to a certain point where
the “string junction” is located.

(2) V model: In the V model one of the quarks sits
directly on the color junction, and therefore there are
only two strings in a baryon.

(3) A model: This is a somewhat mysterious model,
which is nevertheless widely used by spectrosco-
pists. We will call it model A as it corresponds to the
following Ansatz:

VA ¼ 1

2
ðVqq̄ðr12Þ þ Vqq̄ðr13Þ þ Vqq̄ðr23ÞÞ ð1Þ

in which Vqq̄ðr12Þ is the usual quarkonium potential,
summed over all three pairs. Its mysterious element
is the factor (1=2) in front, separating it from the so-
called Δ model. It is justified at small distances,
as the ratio of the perturbative color Casimir for
qq̄ and qq pairs in baryons. At large distances,
the potential is nonperturbative, and (1) subsumes
Casimir scaling.

Theoretical arguments using the vortex piercing picture of
confinement have been given to support it [9], which carry
also to large Nc

1

2
→

1

Nc − 1

much like the one-gluon exchange. Indeed, we know on
general ground that for Nc ¼ 2, mesons and diquarks
should have the same potential. Also, for large Nc, the
qq force is down by 1=Nc in comparison to the qq̄ force. So
perhaps this factor is in fact correct for all nonperturbative
effects.
These models provide certain predictions which vary

depending on the geometry of the three quark locations. We
will discuss those as we proceed, and compare them with
both numerically obtained potentials from lattice simula-
tions, as well as with our calculations using a “dense
instanton liquid” vacuum model.

B. Lattice three-quark potentials at large distances

If three quarks are static, their interaction can be
evaluated using the correlators of three Wilson lines

h1 −Wðr⃗1ÞWðr⃗2ÞWðr⃗3Þi ∼ e−Vðr⃗1;r⃗2;r⃗3Þτ

running in the Euclidean time direction. In the case of
quarkonia the color indices in hWW†i can either be
convoluted in a single trace or a double trace (Polyakov
loops). The six color indices in W (not shown) can be
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FIG. 1. Top: red circles are the squared masses of Delta
resonances M2

Δðnþ 1; 3=2Þ ðGeVÞ2 from PDG tables versus
the principle quantum number nþ 1 ¼ 1, 2, 3. The brown
triangle corresponds to the triple-strange baryon M2

Ωð1; 32Þ. The
lower plot shows the dependence of the Delta resonances
M2

Δð1; JÞ with angular momenta J ¼ 3
2
; 7
2
; 11
2
. Both straight lines

have the same slope 1.1 GeV2.
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convoluted in many more ways, and sandwiched with the
initial and final color wave functions of the baryon ∼ϵabc. If
the Euclidean time τ is infinitely long, they should all lead
to the same potential.
The three-quark static potentials have been assessed on

the lattice since the 1980s. For definiteness we will use
the data compiled in the Appendix in [10] for different
geometries of the quark locations. As these authors have
shown, none of the models listed above provide a fully
satisfactory fit to the data. Nevertheless, they contain
important lessons, few of which we would like to formulate
in this section.
The three static quarks can be arranged in triangles of

different sizes and shapes. Let us start with the most
symmetric setting, the equilateral triangle. Following [10],
three quarks are assigned to points ðx; 0; 0Þ; ð0; x; 0Þ;
ð0; 0; xÞ, and will be characterized by this distance x. All
three sides are

ffiffiffi
2

p
x, but all plots below will be given as a

function of x.
Furthermore, let us focus on the large-x limit, for which

the differences between models is most obvious. In order to
exclude constant terms (possibly depending on the triangle
geometry), we plot in Fig. 2 the forces dV=dx rather than
the potentials. They are compared to the quark-diquark
potential (coinciding with the quarkonium potential as
shown in the same paper). Indeed, at large distances the
forces asymptote constants.
[This is expected for confining flux tubes. However, in

the real world (or lattice simulations with dynamical
quarks) we expect “avoided crossing phenomenon” to
happen, whereby sufficiently long flux tubes break by
production of a light quark-antiquark pair, so that the
growing potential turns into a constant at large distances. In
fact, the real situation is more complex, as was understood
long ago for crossing of molecular levels: as shown by
Landau, Zener and others in 1932, the probabilities to

follow or switch levels depend on the velocity with which
the crossing is approached. The more general issue of
mixing between baryons and pentaquarks is being dis-
cussed in spectroscopy. Using light-front wave functions
(LFWF), one of us [5] evaluated this mixing in order to
calculate PDFs of “sea antiquarks.” In this paper we will
ignore the level crossing in the potentials.]
The constants in front of the linear terms depend on the

geometry of the quark locations, and are different for
different models. We will discuss three models and three
geometries in the next subsection. Here, we start with
the well-known Y model, with three strings going from the
quarks to the center of mass of the triangle, where the
“string junction” is located. In this model the force should
be three times the string tension times the ratio of the
distance to the center in units of x. For an equilateral
triangle it is

dVY

dx
¼ 3σ

ffiffiffi
2

3

r
¼

ffiffiffi
6

p
σ: ð2Þ

In the V model, one of the quark sits directly on the color
junction. In this case there are two strings rather than three.
For the particular triangle under consideration, we have

dVV

dx
¼ 2σ

ffiffiffi
2

p
¼

ffiffiffi
8

p
σ: ð3Þ

Finally, for the A model, we have the smallest force

dVA

dx
¼ 1

2
3σ

ffiffiffi
2

p
ð4Þ

with σA=σY ≈ 0.866 < 1, whatever the triangular
configuration.
In Fig. 2 the filled points correspond to the string tension

σ for a quark-diquark (identical to quark-antiquark) using
the same lattice configurations. For the Y-mode, the ratio is

σ

σY
¼ σffiffiffi

6
p

σ
≈ 0.854 ð5Þ

instead of 1. For the V model we have
ffiffiffiffiffiffiffiffi
8=6

p
≈ 1.15, which

is even larger. In the A model, it is comparable to σ

σ

σA
≈
0.854
0.866

≈ 1: ð6Þ

The first lesson about the three-quark lattice potentials is
that the string-based Y, V models overpredict the forces at
large distances, while the ansatz A model reproduces the
force (for an equilateral triangle). Of course, we should
consider other geometries, and probe intermediate distan-
ces as well, before ruling it as a successful model for the
three-quark potential.

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

FIG. 2. Forces dV=dx versus x in lattice units, calculated from
the lattice potentials as in [10]. The open points are for an
equilateral triangle, and the closed points are for a linear quark-
diquark setting (the same as the standard quark-antiquark one).
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The second lesson is that some geometries are better for
model separation than others. Indeed, another triangular
limit in which one corner is far from the two others
(including the quark-diquark picture) yields a single string
tension times the longest distance for model Y, which is the
same as half the string tension times the two longest
distances for model A.

C. Three-quark static potentials from the
instanton vacuum

Before proceeding to the static three-quark potentials
from the three models presented earlier, using instantons,
we first put forth a few remarks that suggest why model A
would be favored.
It is a very important issue in the theory of few-body

quantum states (e.g. in nuclear physics tritium and He3) to
separate effects of well-constrained two-body forces from
“truly three-body” ones, which are then extracted from fits
to experiment. In baryons made of three quarks, we first
observe that the color wave function ϵabc involves all three
colors, while the instanton fields are SUð2Þ valued in the
space of three colors. This suggests that the main potential
is best approximated by binary potentials. Among the
models we presented, only Ansatz A (1) has such a form.
Furthermore, since the instanton fields do not generate

confinement, the pertinent potentials asymptote constants
for the binary potential Vðrij → ∞Þ ¼ 2ΔM, and for the
triple potential 3ΔM, etc. Since there are three binary
potentials, these large distance limits can only be reconciled
if there is a factor (1=2) in front, as in Ansatz A.
The instanton-induced potentials between three static

quarks can be computed using the same expressions for
Wilson lines as was traditionally used for a binary potential.
The SUð2Þ part of the Wilson line can be expressed using
Pauli (rather than Gell-Mann) matrices τi

Wa
lb¼ðcl1− iðτ⃗ · n⃗lÞslÞab; a;b¼ 1;2; l¼ 1;2;3 ð7Þ

with trigonometric functions involving color rotation
angles that depend on the 3D distances γ⃗i; i ¼ 1, 2, 3
between the location of Wilson lines r⃗i, and the instanton
center z⃗

ci ≡ cos

�
π −

πγiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2i þ ρ2

p �
;

si ≡ sin

�
π −

πγiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2i þ ρ2

p �
;

γ2i ¼ ðr⃗i − z⃗Þ2; n⃗i ¼ γ⃗i=jγ⃗ij: ð8Þ

We note that at large distances jγij ≫ ρ, the phases vanish.
At small distances they go to π, with cosines set to −1, with
a flipped quark color direction. Since a standard instanton
does not act on a quark with the third color, this 2 × 2
matrix should be extended trivially (by 1) to 3 × 3.

To properly model the color-isotropic vacuum, one
should include some random SUð3Þ matrices U which
rotate the instanton fields from their standard SUð2Þ plane,
to an arbitrary plane in SUð3Þ. These matrices should then
be averaged using the Haar measure of the SU(3) group
(see Appendix A for more details)

Z
dUðUa1

i1
Wi1

1j1
U†j1

b1
ÞðUa2

i2
Wi2

2j2
U†j2

b2
ÞðUa3

i3
Wi3

1j3
U†j3

b3
Þ: ð9Þ

For the instanton-induced potential we thus get the
following expression:

V ¼ 2nIþĪ

Nc

Z
d3z

�
ð1 − c1c2c3Þδa1b1δ

a2
b2
δa3b3

þ N2
c

ðN2
c − 1Þ c1s2s3n2 · n3δ

a1
b1

�
1

2
λB2

�
a2

b2

�
1

2
λB3

�
a3

b3

þ 2 perm:

�
ð10Þ

where nIþĪ is the 4D instanton plus anti-instanton density.
This is valid for any color states of the three quarks. For a
color singlet three-quark baryon, one can either use its
antisymmetric wave function ∼ϵabc, or set the quark colors
as a1 ¼ b1 ¼ 1; a2 ¼ b2 ¼ 2; a3 ¼ b3 ¼ 3.
The results of the calculation of the instanton-induced

potentials, for the preceding three triangular shapes, are
shown as filled circles in Fig. 3. The instanton size was
taken to be the usual ρ ¼ 1

3
fm, and the density parameter

κ ¼ π2nIþĪρ
4 ¼ 1 (dense instanton liquid). So the calcu-

lation has only one additive free parameter, which we have
set by requiring all potentials to vanish for small triangles.
One can see that the shape of the potentials and their
magnitude are rather independent of the shape of the
triangles. In all cases the potential at large x becomes
close to 3ΔM, for three independent quarks.
The potential is plotted in Fig. 3 versus x defined via

quark positions as follows (same as on the lattice):

ri ¼ ðx; 0; 0Þð0; x; 0Þ; ð0; 0; xÞ equilateral; ð11Þ

ri ¼ ðx; 0; 0Þð0; x; 0Þ; ð0; 0; 0Þ direct; ð12Þ

ri ¼ ðx; 0; 0Þð0; a; 0Þ; ð0; 0; aÞ long: ð13Þ

In the plots, the dashed and solid straight lines refer to the
linear predictions of the models V and A, discussed at the
beginning of this section, respectively. They correspond to
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VV ¼
ffiffiffi
8

p
σx; VA ¼ 3ffiffiffi

2
p σx equilateral;

VV ¼ 2σx; VA ¼ σxð1þ 1=
ffiffiffi
2

p
Þ direct;

VV ¼ σð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
þ a

ffiffiffi
2

p
Þ;

VA ¼ σð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
þ a=

ffiffiffi
2

p
Þ long: ð14Þ

Since the constants in the potentials are not well defined,
Eq. (14) are shown for comparison to the “force” (the
slopes) with the instanton-induced (filled circles) and lattice
potentials (open circles). Note that here we used the

“empirical” string tension σ ¼ ð0.4 GeVÞ2, deduced from
the Regge slope α0. The corresponding lattice value is
smaller by as much as 30% (perhaps due to the limited size
of the lattice, or other uncertainties in the scale). Within this
accuracy range, we conclude that the slope predicted by
model A is in crude agreement with the instanton-induced
potentials.
The open circles in these plots are from the lattice

simulation tables in [10]; the lattice site size is a ¼ 0.123 fm.
Since a pointlike charge energy requires renormalization,we
also shifted them downward by a constant. One can see that
the instanton-induced and lattice potentials agree quite well
for two former triangles, but for the “long” one even the
slope does not agree. Note however that (i) the smallest side
of the triangle in this case is not growing with x but remains
constant and small

ffiffiffiffiffiffi
2a

p ¼ 0.174 fm, and (ii) that this
potential goes roughly to 2ΔM rather than 3ΔM as in the
other cases. The lattice seems not to resolve the quark pair at
this distance, while our continuous instanton formulas do.
To resolve the issue one perhaps needs an instanton model
with a realistic size distribution, and also finer lattices.
In conclusion, good agreement is shown between the

instanton-induced and lattice potentials for large-enough
triangles, but not for long ones. Of all the three models Y,
V, A discussed, model A seems to be closer to the evaluated
instanton-induced potentials, even for long geometry.

III. PRELIMINARIES

A. Jacobi coordinates

The LFWFs for baryons discussed in literature so far
consider quarks as independent, so those are a function of
nine coordinates (or nine momenta). The spurious c.m.
motion is implicitly present: in some cases the correspond-
ing energy is subtracted, but corrections to the wave
functions are simply ignored.
However, there is no need for this. Exact kinematics

with appropriate conditions can be satisfied by a well-
known change of variables, widely used in many few-
body applications. Total momentum is subject to three
conditions,

p⃗tot⊥ ¼ p⃗1⊥ þ p⃗2⊥ þ p⃗3⊥ ¼ 0;

x1 þ x2 þ x3 ¼ 1; ð15Þ

so the system is in fact six-dimensional.
The main idea of the approach we use is to work in

momentum representation, with the kinetic term of the
Hamiltonian treated as a “potential,” and the confining part
(in which coordinates are used as derivative over momenta
r⃗i ¼ i∂=∂p⃗i) as our analogue of the “kinetic” energy.
For transverse momenta we introduce two (slightly

modified) Jacobi momenta variables
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FIG. 3. The three-quark potentials V ðGeVÞ versus x ðfmÞ
defined in (11), for equilateral, direct, and long triangles, top
to bottom. The open points correspond to lattice simulation, the
closed points to our calculation in the dense instanton liquid
model. Linear predictions of the models V and A are shown by the
dashed and solid lines, respectively.
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p⃗ρ⊥¼ 1ffiffiffi
2

p ðp⃗1⊥− p⃗2⊥Þ; p⃗λ⊥ ¼ 1ffiffiffi
6

p ðp⃗1⊥þ p⃗2⊥−2p⃗3⊥Þ

ð16Þ

in terms of which

p⃗1⊥ ¼ ð
ffiffiffi
6

p
p⃗λ⊥ þ 3

ffiffiffi
2

p
p⃗ρ⊥Þ=6;

p⃗2⊥ ¼ ð
ffiffiffi
6

p
p⃗λ⊥ − 3

ffiffiffi
2

p
p⃗ρ⊥Þ=6;

p⃗3⊥ ¼ −
ffiffiffi
6

p
p⃗λ⊥=3: ð17Þ

Now the total transverse momentum p⃗tot ¼ p⃗1 þ p⃗2 þ p⃗3

vanishes automatically.
The longitudinal momentum fractions are defined

similarly,

x1 ¼ ð
ffiffiffi
6

p
λþ 3

ffiffiffi
2

p
ρþ 2XÞ=6;

x2 ¼ ð
ffiffiffi
6

p
λ − 3

ffiffiffi
2

p
ρþ 2XÞ=6;

x3 ¼ ð−
ffiffiffi
6

p
λþ XÞ=3: ð18Þ

Note that X ¼ x1 þ x2 þ x3: unlike in the transverse
direction for which X ¼ 0, here X should be set to 1.
Therefore, the physical domain is the three-dimensional
cube xi ∈ ½0; 1� cut by a plane X ¼ 1, leaving as a physical
domain a triangle in λ, ρ coordinates inside which the
parton fractions are all positive xi > 0. The three corners of
the triangles correspond to parton configurations with one
quark with its fraction being 1, and the two others zero. The
longitudinal part of the LFWF should therefore be defined
on this triangle.
After the wave functions in momentum representation

are defined, one can reconstruct their versions in coordinate
representations by the usual Fourier transform. The coor-
dinates conjugated to p⃗ρ; p⃗λ will be referred to as r⃗ρ; r⃗λ.
The confining part of the Hamiltonian in its simplest

form can be rewritten using the einbein trick used in [2,3]
and reiterated for the reader in Appendix B. For the Y (or
star) model this amounts to

σTðjr⃗1j þ jr⃗2j þ jr⃗3jÞ →
σT
2

�
3

a
þ aðr⃗21 þ r⃗22 þ r⃗23Þ

�

→
σT
2

�
3

a
þ aðr⃗2λ þ r⃗2ρÞ

�
ð19Þ

with all einbein parameters set equal to a by saddle point.
For Ansatz A (1) this amounts to

σT
2
ðr12 þ r23 þ r13Þ →

σT
4

�
3

a
þ aðr212 þ r223 þ r213Þ

�

→
σT
4

�
3

a
þ 3aðr⃗2λ þ r⃗2ρÞ

�
: ð20Þ

Note that when a is to be eliminated by minimization,

the minimum is at a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ðr2λ þ r2ρÞ

q
in (19), but

a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðr2λ þ r2ρÞ

q
in (20). Substituting those values back

to original expressions, one finds that confining potentials
in (19) in Jacobi coordinates is the same as (20) after the
following rescaling of the string tension:

σT →

ffiffiffi
3

p

2
σT: ð21Þ

Note that the rescaling factor
ffiffi
3

p
2
≈ 0.866 < 1, so the tension

(and thus all baryonic masses) corresponding to model A
are lower than in model Y, as expected.
The quantum replacement

r⃗λ → i
∂

∂p⃗λ
; r⃗ρ → i

∂

∂p⃗ρ

yields a 6-D Laplacian in p⃗λ; p⃗ρ, for both Y and A models.
The kinetic term contains the sum of corresponding
momenta squared: so, in this approximation, there appears
6-D spherical symmetry in Jacobi coordinates.

B. Relativisitic semiclassical quantization
in the rest frame

Before we move to the light front, however, we present
our preliminary study of the problem in the rest frame. We
will present in detail the Y or star configuration, with three
strings connected to a junction. The junction will be
assumed static and located in the c.m. for equal masses.
The results for model A will be briefly quoted. In the rest
frame the baryon with zero orbital momentum is spheri-
cally symmetric.
Heavy quarks can be treated via the Schrödinger

equation, but for light quarks their effective masses and
momenta are comparable, so nonrelativistic approximation
is invalid. This distinction however can be avoided in the
semiclassical approach we will use here (and of course the
light-front approach is the same for light and heavy quarks).
The Hamiltonian for the Y configuration is

H ¼ 1

2m
ðp⃗2

λ þ p⃗2
ρÞ þ σT

X3
i¼1

jr⃗ij þ
�
3

2

m2
Q

m
þ 3

2
m

�
: ð22Þ

Here mQ is the quark mass, σT the string tension, and
m ¼ 1=2e is the variational effective mass, arising from
the einbein trick used to unwind the relativistic square root.
A similar Hamiltonian was obtained in [11], using a
different world-sheet embeding than the onewewill present
below [see (38)]. For the confining part, (19) gives
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σT
X3
i¼1

jr⃗ij →
ffiffiffi
3

p
σTðr⃗2λ þ r⃗2ρÞ12; ð23Þ

Eq. (22) simplifies to that of one particle in a D ¼ 6-
dimensional space,

H →
1

2m
ðp⃗2

λ þ p⃗2
ρÞ

þ
ffiffiffi
3

p
σTðr⃗2λ þ r⃗2ρÞ12 þ

�
3

2

m2
Q

m
þ 3

2
m
�

→
p2
μ

2
þ σ̃T jZμj þ

�
3

2

m2
Q

m
þ 3

2
m

�
ð24Þ

and (24) describes a nonrelativistic and linearly confined
particle of variational mass m, with coordinates Zμ ¼
ðλi; ρiÞ in D ¼ 6 dimensions as per the last relation. We
have rescaled the coordinate

ffiffiffiffi
m

p
Z → Z and string tension

σ̃T ¼ ffiffiffi
3

p
σT=

ffiffiffiffi
m

p
for convenience.

An estimate of the mass spectrum can be obtained using
the WKB approximation,

Z
rL

rS

dr

�
2E−2σ̃Tr−

lðlþD−2Þ
r2

�1
2 ¼

�
nþ1

2

�
π ð25Þ

with the end points rL;S solution to the cubic equation

2σ̃Tr3 − 2Er2 þ lðlþD − 2Þ ¼ 0:

For zero orbital motion l ¼ 0, the WKB radial energy levels
can be found to be

En0ðmÞ ¼
�

3π

2
ffiffiffi
2

p
�2

3

�
nþ 1

2

�2
3

σ̃
2
3

T ≡ Ẽ0n

m
1
3

: ð26Þ

Once combined with the extra terms in (24), we can carry
the minimization in m, and set its value at the minimum.
The ensuing WKB radial mass spectrum of the star baryon
Mn0 in the rest frame Reggeizes for large n linearly

α0M2
n0 ≈ 2

ffiffiffi
3

p
n ð27Þ

with α0 ¼ 1=2πσT . We recall that the meson Regge tra-
jectory is α0M2 ¼ 1. So, in the same units our star-shaped
baryons have a slope 2

ffiffiffi
3

p
≈ 3.46, compared to the mesons.

It is close but not equal to the number 3, naively
corresponding to the number of strings. This WKB radial
Regge trajectory calculated in the rest frame has similar but
not identical slope to that derived from the light front [see
(61) below].
For large orbital excitations l, the motion is classical, and

an estimate can be obtained by noting that for the confining
potential the virial theorem gives

E0l ≈ K þ V ¼ 3K ¼ 3l2

2R2

with R ¼ ðl2=σ̃TÞ13 fixed by the force equation. After
fixing m by minimization, the mass spectrum of the
star baryon is seen to Reggeize linearly in large orbital
momentum l as well,

α0M2
0l ≈

6

π
l ð28Þ

with a slope 6=π ≈ 1.91, so the linear Reggeization is not
the same in n and l. This is in disagreement with the
experimental data for light baryons, as we have demon-
strated above for the isobars.
The results for model A follows from those for model Y

through the rescaling (21). In particular, the Reggeized
trajectories in the semiclassical approximation are

α0M2
n0 ≈ 3n;

α0M2
0l ≈

3
ffiffiffi
3

p

π
l; ð29Þ

in comparison to (27) and (28), respectively.

IV. THE HAMILTONIAN ON THE LIGHT FRONT

The kinetic part of the LF Hamiltonian has the form

X
i

p⃗2
i⊥ þm2

i

2pilong

in which the transverse and longitudinal momenta appear
differently. As in our previous papers, we rewrite it in the
following form:

p2
1⊥ þm2

Q

x1
þ p2

2⊥ þm2
Q

x2
þ p2

3⊥ þm2
Q

x3

¼ 3
X
i

ðp2
i⊥ þm2

i Þ þ
X
i

ðp2
i⊥ þm2

i Þ
�
1

xi
− 3

�
:

The first quadratic term in the last line leads to a transverse
oscillator, and the second term is called a nonfactorizable
potential Ṽ; it mixes transverse and longitudinal variables.
It will be included by different methods to be defined
below.
The confining part of the LF Hamiltonian is built from

terms linear in coordinates. For example the Y model with
three strings going to the junction at the center has a sum of
linear terms

VY ¼ σT
X3
i¼1

jr⃗ij:
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Like we did for mesons in our previous papers, we
again introduce en einbein trick with a variational param-
eter a which allows us to rewrite the linear potential as a
quadratic one.
Furthermore, as in our previous papers, we use the

Hamiltonian in the momentum representation. Therefore
the coordinate vectors are interpreted as r⃗ ¼ i∂=∂p⃗,
and therefore the confining part ∼r⃗2 will play the role
normally attributed to the kinetic energy. Quadratic confine-
ment thus leads to a second-order Schrödinger-like equation
for the eigenfunctions.
The same logics is applied to the transverse and

longitudinal coordinates r⃗⊥; rlong, so the immediate task
is to write the Laplacian operator, both in Jacobi coor-
dinates in transverse and in our curved map (35). Both tasks
are performed, as explained in Appendix C.
Let us focus for now on longitudinal momenta. In

variable λ, ρ, X (18) the line element defining the metric
tensor in the new coordinates is diagonal and simple

dl2 ¼ dλ2 þ dρ2 þ dX2=3: ð30Þ

The Laplacian (which we encounter in the confining term
of the Hamiltonian) in the original coordinates also takes a
simple form

∇2 ¼
X
i

∂
2

∂x2i
→

∂
2

∂λ2
þ ∂

2

∂ρ2
þ 3

∂
2

∂X2
: ð31Þ

Since we work on constant X ¼ 1 we need only the first
two terms.
Therefore, the first problem we encounter is to define

eigenfunctions of the Laplacian on the triangular physical
domain in the λ − ρ variable. As we will show below, for
the equilateral triangle this problem can in fact be solved
analytically.
The main difficulty is related with the nonfactorizable

potential Ṽ. Its structure is schematically given by the
combination

Ṽ ∼
�
1

x1
þ 1

x2
þ 1

x3
− 9

�
; ð32Þ

assuming (ðp⃗⊥
i Þ2 þm2

i Þ can be approximated by its average
and factor out. The main feature of Ṽ is that it is small near
the center of the triangle, but becomes large at all bounda-
ries, see e.g. its contour plot shown in Fig. 4. Therefore we
call it a “triangular cup.” The singular nature of Ṽ at the
boundaries leads to divergences in matrix elements, unless
the wave functions vanish there. Therefore, the problem we
set to solve must have Dirichlet boundary conditions
ψ iðλ; ρÞ ¼ 0 at the boundaries for all functions.
Quantum mechanics on a triangle with the potential Ṽ

will be solved below, by two numerical methods. But before

we do so, it is always useful to start with a less accurate but
much simpler variational method.
To exclude divergences on the boundaries, the wave

function should vanish, so we simply include linear sup-
pression factors and assume that

Ψðλ; ρÞ ¼
�Y

i

xiðλ; ρÞ
�
Φðλ; ρÞ ð33Þ

with some regular Φ. (This procedure is known in nuclear
and condensed many-body physics, through the use of
Jastrow type wave functions.) Let us then take this regular
function to be a Gaussian centered in the triangle

Φðλ; ρÞ ¼ exp

�
−A

�
λ2 þ

�
ρ −

1ffiffiffi
6

p
�

2
��

ð34Þ

with a variational parameter A. We use (33), evaluate the
average of the Laplacian and of the potential V, and plot
the result as a function ofA in Fig. 5. As expected, increasing
A—that ismaking thewave function better localized near the
center—leads to a growth of the mean Laplacian and a
decrease of the mean V. Taking those two averages with
proper coefficients, one finds a minimum of the total
Hamiltonian.

A. Longitudinal momentum fractions
in factorizable coordinates

The longitudinal motion can be treated in a different way,
by a nonlinear maps with factorizable measure into a new
set of variables. This mapping was developed in [5] for any
number of constituents, in particular it was used for the
three- and five-quark sectors of the baryons.
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FIG. 4. The contour plot of the triangular cup potential Vðλ; ρÞ
on λ, ρ plot.
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Let us parametrize the 3-momentum fractions of the
quarks, using the following three parameters s, t, u:

x1 ¼ u

�
1þ s
2

��
1þ t
2

�
;

x2 ¼ u

�
1 − s
2

��
1þ t
2

�
;

x3 ¼ u

�
1 − t
2

�
: ð35Þ

The longitudinal momentum constraint x1 þ x2 þ x3 ¼ u
will be enforced later u → 1.
The inverse map explains better the meaning of s, t as

“asymmetries,”

s ¼ x1 − x2
x1 þ x2

;

t ¼ x1 þ x2 − x3
x1 þ x2 þ x3

;

u ¼ x1 þ x2 þ x3: ð36Þ

The corresponding metric and Laplacian in the s, t, u
coordinates are listed in Appendix D. The main point is that

the physical domain of the s, t variables is a square, since
both vary between −1 and 1. With the help of appropriate
Jacobi polynomials, one can have factorized orthonormal
basis functions, in terms of which the Hamiltonian matrix
elements can be computed. With some model Hamiltonian
(different from the one used in the present paper), the mass
and wave function for the lowest Δ states have been
evaluated in [5]; see Fig. 6. We show it in order to compare
with the wave functions to be derived below. Note that the
wave function is approximately Gaussian, with strong
suppression near the edges of the physical domain. (It is
rather different from that of the nucleon; see the origi-
nal paper.)
In this paper we will not use the s, t coordinates and the

Jacobi polynomial basis. Yet we note that whatever
coordinates or basis is used, one cannot simply invent a
convenient Hamiltonian in those coordinates, plus what-
ever motivations. In particular, the Laplacian in the original
coordinates should be rewritten using the pertinent expres-
sions from differential geometry. For the s, t map given
above, the Laplacian is involved and listed in Appendix C.

V. NAMBU-GOTO STRING AND CONFINEMENT

A. Confining light-front Hamiltonian

Ignoring Coulomb and spin effects, we start by focusing
on confinement by a relativistic string. The action in the
first quantized form can be written as

S½θ� ¼
Z

T

0

dτ
X3
i¼1

�
eim2

i þ
1

4ei
_x2i

�

þσT
X3
i¼1

Z
T

0

dτ
Z

1

0

dσi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_X2
i X02

i − ð _Xi ·X0
iÞ2

q
: ð37Þ
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FIG. 5. The average Laplacian (top) and Vðλ; ρÞ (bottom)
versus the variational paremeter A. See text.

FIG. 6. The wave function of Δð3=2Þ baryon, in s, t coor-
dinates, from [5].
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In the first term, describing end point masses, we use the
einbein trick which we will use consistently throughout
these papers to get rid of unwanted square roots. Note that
if one performs minimization with respect to the three
einbein parameters ei, it yields back the standard free
relativistic action for massive particles (in Euclidean
signature).
The string world-sheet action in the Nambu-Goto action

includes derivatives over internal coordinates τ, σ shown by
a dot and prime, respectively. The world sheets themselves
can be described by the so called “ruled surfaces,” para-
metrized by

Xμ
i ðτ; σi; θÞ ¼ zμðτ; θÞ þ σir

μ
i ;

rμi ¼ ðri⊥; ri3; 0Þ;
zμðτ; θÞ ¼ ð0⊥; sin θτ; cos θτÞ; ð38Þ

with zμðτ; θÞ being the world line of the string junction.
(Our notations for the coordinates are 1, 2 for transverse, 3
for longitudinal beam direction, and 4 for time.)
For baryons in the so-called star configuration, the string

junction and the end points follow parallel trajectories,
sloped at angle θ with respect to the 4-direction. For θ ¼ 0,
the analysis corresponds to a star baryon in the rest frame.
For arbitrary θ with subsequent analytical continuation
θ → −iχ, the analysis corresponds to a star baryon on the
light front.
As already explained above, to factor out spurious

motion of the center of mass, we use Jacobi coordinates.
For equal quark masses

m1 ¼ m2 ¼ m3 ¼ mQ;

the center of mass coincides with the location of the string
junction zμ. Also, although the einbeins are arbitrary and
fixed only by minimization for the free part, symmetry
suggests that the minima are equal or e1 ¼ e2 ¼ e3 ¼ e,
with only e to minimize, by steepest descent. This will be
assumed throughout.
The specific form of the Jacobi coordinates for the end

points is

rμ1 ¼
1ffiffiffi
6

p rμλ þ
1ffiffiffi
2

p rμρ;

rμ2 ¼
1ffiffiffi
6

p rμλ −
1ffiffiffi
2

p rμρ;

rμ3 ¼ −
ffiffiffi
2

pffiffiffi
3

p rμλ ; ð39Þ

with a kinetic contribution

Z
T

0

dτ

�
3em2

Q þ 3

4e
þ 1

4e
ð _rλ2 þ _rρ2Þ

�
ð40Þ

in (37). The Nambu-Goto string contribution is

Z
T

0

dτσT
X3
i¼1

jξiðθÞj ð41Þ

with the invariant distances

jξiðθÞj ¼ ðr2i⊥ þ cos2 θr2i3Þ
1
2;

or, in the Jacobi coordinates

ξ21ðθÞ ¼
1

6
r2λ⊥ þ 1

2
r2ρ⊥

þ 1

6
rλ⊥ · rρ⊥ þ cos2θ

�
1ffiffiffi
6

p rλ3 þ
1ffiffiffi
2

p rρ3

�
2

;

ξ22ðθÞ ¼
1

6
r2λ⊥ þ 1

2
r2ρ⊥

−
1

6
rλ⊥ · rρ⊥ þ cos2θ

�
1ffiffiffi
6

p rλ3 −
1ffiffiffi
2

p rρ3

�
2

;

ξ23ðθÞ ¼
2

3
r2λ⊥ þ 2

3
cos2θr2λ3: ð42Þ

The full action (prior to analytical continuation) is (40)
plus (41)

S½θ� →
Z

T

0

dτ

�
3em2

Q þ 3

4e

þ 1

4e
ð _rλ2 þ _rρ2Þ þ σT

X3
i¼1

jξiðθÞj
�
: ð43Þ

B. Going to the light-front frame

For θ → −iχ and T → iTM, (43) analytically continues
to the light-front Hamiltonian or squared mass

HLF ¼
X3
i¼1

�
k2i⊥þm2

Q

xi
þ2σTðji∂=∂xij2þM2r2i⊥Þ

1
2

�
ð44Þ

with the constraints: transverse
P

3
i¼1 ki⊥ ¼ P⊥ ¼ 0 and

longitudinal
P

3
i¼1 xi ¼ 1, with the standard momentum

fractions xi ¼ kþi =P
þ.

C. A digression to 1 + 1 space-time

The Hamiltonian derived above contains nonfactorizable
interaction between the longitudinal and transverse coor-
dinates which make the problem difficult. So, before we
will address it in full, let us discuss its longitudinal part
alone. The Hamiltonian (44) is then reduced to
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HLF;L ¼
X3
i¼1

�
m2

Q

xi
þ 2σT ji∂=∂xij

�
: ð45Þ

For a baryon in the star configuration, (66) yields a
longitudinal squared mass spectrumM2

n, and parton ampli-
tudes φn½x�

X3
i¼1

�
m2

Q

xi
þ 2σT ji∂=∂xij

�
φn½x� ¼ M2

nφn½x�: ð46Þ

Modulo the effective string tension from the three-
dimensional reduction, (46) is similar to the baryonic
equation derived in three-dimensional QCD [12,13].
Equation (46) can be regarded as the eigenvalue prob-

lem, for three identical particles with parton-x coordinates,
moving in a box 0 ≤ xi ≤ 1. If one naively substitutes the
potential by vanishing (Dirichlet) boundary condition
φnðxi ¼ 0; 1Þ ¼ 0, the eigenstates are standing waves, e.g.

φn½x� ≈ 2
3
2ðsinðn1πx1Þ sinðn2πx2Þ sinðn3πx3ÞÞ ð47Þ

with eigenvalues

M2
n ≈ 2πσTðjn1j þ jn2j þ jn3jÞ ð48Þ

that Reggeize along the diagonal n1;2;3 ¼ n ≫ 1 as

α0M2
n ≈ 3n: ð49Þ

The factor of 3 reflects on the star configuration with three
strings.
Unfortunately, this solution is very naive, for several

reasons. The most obvious is that the independent quan-
tization of three quarks in a box ignores the important
momentum conservation constraint

X ¼ x1 þ x2 þ x3 ¼ 1

and therefore contains spurious center of mass motion. As
already discussed in the previous section, one can use other
coordinates which are center of mass free. In particular, the
Jacobi coordinates lead to a problem with two particles
inside the equilateral triangle.
To solve this problem, we proceed in two steps. First, we

unwind the square roots by using the einbein trick once
again

X3
i¼1

���� i∂
∂xi

���� ¼ 1

2

�
1

eiL
þ eiL

�
i∂
∂xi

�
2
�

→
1

2

�
3

eL
þ eL

X3
i¼1

�
i∂
∂xi

�
2
�

ð50Þ

and assume equal eiL ¼ eL at the extrema, in the
steepest descent approximation. Second, we isolate the
center-of-mass coordinate, using Jacobi coordinates (18).

The 3-particle Laplacian in those coordinates is the sum of a
2-particle reduced Laplacian, plus derivative of the center-
of-mass variable

X3
i¼1

�
i∂
∂xi

�
2

¼
�
i∂
∂λ

�
2

þ
�
i∂
∂ρ

�
2

þ 3

�
i∂
∂X

�
2

: ð51Þ

For fixed center of massX ¼ 1, (18) maps the confining box
region B ¼ ½0; 1�3 for the coordinates xi, to an equilateral
triangle ΣðxÞ of side L ¼ ffiffiffi

2
p

, with corners located at

ðλ; ρÞ ¼
�
−

ffiffiffi
2

3

r
; 0

�
;

�
1ffiffiffi
6

p ;
1ffiffiffi
2

p
�
;

�
1ffiffiffi
6

p ;−
1ffiffiffi
2

p
�
:

The corners correspond to one particle carrying all the
momentum, with the two others at rest.
The eigensystem of the first two terms in the Laplacian

(now free from the center of mass motion) amounts to
solving

−
�
∂
2

∂λ2
þ ∂

∂ρ2

�
φmL;nLðλ; ρÞ ¼ emLnLφmL;nLðλ; ρÞ ð52Þ

inside the triangle Σ, with Dirichlet boundary condition
φmL;nLð∂ΣÞ ¼ 0. Remarkably, although the solutions are
not available for generic triangles, they are in fact known
for equilateral triangles in closed form, found in [14]. Their
existence is due to the finite number of ray reflections,
which make a closed set, as explained in Appendix E. The
spectrum of the Laplacian is given by

eDmLnL ¼
�
4π

3L

�
2
��

mL −
nL
2

�
2

þ 3

4
n2L

�
≡ ẽDmLnLπ

2 ð53Þ

with integer valued longitudinal quantum numbers mL, nL,
restricted bymL≥2nL. The states withmL>2nL are doubly
degenerate, with normalized eigenstates [14]

φDc
m;nðλ; ρÞ ¼

4

L3
3
4

�
cos

�
2πð2mL − nLÞρ

3L

�
sin

�
2πnLλ̃ffiffiffi

3
p

L

�

− cos

�
2πð2nL −mLÞρ

3L

�
sin

�
2πmLλ̃ffiffiffi

3
p

L

�

þ cos
�
2πðmL þ nLÞρ

3L

�
sin

�
2πðmL − nLÞλ̃ffiffiffi

3
p

L

��

φDs
m;nðλ; ρÞ ¼

4

L3
3
4

�
sin

�
2πð2mL − nLÞρ

3L

�
sin

�
2πnLλ̃ffiffiffi

3
p

L

�

− sin

�
2πð2nL −mLÞρ

3L

�
sin

�
2πmLλ̃ffiffiffi

3
p

L

�

− sin

�
2πðmL þ nLÞρ

3L

�
sin

�
2πðmL − nLÞλ̃ffiffiffi

3
p

L

��
ð54Þ
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with λ̃ ¼ λþ L=
ffiffiffi
3

p
. Their symmetry properties include

e.g. ρ mirror symmetry

φDc;s
mL;nLðλ;−ρÞ ¼ �φDc;s

mL;nLðλ; ρÞ: ð55Þ

The Dirichlet states with mL ¼ 2nL are nondegenerate,
with normalized eigenstates [14]

φD
2nL;nL

ðλ; ρÞ

¼ 2
3
2

L3
3
4

�
2 cos

�
2πnLρ
L

�
sin

�
2πnLλ̃ffiffiffi

3
p

L

�
− sin

�
4πnLλ̃ffiffiffi

3
p

L

��
:

ð56Þ

Since (54)–(56) are separable in ðλ; ρÞ and harmonic,
they are readily seen to solve (51). The proof that these
solutions form an orthonormal set on the triangle is non-
trivial, but we checked a number of cases explicitly.
Implicitly, it follows from the observation that the mode
number following from (53) saturates the so-called Weyl
area rule [14].
We identify the ground state from the tower of states (56)

with nL ¼ 1, and its radial excitations with nL > 1. In
Fig. 7 we show the probability distributions for nL ¼ 1, 2.
These states are shown to Reggeize below. We further

note that (56) can be recast as three standing waves with
three “momenta” k̃

φD
2nL;nL

ðλ; ρÞ

¼ 2
7
2

L3
3
4

sin

�
2πnLk̃0ffiffiffi

3
p

L

�
sin

�
πnLk̃þffiffiffi

3
p

L

�
sin

�
πnLk̃−ffiffiffi

3
p

L

�
ð57Þ

in the triangular domain limited by the sides

k̃0 ¼
ffiffiffi
3

p
L=2; k̃� ¼ λ̃�

ffiffiffi
3

p
ρ ¼ 0:

Remarkably, in the original x-Bjorken coordinates the
standing waves (57) are identical to those in (47), for fixed
X ¼ x1 þ x2 þ x3 ¼ 1, i.e.

φD
2nL;nL

ðx1; x2; x3Þ

¼ ð−1Þnþ1
23

X3
3
4

sin

�
nLπx1
X

�
sin

�
nLπx2
X

�
sin

�
nLπx3
X

�
:

ð58Þ

[This observation perhaps allows for the extension of the
Dirichlet standing states and their excitations, to the states
of more exotic hadrons with N > 2 compact multiquark
content—tetraquarks, pentaquarks, hexaquarks

φD
nLðx1;…; xNÞ ¼

CN

X

YN
i¼1

sin

�
nLπxi
X

�
ð59Þ

with X ¼ P
N
i¼1 xi, and the normalization CN fixed by the

polygonal volume, set by the longitudinal momentum
constraint X ¼ 1. The meson case with N ¼ 2, of course
requires a single standing wave, as we used in our previous
papers.]
Using (53), the contribution of the Laplacian to the

baryon spectrum is

ΔM2
mLnL ≈2πσT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3ẽDmLnL

q

≈
�

4ffiffiffi
6

p
��

2πσT

��
mL−

nL
2

�
2

þ3

4
n2L

�1
2

�
: ð60Þ

For large quantum numbers, it Reggeizes into a linear
dependence. For the ground state and its radial excitations
series, withm ¼ 2n in (56), its contribution to the spectrum
can be compared to the conventional Regge trajectory of
the mesons n ¼ α0M2 with α0 ¼ 1=2πσT

α0ΔM2
2nL;nL

≈ 2
ffiffiffi
2

p
nL: ð61Þ

FIG. 7. Probability distribution jϕD
2nL;nL

j2 for nL ¼ 1 (top)
and nL ¼ 2 (bottom) in the λ, ρ plane, with manifest mirror
symmetry in ρ.
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There is an additional factor of 2
ffiffiffi
2

p
≈ 2.83 to be also

compared with the Regge slope from the spurious spectrum
(49), where this factor is just 3, the number of strings.
Let us add the following consideration. Although the

“cup” potentialV ¼ P
m2

Q=xi was not yet included, its very
existence—especially for heavy masses m2

Q=2σT ≫ 1—
motivated us to look at standing waves that vanish at the
cup’s boundaries. In the opposite limit of light quarks
m2

Q=σT ≤ 1we can ignore the confining potential as a small
perturbation, and thus ignore its end-point constraint.
(Recall that mQ is not the “Lagrangian” quark mass but
an effective one, including the constituent quark mass. So
even for light quarksmQ∼350MeV,while

ffiffiffiffiffi
σT

p ≈400MeV,
this limit may be of academic interest only.)
In this case, it is perhaps more appropriate to use free

end-point or Neumann boundary conditions

φ0
nLðxi ¼ 0; 1Þ ¼ 0

so as to minimize the kinetic contribution for the excited
states. Again, the eigenstates free of center-of-mass motion
can be sought using also the ray reflection method, as we
suggest in Appendix E.
In particular, the Neumann analog of the tower of

Dirichlet standing states (57) built on the ground state is
readily found as

φN
2nL;nL

ðλ;ρÞ

¼ 2
7
2

L3
3
4

cos

�
2πnLλ̃ffiffiffi

3
p

L

�
cos

�
πnLλ̃þffiffiffi

3
p

L

�
cos

�
πnLλ̃−ffiffiffi

3
p

L

�
ð62Þ

or equivalently in x-Bjorken

φN
2nL;nL

ðx1; x2; x3Þ

¼ ð−1ÞnL 23

X3
3
4

cos

�
nLπx1
X

�
cos

�
nLπx2
X

�
cos

�
nLπx3
X

�
ð63Þ

with X ¼ 1 subsumed. The solutions (62) satisfy Neumann
boundary conditions in the triangular domain by inspec-
tion, with the same spectrum and Regge trajectory as
Dirichlet formL¼2nL, i.e. eN2nL;nL ¼ eD2nL;nL but with nL ¼ 0

a priori allowed.

D. Spectrum of the diagonal part of the HamiltonianH0

Our light-front Hamiltonian contains three parts,

HLF ≈H0⊥ þH0xi þ ṼLF:

The first two are transverse oscillator and longitudinal
triangular cup: for both of them we managed to find their
complete set of eigenfunctions. The remaining residual part

is not amenable to analytic integration and will be treated
numerically. Also we use the einbein trick to get rid of the
square roots in the confining term

HLF ≈
X3
i¼1

�
k2i⊥ þm2

Q

xi

þ σT

�
3aþ 1

a

X3
i¼1

ðji∂=∂xij2 þ ð3mQÞ2b2i⊥Þ
��

ð64Þ

with M ≈ 3mQ used on the right-hand side to close the
mass squared operator. Again, we assumed equal einbeins
ai → a in (64) by steepest descent. To the first kinetic term
we add and subtract its value at xi ¼ 1

3
, producing an

oscillator with fixed frequency, and a residual potential Ṽ
which is close to zero at the center of the triangular cup.
In terms of the Jacobi coordinates, the diagonalizable

part reads

H0LF ¼ 3ðp⃗2
ρ þ p⃗2

λ þ 3m2
QÞ

þ σT
a
ðji∂=∂λj2 þ ji∂=∂ρj2 þ ð3mQÞ2ðb⃗2λ þ b⃗2ρÞÞ

ð65Þ

where all the vectors are in the transverse plane, and b⃗λ; b⃗ρ
are coordinates conjugate to the corresponding momenta.
To elucidate the dependence on a we rewrite it as

M2
0ðnλ;nρ;nL;mLÞ
¼ ð3mQÞ2þ

σTffiffiffi
a

p M2⊥ðnλ;nρÞþ
σT
a
M2

LðmL;nLÞþ3σTa

ð66Þ

with

M2
LðnL;mLÞ ¼ eDnL;mL

;

M2⊥ðnλ; nρÞ ¼
6

ffiffiffi
3

p
mQffiffiffiffiffi
σT

p ðnλ þ nρ þ 2Þ: ð67Þ

The einbein in (66) minimizes the squared mass and is
solution to the quartic Ferrari equation

6
ffiffiffi
a

p
4 −M2⊥

ffiffiffi
a

p
− 2M2

L ¼ 0:

For large longitudinal quantum numbers nL;mL ≫ 1 the
squared mass Reggeizes

M2
0 ≈ 2

ffiffiffi
3

p
σTML

as we noted earlier. However, for large transverse quantum
numbers nλ; nρ ≫ 1 the squared mass does not,
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M2
0 ≈ 18σT

�
M2⊥
6σT

�2
3

: ð68Þ

Recall that the results following from H0LF are still
to be modified by the additional residual contributions,
stemming from ṼLF to be added below, but which are
independent of our variational parameter a. Therefore
the minimization over a can already be performed numeri-
cally. With our standard values for the string tension
σT ¼ ð0.4 GeVÞ2, and quark masses b, c, s, q, we show
in Fig. 8 the dependence on a of the lowest eigenvalue for
each species.

VI. THE NONFACTORIZABLE POTENTIAL Ṽ

The nonfactorizable part of the potential is

Ṽ ¼ p⃗2
1 þm2

Q

x1
þ p⃗2

2 þm2
Q

x2

þ p⃗2
3 þm2

Q

x3
− 3ðp⃗2

1 þ p⃗2
2 þ p⃗2

3Þ − 9m2
Q: ð69Þ

Using the Jacobi coordinates for the transverse and longi-
tudinal momenta, we get

Ṽ ¼ −ðð3ð−2pλpρð
ffiffiffi
6

p
− 6λÞρþ 9m2

Qð2λ2 þ
ffiffiffi
6

p
λ3

þ 2ρ2 − 3
ffiffiffi
6

p
λρ2Þ þ p2

λð9λ2 þ 3
ffiffiffi
6

p
λ3 þ 3ρ2

þ
ffiffiffi
6

p
λð1 − 9ρ2ÞÞ þ p2

ρð3λ2 þ 3
ffiffiffi
6

p
λ3 þ 9ρ2

−
ffiffiffi
6

p
λð1þ 9ρ2ÞÞÞÞ

×

�
1

−2þ 9λ2 þ 3
ffiffiffi
6

p
λ3 þ 9ρ2 − 9

ffiffiffi
6

p
λρ2

�
: ð70Þ

For zero orbital motion, the two oscillators are independent,
and the term hpλpρi vanishes on average. hp2

λi and hp2
ρi are

directly related to the number of quanta nλ, nρ, and so one
has to calculate only the matrix entries in terms of all
possible longitudinal quantum numbers hnL;mLjṼjn0Lm0

Li,
see Appendix F.

A. Masses of the states

With the evaluation of the matrix Ṽ and its eigenvalues,
our technical task is completed. We now can finally carry
the calculation of the full eigenvalues—squared masses of
the flavor symmetric baryons, for the four quark flavors b,
c, s, q. We keep here longitudinal quantum numbers to
their lowest values nL ¼ 1, mL ¼ 2, and assume that the
transverse oscillators are excited as a function of a
single n ¼ ðnρ þ nλÞ=2.
Our results for squared masses are shown in black

symbols in Fig. 9. For comparison, we show the exper-
imental masses in red hexagons. The blue hexagons are
available model predictions for ccc and bbb baryons. Since
a constant in LF Hamiltonian remains undefined, we fixed
one constant for all masses, so that the mass of the uuu
baryonΔþþ is set to experimental one. For definiteness, the
plots correspond to effective masses of u, s, c, b quarks to

q

c

s

b

1 2 5 10 20

5

10

20

50
ΔM(a)^2

FIG. 8. The lowest eigenvalue of H0LF in GeV2 versus the
(dimensionless) “einbine parameter” a, for b, c, s, q quarks.
Using this plot we perform the minimization in a.

b

s

c

q

0 1 2 3 4 5 6 7
1

5

10

50

100

FIG. 9. Squared masses of baryons M2
nþ1ðQ; 3

2
Þ in GeV2 versus

the principal quantum number nþ 1 ¼ 1..7. The black circles,
triangles, squared, and pentagons are results of our calculations
for the flavors b, c, s, q. The red hexagons are the experimental
values of three Δþþ and oneΩ− masses, from PDG. The two blue
hexagons are model predictions for masses of ccc and bbb
baryons, from Table I.
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be 0.28, 0.45, 1.5, 4.8 GeV, respectively, not specially fitted
to this plot but inherited from meson studies.
Finally, let us remind the reader that all the calculations

were done for traditional star or Y model of confinement.
Transition to (perhaps more accurate) Ansatz A leads to the
same Hamiltonian with a string tension rescaling (21),
downwards by about 13% like one has observed it in static
potentials.

VII. WAVE FUNCTIONS OF THE STATES

Our main results are not the masses of the 3
2
þ states and

their radial excitations, but their corresponding wave
functions. The ground states in all channels have a trans-
verse momentum dependence that is about Gaussian, e.g.
ψðp⊥Þ ∼ expð−β2p2⊥=2Þ. The scale parameter β is related
to the mass and frequency of the effective oscillator μ, ω,

β ¼ ffiffiffiffiffiffi
μω

p ¼
�

a
3m2

QσT

�1
4

: ð71Þ

The mean square of the transverse momentum is approx-
imately

hp2⊥i ≈ β−2 ≈ 0.942; 0.466; 0.183; 0.104 ðGeV2Þ ð72Þ

for the b, c, s, q 3=2þ single-flavor baryons.
The longitudinal wave functions for heavy quark masses

mQ are defined mainly by the Oðm2
QÞ part of the potential

Ṽ. They are discussed in Appendix E, and illustrated in
Fig. 12 by the solid black line. In general, since the
Hamiltonian is H0 plus Ṽ, the wave functions lie between
their eigenfunctions, or between the solid and dashed line
in Fig. 12. We note that the difference is mostly around the
negative maximum of λ, or when x3 is close to 1. Since the
triangle is equilateral and the wave function is symmetric,
this implies that the suppression in fact occurs near all three
corners of the triangle.

VIII. LONGITUDINAL WAVE FUNCTIONS, FOR
TWO-STRING OR V CONFIGURATION

Finally, we now show how the baryon configuration with
a “quark-on-junction,” or two-string V configuration, once
reduced to a longitudinal part, can also be solved. In this
configuration, the central quark can be e.g. a heavy one, or
it can be a d quark jumping between two us (reminiscent to
the 1-folded string [15]). In this case it is more convenient
to use another set of coordinates

x1¼
1

3
þy1; x2¼

1

3
þy2−y1; x3 ¼

1

3
−y2; ð73Þ

which are also canonically conjugate ½yi; ri� ¼ iδij. In those
variables the physical domain is an isosceles triangle with

corners at ð2=3; 1=3Þ, ð−1=3;−2=3Þ, ð−1=3; 1=3Þ, or half
the two-dimensional square.
With this in mind, we can recast (46) as

M2
nφn½y� ¼

�
m2

1
1
3
þ y1

þ m2
2

1
3
þ y2 − y1

þ m2
3

1
3
− y2

þ 2σTðji∂y1 j þ ji∂y2 jÞ
�
φn½y�: ð74Þ

Using again the einbein trick to make the confining part
quadratic, and changing the momenta to derivatives over
coordinates, yields a similar eigenvalue problem as that for
the star configuration. The only difference is that the cup
potential is now an isosceles triangle instead of an equi-
lateral one. Remarkably, the Laplacian problem on it also
admits an exact solution, by the eikonal ray construction
the same as for the equilateral case. The solutions are the
superposition of the symmetric and antisymmetric standing
waves on the unit square

φ�
mL;nLðx1;x3Þ
¼

ffiffiffi
2

p
ðsinðmLπx3ÞsinðnLπx1Þ� sinðnLπx3ÞsinðmLπx1ÞÞ

ð75Þ

with y1;2 reexpressed in terms of parton x1;3 given in (73),
and the corresponding eigenvalues

eþmL;nL ¼ π2ðm2
Lþn2LÞ; mL ¼ nL� 1; nL� 3;

e−mL;nL ¼ π2ðm2
Lþn2LÞ; mL ¼ nL� 2; nL� 4: ð76Þ

Equation (75) is symmetric or antisymmetric under
the exchange of x1;3 (exchange of the u-quarks at
the end points), and both vanish for parton-x x1;3 ¼ 0 and
x1 þ x3 ¼ 1 or equivalently x2 ¼ 0, as expected. The
lowest state corresponds to mL ¼ nL þ 1 ¼ 2, with a
PDF for the u-quark

uðx1Þ ¼
Z

1−x1

0

dx3jφþ
21ðx1; x3Þj2 →

ð2π2Þ2
3

ð1 − x1Þ5 ð77Þ

which is again very soft at large parton-x.
The V-string quantum spectrum follows the same rea-

soning as that for the star baryon, with the result

α0M2
m� ¼ ðm2þ þm2

−Þ12 ð78Þ

where m� ¼ mL � nL. Equation (78) Reggeizes with the
meson slope of 1 along m−. These Regge trajectories are
the quantum states in correspondence with the classical yo-
yo states, noted in [15].
With the inclusion of the “cup potential” induced by

the kinetic energy we also solved the problem numerically.
The lowest state on this triangle is shown in Fig. 10 (top).
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In a standard way we also calculated DAs and PDFs for
quarks: due to lack of symmetry, they are different for those
in 45° and 90° corner quarks. The PDF for the former is
shown in Fig. 10 (bottom), and as one can see it also is way
too “soft” at x → 1 as compared to the observed PDF of
the nucleon.

IX. CONCLUSIONS

We start by recalling the chief goals of this series of
papers, namely to bring together the QCD studies of
hadronic spectroscopy and light-front observables—DAs,
PDFS, generalized parton distributions (GPDs), etc. The
use of the light-front formulation brings in certain issues,
but enforces relativistic kinematics, for both the light and
heavy quarks, and allows the study of their bound state
structure in a single framework.
We believe that hadronic physics should have the same

logical and methodical structure, as that in atomic and
nuclear physics. Quantum dynamics should be defined by a
Hamiltonian, which can be simplified at first but focus on
the main physics. For example, in this paper we have
included the kinetic term and the confining term only,
leaving the more complicated contributions (Coulomb and
spin-dependent forces) for next studies.

Once the Hamiltonian is defined, its diagonalization
yields physical states, which automatically possess such
basic properties as mutual orthogonality. This part of the
problem is rather technical and took most of this paper. We
have shown that one can do so, either by using diagonal-
ization in a certain basis set, or numerically solve for wave
functions (as we did for longitudinal ones). Any wave
function is complete, in the sense that one can calculate any
observable from it, say various PDFs, GPDs, and form
factors by standard general formulas. Of course, those are
defined at a normalization scale with low resolution, at
which gluons and antiquarks are suppressed. Comparison
with data at a high resolution scale of experiments should
include their evolution by well-developed perturbative
QCD tools.
In our attempts to derive the light-front Hamiltonian

HLF we have focused on the nonperturbative interquark
interaction. We started by relating the lattice data to a few
simple models of confinement, Y, V, and A models. They
follow from relativistic QCD strings (flux tubes) with a
linear dependence on the size of the baryon. Then we
performed our own evaluation of the three-quark potentials
from Wilson line correlators, based on a semiclassical
model of the Euclidean QCD vacuum using a dense
instanton liquid. We find a reasonably good agreement
between the results and lattice numerical data. We also see
that out of three empirical models, the Ansatz A seems to be
the closest to these potentials.
The important distinctions between our approach and

other versions of HLF in the literature are, among others,
the following:
(1) HLF is derived from established QCD lattice facts.
(2) We do not rush to fit any parameters to the

experimental data but use only standard values for
the effective quark masses, and the string tension σT .

(3) We do not even start with the nucleon, for which
obviously there is large set of experimental data, but
study single-flavor baryons because they should not
have strong diquark clustering which is known to be
flavor-antisymmetric.

(4) We do not focus on only the ground state but
consider several excited states in each quark chan-
nel, so that the dependence on principal and orbital
quantum numbers can be available. It is imperative
that the Hamiltonian used does have reasonable
predictions for many states, at least they approx-
imately reproduce the expected Regge behavior.

This paper is mostly technical in nature, in it we showed
how one can solve the quantum mechanical problem of
three identical quarks, given their interaction by a confining
string. Unlike other approaches in the light-front literature,
we use as many degrees of freedom as needed: six Jacobi
coordinates/momenta for three-quark baryons. There is no
need to “subtract spurious center of mass motion.” We do
quantum mechanics in momentum representation, and
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FIG. 10. Top: ground state wave function φþ
21ðx1; x3Þ of the V

baryon in (75). Bottom: corresponding PDF for the ground state
in (77).
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therefore, in the longitudinal direction we show how to
solve a Schrödinger-like equation on a physical triangle.
The “unfactorizable” potential is defined, set into its
minimal form, and its effect on the wave functions is
evaluated by diagonalization in the appropriate basis or by
numerical solution for a subset of degrees of freedom.
This paper focuses on flavor symmetric (QQQ) baryons

with maximal spin 3
2
, the most symmetric setting to start

with. Perturbative Coulomb forces—believed to be impor-
tant for heavy quarks—are not yet included, as well as
spin-dependent forces. Effects related to a ’t Hooft instan-
ton-induced Lagrangian—believed to be important for light
quarks and contributing to “diquark” correlations—will be
discussed in the sequel of this series [4].
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APPENDIX A: AVERAGING OVER
THE SUð3Þ ROTATIONS

The color averaging over the unitary matrices can be
carried using the Weingarten coefficients

hUa1
c1U

†b1
d1

Ua2
c2U

†b2
d2

Ua3
c3U

†b3
d3

iU

¼ þ ðN2
c − 2Þ

NcðN2
c − 1ÞðN2

c − 4Þ
X3!
n¼1

δa1a2a3ðd1d2d3Þnδ
c1c2c3
ðb1b2b3Þn

−
1

ðN2
c − 1ÞðN2

c − 4Þ

×
X3!
n¼1

δa1a2a3ðd1d2d3Þnðδ
c1c2c3
ðb2b1b3Þn þ δc1c2c3ðb1b3b2Þn þ δc1c2c3ðb3b2b1ÞnÞ

þ 2

NcðN2
c − 1ÞðN2

c − 4Þ

×
X3!
n¼1

δa1a2a3ðd1d2d3Þnðδ
c1c2c3
ðb3b1b2Þn þ δc1c2c3ðb2b3b1ÞnÞ ðA1Þ

where the shorthand notation used

δa1a2a3ðd1d2d3Þn ≡
X3!
n¼1

ðδa1d1δ
a2
d2
δa3d3 þ perm:Þ ðA2Þ

refers to the product of three Kroneckers in the sum over the
n! permutations of the permutation group S3. Inserting (A1)
into (9), and using the identities in [16], we have

þ
��

2

Nc

�
3

c1c2c3

�
δa1b1δ

a2
b2
δa3b3

þ
�

1

2NcðN2
c − 1Þ c1Trð−is2τ · n2λ

A
2 ÞTrð−is3τ · n3λA3 Þ

�
δa1b1ðλB2 Þ

a2
b2
ðλB3 Þa3b3 þ 2 perm:

þ
�

Nc

8ðN2
c − 1ÞðN2

c − 4Þ d
IJKTrð−is1τ · n1λI1ÞTrð−is2τ · n2λJ2ÞTrð−is3τ · n3λK3 Þ

�
dABCðλA1 Þa1b1ðλB2 Þ

a2
b2
ðλC3 Þa3b3

þ
�

8

8NcðN2
c − 1Þ f

IJKTrð−is1τ · n1λI1ÞTrð−is2τ · n2λJ2ÞTrð−is3τ · n3λK3 Þ
�
fABCðλA1 Þa1b1ðλB2 Þ

a2
b2
ðλC3 Þa3b3 ðA3Þ

which is explicit in terms of the invariants of SUð3Þc.
Furthermore, the SUð2Þc color structure of the instanton is
not enough to support the last two terms with f, d structure
constants in (A3).

APPENDIX B: THE EINBEIN TRICK

For completeness, we briefly recall the use of the einbein
trick. Consider an expression (operator X) of the form

X →
1

2

�
aX2 þ 1

a

�
ðB1Þ

with a variational parameter a. The right-hand side can be
readily used in a Hamiltonian. Noting that the right-hand

side has a minimum as a function of a, and that its value at
the minimum is the left-hand side, the latter follows from
the former.
This trick is used in Sec. III B to eliminate the square root

of the relativistic kinetic energy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
in the c.m.

frame, and in the rest of the paper by changing from linear
confinement to its quadratic form.

APPENDIX C: LAPLACIAN OPERATOR
AND BASIS FUNCTIONS FOR s, t MAP (35)

Given a coordinate mapping ym ¼ ðs; t; uÞ, there is a
well-defined procedure for the rewriting of the Laplacian in
differential geometry, using the metric tensor g,
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g ¼

2
664
1=8ðu2 þ 2tu2 þ t2u2Þ 1=8ðsu2 þ stu2Þ 1=8ðsuþ 2stuþ st2uÞ

1=8ðsu2 þ stu2Þ 1=8ð3u2 þ s2u2Þ 1=8ð−uþ s2uþ 3tuþ s2tuÞ
1=8ðsuþ 2stuþ st2uÞ 1=8ð−uþ s2uþ 3tuþ s2tuÞ 1=8ð3þ s2 − 2tþ 2s2tþ 3t2 þ s2t2Þ

3
775: ðC1Þ

The covariant Laplacian is given by the expression

L ¼ 1ffiffiffi
g

p ∂

∂ym
ffiffiffi
g

p
gmn ∂

∂yn
ðC2Þ

where gmn is the inverse matrix to gmn in (C1), and
g ¼ detðgmnÞ. Only the determinant is simple enough to
be quoted here

g ¼ u4

64
ð1þ tÞ2:

The full expression for the Laplacian is involved and will
not be given here. Fortunately one of the variables—the
“scale” u—can be set to one, and all derivatives over
it neglected. Then the result takes the somehow simple
form

L½ϕ� ¼ 1

ð1þ tÞ2
�
þ2ð1þ tÞ2ð−1þ3tÞ∂ϕðs;tÞ

∂t

þð3þ4tþ2t2þ4t3þ3t4Þ∂
2ϕðs;tÞ
∂t2

þ16s
∂ϕðs;tÞ

∂s

þð−8sþ8st2Þ∂
2ϕðs; tÞ
∂t∂s

þð8þ8s2Þ∂
2ϕðs;tÞ
∂s2

�
:

ðC3Þ

The physical wave functions must have boundary con-
ditions that are consistent with finiteness of the Laplacian.
(And the “nonfactorizable” potential Ṽ, which is propor-
tional to 1=ðx1x2x3Þ and thus singular at the boundaries.)
Therefore all wave functions can be supplied with some
suppression factors, which for this map may take a
factorized form

Ψðs; tÞ ¼ ð1 − s2Þð1 − tÞað1þ tÞbΦðs; tÞ

with some parameters a, b ensuring finiteness of all matrix
elements. The remaining nonsingular function Φðs; tÞ can
be conveniently expressed as products of Jacobi polyno-
mials PA;B

n ðsÞPC;D
n0 ðtÞ, with indices A, B, C, D related to a,

b and the invariant measure
ffiffiffi
g

p
.

APPENDIX D: BASIS FUNCTIONS
FOR TRANSVERSE MOMENTA

The LFWFs part depends on two (Jacobi) transverse
momenta (16) ρ⃗⊥; λ⃗⊥, via a double set of 2d Harmonic

oscillator wave functions. Those are the same as the ones
we used in our previous papers for mesons. They can be
written in compact form using generalized Laguerre
polynomials

ψn;mðp⊥; βÞ ¼
ffiffiffi
2

p

2π
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþ jmjÞ!

s
e−p

2⊥β2=2þimϕ

× ðp⊥βÞjmjLjmj
n ðβ2p2⊥Þ ðD1Þ

where p⃗⊥ stands for ρ⃗ or λ⃗. The value of beta comes from
H0 as discussed in Sec. V D.

APPENDIX E: CONFINED QUANTUM WAVES
IN AN EQUILATERAL TRIANGLE

In this appendix, we outline the derivation of the
confined quantum waves by an equilateral triangle, which
leads to (54)–(56), as solutions to the two-dimensional
Shrödinger equation (51), with the result given in [14]. In
the absence of the confining boundary conditions, the
solutions are separable in harmonic waves e�ik·r, with k⃗ ¼
ðkx; kyÞ a two-dimensional real wave vector in the ðx; yÞ
coordination used in [14] (or x ¼ ρþ L=2 and y ¼ −λþ
L=2

ffiffiffi
3

p
in our coordination) as illustrated in Fig. 11.

The triangle confines the waves, by enforcing the wave
amplitudes to vanish at the triangle edges. We now
explain how.

FIG. 11. Equilateral triangle used for the light-ray construction,
with the k1;2 rays shown. See text.
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Following the construction outlined in [14], consider the
equilateral triangle with corners ðx; yÞ ¼ ð0; 0Þ; ð0; LÞ;
ðL=2; ffiffiffi

3
p

L=2Þ in the labeling of [14] [our triangular
domain in ðλ; ρÞ followed by the mapping quoted above].
A ray in the equilateral triangle with arbitrary wave-vector
k⃗ can undergo six distinct reflections before emerging
parallel to itself (arbitrary triangles would not close under
reflection). Each pair of rays at the triangle side fulfills the
null amplitude condition. As a result, we can pair the rays at
each side, to generate the solution to (51) with triangular
confining walls, by superposition thanks to the linearity of
the Sturm-Liouville problem. Six ray reflections map the
equilateral triangular phase space onto that of a torus phase
space and close the reflection cycle. We note that half the
equilateral triangle, and the right-angle isosceles triangle
(half of a square) are two other triangular domains, with a
closed reflection phase space as well. (Incidentally, these
are also the triangles for which the Coulomb problem using
the image construction closes with a finite number of
images.)
Let k⃗i¼1;…;6 be the six reflected wave vectors, initiated by

the harmonic solution with k⃗1 ¼ ðkx; kyÞ, that close the
reflection cycle in the equilateral triangle. The reflection of
k⃗1 by the wall at y ¼ 0 generates the reflected wave-vector
k⃗2 ¼ ðkx;−kyÞ. By construction, the harmonic combination

ðe−ik1·r − e−ik2·rÞðx; y ¼ 0Þ ¼ 0 ðE1Þ

solves (51) since k21 ¼ k22 and satisfies the null condition on
the triangle side y ¼ 0. The next pair of reflections on the
triangle side y ¼ ffiffiffi

3
p

x yields the pair of wave vectors k⃗3 ¼
− 1

2
ðkx þ

ffiffiffi
3

p
ky;−

ffiffiffi
3

p
kx þ kyÞ and k⃗4 ¼ − 1

2
ðkx −

ffiffiffi
3

p
ky;

−
ffiffiffi
3

p
kx − kyÞ. The superposition (E1) with the substitution

1; 2 → 3,4 , again solves (51) since k23 ¼ k24 and satisfies
the null condition on the triangle side y ¼ ffiffiffi

3
p

x. The same
reasoning applies to the last pair of reflections back at the
wall at y ¼ 0, with k⃗5 ¼ − 1

2
ðkx −

ffiffiffi
3

p
ky;

ffiffiffi
3

p
kx þ kyÞ and

k⃗6 ¼ − 1
2
ðkx þ

ffiffiffi
3

p
ky;

ffiffiffi
3

p
kx − kyÞ, followed by the substi-

tution 1; 2 → 5, 6 in (E1). The quantization of the wave
vectors in (54)–(56) with Dirichlet boundaries follow by
the null condition of

φD
k ðx;

ffiffiffi
3

p
ðL − xÞÞ

¼
�X6

i¼1

ð−1Þiþ1e−iki·r
�
ðx;

ffiffiffi
3

p
ðL − xÞÞ ¼ 0 ðE2Þ

on the last triangular side y ¼ ffiffiffi
3

p ðL − xÞ. Note that all
wave contributions carry �1 weight by reflection sym-
metry. This is the solution derived in [14], and used in our
analysis, after pertinent rotation and translation of the
equilateral triangle quoted here.

Finally, we note that the Neumann boundary conditions
on the equilateral triangle can be enforced using a similar
reasoning to that for Dirichlet, but with all ray contributions
carrying the same sign, and (E2) changed to

φN
k ðx;

ffiffiffi
3

p
ðL − xÞÞ

¼
�X6

i¼1

e−iki·r
�
ðx;

ffiffiffi
3

p
ðL − xÞÞ ¼ 0: ðE3Þ

APPENDIX F: THE NONFACTORIZABLE
POTENTIAL Ṽ

The expression of this potential in Jacobi coordinates has
been given in (70), and here we discuss its matrix elements.
For that we use the family of states (56), with a single
quantum number nL.
For definiteness, we only give the matrix elements

proportional to p2
λ ; p

2
ρ (the ones proportional to m2

Q are
similar). Specifically, the upper 4 × 4 part is

hnL1jṼjnL2i
p2
λ

¼

0
BBB@

2.26289 1.90816 1.31215 0.991796

1.90816 5.75718 2.73486 2.04179

1.31215 2.73486 7.95585 3.30115

0.991796 2.04179 3.30115 9.56256

1
CCCA:

Note that it grows strongly with increasing quantum
number, and then it decreases away from the diagonal,
although rather slowly. Therefore the eigenstates involve
strong mixing, and are not very close to the original states
(56) (which are eigenstates of the Laplacian in the triangle).

–0.8 –0.6 –0.4 –0.2 0.0 0.2 0.4
–0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 12. The eigenfunction (F1) at ρ ¼ 0 as a function of λ is
shown by the solid black curve, to be compared to the lowest
standing wave (eigenstate of H0 for nL ¼ 1) as the dashed blue
curve (56).
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In particular, the eigenvalues of this matrix are 1.42047,
4.14098, 5.98336, 13.9937, somewhat spreading from the
diagonal matrix elements. Only the lowest state eigenvector
(in the original basis) shows dominance of the lowest
states, with strong decrease of the higher state admixture
Cl ¼ 0.920434, −0.390426, −0.017908, −0.00695135,
hence the probabilities jC2

l j for nL > 2 are negligibly small.
Note also that the corrections are all negative. To explain
what these corrections do, we show the eigenfunction

ψ Ṽ ¼
X
l

Clφ
D
l;lðλ; ρÞ ðF1Þ

as a solid black curve in Fig. 12. The dashed blue curve is the
exact and lowest standing wave in (56) for nL ¼ 1.
Since the Hamiltonian is a combination of H0 (thus the

Laplacian) and Ṽ, physical wave functions for the ground
state baryons must be in between the two curves shown
in Fig. 12.
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