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This is the third paper on hadronic light-front wave functions. We derive a light-front Hamiltonian from
first principles, using the key features of the QCD vacuum at low resolution. In the first approximation, it
gives transverse oscillator and longitudinal harmonic modes, and yields the correct Regge trajectories. For
heavy quarkonia, we compare its spectrum to that obtained from the usual Schrödinger equation in the rest
frame. We use the same approach for light quarks, and investigate the role of confinement and chiral
symmetry breaking in the quark-antiquark sector. We then study spin-spin and spin-orbit mixing, resulting
in e.g. quadrupole moments of vector mesons. For the light mesons, we show how to extend the famed ’t
Hooft interaction to the light front, which solves the U(1) problem and helps produce a light pion. We use
the ensuing light front wave functions to derive the pertinent parton distribution functions, parton
amplitudes, and low energy constants.
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I. INTRODUCTION

The physics of hadrons is firmly based in quantum
chromodynamics, a theory over half a century old. One
might think that by now this subject has reached a solid
degree of maturity with most issues settled. Yet persisting
tension remains between the nonperturbative aspects of the
theory and empirical measurements using inclusive and
exclusive processes.
More specifically, first principle approaches—lattice and

semiclassics—are focused on the ground state properties of
the QCD vacuum, using Euclidean time formulation.
Hadrons are then studied via certain correlation functions
(a brief review will be given in the next subsection).
However, a significant part of the experimental informa-
tion—parton distribution functions (PDFs) used in deep
inelastic inclusive processes, and distribution amplitudes
(DAs) used for exclusive processes—are defined in the
light-front kinematics, and therefore are not directly acces-
sible by the Euclidean formulation. Only recently, the first
attempt to formulate the appropriate kinematical limits [1]
and use the lattice for calculating the PDFs [2,3] were
carried out with some success.

Bringing the two sides of hadronic physics together is
not just a technical issue related with kinematics. Even the
main pillars of the theory—confinement and chiral sym-
metry breaking—become contentious. In particular,
60 years ago Nambu and Jona-Lasinio (NJL) [4] explained
that pions are light because they are near-massless vacuum
waves due to the spontaneous breaking of chiral symmetry.
The mechanism creating the vacuum quark condensate and
the ensuing organization using chiral perturbation theory
have since been discussed and confirmed in countless
papers.
More importantly, the QCD vacuum in the mesoscopic

limit, reveals a multitude of multiquark correlations captured
by universal spectral fluctuations in the zero mode zone
(ZMZ) [5]. They are analogous to the universal conductance
fluctuations around Fermi surfaces in dirty metals [6]. We
regard these mesoscopic fluctuations as strong evidence, in
support of the topological origin of the spontaneous breaking
of chiral symmetry in QCD. Most of the current hadronic
models fail to reproduce these fluctuations.
And yet, parton dynamics is still treated as if the vacuum

is “empty” and quarks are treated as massless. There are
even suggestions that on the light front there are no
condensates [7,8]. The pion was also suggested to be
massless due to other reasons [9]. Recently these arguments
were revisited [10], and “quasi-PDFs” have been calculated
on the lattice [11] (and references therein), obviously with
all nonperturbative effects included.
Still, there remains a significant gap between light-front

observables used and hadronic spectroscopy (as well as
atomic and nuclear ones): the former focuses on certain
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matrix elements (DAs, PDFs, transverse momentum distri-
butions, etc.) rather than the wave functions, or the under-
lying Hamiltonian. This approach is entirely driven by
information deduced from experiment.
Indeed, one can calculate various inclusive and exclusive

reactions using DAs. But their number is in principle
infinite, as there are unlimited number of operators. (The
standard approach is to include only those with the smallest
values of their twist, dimension minus spin, thereby limit-
ing the discussion to the large Q2 domain.) The normali-
zation of the DAs is done via a number of empirical
constants like fπ , fρ.
Hadronic spectroscopy, as in many other similar fields,

goes in the opposite direction, from the underlying theory
to effective Hamiltonians, to wave functions, to matrix
elements. Indeed, one Hamiltonian produces many eigen-
states, with well-defined wave functions, naturally normal-
ized and mutually orthogonal. From them any number of
matrix elements of interest can be calculated.
The light-front wave functions were classified in well-

known papers such as [12], but hardly used. Only for the
pion—a very special particle, a Nambu-Goldstone mode—
there is determination of both of its components, frommodel-
dependent Bethe-Salpeter equations [13,14], and fromquasi-
DAs in the instanton vacuum [15].
Model Hamiltonians were invented, but not related to the

underlying physics. The spin-dependent forces—so impor-
tant in spectroscopy—have not been included. In [16] we
reviewed their perturbative and nonperturbative aspects in
the rest frame, and in [17] we showed how to extend the
nonperturbative contributions to the light front. (See also
other papers in this series [18,19].)
In this paper, a comprehensive derivation of the perturba-

tive spin contributionswill begiven usingWilson lines on the
light front. When combined with the nonperturbative con-
tributions from [17], it provides a first principle Hamiltonian
on the light front. The spectroscopic implications of this
Hamiltonian for heavy and light mesons will be investigated.
The organization of the paper is as follows: In Secs. II

and III we give a first principle derivation of the light-front
Hamiltonian, through an analytical continuation of perti-
nent Wilson loops from Euclidean to Minkowski signature.
The derivation includes both the perturbative and non-
perturbative gluonic contributions in the QCD vacuum
at low resolution. In Sec. IV we limit the light-front
Hamiltonian to the contributions stemming from confine-
ment and Coulomb, and analyze their role on heavy
quarkonia, with Upsilonium as an example. In Sec. V
we briefly review how parity is defined on the light front,
and how it is used to organize the light-front wave functions
for mesons. In Sec. VI we consider the mixing induced by
the tensor contribution to the light-front Hamiltonian, onto
heavy quarkonia. We show that the quadrupole moment of
Upsilonium on the light front is about comparable to the
one extracted from other approaches both at rest and also
on the light front. In Sec. VII, we consider the additional

mixing induced by spin-orbit coupling on the light front, and
apply in this case to the light meson spectrum. In Sec. VIII we
show how the subtle zero modes associated to tunneling
through instantons inEuclidean signature are lifted to the light
front, using the Lehmann-Symanzik-Zimmermann (LSZ)
reduction in coordinate space. We use it to derive the famed
’t Hooft interaction on the light front. In Sec. IX we use our
light-front wave functions to derive the parton distributions
functions and amplitudes of heavy and lightmesons, and their
pertinent low energy constants. The extraction of themesonic
form factors is also briefly discussed. Our conclusions are in
Sec. X. A number of appendices are added to complement
some of the results in the text.

II. PERTURBATIVE LIGHT-FRONT
HAMILTONIAN, VIA ANALYTIC

CONTINUATION FROM EUCLIDEAN
AMPLITUDES

In the infinite momentum frame, a meson state com-
posed of a quark and antiquark QQ̄≡Q1Q2 is charac-
terized by the closed Wilson loop or a dipole, sloped along
the light cone with rapidity χ as shown in Fig. 1. The same
Wilson loop follows from the Euclidean Wilson loop at an
angle θ by analytical continuation θ → −iχ, as we dis-
cussed in Paper II of this series [17]. This construction
follows the original suggestion for quark-quark scattering
in [20], and its extension to dipole-dipole scattering in
the QCD vacuum [21,22], many years ago. The same
construction was used in the holographic context, to address
hadron-hadron scattering in the Regge limit [23–25].

FIG. 1. Wilson loop for a Q̄Q meson on the light front.
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With this in mind, the result is the squared meson mass
operator, or light-front Hamiltonian HLF

HLF ≈
k2⊥ þm2

Q

xx̄
þ 2PþP−

≈
k2⊥ þm2

Q

xx̄
þ 2MðVCgðξxÞ þ VCðξxÞ

þ VSDðξx; b⊥Þ þ VTHðξx; b⊥ÞÞ: ð1Þ
The nonperturbative contributions in (1) were discussed in
[17], along with the ordering ambiguities. The perturbative
contributions will be derived below. On the light front, the
invariant distance ξx is

ξx ¼
����� id=dxM

����2 þ b⊥2

�1
2 ð2Þ

with longitudinal distance γb3 ¼ id=dx=M, the conjugate
of Bjorken x or x ¼ k3=P3. The explicit γ-factor compen-
sates the Lorentz contraction along the 3-direction.

The Hamiltonian (1) is gauge invariant. The free kinetic
part stems from the free quark propagators associated to the
massive quarks tracing the Wilson loop in Fig. 1, with no
explicit gauge fields. The gauge fields are implicit in the
formation of the constituent quark mass, through the
spontaneous breaking of chiral symmetry with a finite
mQ, which we are assuming. The explicit coupling of the
Wilson lines to the external gauge fields in Fig. 1 is what
gives rise to 2PþP− as we detail below.

A. Wilson lines dressed by spin variables

The perturbative contribution to the central potential on
the light front, induced by a one-gluon exchange with an
effective mass mG in the random instanton vacuum (RIV),
can be constructed using the general technique of a sloped
Wilson loop as we detailed in [17]. In particular, the one-
gluon interaction with spin effects follows by dressing the
Wilson loop or holonomies in Fig. 1, with explicit spin
factors

�
Tr

�
P exp

�
þg
Z

dτ1ði_xðτ1Þ · Aðxðτ1Þ þ
1

4
σ1μνFμνðxðτ1ÞÞ

�

× P exp

�
þg
Z

dτ2ði_xðτ2Þ · Aðxðτ2Þ þ
1

4
σ2μνFμνðxðτ2ÞÞ

���
ð3Þ

with σμν ¼ 1
2i ½γμ; γν� and σμν ¼ ηaμνσ

a using the ’t Hooft
symbol. The averaging is understood using the QCD
action. We have made explicit the gauge coupling g, for
a perturbative treatment to follow.
For massive quarks travelling on straight trajectories, the

affine time τ relates to the conventional time t through

μ ¼ dt
dτ

¼ mQffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _x⃗2

p → γmQ ð4Þ

in Euclidean signature. We note that the holonomies
tracing out the Wilson loop in Fig. 1 are unaffected
by the exchange τ → t, in contrast to the spin contributions
which get rescaled by 1=μ. This will be exploited below.

B. One-gluon exchange and the
Coulomb interaction

The Coulomb interaction between a QQ̄≡Q1Q2 pair
attached to the Wilson lines can be obtained in perturbation
theory by expanding the holonomies and averaging the AA
correlator in leading order. For that, we parametrize the
worldlines by

xμðt1Þ ¼ ð0; 0; sin θt1; cos θt1Þ;
xμðt2Þ ¼ ðb1; b2; sin θt2 þ b3; cos θt2Þ: ð5Þ

The perturbative one-gluon contribution from (3) reads

g2TA
1T

B
2

Z
dt1

Z
dt2ðcos2 θhAA

4 ðt1ÞAB
4 ðt2Þi þ sin2 θhAA

3 ðt1ÞAB
3 ðt2Þi þ 2 sin θ cos θhAA

4 ðt1ÞAB
3 ðt2ÞiÞ ð6Þ

with the gluon correlator in Feynman gauge

hAA
μ ðt1ÞAB

ν ðt2Þi ¼
1

2π2
δABδμν

jxðt1Þ − xðt2Þj2
: ð7Þ

Inserting (7) into (6) and changing variables TE ¼ t1 þ t2
and τ ¼ t1 − t2 yields

g2TA
1T

A
2

2π2

Z
dTE

2

Z
dt

1

t2 þ cos2 θb23 þ b2⊥

¼ g2TA
1T

A
2

4π

TEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23 cos

2 θ þ b2⊥
p : ð8Þ

The analytical continuation θ → −iχ and TE → iTM of (8)
reexponentiates to the Coulomb contribution
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exp

�
−iγTM

�
−
g2TA

1T
A
2

4π

1=γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2b23 þ b2⊥

p ��
ð9Þ

with γTM the dilatated time along the lightlike Wilson loop.
The Coulomb contribution to the light-front QQ̄ Hamil-
tonian P−

Cg follows, leading the squared invariant mass as

2PþP−
Cg ¼ 2Pþ

�
−
g2TA

1T
A
2

4π

1=γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2b23 þ b2⊥

p �

→ 2M

�
−
g2TA

1T
A
2

4π

1

ξx

�
¼ 2MVCgðξxÞ ð10Þ

with Pþ=M ¼ γ, and γb3 → id=dx=M the conjugate of
Bjorken x.
In the RIV, the perturbative gluons acquire a momentum

dependent mass from their rescattering through the instan-
ton–anti-instanton ensemble [26]

mGðkρÞ ¼ mGðkρK1ðkρÞÞ;

mGρ ≈ 2

�
6κ

N2
c − 1

�1
2

≈ 0.55 ð11Þ

using the estimate κ ¼ π2ρ4nIþĪ in the right-most result.
With this in mind, (10) is now

VCgðξxÞ ¼ −
g2TA

1T
A
2

2π2
1

ξx

Z
∞

0

dxx sin x
x2 þ ðξxmGðxρ=ξxÞÞ2

→ −
g2TA

1T
A
2

4π

e−mGξx

ξx
ð12Þ

with the right-most result following for a constant gluon
mass.

C. Spin-spin interaction

The perturbative spin-spin interaction follows from the
cross term in (3)

−
g2

16

Z
dτ1dτ2hσ1μνFμνðxðτ1ÞÞσ2αβFαβðxðτ2ÞÞi: ð13Þ

Note that the perturbative electric field is purely imaginary
in Euclidean signature, leading mostly to phases and not
potentials in the long time limit. Also, the Dirac repre-
sentation σ4i is off-diagonal, an indication that the electric
contribution mixes particles and antiparticles, which is
excluded by the use of straight Wilson lines on the light
front. With this in mind and using (4), we can reduce (13) to

−
g2

4μ2

Z
dt1dt2hσ1ijFijðxðt1ÞÞσ2klFklðxðt2ÞÞ

¼ −
g2

4μ2
σa1σ

b
2

Z
dt1dt2hBaðxðt1ÞÞBbðxðt2ÞÞi ð14Þ

with

hBaðxðt1ÞÞBbðxðt2ÞÞi
¼ TA

1T
B
2 ϵaijϵbkl∂1i∂2khAA

j ðxðt1ÞÞAB
mðxðt2ÞÞi

¼ TA
1T

A
2 ðδabδik − δakδbiÞ∂1i∂2k

×
1

2π2
1

jxðt1Þ − xðt2Þj2
: ð15Þ

Inserting (15) into (14), and carrying the time integrations
along the sloped Wilson loop in Fig. 1 gives among others

−
g2TA

1T
A
2

4π

TE

4μ2

�
σ1⊥ · σ2⊥

�
−3cos2θ

ðcosθb3Þ2
ξ2θ

þ cos2θ
�

1

ξ3θ

�
ð16Þ

which is the dominant contribution under the analytical
continuation θ → −iχ, μ → γmQ and TE → iTM, in the
ultrarelativistic limit γ ≫ 1, and in Minkowski signature.
The final spin-spin contribution to the squared mass is in
general

HSS ¼ 2M

�
σ1⊥ · σ2⊥
4mQ1mQ2

ð∇2⊥VCgðξxÞÞ
�

¼ 2MVSSðξx; b⊥Þ: ð17Þ

D. Spin-orbit interaction

1. Cross spin orbit

The cross spin-orbit interaction is readily obtained from
the 12þ 21 cross terms

−
g2TA

1T
B
2

2
σa2

Z
dτ1dτ2i_xiðτ1ÞhAA

i ðxðτ1ÞBB
a ðxðτ2ÞÞi

þ 1 ↔ 2 ð18Þ
which can be reduced to

−
ig2TA

1T
B
2 sin θ

2μ
σa2s1

Z
dt1dt2hAA

3 ðxðt1ÞÞBB
a ðxðt2ÞÞi

þ 1 ↔ 2 ð19Þ
with s1;2 ¼ sgnðv31;2Þ the signum of the 3-velocity of
particle 1,2 (a more refined definition will be given below).
After carrying the integrations, and the analytical contin-
uations, the spin-orbit contribution to the squared mass is
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HSL;12 ¼ 2M

��
σ2 · ðb12 × s13̂Þ

2mQ2

−
σ1 · ðb21 × s23̂Þ

2mQ1

��
1

ξx
V 0
CgðξxÞ

��
ð20Þ

in general, with b21 ¼ −b12 ≡ b⊥.

2. Standard spin orbit

The standard self-spin-orbit interaction with Thomas
precession is more subtle. To unravel it, we note that the
insertion of a single spin contribution along the path-
ordered Wilson loop amounts to expanding the spin factors
in (3) to first order, and retaining the holonomies to all
orders in 1θ, namely,

1

4μ
σ1μν

Z
dt1hgFμνðxðt1ÞÞ1θi þ 1 ↔ 2 ð21Þ

with the path ordered color-spin trace subsumed. Here 1θ
refers to the slated Wilson loop in Fig. 1 without the spin
dressing. We now decompose

Fμν ¼ v1μv1αFαν þ F⊥
μν ≡ Fjj

μν þ F⊥
μν ð22Þ

into a contribution parallel to v1 ¼ _x1 and a contribution
orthogonal to v1. The contribution parallel to the worldline
when inserted in (21) can be undone by the identity (see
Eq. (71) in [17])Z

dt1hgvαFανðxðt1ÞÞ1θi ¼ −i∂1νh1θi≡ −i∂1νe−TEVCðξθÞ

ð23Þ
with VCðξθÞ ≈ VCgðξθÞ the central Coulomb potential in
perturbation theory. The longitudinal contribution to (21)

−
1

4μ
σ1μνv1μi∂1νe−TEVCðξθÞ þ 1 ↔ 2 ð24Þ

is gauge invariant. After carrying the analytical continuation,
(24) contributes both a real and imaginary part. The latter is
an irrelevant phase factor in Euclidean signature. The real
part contributes to the direct mass squared operator as

HLS;11 ¼ 2M
��

σ1 · ðb12 × s13̂Þ
4mQ1

−
σ2 · ðb21 × s23̂Þ

4mQ2

��
1

ξx
V 0
CgðξxÞ

��
ð25Þ

in leading order in perturbation theory. This is the standard spin-orbit contribution with the correct Thomson correction on
the light front, familiar from atomic physics in the rest frame. The total perturbative spin contribution on the light front is the
sum of (17), (20), and (25),

HLS;g ¼ 2M

�
l1⊥ · S1⊥
2m2

Q1

−
l2⊥ · S2⊥
2m2

Q2

þ l1⊥ · S2⊥
mQ1mQ2

−
l2⊥ · S1⊥
mQ1mQ2

�
1

ξx
V 0
CgðξxÞ þ 2M

�
S1⊥ · S2⊥
mQ1mQ2

�
∇2⊥VCgðξxÞ ð26Þ

with the respective spins S⃗1;2 ¼ σ⃗1;2=2, and transverse orbital momenta

l1;2⊥ ¼ �ðb⊥ ×mQ1;2s1;23̂Þ⊥; s1;2 ¼ sgnðv1;2Þ →
Mx1;2
mQ1;2

: ð27Þ

III. INSTANTON CONTRIBUTIONS TO WILSON LINE AMPLITUDES

A. Central potential

The central potential operator induced by instantons is given by

VCðξxÞ ¼
�

4κ

Ncρ

�
Hðξ̃xÞ ð28Þ

with the integral operator

HðξxÞ ¼
Z

∞

0

y2dy
Z þ1

−1
dt

�
1 − cos

�
πyffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p �
cos

�
π

�
y2 þ ξ̃2x þ 2ξxyt

y2 þ ξ̃2x þ 2ξ̃xytþ 1

�1
2

�

−
yþ ξxt

ðy2 þ ξ2x þ 2ξ̃xytÞ12
sin

�
πyffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p �
sin

�
π

�
y2 þ ξ̃2x þ 2ξ̃xyt

y2 þ ξ2x þ 2ξ̃xytþ 1

�1
2

��
ð29Þ
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with the dimensionless invariant distance on the light front ξ̃x ¼ ξx=ρ. Hðξ̃xÞ admits the short distance limit

Hðξ̃xÞ ≈þ
�
π3

48
−
π3

3
J1ð2πÞ

�
ξ̃2x þ

�
−
π3ð438þ 7π2Þ

30720
þ J2ð2πÞ

80

�
ξ̃4x ð30Þ

and large distance limit

HðξxÞ ≈ −
2π2

3
ðπJ0ðπÞ þ J1ðπÞÞ þ

C

ξ̃px
ð31Þ

with p ≪ 1 and C > 0. The large asymptotic is to be subtracted in the definition of the potential. This will be subsumed
throughout. In the dense instanton vacuum discussed in [17], the central potential (28) is almost linear at intermediate
distances 0.2–0.5 fm. At larger distances, the linearly confining potential with string tension σT takes over, in good
agreement with most lattice simulations.

B. Spin-dependent potentials

On the light front, the spin-dependent interactions captured by VSD and due to the nonzero modes in (1) have been
discussed in general in [17], with the results

VSDðξx; b⊥Þ ¼ þ
�
σ1 · ðb12 × s13̂Þ

4mQ1

−
σ2 · ðb21 × s23̂Þ

4mQ2

�
1

ξx
V 0
CðξxÞ

þ
�
σ1 · ðb12 × s13̂Þ

2mQ1

−
σ2 · ðb21 × s23̂Þ

2mQ2

�
1

ξx
V 0
1ðξxÞ

þ
�
σ2 · ðb12 × s13̂Þ

2mQ2

−
σ1 · ðb21 × s23̂Þ

2mQ1

�
1

ξx
V 0
2ðξxÞ

þ
�

1

4mQ1mQ2

��
σ1⊥ · b̂21σ2⊥ · b̂21 −

1

2
σ1⊥ · σ2⊥

��
V3ðξxÞ ð32Þ

with again b21 ¼ −b12 ≡ b⊥. All potentials follow from the central instanton potential VCðξxÞ, thanks to self-duality

V1ðξxÞ ¼ V2ðξxÞ − VCðξxÞ ¼ −
1

2
VCðξxÞ;

V2ðξxÞ ¼ þ 1

2
VCðξxÞ;

V3ðξxÞ ¼ þ2
b2⊥
ξ2x

V 00
CðξxÞ: ð33Þ

As a result, the first and second contribution in (32) cancel out, leaving only the cross spin orbit plus tensor contributions in
the instanton vacuum,

HLS ¼ 2M

��
l1⊥ · S2⊥
mQ1mQ2

−
l2⊥ · S1⊥
mQ1mQ2

�
1

ξx
V 0
CðξxÞ þ

1

mQ1mQ2

�
S1⊥ · b̂⊥S2⊥b̂⊥ −

1

2
S1⊥ · S2⊥

�
2b2⊥
ξx

V 00
CðξxÞ

�
ð34Þ

with ⃗l1;2 given in (27), and VCðξxÞ in (28). The contribu-
tions stemming from the zero modes are not included. They
will be discussed separately below.

IV. HEAVY QUARKONIA ON THE LIGHT FRONT

In Paper II [17] we introduced “the basic problem” of
meson structure, of two constituent quarks connected by a
classical relativistic string, which was then studied using

both a semiclassical approach, and a relativistic Klein-
Gordon equation. Our main focus there was on the
correspondence between the conventional treatment in
the rest frame versus the analysis on the light front using
the Hamiltonian we derived. Of course, frame-invariant
quantities—masses in particular—obtained in both ways
must agree. We specifically investigated the linear rise of
the Regge trajectories, with the principal quantum number
M2

n ∼ n (not angular momentum).
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In this paper we will carry out a larger set of studies,
including not only the confining string, but also various
other terms in the Hamitonian. In particular, the perturba-
tive (Coulomb) term, and most importantly, the terms
containing spin and orbital momentum variables. In doing
so, it is also natural to widen the set of applications.
Therefore here we start with heavy quarkonia, before
returning to the light quark systems.
In the quarkonia settings, we can use the large quark mass

as an extra parameter, to discriminate between distinct
physical contributions. Remarkably, on the light front all
meson problems, frombottomonia to pions, can be studied in
essentially the same setting, just by changing the mass value.

A. Excited states of bottomonium via the Schrödinger
equation in the rest frame

Let us start by focusing first on heavy quarkonia. Such
an approach is more convenient in this work, devoted
to the mixing between states with different spin and
orbital momenta. In heavy quarkonia these relativistic effects
are naturally suppressed by the nonrelativistic motion of
heavy quarks (or, in other terms, their small magnetic
moments μ ∼ g=mQ).
The first question to be addressed is, how well can the

heavy quarkonia states be represented by linear-linear
Regge trajectories? In Fig. 2 we show the experimental
masses of the ðnSÞ; n ¼ 0–5 Upsilons, compared to the
standard results from the Schrödinger equation, with the
Cornell potential (black triangles) and with only its linear
part Vconf ¼ σTr (blue circles). The first observation is that

by using a linear potential alone (blue circles), we find a
nearly linear Regge trajectory. This observation will be
important in the next subsection, as it shows that even for
heavy bottomonia, the light-front Hamiltonian can be
approximated by an oscillator with good accuracy. Note
however, that the slope of the straight line is here completely
different from the 1=α0 slope of a similar trajectory for light
mesons (e.g. for ω mesons we used in [16]).
The second observation is that the expected contribution

from the spin-dependent potential VSS (responsible for
splitting between squares and triangles) is positive and
decreases with n. The former is due to the positivity of
the spin factor S⃗1 · S⃗2 ¼ 1=4, and the second to the fact that
VSSðrÞ is rather short range, in comparison to the size of the
lowestUpsilon, butmuch smaller than the sizes of the excited
ones. Another way to anticipate the accuracy of an oscillator
approximation in the light-front description (discussed in
[17] and using ω3 mesons with L ¼ 2) is to study the mass
dependence of bottomonium on its orbital momentum L. In
Fig. 3we show the calculated 18 squaredmasses for n ¼ 0–5
(left to right) and L ¼ 0, 1, 2 (bottom to top). While the
Coulomb potential was included, it affects mostly and only
n ¼ 0, L ¼ 0 Upsilon. The Regge trajectories for nonzero
angular momentum L ¼ 1, 2 show better linear dependence
on n than L ¼ 0. The corresponding wave function vanishes
at the origin r ¼ 0, and is less affected by short-range
Coulomb and spin-dependent forces.
We further note, that at larger n (right side of the plot) the

dependence on L also becomes linear, as the L ¼ 0, 1, 2
points become equidistant. This observation encourages us
to think that the oscillator description of the light-front
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FIG. 3. M2
nþ1ðGeVÞ2 versus nþ 1; n ¼ 0; 1… for three fam-

ilies of bottomonium states, with orbital momentum L ¼ 0, 1, 2
(from bottom up). The red squares correspond to the experi-
mentally observed ϒ; hb;ϒ2 mesons (from bottom up). The blue
circles show masses obtained from the Schrödinger equation,
with the Cornell potential (linear and Coulomb potentials, still
without spin forces). The straight lines are shown for comparison.
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FIG. 2. M2
nþ1ðGeVÞ2 versus nþ 1; n ¼ 0; ::5, for the six S zero

orbital momentum (L ¼ 0) states of bottomonium. The red
squares correspond to the experimentally observed Upsilons.
The black triangles show the masses obtained from the Schrö-
dinger equation, with the Cornell potential (linear and Coulomb
potentials, no spin forces). The blue circles show the masses if the
Coulomb potential is switched off, and only the linear potential is
used. The straight line is shown for comparison.
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Hamiltonian and light-front wave functions (LFWFs), will
need only relatively small corrections.

B. Bottomonium on the light front

In [17], we described how we may include the linear
confining term in HLF (instanton induced at intermediate
distances), andmake it more user friendly, by eliminating the
square root using the well-known einbein e ¼ 1=a trick, i.e.

2MVCða; b; x; b⊥Þ ≈ σT

�jid=dxj2 þ bb2⊥
a

þ a

�
: ð35Þ

Here a, b are variational parameters. The minimization
with respect to a is assumed, followed by the substitution
b → M2 ≈ ð2mQÞ2 for heavy mesons, and most light ones.
(For the pion, this last substitution is not valid, as we have
shown in [17].)
For a numerical analysis of (35), we used in [17] a basis

set of functions composed of a two-dimensional transverse
oscillator times longitudinal states sinðπnxÞ with odd n, as
we briefly review in Appendix A. More specifically, the
light-front Hamiltonian can be rearranged as follows,

HLF ¼ H0 þ Ṽ þ Vperp þ Vspin ð36Þ
with the spin part including both the perturbative and
nonperturbative instanton contributions. As we noted ear-
lier, in the dense instanton vacuum, the central part is hardly
differentiable from the linear confining potential at inter-
mediate distances.
The first contribution H0

H0 ¼
σT
a

�
−

∂
2

∂x2
− b

∂
2

∂k⃗2⊥

�
þ σTaþ 4ðm2

Q þ k2⊥Þ ð37Þ

is diagonal in the functional basis used [17]. In this form,
we make use of the momentum representation, with k⃗⊥ as
variable. Similarly, one can use the coordinate representa-
tion with b⃗⊥ as a variable, and k⃗⊥ ¼ i∂=∂b⃗⊥. The latter
choice is much more convenient when discussing states
with nonzero angular momenta, in relation to the azimuthal
angle coordinate ϕ in the transverse plane (see more on that
in Appendix E).
The second contribution Ṽ

Ṽðx; k⃗⊥Þ≡ ðm2
Q þ k2⊥Þ

�
1

xx̄
− 4

�
ð38Þ

has nonzero matrix elements hn1jVðx; k⃗⊥Þjn2i for all n1, n2
pairs. The perturbative part Vperp for heavy quarks is the
Coulomb term, with running coupling and other radiative
corrections. Finally, the last term Vspin contains matrices in
spin variables and in orbital momenta, which we will
consider later.
We truncate the basis set to a 12 × 12 matrix, and

diagonalize H0 þ Ṽ to find its eigenvalues as a function

of the remaining parameter a. The results for the three
lowest states n ¼ 1, 2, 3 are shown in Fig. 4 (top). We see
that while the minima in a exist, they are not at the same
value. Thus the dilemma: one can either select different a
for different states, and then somehow reorthogonalize
them, or one can use some “optimal” value of a common
for all states, and then be sure that all states are orthogonal.
Since the dependence on a is rather flat, we opt for the
second approach and use a ¼ 25.
The calculated masses (shifted by a constant “mass

renormalization” to make n ¼ 0, m ¼ 0 states the same)
are shown in Fig. 4. The bottom part shows good agreement
between the masses obtained solving the Shrödinger
equation in the rest frame (blue circles), and the masses
following from the light-front frame (red triangles). The
slope is correct, and is determined by the same string tension
σT . The splittings in orbital momentum are of the same scale,
but not identical. This is expected, as we compare the
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FIG. 4. Top: squared masses M2
n for b̄b mesons for n ¼ 1, 2, 3

versus the variational parameter a. Bottom: squared masses for
n ¼ 0..5 (left to right) and orbital momentum m ¼ 0, 1, 2 (down
to up), calculated from the light-front Hamiltonian HLF (red
triangles), and shifted by a constant, M2

nþ1 − 5 GeV2. For
comparison, the blue circles show the squared masses M2

nþ1

calculated from Schroedinger equation in the CM frame, with
only linear plus centrifugal potentials.
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two-dimensional m states on the light front, with the three-
dimensional L states in the center-of-mass frame.
The irregularity between the third and fourth sets of

states is due to our use of a modest basis set, with only three
radial functions (altogether 12 functions if one counts them
with 4 longitudinal harmonics). This can be eliminated
using a larger set.
As a final note in this section, we recall that the chief

goal of these calculations is to generate the pertinent
LFWFs for all of these states, from the light-front
Hamiltonian HLF. The details about the setting and some
of these wave functions can be found in Appendices A–C.

C. Matrix elements of the Coulomb term
and further operators on the LF

We start with a calculation of the contribution of the
Coulomb force, which demonstrates how to deal with any
function of transverse coordinate Fðr⊥Þ, with r⊥ ¼ b⊥. Of
course, the standard way is to transform all functions into
the coordinate representation.
Recall that our LFWFs are defined using a transverse

oscillator in the momentum representation, and so one
possible strategy is to trade

r⃗⊥ → i
∂

∂k⃗⊥
as in the confining potential. It can work for other
polynomial functions Fðr⊥Þ or their Taylor expansions.
Unfortunately, for a transverse Coulomb potential

V⊥ ¼ −
CC

r⊥
ð39Þ

this strategy does not work. A straightforward solution is to
Fourier transform the LFWFs to coordinate representation.
Note that the LFWFs are of the form

ψðp⊥; xÞ ¼
X
n

ϕnðp⊥Þ sinðπnxÞ:

As a result, the integration over x in the matrix element
hψ jFðr⊥Þjψi removes terms with n1 ≠ n2, and reduces to

hψ jFðr⊥Þjψi ¼
X
n

Z
d2r⊥jϕ̃nðr⊥Þj2Fðr⊥Þ ð40Þ

where tilde stands for the Fourier transform.
In particular, the lowest state in our basis has a simple

Gaussian form ϕ1ðp⊥Þ ∼ expð−Ap2⊥Þ, and its Fourier

transform is also a Gaussian ϕ̃1ðr⊥Þ ∼ expð− r2⊥
4AÞ. The

average Coulomb contribution to the squared mass M2
ϒ

is then found to be

−4Mbhψ1j
CC

r⊥
jψ1i ¼ −4MbCC

ffiffiffiffiffiffi
π

2A

r
≈ −15 GeV2 ð41Þ

which approximately agrees with ΔM2
ϒ ≈ −17 GeV2

obtained from the Schrödinger equation in the CM frame
(and shown in Fig. 2). With growing Upsilon number their
sizes grow, which reduces the Coulomb contribution.
In general, the operators to be averaged (e.g. spin-

dependent potentials) depend on the invariant distance
ξx, which includes the longitudinal distance with the
derivative id=dx. In this case the matrix element should
be calculated using the eigenvalue l decomposition of this
derivative operator. For example, by approximating the
ground state LFWF as

ϕ0ðx; p⊥Þ ≈
�
2α

π

�1
2

e−αp
2⊥=2
X
oddl

φl sinðlπxÞ ð42Þ

with a simple Fourier transform p⊥ → b⊥

ϕ̃0ðx; b⊥Þ ≈
�

2

πα

�1
2

e−b
2⊥=2α
X
oddl

φl sinðlπxÞ ð43Þ

one can use it to evaluate matrix elements of a potential
depending on this invariant VðξÞ as follows:

hϕ0jVðξxÞjϕoi ¼
Z

db⊥
e−b

2⊥=α

πα

X
oddl

jφlj2V
���

lπ
Mρ

�
2

þ b2⊥
ρ2

�1
2

�
: ð44Þ

The same procedure applies for the excited states.
Equation (44) shows the natural transverse cutoff in b⊥ ∼
π=M ∼ π=2mQ for the heavy states.

V. SPIN AND ORBITAL MOMENTUM MIXING
OF THE LFWFs

So far, we have only discussed the LFWFs diagonal in
longitudinal orbital momentum Lz ¼ m. In general, this is
not a conserved quantity, but for heavy quarkonia it is

approximately conserved, as the spin and orbital momen-
tum-dependent effects are suppressed by large quark
masses. As we will proceed to light quark states, this
approach would become invalid, and spin-spin and spin-
orbit mixing is mandatory.

A. Parity on the light front

There are some obvious differences between the descrip-
tion in the rest frame, and on the light front. For instance,
there are different symmetries: three-dimensional angular
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momenta S⃗, L⃗, J⃗ are reduced to their two-dimensional
transverse parts, with spin S⃗ and orbital momentum L⃗
projected onto longitudinal momentum P⃗. The projection
of J is denoted by “meson helicity” Λ. Obviously, hadron
states with different Λ values, are treated differently: say
ρðΛ ¼ 0Þ and ρðΛ ¼ �1Þ have different wave functions
(even more than one: see below). While masses, magnetic
and quadrupole moments, etc. should turn out to be the
same, the three-dimensional rotation is some complicated
transformation, involving all components of the wave
functions, and we will not attempt to explicitly use it.
(This situation is of course not new. For example,

different isospin components are also treated differently
in the rest frame. The d̄u charged states are described by a
potential, while the d̄d; ūu follow from annihilation. In the
isospin symmetric limit, the same mass for πþ and π0 needs
to be explicitly demonstrated.)
Another important difference between the rest frame and

the light-front frame notations relates to the different
definitions of parity. The usual P-parity is the sign change
of all three spatial coordinates, or mirror reflection. On the
light front, one would like to keep the main beam direction
(of P⃗) intact, so P is supplemented by an additional
rotation, by π around some transverse axes: this operator
is called Ŷ. The state’s helicity Λ changes sign, so its action
for Λ ≠ 0 is given by the so-called Jacob-Wick relation

ŶjP⃗;Λi ¼ ð−ÞS−ΛηjP⃗;−Λi; ð45Þ

where η is the intrinsic parity of the state, negative for
quark-antiquark states, positive for quark states, and
negative for an antiquark plus gluon. Since partons’
momenta are generically not in the direction of P⃗,
k⊥ ≠ 0, one should remember that only one component
of k⊥ changes sign under Ŷ. For Λ ¼ 0, Ŷ turns the state to

itself, so for these states one can define Y-parity. The
changed definition of parity completely changes the parity
mixing rules, and respectively the number of light-front
wave functions, as described in detail in [27].
Yet the light-front wave functions in the helicity basis,

have different rules. The classification is not done via the
total S1; S2; L: only their z components (meson directed)
are used. They satisfy the obvious constraint

Λ ¼ Sz1 þ Sz2 þ Lz:

In the following we will drop the z superscript. The Λ ¼ 0

states are eigenstates of Ŷ, minus for pions and plus for rho
mesons: those have two wave functions (see Appendix C)
unlike Λ ¼ �1 states.
In [17] we focused on the spin-dependent forces, with

S⃗1 · S⃗2; S⃗ · L⃗ and tensor. Now we will have their analogs in
beam projections, which we refer to by the same labels,
without vectors. Some of them are nondiagonal. For
instance, the tensor force can mix jS1 ¼ S2 ¼ 1

2
; L ¼ 0i

with jS1 ¼ S2 ¼ − 1
2
; L ¼ 2i.

B. General form of LFWFs for mesons with different Λ
To proceed with the spin effects, we need to get the

full spin-orbit structure of the LFWFs. In order to explain
what we mean, consider a meson with total helicity Λ
(with longitudinal projection Jz). The total of two quark
spins S⃗ ¼ S⃗1 þ S⃗2 can be S ¼ 0 or S ¼ 1: in the former
case Λ ¼ Lz, and in the latter there are three cases:
Lz ¼ Λ − 1; Lz ¼ Λ; Lz ¼ Λþ 1. These four states (like
e.g. χb, hb) are in general mixed by spin-dependent forces.
Schematically for the last three states, the mixing is
captured by a 3x3 matrix (the index of ψ is the longitudinal
projection of orbital momentum, or ML)

HΛ ¼ ðψΛ−1;ψΛ;ψΛþ1 Þ

0
B@

Vdiag V�1 V�2

V�1 Vdiag V�1

V�2 V�1 Vdiag

1
CA
0
B@

ψΛ−1

ψΛ

ψΛþ1

1
CA: ð46Þ

The spin-orbit VSL interaction changes L by �1, and the tensor interaction VT changes L by �2. So, in general, any
meson has three wave functions, mixed by spin- and Lz ¼ m-flipping forces.
For the important case of Λ ¼ 0—the pseudoscalar (ηb…π) and vector (ϒ…ρ)—is now diagonal. Thus these mesons

have different parity. Furthermore, the two additional components involved are Λ ¼ �1, which by symmetry are the same
[up to different factors expð�iϕÞ]. So (as derived in [27]), one needs only two wave functions. Yet for consistency, for
Λ ¼ 0 we still define their wave functions with three components:

jPi ¼
Z

d½1�d½2� δijffiffiffiffiffiffi
Nc

p ½ψP
0 ðx; k⊥ÞðQ†

i↑ð1ÞQ̄†
j↓ð2Þ −Q†

i↓ð1ÞQ̄†
j↑ð2ÞÞ

þ ψP
−1ðx; k⃗⊥ÞQ†

i↑ð1ÞQ̄†
j↑ð2Þ þ ψP

þ1ðx; k⃗⊥ÞQ†
i↓ð1ÞQ̄†

j↓ð2Þ�j0i; ð47Þ
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jVi ¼
Z

d½1�d½2� δijffiffiffiffiffiffi
Nc

p ½ψV
0 ðx; k⊥ÞðQ†

i↑ð1ÞQ̄†
j↓ð2Þ þQ†

i↓ð1ÞQ̄†
j↑ð2ÞÞ

þ ψV
−1ðx; k⃗⊥ÞQ†

i↑ð1ÞQ̄†
j↑ð2Þ − ψV

þ1ðx; k⃗⊥ÞQ†
i↓ð1ÞQ̄†

j↓ð2Þ�j0i ð48Þ

with Nc ¼ 3. The subscripts 0 and �1 on the wave
functions refer to Lz, the z projections of the orbital
momentum. Note that compared to the notations in [27],
there are no explicit factors of k�⊥ ¼ k1 � ik2 here because
they naturally belong to our wave functions, consistently
defined not only for m ¼ Lz ¼ 1, but for any m value.
The Λ ¼ 0 state of the vector mesons are called

“transversely polarized.” The two other polarizations, with
Λ ¼ �1 are “longitudinally” polarized. They are a bit more
complicated, with three components each with different
wave functions, corresponding to L ¼ 2, 1, 0.
The invariant measure in (47) and (48) refers to the on-

shell covariant one, with overall momentum conservation

d½1�d½2� ¼ dxffiffiffiffiffiffiffiffi
4xx̄

p dp⊥
ð2πÞ3 : ð49Þ

Here x; x̄ are the fraction of longitudinal momenta carried
by particle-1 and the antiparticle-2, or x ¼ pþ

1 =P
þ and x̄ ¼

pþ
2 =P

þ with xþ x̄ ¼ 1. The creation and annihilation
operators in (47) and (48) obey the anticommutation rules

½Qαðk1Þ; Q†
βðk2Þ�þ ¼ δαβ2k

þ
1 ð2πÞ3δðkþ1 − kþ2 Þδðk1⊥ − k2⊥Þ

for equal light-front time, so that the jP; Vi states are
covariantly normalized on the light front, e.g.

hPjP0i ¼ 2Pþð2πÞ3δðPþ − Pþ0ÞδðP⊥ − P0⊥Þ: ð50Þ

It is readily checked that the light-front wave functions in
(47) and (48) are normalized by

Z
d2k⊥dx
ð2πÞ3 ðjψ0j2 þ jψ1j2 þ jψ−1j2Þ ¼ 1: ð51Þ

Below we show that ψ0 refers to the twist-2 and ψ�1 to the
(tensor) twist-3 contribution to the mesonic distribution
amplitude.

VI. QUADRUPOLE MOMENT OF VECTOR
MESONS AND m� 2 “TENSOR” MIXING

To explain why the effects of mixing spin and orbital
momenta are important, let us take the classic example of
the quadrupole moment. In the rest frame, these phenom-
ena are well known in nuclear physics, for example the
deuteron d ¼ pn state has total J ¼ 1 and, in nonrelativ-
istic notation, it is a mixture of L ¼ 0, J ¼ 1 and L ¼ 2,
J ¼ 1 states induced by the tensor force.

In the light-front formulation, the rotational symmetry
turns to a hidden symmetry, with apparent distinctions
between longitudinal and transverse coordinates. Therefore,
the LFWF mixing related to the quadrupole moment takes
two different forms:
(1) for Λ ¼ 1 it is mixing of Ψ0;0;Ψ0;2; and
(2) for Λ ¼ 0 it is mixing of Ψ0;−1;Ψ0;1.

Note that the indices here are the quantum numbers n andm.

A. S-D mixing in the rest frame

To assess the S-D-shell (that is L ¼ 0 to L ¼ 2) mixing
for Upsilon in the center of mass frame, we need to first
consider the splitting due to the repulsive centrifugal
potential ð6=r2Þ originating from the free Laplacian plus
the Cornell potential, with the result

E2 − E0 ¼ 0.46669 − ð−0.47682Þ ¼ 0.943 GeV

(which is still subject to corrections by spin-dependent
forces). This value is to be compared to the empirical mass
difference

Mϒ2 −Mηb ¼ 10.2325 − 9.3987 ¼ 0.834ðGeVÞ:
The S-D mixing requires two states with the same J ¼ 1,

which are constructed in a standard way, via Clebsch-
Gordon coefficients

ψMJ¼1
0 ¼ ψ0ðrÞY0

0χ
1
1;

ψMJ¼1
2 ¼ ψ2ðrÞ

� ffiffiffi
3

5

r
Y2
2χ

−1
1 −

ffiffiffiffiffi
3

10

r
Y1
2χ

0
1 þ

ffiffiffiffiffi
1

10

r
Y0
2χ

1
1

�
:

ð52Þ
Here Ym

L ðθ;ϕÞ are spherical harmonics, and χMs
S are states

of total spin composed of Q and Q̄. To proceed, we use the
standard notation for the tensor force VTðrÞS12, and the
nondiagonal matrix element with the angular integralZ

dΩðY0
0χ

1
1ÞS12

×

� ffiffiffi
3

5

r
Y2
2χ

−1
1 −

ffiffiffiffiffi
3

10

r
Y1
2χ

0
1 þ

1ffiffiffiffiffi
10

p Y0
2χ

1
1

�
¼

ffiffiffi
8

p
: ð53Þ

As a result, the quadrupole moment is given by an integral

hQiϒ ¼ ϵ02
5
ffiffiffi
2

p
Z

drr4Ψ00ðrÞΨ02ðrÞ

≈ ϵ02ð0.14 GeV−2Þ ð54Þ
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where the admixing amplitude of the D state is ϵ02. If we
assume it to be small, it is then given by the perturbative
matrix element of the tensor mixing operator, sandwiched
between states calculated using the Cornell potential

ϵ02 ¼
ffiffiffi
8

p R
drr2Ψ00ðrÞV�2ðrÞΨ02ðrÞ

E2 − E0

: ð55Þ

For an estimate, we may use the perturbative contribution
with

VTðrÞ ¼
4

3

3αs
r3

: ð56Þ

B. Quadrupole moment of Upsilon meson
from the light-front Hamiltonian

In this subsection we still consider the case ofϒ, a vector
meson made of a b̄b quark pair. In the rest frame we just
discussed, the cases of transversely polarized Λ ¼ 0 and
longitudinally polarized Λ ¼ �1 are related by the Oð3Þ
rotational symmetry. The matrix elements of the various
tensor operators over the corresponding states are tied by
the Wigner-Eckart theorem, and given by Clebsch-Gordon
coefficients times a “reduced” (rotationally invariant)
matrix element independent of the meson orientation.
In the light-front Hamiltonian HLF in (36), the spin-

tensor potential for heavy quarkonia comes from the last
term with the instanton-induced effects (32). The spin
operator can be rewritten in a more transparent way as�

σ1⊥ · b̂21σ2⊥ · b̂21 −
1

2
σ1⊥ · σ2⊥

�

¼ 1

4
ðσ1−σ2−e2iϕ þ σ1þσ2þe−2iϕÞ: ð57Þ

The dependence on the azimuthal angle ϕ reflects on the
mixing between the m and m� 2 states. We recall that the
instanton contribution to the central potential was discussed
in detail in [17], for the “dense instanton ensemble” with
diluteness parameter κ set to one. The plot of the central
potential VCðξxÞ and its second derivative V 00

CðξxÞ are given
in Fig. 5. Note the change in sign at b⊥ ∼ 1.5 GeV−1, a
distance comparable to the size of Upsilon.
With our usual approximation for heavy quarkonia,M ≈

2mQ and ξx ≈ b⊥, its contribution to the mixing part ofHLF

takes the form

hn1mjV�2jn2; m� 2i

¼
Z

d2b⊥dxΨ�
n1mVTðb⊥Þe−2iϕΨn2mþ2: ð58Þ

We show the factors depending on ϕ explicitly, but omit the
spin operators.
To simplify the wave functions, let us for now ignore Ṽ

in the Hamiltonian, which means using instead ofΨ0;0;Ψ0;2

LFWFs, the functions ψ0;0;ψ0;2 of the oscillator basis, (A3)
and (C3). Recall that in the coordinate representation for the
b̄b mesons, the size parameter β ≈ 0.62 GeV. The result is

h00jV�2j0; 2i ≈ −0.011 GeV2; ð59Þ

Note that if the size integral is split into the contributions
stemming from the small plus large radial intervals, i.e.
½0; 1.5 GeV−1� plus ½1.5 GeV−1;∞�, we find 0.007 and
−0.018, respectively.
When (59) is divided by the difference of the mass

squared for the two mixing states

ΔM2 ¼ M2
ϒ2 −M2

ηb

¼ 10.23252 − 9.39872 ≈ 16.4 GeV2

we get our estimates of the mixing parameter ϵ02 ≈
0.00064. As a result, the estimate for the Upsilon quadru-
pole moment is then

Qϒ ∼ 2ϵ02

Z
d2b⊥dxΨ0;0Ψ0;2b2⊥ ≈ −0.0095 GeV2 ð60Þ
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FIG. 5. The central part of the instanton induced potential
VCðξxÞ versus the distance ξx ¼ r (top), and its second derivative
V 00
CðξxÞ (bottom). See text.
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which means that the usually quoted combination is

QϒM2
ϒ ≈ −0.87: ð61Þ

As we will see in the next subsection, it is right in the
ballpark of other determination. Unfortunately, this result is
relatively uncertain since it comes from significant can-
cellations of small and large ranges in the b⊥-mixing
integral. Deformations of the instantons—e.g. in instan-
ton–anti-instanton “molecule” configuration described by
streamline or thimble configuration—would change this
number. Putting this observation into a positive direction,
we may conclude that the quadrupole moments of mesons
are sensitive to the exact nature of the nonperturbative
vacuum fluctuations.
We recall that in [16], we extracted the matrix element of

the tensor force from the masses of the P-wave states of
mesons with different quark species, ranging from the
heavy χb to the lightK, π. We noted that this matrix element
changes sign, in going from heavy to light mesons. This
observation is consistent with the calculation of this
section. This issue clearly deserves further studies.

C. Quadrupole moments of vector mesons
from lattice and other approaches

There have been several lattice measurements of the
quadrupole moments of vector mesons, and in all fairness
we will not be able to cover them in this comparative study.
In a recent lattice study of vector mesons composed of
light, strange, and charmed quarks with V ¼ ρ; K�; ρs; ρc
(the latter carry artificial charge assignments), it was
numerically found that QVM2

V ≈ −0.3 [28], which is
comparable to an earlier study with QVM2

V ≈ −0.23ð2Þ
[29]. When extrapolated to bottomium, the recent lattice
result gives Qϒ ≈ −0.003 GeV2, with a mixing parameter
ϵ02 ≈ 0.02 from our analysis.
Adhikari et al. [30] have used their version of light-front

Hamiltonian andwave functions, and calculated form factors
for the lowest states of charmonia and bottomonia. From
Table V in [30], we see that their value for Upsilon is larger
QϒM2

ϒ ¼ −0.731ð9Þ. In sum, the spread of these numbers is
about a factor of 3, so the magnitude of the quadrupole
moment of Upsilon remains relatively uncertain.

VII. GENERAL SPIN AND ORBIT MIXING
FOR LIGHT QUARKS

So far, we have considered mixing between the m ¼ 0
and m ¼ 2 components of the quarkonia wave function by
the tensor force V�2. Similarly, we can include spin-orbit
force V�1 and spin-spin forces, generating the whole
3 × 3 mixing matrix. However, since we know that all
mixing is suppressed by powers of the heavy quark mass,
we can treat these mixings perturbatively and additively, as
we did above.

Instead, we now switch to the more involved case of light
quarks, where the mixing is not expected to be suppressed.
Of course, this is well known from the spectroscopy in the
rest frame: heavy quarkonia are nonrelativistic, while light
quark systems are not. In the rest frame, it is difficult to
compare these two limiting cases of the meson spectros-
copy. Fortunately, in the light front the comparison is
possible, as light and heavy quarks are treated democrati-
cally. The light-front Hamiltonian has the same form for
both cases, with only few parameters due for change. The
only special case is the pion as a Goldstone mode, that we
will address in the next section (see also our qualitative
analysis in [17]).
The “basic problem” of two constituent quarks con-

nected by a confining string was already considered in [17].
There we did not yet have mixing of states with different
(transverse) orbital momentum m, and considered only the
set of functions with m ¼ 0. The basis functions with
m ≠ 0 are discussed in Appendix C, including the tran-
sition from the momentum to the coordinate representation.
The general form of the mixing matrix HΛ for a meson

with helicity Λ ¼ Jz was already given in (46). The
derivation of the perturbative and instanton-induced spin-
and orbital-m-changing effects were given in our recent
analysis in [17] and above. Our current task is to evaluate
the corresponding matrix elements.
The diagonal in the m-part or Vdiag consists of two parts,

the one coming from the spinless H0 þ Ṽ Hamiltonian and
the one from the spin part. There is no need to describe in
detail the former. In brief, the values of the squared masses
for the m ¼ 0, 1, 2 states were obtained after its diago-
nalization. Using the states detailed in the Appendix E, we
get for the longitudinally polarized vector Λ ¼ 1 case the
following diagonal elements:

H00
1 ¼ 2.229; H11

1 ¼ 2.833; H22
1 ¼ 3.434ðGeV2Þ:

ð62Þ

Three spin states S ¼ 1; Sz ¼ 1; 0;−1 are

j↑↑i; ðj↑↓i þ j↓↑iÞ=
ffiffiffi
2

p
; j↓↓i;

respectively. The spin-spin forces are proportional to the
same value hS⃗1 · S⃗2i ¼ 1=4, and the corresponding matrix
elements of the perturbative (26) and instanton-induced
(34) potentials with jΨ0mj2.
The near-diagonal V�1 part of the mixing matrix is due

to the spin-orbit forces, from the perturbative (26) and
instanton-induced effects (34). The former is proportional
to −Ŝ1 · L̂2 þ Ŝ2 · L̂1, in which L̂2 ¼ −L̂1 so the two terms
are added into the total spin Ŝ. We only consider the
nondiagonal operators SþL− þ S−Lþ that flip the spin and
m by �1. The perturbative potential is ∼1=ξ3x. If we ignore
the longitudinal distance and use ξ2x ≈ b⃗2⊥, we may worry

HADRONIC STRUCTURE …. III. THE HAMILTONIAN, … PHYS. REV. D 107, 034025 (2023)

034025-13



about of the convergence of the integrand at the origin. In
the transition between m ¼ 0 and m ¼ 1, one indeed finds
a logarithmic divergence

Z
d2b⊥Ψ00

1

b3
Ψ01 ∼

Z
db⊥b⊥ � 1

b3⊥
� b⊥ ∼ logðbminÞ

ð63Þ

since at small b⊥, Ψ00 ∼ b0⊥;Ψ01 ∼ b⊥. This logarithmic
divergence is cut off by the small longitudinal distance of
about π=M ≈ π=2mQ. In contrast, in the transition between
m ¼ 1 and m ¼ 2 the integral has Ψ02 ∼ b2⊥ instead of Ψ00,
so it is convergent.
The instanton-induced spin-orbit contributes to the

light-front Hamiltonian HLF, with the corresponding
potential V 0

CðξxÞ shown in Fig. 6. It is regular at the origin,
but with a relatively small range of about an instanton
size ∼1.5 GeV−1 ∼ 0.3 fm.
The V�2 or tensor forces were discussed in detail above

for the case of the transition between the m ¼ 0 and m ¼ 2

states. The corresponding instanton-induced potential is
shown in the bottom panel of Fig. 5.
After the evaluation of all matrix elements, we obtain the

following mixing matrix:

HΛ¼1 ¼

0
B@

M2
0 þ C00 þ SS00C þ SS00inst; SL01

C þ SL01
inst; T02

inst

SL01
C þ SL01

inst; M2
1 þ C11 þ SS11C þ SS11inst; SL12

pert þ SL12
inst

T02
inst; SL12

pert þ SL12
inst; M2

2 þ C22 þ SS22c þ SS22inst

1
CA

¼

0
B@

2.06789 0.289719 −0.100297
0.289719 2.66282 0.0617886

−0.100297 0.0617886 3.2959

1
CA: ð64Þ

All entries in (64) are explained in Appendix D. The
mixing changes the squared masses of the three Λ ¼ 1
states as follows:

fM2
0;M

2
1;M

2
2g ¼ f2.229; 2.833; 3.434g →

fM2
a;M2

b;M
2
cg ¼ f1.940; 2.779; 3.307g:

The largest change is, as expected, a downward shift of the
ground state.
One may think that the main shifts are due to Coulomb

and spin-spin effects, and that the mixing is small. This is
not the case, as one can see from the mixing coefficients
associated to the wave functions for these three states

Ψa ¼ 0.922252ψ0 − 0.377037ψ1 þ 0.0854116ψ2;

Ψb ¼ 0.38106ψ0 þ 0.923825ψ1 − 0.0365531ψ2;

Ψc ¼ −0.0651235ψ0 þ 0.0662586ψ1 þ 0.995675ψ2:

There is significant 0-1 mixing due to spin-orbit
interactions.

VIII. INCLUDING ’t HOOFT EFFECTIVE
LAGRANGIAN

The zero-mode contributions due to tunneling are
captured by the ’t Hooft determinantal interaction, in the
rest frame. The 3-flavor determinantal interaction reduced
to 2-flavor reads [16,17]

VTHð1; 2Þ ¼ −
1

4
jκ̃2jA2Nð1 − τ1 · τ2Þ

× ð1 − 16B2NS1 · S2Þδðx⃗12Þ ð65Þ

with the pair spatial distance x⃗12 ¼ x⃗1 − x⃗2, in the ultralocal
approximation for the instanton. However, the fermionic
zero modes ride a nonlocal instanton tunneling process, and
its interpretation in a boosted frame requires analytical
continuation.
To derive the analog of (65) on the light front, we need

to show how to analytically continue the fermionic tunnel-
ing process to the light front, where the in-out quarks
are nearly on mass shell. We need an LSZ reduction scheme
in Euclidean signature that extends to the light front in
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FIG. 6. Instanton-induced spin-orbit potential on the light-front
V 0
CðξxÞ. See text.
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Minkowski signature. For that, we follow the proposal
suggested in [31].

A. LSZ reduction in the rest frame

For two flavors, the LSZ reduced ’t Hooft vertex between
on-shell light quarks in the rest frame is��

χ†Rðk2Þik2Φ0ð−k2Þ
1

imq
Φ†

0ðk1Þik̄1χLðk1Þ
�

×

�
χ†Rðk2Þik2Φ0ð−k2Þ

1

imq
Φ†

0ðk1Þik̄1χLðk1Þ
��

U
:

The averaging in (66) is over the SUðNcÞ color moduli U.
Here each factor is on mass shell using the long time limit
in Euclidean signature. More specifically, for the incoming
left-handed and on-shell χLðk1Þ going through an instanton,
we define

Φ†
0ðk1Þik1χLðk1Þe−jk⃗1jjTj

¼ lim
T→∞

Z
d3y

�
ρ

3
2

π

U†ϵyχLðk1Þ
y4Π

3
2
y

�
e−ik⃗1·y⃗ ð66Þ

with Πy ¼ 1þ ρ2=y2 and y ¼ ð−T; y⃗Þ. In the large
Euclidean time limit Πy → 1, and the y integration
reduces to

lim
T→∞

Z
d3y

−T1 − iσ⃗ · y⃗

ðT2 þ y⃗2Þ2Π3
2
y

e−ik⃗1·y⃗ ¼ π2ð1 − σ⃗ · k̂1Þe−jk⃗1jjTj:

ð67Þ

Note the appearance of the mass-shell condition E1 ¼ jk⃗1j
in the exponent, supporting the LSZ reduction in Euclidean
signature. As a result, (66) simplifies to

Φ†
0ðk1Þik1χLðk1Þ ¼ ðπρ3

2Þ½Uþϵð1 − σ⃗ · k̂1ÞχLðk1Þ� ¼ ð2πρ3
2Þ½UþϵχLðk1Þ�: ð68Þ

Since χLðk1Þ is left handed in the small current massmq limit, the right-most result follows. A repeat of this analysis yields
(66) in the form �

4π2ρ3

imq

�
2

h½χ†Rðk2ÞϵU�½U†ϵχLðk1Þ� × ½χ†Rðk2ÞϵU�½U†ϵχLðk1Þ�iU: ð69Þ

B. LSZ reduction on the light front

To carry the preceding analysis to the light front, we first carry the analog of the LSZ reduction along yþ ¼
cos θy4 þ sin θy3 for large yþ in Euclidean signature, integrate over the remaining orthogonal directions y− ¼ sin θy4 −
cos θy3 and y⊥, and then analytically continue θ → −iχ. More specifically, the analog of (67) is now

lim
yþ→∞

Z
dy−dy⊥e−ik1−y−−ik1⊥·y⊥

�½yþðcos θ − i sin θσ3Þ þ y−ðsin θ þ i cos θσ3Þ − iσ⊥ · y⊥�
ðy2þ þ y2− þ y2⊥Þ2Π

3
2
y

�

¼ π2
�
ðcos θ1 − i sin θσ3Þ −

ik1−
k

ðsin θ1þ i cos θσ3Þ − iσ⊥ · y⊥
�
e−kjyþj ð70Þ

in the large yþ limit, with

k1þ ¼ cos θk4 þ sin θk3;

k1− ¼ sin θk4 − cos θk3;

k ¼ ðk21− þ k2⊥Þ
1
2: ð71Þ

The analytical continuation θ → −iχ, y4 → iy0 and k4 → −ik0 yield (70) in the form

2γπ2ð1 − σ3Þe−kjyþj → π2ð1 − σ3Þe−kjyþj: ð72Þ
Modulo the overall factor 2γ ¼ 2Pþ=M (to be absorbed in the new normalization of the states on the light front), (72) is
compatible with (68) in the large momentum limit.
In retrospect, (72) shows that (69) extends to the light front in the form�

4π2ρ3

imq

�
2

h½χ†3Rðk2ÞϵU�½U†ϵχ3Lðk1Þ� × ½χ†3Rðk2ÞϵU�½U†ϵχ3Lðk1Þ�iU ð73Þ
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with the L, R polarizations solely along the 3-direction. In
other words, on the light front helicity and chirality are
identified: a left-handed quark with spin down, flips to a
right-handed quark with spin up as it tunnels through an
instanton on the light front. The opposite flip takes place
through an anti-instanton.

C. Zero mode induced (’t Hooft Lagrangian)
interaction on the light front

Equation (73) does not carry any form factor in leading
order, by the LSZ reduction. Its contribution to the invariant
meson squared mass is

−
Z Y2

i¼1

dkþi
4πkþi

dkþi
4πkþi

dki⊥
ð2πÞ2

dki⊥
ð2πÞ2 × ð2πÞ32Pþδðkþ1 þ kþ1 − kþ2 − kþ2 Þδðk1⊥ þ k1⊥ − k2⊥ − k2⊥Þ

×
nIþĪ

2

�
4π2ρ3

imq

�
2

h½χ†3Rðk2ÞϵU�½U†ϵχ3Lðk1Þ� × ½χ†3Rðk2ÞϵU�½U†ϵχ3Lðk1Þ� þ L ↔ RiU ð74Þ

with the anti-instanton contribution added. Recall that in the rest frame, an effective form factor of the form (Euclidean
signature)

ðMðk1ÞMðk2ÞMðk1ÞMðk2ÞÞ12 → ðMðk1⊥ÞMðk2⊥ÞMðk1⊥ÞMðk2⊥ÞÞ12 ð75Þ

is induced, withMðkÞ the running constituent mass. Equation (75) regulates the momentum transfers, since the in-out quark
pair is not on mass shell. We expect the right-most form factor in (75) to carry to the light front when the strict mass-shell
limit is lifted as noted in [15,32].
The color averaging in (74) is similar to the color averaging carried in the rest frame (see Eq. (75) in [16]). The result for

the bracket in the mesonic channel is

½Ūðk2; s2ÞUðk1; s1ÞV̄ðk4; s4ÞVðk3; s3Þ þ Ūðk2; s2Þγ5Uðk1; s1ÞV̄ðk4; s4Þγ5Vðk3; s3Þ
− Ūðk2; s2ÞτaUðk1; s1ÞV̄ðk4; s4ÞτaVðk3; s3Þ − Ūðk2; s2Þγ5τaUðk1; s1ÞV̄ðk4; s4Þγ5τaVðk3; s3Þ
− 4B2NðŪðk2; s2ÞσaUðk1; s1ÞV̄ðk4; s4ÞσaVðk3; s3Þ þ Ūðk2; s2Þγ5σaUðk1; s1ÞV̄ðk4; s4Þγ5σaVðk3; s3Þ
− Ūðk2; s2ÞσaτbUðk1; s1ÞV̄ðk4; s4ÞσaτbVðk3; s3Þ − Ūðk2; s2Þγ5σaτbUðk1; s1ÞV̄ðk4; s4Þγ5σaτbVðk3; s3Þ� ð76Þ

with Uðk; sÞ; Vðk; sÞ the quark and the antiquark LF
spinors respectively (see Appendix F). Note that the same
interaction holds for

ðŪUÞðV̄VÞ → ðŪVÞðV̄UÞ

through Fierz rearrangements.
Besides the standard flavor-determinantal character of

the squared mass operator (74) after color averaging, its
chief effect is to flip the helicity/chirality/spin of the in-out

nearly on-shell light-front quark pair, in the chiral limit. For
three light flavors u, d, s in QCD, the arguments are similar,
except that the strange quark loops in the sea are contracted
as hs̄si < 0. The reduction to two flavors u, d is structurally
identical to (74), with only the overall coupling modified
and sign switched.
On the LF, each of the contributions in (76) is spin

valued. If we denote by ½s2s1� the entries with s1 for the
initial spin and s2 for the final spin, then the matrix valued
forms are

ŪLðk2; s2ÞURðk1; s1Þ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffi
kþ1 k

þ
2

q 0
B@

mQ1

kþ
2

0

k1R
kþ
1

− k2R
kþ
2

mQ1

kþ
1

1
CA ¼ þ ffiffiffiffiffiffiffiffiffi

x1x2
p

 mQ1

x2
0

k1R
x1

− k2R
x2

mQ1

x1

!
;

ŪRðk2; s2ÞULðk1; s1Þ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffi
kþ1 k

þ
2

q 0
B@

mQ1

kþ
1

k2L
kþ
2

− k1L
kþ
1

0
mQ1

kþ
2

1
CA ¼ þ ffiffiffiffiffiffiffiffiffi

x1x2
p

 mQ1

x1
k2L
x2

− k1L
x1

0
mQ1

x2

!
;
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V̄Lðk1; s1ÞVRðk2; s2Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
kþ1 k

þ
2

q 0
B@

mQ2

kþ
2

0

k1R
kþ
1

− k2R
kþ
2

mQ2

kþ
1

1
CA ¼ −

ffiffiffiffiffiffiffiffiffi
x1x2

p
 mQ2

x2
0

k1R
x1

− k2R
x2

mQ2

x1

!
;

V̄Rðk1; s1ÞVLðk2; s2Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
kþ1 k

þ
2

q 0
B@

mQ2

kþ
1

k2L
kþ
2

− k1L
kþ
1

0
mQ2

kþ
2

1
CA ¼ −

ffiffiffiffiffiffiffiffiffi
x1x2

p
 mQ2

x1
k2L
x2

− k1L
x1

0
mQ2

x2

!
; ð77Þ

with kþ1;2 ¼ x1;2Pþ. For eikonalized longitudinal momenta kþ1 ≈ kþ2 commensurate with our use of the Wilson lines, (77)
simplifies to

ŪLðk2; s2ÞURðk1; s1Þ →
�
mQ1

0

ΔR mQ1

�
¼ mQ1

1þ ΔRσ
−;

ŪRðk2; s2ÞULðk1; s1Þ →
�
mQ1

−ΔL

0 mQ1

�
¼ mQ1

1 − ΔLσ
þ;

V̄Lðk1; s1ÞVRðk2; s2Þ →
�−mQ2

0

ΔR −mQ2

�
¼ −mQ2

1þ ΔRσ
−;

V̄Rðk1; s1ÞVLðk2; s2Þ →
�−mQ2

−ΔL

0 −mQ2

�
¼ −mQ2

1 − ΔLσ
þ; ð78Þ

with the momentum transferΔμ ¼ kμ1 − kμ2,ΔL ¼ Δ1 − iΔ2 ¼ Δ�
R, and σ

� ¼ 1
2
ðσ1 � iσ2Þ. Inserting (78) into (76) yields the

local determinantal two-body interaction potential (76) on the light front as

Vη0
TH ≈ −jκ̃2jA2N

1

4
ð1 − τ1 · τ2Þ½4mQ1

mQ2
1112 − 2ðσ1⊥ ×∇⊥mQ2

12 −mQ1
11σ2⊥ ×∇⊥Þ

− ðσ1⊥ ×∇⊥Þðσ2⊥ ×∇⊥Þ − ðσ1⊥ · i∇⊥Þðσ2⊥ · i∇⊥Þ�δðPþz−Þδðx⊥Þ ð79Þ
in the U(1) or η0 channel, where only the leading 1=Nc contribution is shown. We have set

A2N ¼ 2Nc − 1

2NcðN2
c − 1Þ ; κ̃2 ¼ 3!GHoofths̄si < 0; GHooft ¼

nIþĪ

2
ð4π2ρ3Þ3

Y
f¼u;d;s

1

m�
fρ

ð80Þ

with σi⊥ the ⊥-Pauli matrices for particle i ¼ 1, 2. The
flavor permutation Pf

12 is manifest in (76) as carried in (80)

1

4
ð1 − τ1 · τ2Þ ¼

1

2
ð1 − Pf

12Þ:

This is just the projector on the flavor singlet states. This is
at the origin of the famed ’t Hooft determinantal interaction,
which helps solve the U(1) problem for the 3-flavor case.
[Note that the interaction is repulsive in the unprojected
3-flavor U(1) channel.]
Both spin contributions in (79) flip the spin of the

incoming quark pair from L-down to R-up in the instanton
contribution, and vice versa in the anti-instanton con-
tribution. In the ultralocal approximation, we may trade
∇2⊥ → 1=ρ2, hence the instanton induced spin-spin inter-
action in the 2-flavor singlet channel,

−jκ̃2jA2N
1

3
ð1 − τ1 · τ2ÞS1⊥ · S2⊥δðPþz−Þδðx⊥Þ: ð81Þ

The nature of the instanton-induced interactions in the
other meson channels with different spin flavor is manifest
in the individual contributions in the Fierzed form (76),
with no contribution to the vector and pseudovector
channels. For instance, in the pion channel, the light front
interaction is

jκ̃2jA2N
1

3
τ1 · τ2S1⊥ · S2⊥δðPþz−Þδðx⊥Þ ð82Þ

which is attractive in the isospin-triplet and spin-singlet
state, key for a massless pion. This point has been
addressed in the literature many times before, including
briefly in this series [17] (note that in the latter the
interaction was assumed local in the invariant distance
ξx for simplicity). If we were to treat this interaction
perturbatively, it may appear that we should fit the
magnitude of the four-fermion coupling constant to put
the total pion mass to zero. However, this is not correct.
This effect is dominant and leading in the pion channel, and
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should not be treated perturbatively, as we showed quali-
tatively in [17]. For any large enough coupling (and thus
instanton density) it breaks chiral symmetry and (in the
chiral limit) produces exactly massless Nambu-Goldstone
modes, the pions. Yet to show that quantitatively, we need
to rederive the essentials of chiral symmetry breaking on
the light front, a task we will discuss later in these series.

IX. VARIOUS OBSERVABLES

A. Parton distribution functions

The parton distributions functions or PDFs count the
parton content of a given hadronic state. They are matrix
elements of various operators sandwiched between perti-
nent light-front wave functions. For the hadronic states (47)
and (48) limited to the lowest 2-particle wave-function
contributions with net helicity zero, the pseudoscalar and
vector PDFs are given by

qP;VðxÞ ¼
Z

d2k⊥
ð2πÞ3 ðjψ

P;V
0 j2 þ jψP;V

1 j2 þ jψP;V
−1 j2Þ ð83Þ

with qP;Vðx̄Þ ¼ qP;VðxÞ for the antiparticles. The PDFs
normalize to 1 using (51), which is the charge sum rule for a

given hadron. In the 2-particle approximation, the momen-
tum sum rule is automatically fulfilledZ

1

0

dxðxqP;VðxÞ þ x̄qP;Vðx̄ÞÞ ¼ 1: ð84Þ

B. Distribution amplitudes

The distribution amplitudes are defined as matrix ele-
ments of certain nonlocal operators on the light cone,
sandwiched between the vacuum and pertinent hadronic
states. They capture the longitudinal momentum and trans-
verse location of a parton in the hadronic state.
DAs are widely used in the theory of hard exclusive

reactions, such as the hadronic form factors in elastic
scattering and heavy meson semileptonic decays. At high
momentum transfer, factorization allows a split of the
scattering amplitude into a “hard block operator,” sand-
wiched between two DAs. The moments of various DAs
have been calculated on the lattice; for a reviews see [33].
The DAs are classified by the twist (dimension minus

spin) of the operator involved. To give an example, since
the early 1980s, most exclusive reactions involving the
pions are based on the following three DAs:

Z þ∞

−∞

pþdz−

2π
eixp·zh0jd̄βð0Þ½0; z�uαðzÞjπþðpÞi

¼
�
þ ifπ

4
γ5
�
=pφA

πþðxÞ − χπφ
P
π ðxÞ − iχπσμν

pμnν

p · n
φ0T
π ðxÞ
6

��
αβ

ð85Þ

with nν a lightlike vector in the z direction. Note that although these matrix elements are nonlocal, the integral is just one
dimensional, taken along the light-cone coordinate. The symbol ½x; y� is the shorthand notation for the gauge link between
two points on the light front, and σμν ¼ 1

2i ½γμ; γν�. In this example the first term contains momentum, while the other two do
not. Therefore the axial A-DA is of leading twist, while the two others P, T-DA are subleading (next twist) at large
momentum p → ∞.
The three functions φiðxÞ have indices i ¼ A, P, T standing for axial, pseudoscalar, and tensor gamma matrices in the

operator. They are all normalized to 1. Their explicit definition follows from (85) by inversion,

φA
πþðxÞ ¼

1

ifπ

Z þ∞

−∞

dz−

2π
eixp·zh0jd̄ð0Þγþγ5½0; z�uðzÞjπþðpÞi;

φP
πþðxÞ ¼

1

fπχπ

Z þ∞

−∞

pþdz−

2π
eixp·zh0jd̄ð0Þiγ5½0; z�uðzÞjπþðpÞi;

φT0
πþðxÞ ¼

−6
fπχπ

pμnν

p · n

Z þ∞

−∞

pþdz−

2π
eixp·zh0jd̄ð0Þσμνγ5½0; z�uðzÞjπþðpÞi: ð86Þ

The constants DAs are normalized to 1. The axial
pion DA is normalized by the weak pion decay
constant fπ ≈ 133 MeV, and the pseudoscalar and
tensor pion DAs are normalized by χπ which follows
from the chiral algebra. These chiral parameters are a
measure of the pion wave function at the origin of the
transverse plane (zero transverse distance b⊥ ¼ 0).

The DAs are only a function of the longitudinal
momentum x.

1. Pion axial DA

To relate the pion axial DA in (86) to the pseudoscalar
light-front wave function with helicity-0 in (47), we note
the identity
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τþud

�
1

4
γ5p

�
αβ

¼ 1

2

1ffiffiffiffiffiffiffiffi
4xx̄

p ðuα↑ð1Þd̄β↓ð2Þ − uα↓ð1Þd̄β↑ð2ÞÞ

ð87Þ
in the light-front limit. With this in mind, the leading twist-2
or axial distribution amplitude for P ¼ πþ (or any pseudo-
scalar) in (86), matches the m ¼ 0 contribution in (47)

φA
PðxÞ ¼

2
ffiffiffiffiffiffi
Nc

p
fP

Z
dk⊥
ð2πÞ3 ψ

P
0 ðx; k⊥Þ: ð88Þ

By the same reasoning, the corresponding contribution for
the vectors, matches the m ¼ 0 contribution in (48)

φVðxÞ ¼
2
ffiffiffiffiffiffi
Nc

p
fV

Z
dk⊥
ð2πÞ3 ψ

V
0 ðx; k⊥Þ: ð89Þ

2. Pion tensor DA

To relate the tensor pion DA amplitude in (86) to the
pseudoscalar light-front wave function with helicity-1
in (47), we note that the dominant tensor matrix element
on the light cone reads

h0jd̄ð0Þiσþiγ5uðz−; z⊥ÞjπþðpÞi ¼ 2pþ ∂

∂zi⊥
ψP
1 ðz−; z⊥Þ

ð90Þ
with (x ¼ kþ=pþ)

ψP
1 ðx; k⊥Þ ¼

Z
dz−dz⊥eiðk

þz−−k⊥·z⊥ÞψP
1 ðz−; z⊥Þ: ð91Þ

Note the relation ψP
�1ðx; k⊥Þ ¼ k�⊥ψP

1 ðx; k⊥Þ with k�⊥ ¼
kx � iky. A comparison with (86) shows that the twist-3
pion distribution amplitude in φTðx; k⊥Þ matches the
m ¼ 1 contribution in (47) through

∂

∂ki⊥
φTðx; k⊥Þ ¼

6

fπχπ
ki⊥ψP

1 ðx; k⊥Þ: ð92Þ

3. Bottomium DA

The generic LFWFs depend on all three variables x; b⊥.
The DAs are LFWF’s at the origin in the coordinate
representation, or the overall integral

Ψnmðb⊥ ¼ 0; xÞ ¼
Z

d2k⊥
ð2πÞ2Ψnmðk⊥; xÞ ð93Þ

in the momentum representation. They are normalized so
that the integral over x is one. In Fig. 7 we show the DAs for
n ¼ 0, 1, 2 LFWFs, for b̄b and generic q̄q mesons. They
look similar, but this only happens after integration over
transverse momentum. For reference, the actual three
functions (in our limited basis) look as follows:

ψ0 ¼ e−7.14286ρ
2ðð−3.12914þ 1.86018ρ2 − 0.72094ρ4Þ sinðπxÞ þ ð0.16657þ 0.636644ρ2 − 0.490831ρ4Þ sinð3πxÞ

þ ð0.0267þ 0.111ρ2 − 0.152ρ4Þ sinð5πxÞ þ ð0.00919þ 0.0402ρ2 − 0.0577ρ4Þ sinð7πxÞÞ;
ψ1 ¼ e−7.14286ρ

2ðð3.08754 − 48.5397ρ2 þ 20.882ρ4Þ sinðπxÞ þ ð−0.163697þ 2.98926ρ2 þ 5.18136ρ4Þ sinð3πxÞ
− ð0.031þ 0.496ρ2 þ 0.347ρ4Þ sinð5πxÞ þ ð−0.011þ 0.170963ρ2 þ 0.118155ρ4Þ sinð7πxÞÞ;

ψ2 ¼ e−7.142ρ
2ðð−2.79þ 82.46ρ2 − 303:ρ4Þ sinðπxÞ þ ð0.242 − 9.649ρ2 þ 42.7ρ4Þ sinð3πxÞ

þ ð0.0403 − 1.272ρ2 þ 4.775ρ4Þ sinð5πxÞ þ ð0.0139 − 0.437ρ2 þ 1.64ρ4Þ sinð7πxÞÞ:
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FIG. 7. Distribution amplitudes for b̄b (top) and a “generic”
light q̄q meson (bottom) as a function of x, for the three lowest
states n ¼ 0, 1, 2. For bottomium, the difference between the
three curves is too small to be visible. For the light meson, the
differences are visible. With increasing n, the DAs become
narrower and higher at x ¼ 1

2
.
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Note first, that the heavier the meson, the slower the
quark motion, with the DAs more concentrated near x ¼ 1

2
.

Note also that the bottomonia states with different
orbital momenta m have practically the same DAs. Note
finally that the oscillations in the DAs for bottomonia,
are an artifact of the small basis set of functions in x that
we used. Before normalization, the lowest bottomium
DA reads

DAðn ¼ 0; m ¼ 0Þ ∼ ð2.19 sinðπxÞ
− 1.79 sinð3πxÞ þ 1.16 sinð5πxÞ − 0.44 sinð7πxÞÞ:

Note that the signs of the harmonics alternate, with a net
effect being a suppression of the DA near the edges
x → 0, 1.

4. Decay constants

These matrix elements are best interpreted in the chiral
basis. For the pseudoscalar pion, the leading twist-2 DA
φπðxÞ is chirally diagonal, but the subleading twist-3 are
chirally nondiagonal. Fortunately, a matrix related the
chiral basis to the spin basis has been already defined in
the previous section.
The weak pion decay constant follows:

h0jd̄ð0Þγμð1 − γ5Þuð0ÞjπþðpÞi ¼ −Tr
�
γμð1 − γ5Þ

�
i
4
γ5=p

��
2

Z
dk⊥
ð2πÞ3

dxffiffiffiffiffiffi
Nc

p ψP
0 ðx; k⊥Þ≡ ifπpμ ð94Þ

with the trace referring to color spin. The generic pseudo-
scalar weak decay constant is then

fP ¼ 2
ffiffiffiffiffiffi
Nc

p Z
dk⊥
ð2πÞ3 dxψ

P
0 ðx; k⊥Þ: ð95Þ

Similar arguments applied to the weak decay constant of
the V ¼ ρþ meson defined as

h0jd̄ð0Þγμuð0ÞjρþðpÞi ¼ ϵμðpÞmρfρ ð96Þ

yield the generic vector decay constant

fV ¼ 2
ffiffiffiffiffiffi
Nc

p Z
dk⊥
ð2πÞ3 dxψ

V
0 ðx; k⊥Þ: ð97Þ

5. Chiral constant

Isospin symmetry and charge conjugation force
φπðxÞ ¼ φπðx̄Þ. As pointed out initially in [34], there are
two twist-3 and chirally nondiagonal independent DA
φP
π ðxÞ and φT

π ðxÞ, characterizing the pseudoscalar and
tensor strength in the pion respectively. The latter are tied
by the current identity

∂
νðd̄ð0Þσμνγ5uðzÞÞ ¼ −∂μðd̄ð0Þiγ5uðzÞÞ þmd̄ð0Þγμγ5uðzÞ

ð98Þ

and share the same couplings. The value of the dimen-
sionful coupling constant χπ can be fixed by the divergence
of the axial-vector current and the partially conserved axial
current relation

ðmu þmdÞh0jd̄ð0Þiγ5uð0ÞjπþðpÞi ¼ −ðmu þmdÞTr
�
iγ5
�
ifπ
4

γ5χπ

��Z
1

0

dxφP
π ðxÞ ¼ ðmu þmdÞfπχπ ð99Þ

with φP
π ðxÞ normalized to 1. Using the Gell-Mann-Oakes-

Renner relation

f2πm2
π ¼ −2ðmu þmdÞhq̄qi ð100Þ

with jhq̄qij ≈ ð240 MeVÞ3 yields

χπ ¼
m2

π

ðmu þmdÞ
: ð101Þ

C. Form factors

Elastic scattering is the simplest exclusive process, and
the corresponding mesonic form factors have been studied
extensively theoretically and experimentally, for about five
decades. Here we do not have space for a review of their
history; let us just say that early asymptotic predictions at

large Q2, based on one-gluon exchange, are not yet met,
neither in experiment or on the lattice.
[The “semihard” domain Q2 ∼ fewGeV2 is dominated

by nonperturbative effects. In particular, in our previous
paper [35], we have calculated the instanton-induced
contributions to the hard block, and showed that they are
comparable to the perturbative amplitudes.When combined,
they reproduce the experimental/lattice data, provided that
the diluteness parameter is not small π2nIþĪρ

4 ¼ Oð1Þ.]
On the light front, the form factors follow from the Drell-

Yan-West construction using the good current Jþ ¼ J0 þ
J3 [36,37]. The analog of the Breit frame with fixed energy
in the rest frame is the Drell-Yan frame in the light-front
frame, with fixed longitudinal momentum Pþ ¼ P0þ, for
P0 ¼ Pþ q with spacelike squared momentum transfer
q2 ¼ −Q2 ¼ −q2⊥. The key feature of this choice of current
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and frame is that the vacuum production and annihilation
diagrams are suppressed, and parton number is conserved
in-out in the form factor viewed as a process γ� þ P → P0.
For instance, the Drell-Yan-West form factor for charged

pseudoscalars is helicity preserving with [36–38]

FPðQ2Þ ¼ hP0; 0; 0j J
þð0Þ
2Pþ jP; 0; 0i

¼
Z

1

0

dx
Z

dk⊥
ð2πÞ3 ψ

P�
0 ðx; k⊥ þ x̄q⊥ÞψP

0 ðx; k⊥Þ

ð102Þ
in the 2-particle approximation (low resolution). Similar expres-
sions for the charged vectors can be derived. The thorough
analyses of these form factors will be given in a sequel [18].

X. CONCLUSIONS

The chief aim of this series of papers is to derive the light-
front Hamiltonian HLF and corresponding wave functions
from first principles, using the theoretical and empirical
information we have at the moment. The important dis-
tinctions between our approach and other versions ofHLF in
the literature are, among others, (i) our HLF is not guessed,
but derived using certain approximations; (ii) thereforewe do
not fit any of the parameters to the experimental data, rather
we use the standard values for the quark masses, the string
tension σT , the perturbative coupling αs and the instanton
ensemble parameters; (iii) we do not consider just one or two
lowest states in each quark channel, but look for as many
states as feasible, by relating the results to Regge behavior;
and (iv) central to our derivation is the QCD vacuum as we
know it, at low resolution.
In a wider perspective, these works continue to bridge

light-front physics with the development in Euclidean
space-time. The latter—lattice QCD simulations and semi-
classical ensembles of instantons—have elucidated a rich
vacuum structure dominated by inhomogeneous and topo-
logically nontrivial gauge configurations. These configu-
rations explain why chiral symmetry is spontaneously
broken, and account for the emergence of mass through
running quark effective masses.
A massless left-handed quark tunneling through an

instanton emerges as a right-handed massless quark as a
topological zero mode, a remarkable manifestation of the of
axial anomaly. This phenomenon is the essence of the
dynamical breaking of chiral symmetry, which yields a
running constituent mass. The collectivization of these zero
modes is well understood from detailed numerical studies
of instanton ensembles carried in the 1990s, and produces
an octet of massless Nambu-Goldstone modes. The QCD
vacuum possesses the zero mode zone with no gap near
zero Dirac eigenvalue. In a way, we may say that the QCD
vacuum is “metallic” with the scalar and vector mesons as
weakly correlated “excitons.”
However, chiral symmetry breaking is not the only

instanton-induced effect.Apart fromwell-isolated instantons

producing near-zero Dirac modes, there are also more
numerous fluctuations which can be described as instan-
ton–anti-instanton molecules. In the first paper of the
series [16], we showed that by including them in Wilson
line correlators, we can account for a significant part of the
central interquark potential, as well as the spin-dependent
potentials in heavy quarkonia.
The light-front observables at large normalization scale

μ2 paint a picture of hadrons containing multiple gluons,
and a rich quark-antiquark sea. Yet at small resolution, of
the order of μ ∼ 1=ρ ≈ 600 MeV, we expect this picture to
morph into the spectroscopic quark model, dominated by
the minimal (2 for mesons, 3 for baryons) configurations.
This is especially obvious for heavy quarkonia, which is the
focus in this paper.
“Potentials” independent and dependent on spin variables

are definedvia certainnonlocalobservables, such as thewell-
known Wilson lines. We know how to evaluate them in the
Euclideanversion of theQCDvacuum, on the lattice orwhen
it can be regarded as a correlated ensemble of certain
topological solitons, such as instantons and anti-instantons.
Bridging the Euclidean vacuum with the LF is one of the

major challenges for theory today. In Paper II [17], we
outlined a method to do so, by performing calculations in
Euclidean space-time, and then analytically continuing the
results (not the field configurations themselves). Wilson
loop correlators are mapped on the light front, in terms of a
slope angle θ in Euclidean signature, that is continued to
−iχ (the rapidity) in Minkowski signature. This proposal
was made long ago, and tested both at the perturbative [20]
and nonperturbative [21,22] levels.
In a way, this proposal is different, although similar in

spirit, to the large momentum effective approach [1], where
Euclidean equal-time correlators are made to asymptote
their light-cone counterparts. The large momentum limit
in this case is analogous to the large rapidity θ → −iχ
continuation in our case.
Finally, in this paper we explore the fortunate fact that

on the light front, all hadrons—from bottomonia to the
pions—can be approached from the same LF Hamiltonian.
In the first approximation, it is just a transverse oscillator
and longitudinal harmonic functions. In the next approxi-
mation, the nonfactorizable part Ṽ is included. For the
lowest states, its influence is not too drastic.
The next approximation brings in the Coulomb, pertur-

bative, and instanton-induced mixing, in spin and angular
momenta. For heavy quarkonia these effects are suppressed
by large quark masses. For light quark states, these effects
are also not large, except for the ground states. The reason
is that these mixing effects are short range. Narrow Wilson
loops are mostly sensitive to the topologically active
instanton and anti-instanton gauge configurations and
chiral symmetry breaking. Wide Wilson loops are mostly
sensitive to the flux disordering gauge vortices and con-
finement. Contrary to common lore, the QCD vacuum is
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dominant on the light front too, and is central for the
emergence of mass, confinement, and spin mixing.
The idea to derive all LF observables—DAs, PDFs,

GPDs, form factors—from a common model Hamiltonian
was put forth by Brodsky and his collaborators [39], and by
Vary and his collaborators [40,41], with the intent to
combine results of various experiments into a common
framework. Their Hamiltonians were largely guessed,
using insights from holographic QCD models.
Our approach is different. It is based on a derivation of a

light-front Hamiltonian, from well-established features of
the perturbative and nonperturbative QCD vacuum fields.
We also used a wider set of states and quark masses, and
showed that the excited states are much closer to the generic
Regge trajectories. Indeed, for the excited states, the
confining string becomes the only relevant physical effect,
as explained in our introductory remarks in [16].
Looking at all works onHLF, we believe that this is just the

beginning of a successful modeling of hadrons on the light
front, that factors in the wealth of information from the QCD
vacuum. While our analyses deal solely with mesons, their
generalization to baryons is relatively straightforward. Also,
one can analyze multiquark wave functions of mesons
(tetraquarks) andbaryons (pentaquarks), the antiquark sea, etc.
In many ways, the theoretical construction and tools

presented and used in these serial analyses provide a
common framework for both hadronic and nuclear physics.
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APPENDIX A: FUNCTIONAL BASIS USING
A 2D OSCILLATOR HAMILTONIAN

Following our analysis in [17], we use the eigenfunction
basis of the “2d oscillator” imbedded in part of the
Hamiltonian H0 in (37). We start by recalling its generic
properties, and then use it either in the momentum or
coordinate representation, whichever is more convenient.
The generic Hamiltonian is

Hosc ¼ p⃗2
1

2μ
þ ρ⃗2

μω2

2
ðA1Þ

where ρ⃗ is a 2d coordinate, referred to as b⊥ in the main text.
One way to generate all wave functions is to use two 1d
oscillator notations, but a more convenient one is to use polar
coordinates, so the Hamiltonian matrix consists of separate
sectors of 3 × 4 size.
The basic LF Hamiltonian includes a diagonal H0 and a

nonfactorizable part

Ṽ ¼ ðM2 þ p⃗2⊥Þ
�

1

xð1 − xÞ − 4

�
ðA2Þ

which can be calculated either in momentum or coordinate
representations.
Note that the wave functions we use here are all

normalized usingZ
1

0

dx
Z

d2ρ⊥ψ2
nmðx; ρ⊥Þ ¼ 1;

which is natural in coordinate space. When used in
momentum space, pertinent powers of 1=ð2πÞ3 will be
added whenever needed.
The wave functions which are independent of the

azimuthal angle (angular momentum zero) will be used
mostly in the momentum representation, with ρ⃗ as the
transverse momentum. The orthonormal wave functions are

fψn0Þg ¼ e−β
2ρ2=2

ffiffiffi
1

π

r
β

× f1; ð1 − β2ρ2Þ; ð1 − 2β2ρ2 þ β4ρ4=2Þ;…g
ðA3Þ

with the β parameter given in terms of the Hamiltonian
parameters β ¼ ð4a=b=σTÞ1=4.
The harmonic set of orthonormal functions for longi-

tudinal momentum fraction x, the set of functions χlðxÞ, are
labeled by odd integer l ¼ 1; 3; 5…,

χlðxÞ ¼
ffiffiffi
2

p
fsinðπxÞ; sinð3πxÞ; sinð5πxÞ; sinð7πxÞ;…g:

ðA4Þ
The products of these two sets, define the set of states we
used in our (angle-independent) calculations in the momen-
tum representation.
The part of the Hamiltonian matrix used is thus limited

by three maximal values of indices n, m, l, so the total size
of of the matrix is N × N, with N ¼ nmaxmmaxlmax.
Obviously, the calculations significantly slow down with
increasing N, and so for this exploratory paper we use a
rather modest value of N ¼ 3 × 3 × 4. Furthermore, before
we account for mixing of states with different orbital
momenta, m is conserved.

APPENDIX B: FROM BOTTOMONIUM
TO GENERIC LIGHT MESONS,

ON THE LIGHT FRONT

In our study in [17], we focused on the light quark
systems on the light front. Here we start with the other
extreme with the example of b̄b states, for which we use
for the parameter b ¼ ð2 � 4.8 GeVÞ2;mb ¼ 4.8GeV. In
this section, we start with the states with zero angular
momentum orm ¼ 0. OurM2ðaÞ curves lead to the selection
of mass minima at about a ≈ 25. With this in mind, we find
the following 12 eigenvalues for the squared mass
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M2 ≈ f360:; 341:; 328:; 169:; 161:; 153:; 127:; 121:; 114:; 113:; 107:; 101:g ðGeV2Þ:

The LFWF of the ground state is approximately factorized into

Ψ00 ¼ e−1.302p
2⊥ð−0.915 sinðπxÞ þ 0.749 sinð3πxÞ − 0.485 sinð5πxÞ þ 0.183 sinð7πxÞÞ ðB1Þ

where we have omitted all terms with coefficients smaller than 0.01. Note that the ground state is then the product of just a
Gaussian in transverse momentum, times certain functions of x. However, the next eigenstates are not that simple. The LFWFs
for the next two states with n ¼ 1, 2 (and still independent on ϕ or for m ¼ 0) are

Ψ10 ¼ e−1.302ρ
2 ½ð0.915 − 2.410ρ2 þ 0.025ρ4Þ sinðπxÞ þ ð−0.749þ 1.973ρ2 − 0.018ρ4Þ sinð3πxÞ

þ ð0.485 − 1.279ρ2Þ sinð5πxÞ þ ð−0.183þ 0.484ρ2 − 0.0025ρ4Þ sinð7πxÞ�; ðB2Þ

Ψ20 ¼ e−1.302ρ
2 ½ð0.905 − 4.726ρ2 þ 3.085ρ4Þ sinðπxÞ þ ð−0.741þ 3.876ρ2 − 2.533ρ4Þ sinð3πxÞ

þ ð0.480 − 2.521ρ2 þ 1.651ρ4Þ sinð5πxÞ − ð0.182þ 0.957ρ2 − 0.628ρ4Þ sinð7πxÞ�: ðB3Þ

Here ρ2 ¼ p⃗2⊥ðGeV2Þ and all coefficients are also in GeV
units with appropriate powers. The Ψn0 functions are
eigenstates of H, and should not be confused with the
basis set ψnml introduced above.
Their integrals ofΨnm over p⊥ give the DAs discussed in

Sec. IX. Their x dependences are very similar. Their p⊥
dependence is shown in Fig. 8. In contrast to the x
dependence, the pT dependences are very different, as
each curve reflects on the proper number of n zeros.
The same construction for generic light quarks with

mq ¼ 0.35 GeV was discussed in [17]. Here, we slightly

modify the setting by selecting the variational minima at
a ¼ 4. The p⊥ dependence of the first three states is shown
in Fig. 8.
For reference, the squared masses of the 12 lowest

eigenvalues are

M2 ¼ 26.20; 23.70; 21.92; 15.77; 13.87; 12.28;

8.79; 7.21; 5.77; 4.63; 3.43; 2.23 ðGeV2Þ

and the lowest wave function is

Ψ00 ¼ e−7.14286ρ
2ð−3.12914þ 1.86018ρ2 − 0.72094ρ4Þ sinðπxÞ

þ ð0.16657þ 0.636644ρ2 − 0.490831ρ4Þ sinð3πxÞ
þ 0.0267555 sinð5πxÞ þ 0.111208ρ2 sinð5πxÞ − 0.152454ρ4 sinð5πxÞ
þ 0.00919945 sinð7πxÞ þ 0.0402368ρ2 sinð7πxÞ − 0.0577019ρ4 sinð7πxÞÞ: ðB4Þ

APPENDIX C: WAVE FUNCTIONS WITH
NONZERO ANGULAR MOMENTUM Lz =m

The functions with nonzero orbital momentum m
are generated by the corresponding right (plus) creation
operators

aþR ¼ 1

2
eiϕ
�
βρ −

1

β

∂

∂ρ
−

i
βρ

∂

∂ϕ

�
;

aþL ¼ 1

2
e−iϕ

�
βρ −

1

β

∂

∂ρ
þ i
βρ

∂

∂ϕ

�
; ðC1Þ

and the needed extra factors for proper wave function
normalization 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nR!nL!

p
depending on the numbers of

right- and left-rotating “quanta.”
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FIG. 8. Three lowest LFWFs with n ¼ 0; 1; 2; m ¼ 0 as a
function of p⊥ðGeVÞ at x ¼ 1

2
, for bottomonium (left) and a

typical light meson (right). The number of zeros are commensu-
rate with n.
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In particular, we use the following orthonormal sets of functions ψnm depending on ρ and azimuthal angle ϕ, with
principle quantum number n ¼ 0; 1; 2… and angular momentum m ¼ 0; 1; 2…

fψ01g ¼ e−β
2ρ=2þiϕ

ffiffiffi
1

π

r
β2ρ × f1; ð−2þ β2ρ2Þ=

ffiffiffi
2

p
; ð6 − 6β2ρ2 þ β4ρ4Þ=2

ffiffiffi
3

p
;…g; ðC2Þ

fψ02g ¼ e−β
2ρ2=2þ2iϕ

ffiffiffiffiffiffi
1

2π

r
β3ρ2 ×



1; ð3 − β2ρ2Þ=

ffiffiffi
3

p
; ð12 − 8β2ρ2 þ β4ρ4Þ

ffiffiffi
2

p

4
ffiffiffi
3

p ;…

�
: ðC3Þ

When matrix elements of some potentials are evaluated,
it is more natural to switch to the coordinate representation.
One way to do so is to rederive an oscillatory basis in which
ρ2 ¼ r⃗2⊥ and p⃗2 is interpreted as a Laplacian containing
an angular (centrifugal) term. In this case, the parameter
β is inverted. A simpler way is to go to coordinate
representation by 2d Fourier transform. While doing so,
it is convenient to return to Cartesian coordinates, e.g.
ρe�iϕ → px � ipy, which after double Fourier transform
produce factors x� iy. With slight abuse of notation,
we write the latter combination as re�iϕ, although the
angles ϕ in momentum and coordinate representations do
not have the same meaning. Also note that in coordinate

representation one may better use the inverted scale
parameter

βp → βr ¼
1

βp
¼
�
4a
bσT

�
−1
4

:

Recall that a is to be determined from the mass minimi-
zation, b ¼ M2

mes ≈ ð2mQÞ2, and the string tension is
standard σT ¼ ð0.4 GeVÞ2. Note also that, as expected,
the wave functions at small distances are ∼ρm.
Now we return to the momentum representation and

diagonalize H0 þ Ṽ for m ¼ 1, 2. For the bottomonium
parameters the list of the six lowest squared masses are

M2
0;�1 ¼ f131.1; 124.4; 117.8; 116.6; 110.4; 104.2g;

M2
0;�2 ¼ f134.4; 127.7; 121.1; 119.7; 113.5; 107.3g;

Ψ01 ¼ e−1.30ρ
2

ρe�iϕ½ð1.48 − 0.015ρ2þÞ sinðπxÞ
þ ð−1.21þ 0.011ρ2Þ sinð3πxÞ þ 0.787 sinð5πxÞ − 0.298 sinð7πxÞ�; ðC4Þ

Ψ02 ¼ e−1.30ρ
2

ρ2e�2iϕ½1.67 sinðπxÞ ðC5Þ

− 1.37 sinð3πxÞ þ 0.89 sinð5πxÞ − 0.34 sinð7πxÞ�: ðC6Þ

APPENDIX D: MIXING MATRIX ELEMENTS

In (64) we defined the 3 × 3 mixing matrix between
states with different azimuthal quantum numbers m ¼ 0, 1,
2, for a meson with fixed helicity Λ ¼ 1. For simplicity, we
did not use the statesΨnmðx; k⃗⊥Þ determined in the previous
section, but rather the basic and simple oscillatory states
ψnmðk⊥Þ. These states carry the azimuthal dependence
through eimϕ, and the x dependence through

ffiffiffi
2

p
sinðnπxÞ,

which are standard and not explicitly shown.
In this simplified basis, the Coulomb interaction

2MVC ¼ 2Mmes

�
−
4αS
3ρ

�

is diagonal

Cmm ¼
Z

∞

0

jψ0mj2VCðρÞ2πρdρ: ðD1Þ

For m ¼ f0; 1; 2g, the entries are explicitly

Cmm ¼ Mmes
ffiffiffi
π

p
αSβf−8=3;−4=3;−1g:

Note that here we use the coordinate representation and the
oscillator parameter β, the inverse of the oscillator param-
eter in the momentum representation.
The perturbative spin-spin interaction is S⃗1S⃗2 ¼ 1

4
, for the

states with total spin S ¼ 1, so that S1⊥S2⊥ ¼ 2
3
1
4
. Its

associated transverse Coulomb potential ∇2⊥=ρ is regulated
at short distances, through
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VSS
pert ¼

2

3

1

4

�
2Mmes

m2
q

��
−
4αS
3

�
∇2⊥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ϵ2

p
¼ −

4MmesαS
9m2

q

−2ϵ2 þ ρ2

ðϵ2 þ ρ2Þ5=2 : ðD2Þ

In the limit ϵ → 0, it reduces to

SSmm
pert ¼

2Mmes
ffiffiffi
π

p
αSβ

3

m2
q

f4=9;−2=9;−1=18g

for m ¼ f0; 1; 2g
The induced instanton spin-spin, spin-orbit, and tensor

forces cannot be carried analytically. We evaluated them
numerically, using the potentials shown in Figs. 5 and 6, as
explained in the text. The numerics are carried for light
quarks with mass mq ¼ 0.35 GeV and Mmes ¼ 2mq. The
matrix elements are integrals of these potentials times the
pertinent wave functions ψ0m;m ¼ 0, 1, 2 in coordinate
space. The results are given in the second line of (64).

APPENDIX E: SPIN, HELICITY,
AND CHIRALITY SPINORS

The light-front wave functions in [12] are built in terms
of the spin and angular momentum projected along the z
direction, which is the hadron momentum P⃗ direction. In
the case of mesons, there are two sets of spin variables
SQ;Q̄ ¼ S1;2 and a single orbital momentum L.
Let the direction of the quark momentum be described by

standard polar angles θ;ϕ, with p⊥ ¼ P sinðθÞ etc. In this
case the spin up and down basis (with standard Dirac
matrices) is

jspin↑i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2m

r
×

2
666664

1

0
p

Eþm cosðθÞ
p

Eþm sinðθÞeiϕ

3
777775; ðE1Þ

jspin↓i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2m

r
×

2
666664

0

1
p

Eþm sinðθÞe−iϕ
p

Eþm cosðθÞ

3
777775: ðE2Þ

The helicity λ ¼ S⃗ · k⃗ defines a different basis, because
the spin projection is defined not along the incoming
z axis but along the quark momentum. Of course, quarks
in the hadron have nonzero transverse components to it,
jp⊥j ¼ p sinðθÞ. The nonrelativistic 2-component spinors
with λ ¼ �1 are obtained by rotation

hþ ¼ ðcosðθ=2Þ; eiϕ sinðθ=2ÞÞ;
h− ¼ ð− sinðθ=2Þ; eiϕ cosðθ=2ÞÞ; ðE3Þ

and, after a boost, the corresponding Dirac spinors are

jhþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2m

r
×

2
666664

cosðθ=2Þ
sinðθÞeiϕ
p

Eþm cosðθ=2Þ
p

Eþm sinðθ=2Þeiϕ

3
777775; ðE4Þ

jh−i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2m

r
×

2
666664

− sinðθ=2Þ
cosðθ=2Þe−iϕ
p

Eþm sinðθ=2Þ
− p

Eþm cosðθ=2Þe−iϕ

3
777775: ðE5Þ

We will also use the chiral basis, which is obtained from
the helicity basis by taking the ultrarelativistic limit
[m → 0; p=ðEþmÞ → 1] inside the spinor

jcþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2m

r
×

2
6664

cosðθ=2Þ
sinðθÞeiϕ
cosðθ=2Þ

sinðθ=2Þeiϕ

3
7775; ðE6Þ

jc−i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2m

r
×

2
6664

− sinðθ=2Þ
cosðθ=2Þe−iϕ
sinðθ=2Þ

− cosðθ=2Þe−iϕ

3
7775; ðE7Þ

so that they become eigenvectors of the chiral projec-
tors P� ¼ ð1� γ5Þ=2.
Having specified these spinors, one can define the

matrices rotating one set to the other. In particular,
the transition between the spin and helicity states, takes
the simple form

hs↑jhþi
hhþ jhþi ¼ cosðθ=2Þ; hs↓jhþi

hhþ jhþi ¼ sinðθ=2Þeiϕ;

hs↑jh−i
hhþ jhþi ¼ − sinðθ=2Þ; hs↓jh−i

hhþ jhþi ¼ cosðθ=2Þeiϕ;

ðE8Þ

which—in the ultrarelativistic limit—is the same as the
matrix between the spin basis and chirality basis.

APPENDIX F: LF DIRAC SPINORS

The LF Dirac spinors used to derive (77) are for the
L-quark spinor with mass mQ1
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ULðk;↑Þ ¼
1

ð ffiffiffi
2

p
kþÞ12

�
mQ1

−kR

�
;

ULðk;↓Þ ¼
1

ð ffiffiffi
2

p
kþÞ12

� −kLffiffiffi
2

p
kþ þ 1

2
mQ1

�
; ðF1Þ

and the R-quark spinor with the same mass

URðk;↑Þ ¼
1

ð ffiffiffi
2

p
kþÞ12

� ffiffiffi
2

p
kþ þ 1

2
mQ1

kR

�
;

URðk;↓Þ ¼
1

ð ffiffiffi
2

p
kþÞ12

�
kL
mQ1

�
: ðF2Þ

For the L-antiquark spinor with mass mQ2
, we have

VLðk;↑Þ ¼
1

ð ffiffiffi
2

p
kþÞ12

� −kLffiffiffi
2

p
kþ þ 1

2
mQ2

�
;

VLðk;↓Þ ¼
1

ð ffiffiffi
2

p
kþÞ12

�−mQ2

kR

�
; ðF3Þ

and for the R antiquark with the same mass

VRðk;↑Þ ¼
1

ð ffiffiffi
2

p
kþÞ12

� −kL
−mQ2

�
;

VRðk;↓Þ ¼
1

ð ffiffiffi
2

p
kþÞ12

� ffiffiffi
2

p
kþ þ 1

2
mQ2

kR

�
: ðF4Þ
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