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This is the second paper on hadronic wave functions in the light-front formulation. We first consider only
confinement effects, using the classical Nambu-Gotto string with massive end points in the light-cone
gauge. We derive the light-front Hamiltonian and show how to solve it, using an expansion in suitable basis
functions. We next discuss the correlators of Wilson lines on the light front, leading to an effective
Hamiltonian that includes spin effects. At the end, we consider a separate problem of instanton-induced
interactions, at the origin of the pion as a massless Goldstone mode on the light front.
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I. INTRODUCTION

The physics of hadrons is firmly based in quantum
chromodynamics, a theory over half a century old. One
might think that by now this subject has reached a solid
degree of maturity with most issues settled. Yet persisting
tension remains between the nonperturbative aspects of the
theory and empirical measurements using inclusive and
exclusive processes.
More specifically, first principle approaches—lattice and

semiclassics—are focused on the ground state properties of
the QCD vacuum, both using an Euclidean time formu-
lation. Hadrons are then studied via certain correlation
functions. However, a significant part of the experimental
information—parton distribution functions (PDFs) used in
deep inelastic inclusive processes, and distribution ampli-
tudes (DAs) used for exclusive processes—are defined
using light-front kinematics, and therefore are not directly
accessible by the Euclidean formulation. Only recently,
the first attempt to formulate the appropriate kinematical
limits [1] and use the lattice for calculating the PDFs and
PDAs [2,3] were carried out with some success.
Bringing the two sides of hadronic physics together is

not just a technical issue related with kinematics. Even the
main pillars of the theory—confinement and chiral sym-
metry breaking—become contentious. In particular,
60 years ago Nambu and Jona-Lasinio (NJL) [4] have

explained that pions are light because they are near-
massless vacuum waves due to the spontaneous breaking
of chiral symmetry. The mechanism creating the vacuum
quark condensate and the ensuing organization using chiral
perturbation theory have since been discussed and con-
firmed in countless papers. More importantly, the QCD
vacuum characteristics in the mesoscopic limit reveal
multiquark correlations captured by universal spectral
fluctuations in the zero mode zone (ZMZ) [5], analogous
to the universal conductance fluctuations around the Fermi
surface in dirty metals [6], an unambiguous signature of the
topological nature of the spontaneous breaking of chiral
symmetry. And yet, parton dynamics is still treated as if the
vacuum is “empty” and quark-partons massless. There were
even suggestions that on the light front there are no
condensates [7,8], although recently these arguments were
revisited [9]. Pions were also argued to be massless due to
other reasons [10].
Another serious gap between hadron spectroscopy in the

rest frame and on the light front is due to the complex and
dynamical nature of the relativistic boost operator: what can
be a static potential in one frame, can well become partons
on the light front. But even more striking is the difference in
the very logical structure of the theory. In the rest frame
spectroscopists start from certain Hamiltonians and derive
the wave functions, like in atomic or nuclear physics. On
the light front, phenomenologists mostly deal with parton
distribution functions or distribution amplitudes, matrix
elements of the density matrices or the wave functions
obtained from experiment or lattice simulations. Few
considerations of the light-front Hamiltonians and wave
functions are mostly guessed rather than derived.
The aim of this work is to derive the light-front

Hamiltonian and the corresponding wave functions
(LFWFs), starting with the most basic meson settings
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and certain nonperturbative dynamics. In this methodical
paper we will focus on “the main components” of the wave
functions with zero orbital momentum, and ignore different
spin structures. Its generalization to full wave functions,
with all allowed spin and angular momentum values, will
be done in the next papers of the series [11–13].
One Hamiltonian leads to an infinite set of wave func-

tions, any of which have infinitely many matrix elements.
LFWFs are mutually orthogonal and can be properly
normalized. The DAs are normalized only to certain
empirical constants, like fπ for a pion. The PDFs of baryons
are traced over all quarks but the struck one: tracing mixes
together all sectors of the wave function, with different
quantum numbers and even the number of partons. Due to
quantum entanglement, it leads to a nonzero entropy.
Deriving these Hamiltonians and solving for LFWFs is

not an easy task, but going to light front offers certain
theoretical advantages. In conventional spectroscopy it is
much easier to follow nonrelativistic heavy quarkonia
which are moving slowly. Central and spin-dependent
forces among them can be formulated in terms of certain
universal (flavor-independent) correlators of background
fields, which can be evaluated on the lattice or semiclassi-
cally (as we tried to do). Light quarks are involved in
complicated quantum motion, as depicted in the left sketch
in Fig. 1. Usage of nonrelativistic kinetic energy and
potentials, as we did in Paper I [14], is qualitative at best.
However, it is improved in the LF frame, as the motion of

all quarks gets “frozen” (see the right sketch), the dis-
tinctions between the heavy and the light quarks basically
go away, as both can be “eikonalized” and treated in fully
relativistic formalism. If so, their interactions can be
deduced from pertinent Wilson line correlators for any
quark mass.

A. Light-front wave functions

Light-front quantization has a long history with funda-
mental formulations in QED, atomic and nuclear physics,
which we will not review here. Instead, we will comment
on a recent revival of its use in the context of hadronic
physics. More specifically, we will make use of the

methodical framework in terms of a transverse oscillator
basis as discussed by Jia and Vary [15,16]. Their postulated
Hamiltonian has led to the light-conewave functions for the
pions and rho mesons, which was shown to be in agreement
with a number of experimental results. We will return to its
discussion in Sec. IV.
This approach has been extended to the three- and

five-quark baryonic sectors by one of us [17], addressing
the well-known puzzle of the isospin asymmetry of the
“antiquark sea.” Currently this approach has developed into
two lines of research. One continues to use the Jia-Vary
Hamiltonian with a NJL residual interaction, while the
other (called Basis Light Front Quantization BLFQ col-
laboration) [18] trades the NJL interaction with an effective
(massive) gluon, and focuses on the two meson compo-
nents, q̄q and q̄qg.
In yet another important theory development, Brodsky and

collaborators [19] have pointed to the similarities between
the QCD light-front quantization for a two-particle system
and the “soft wall AdS/QCD” holographic model [20] for
mesons, which elegantly reproduces the Regge dependence
on the radial n quantum number of the squared hadronic
masses M2 ∼ n, via quantization through the extra holo-
graphic coordinate z. A special role was proposed to the
“zeta” combination of the transverse coordinate b⊥ and the
longitudinal momentum fraction x, which for mesons is

ζ≡ b⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
: ð1Þ

It has been suggested that on the light front it plays the same
role as the radial coordinate r in nonrelativistic quantum
mechanics in the rest frame. In other words, the LFWFwave
function is approximated by a function of this combination
only, ψðζÞ.
Furthermore, zeta has been identified with the holo-

graphic coordinate z and, on this basis, the corresponding
Schrödinger equation was proposed to have the form

�
−

d2

dζ2
−
1 − 4L2

4ζ2
þUðζÞ

�
ψðζÞ ¼ M2ψðζÞ ð2Þ

with the quadratic potential U ¼ κ4ζ2 þ 2κ2ðJ − 1Þ, as
for the soft wall AdS/QCD. A similar correspondence
was also proposed for baryons, with a “generalized” ζ and a
corresponding equation, with a kind of “supersymmetry”
between mesons and baryons. A physics basis for such
approximation is approximate constituent quark-scalar
diquark symmetry, suggested in our work [21].
While these works have unquestionably contributed to

the rapid and analytic progress in the field over the past
decade, we think it is time to proceed more cautiously, and
derive all basic quantities systematically, starting from
well-established empirical and theoretical facts. We will
analyze the accuracy of the approximations made, using
certain basic examples, focusing on the internal consistency

FIG. 1. Q̄Q meson in the rest frame (a) and in the light-front
frame (b).
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and agreement with the wider set of data, e.g. Regge
phenomenology for principle quantum number n and
angular momentum J.

B. The structure of the paper

The first problem we address is a basic meson problem
with linear confinement. In Sec. III we will derive the
light-cone Hamiltonian following from the Nambu-Gotto
string with massive ends as a model for a relativistic bound
meson by a relativistic stringwith constitutive quarkmasses.
We will first discuss the Hamiltonian in 1þ 1 dimensions
and show that its diagonalization leads to the famed 0t Hooft
equation. We will then proceed to 1þ 3 dimensions and
derive the corresponding squared mass operator for a
relativistic bound meson, which turns out to be iterative
and nonlocal. In the heavy quark mass limit, we use the
semiclassical approximation to detail the heavy meson
spectrum. In general, the iterative and nonlocal aspect of
the squared mass operator can be simplified, using the
einbein trick and minimization, modulo normal ordering.
The solution of this problem can be done by numerical

diagonalization in a suitable basis. The results obtained for
the masses and LFWFs compare favorably with those
obtained in the rest frame for the spectrum of the same
model. In Sec. IV we discuss other light-front Hamiltonians
suggested in the literature.
In Paper I [14] we discussed mesons, in the center-of-

mass (CM) frame. In this case the central (and spin-
dependent) potentials are derived from nonlocal correlators
of parallel Wilson lines (and lines with extra field
strengths). We used a certain instanton-based model of
the vacuum to evaluate those, and to relate these potentials
and resulting spectra to the mesonic phenomenology. In
Sec. V we show how instantons in the vacuum contribute to
the parallel Wilson lines for the nonzero quark modes in
a boosted meson on the light front. The nonzero mode
contributions through vacuum tunneling, as captured by the
spin-flavor dependent ’t Hooft interaction, are discussed in
Sec. IX. In Sec. X we show how the pion emerges on the
light cone in the chiral limit with a finite constituent quark
mass. The deviation from the chiral limit is in agreement
with the Gell-Mann-Oakes-Renner (GOR) relation for the
mass. Our conclusions and their discussion are in Sec. XI.

II. CONFINEMENT IN THE BASIC RELATIVISTIC
MESON PROBLEM

In the first paper of this series [14], we focused on the
origin of the central and spin-dependent potentials in CM
frame. In particular, we detailed the lowest states, and used
the nonrelativistic Schrödinger equation not only for heavy
quarkonia but for light mesons as well. Now, before we
move to the light-front quantization, we will discuss a basic
relativistic problem of two massive particles connected
by a classical string, generating a linear confining potential.

We will also discuss not only the low but also high mass
excitations.
It is well known from phenomenology that the excited

mesons (as well as baryons) form certain Regge trajecto-
ries, relating their masses MJ to angular momentum J. For
mesons made of light quarks they are close to linear

J ¼ aM þ α0M2
J; ð3Þ

where aM is called the intercept and α0 is called the slope
of the trajectory, related to the string tension α0 ¼ 1=2πσT .
For mesons containing heavy quarks, the trajectories are
curved. A thorough discussion of a classical model con-
sisting of two rotating masses connected by a string is made
in [22], which also provide s accurate Regge-style fits to a
number of light and heavy mesons.
In this work we rather focus on the radial excitations of

the light mesons, and consider the relation between the
(squared) massesM2

n and the radial quantum number n. For
that, consider the reduced or half of the system in question,
with one quark of massmQ, and half the string. Classically,
the energy is a sum of kinetic and potential

E ¼ VðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

Q

q
ð4Þ

or

ðE − VðrÞÞ2 ¼ p⃗2 þm2
Q: ð5Þ

To quantize it, we use the standard substitution of the
squared momentum

p⃗2 → −
∂
2

∂r2
−
2

r
∂

∂r
þ Ĵ2

r2

with the radial Laplacian (the first two terms) and the
angular Laplacian substituted by angular momentum Ĵ2.
However, the proper quantization of such a relativistic
Klein-Gordon equation is not as simple as the nonrelativ-
istic Schrödinger equation. In particular, if one just takes
the linear form of the potential VðrÞ ¼ σHr, the problem is
identical to that of a constant electric field, in which particle
production takes place through the Schwinger mechanism
(Klein paradox), and states with fixed particle number do
not, strictly speaking, exist. We will return to the discussion
of this equation in Appendix A, and here we will use its
semiclassical treatment by the WKB approximation only.
Generically, we have a turning point pðr�Þ ¼ 0: note that

dynamics is different for r < r� and r > r�. For simplicity,
let us start with the massless case m ¼ 0, in which
En − σTr� ¼ 0, and r < r� where the momentum is real,
and the standard WKB approach can be applied in its
original form due to Bohr

nℏ ¼ 4

Z
r�

0

pðr; EnÞdr ð6Þ
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(here 4 appears as the integral covers a quarter of the
period).
For J ¼ 0 and the linear potential V ¼ σTr, this can be

analytically calculated; the result takes the form

n ¼ aM þ α0E2
n

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p
þ b2 log

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p

b

��
; ð7Þ

where the “Reggeon slope” is α0 ¼ 1=2πσT . For two
particles En is the total energy of both, and
b ¼ 2mQ=En. Here we added a parameter aM, known as
a “quantum shift,”which is not well determined. In [22] it is
used as a free parameter, different for different Regge
trajectories. We will use the standard WKB recipe taking
aM ¼ 1=2: as shown in [22], this value is correct for all
light vector mesons ρ;ω; K�;ϕ, but takes different values
for other channels. Of course, confinement is not the only
term of the Hamiltonian, and shifts are expected. All vector
mesons we will use seem to have such “residual inter-
actions” to be minimal. They are likely due to spin forces as
we will detail below.
For arbitrary masses. the right-hand side of (7) is a

complicated function of energy En, which cannot be
inverted analytically. Instead of using some approximate
formulas, we inverted it numerically. In Fig. 2 the closed
points correspond to the squared masses of the radial
excitations (in GeV2) with nþ 1 ¼ 1–10, for a constituent

quark mass mQ ¼ 0.35 GeV and a string tension
σT ¼ ð0.42 GeVÞ2. The results are not far from the
asymptotic massless formula shown by the thick straight
line, so the mass corrections are small. For heavier quarks,
the deviations are larger and the trajectory becomes some-
what curved, as we also suggest below.
The red points represent the experimental data, from

which we selected two sets of mesons, namely ω (J ¼ 1,
l ¼ 0) and ω3 (J ¼ 3, l ¼ 2). Note first that the numerical
value of the string tension, obtained from the quarkonium
spectra we use, also fits the slope of the Regge trajectories
quite accurately.
Note also that if one moves the ω3 points to the right by

two units, they would nearly coincide with the ω data
points: this means that the popular assumption that radial
quantum number n and orbital momentum l appear as a
simple sum, nþ l, is approximately correct. However, in
general we do not see why this assumption should be
accurate for massive quarks, and plotted them without
such shift. Still, it is important that the vertical splitting
M2ðω3Þ −M2ðωÞ is approximately independent of n. In the
subsequent sections it would be ascribed to two quanta of
excitation of the transverse oscillator.

III. CONFINEMENT ON THE LIGHT FRONT

The challenges of the light-front formulation are well
known.Adirect boost of theHamiltonian andwave functions
from the rest framemust involve both theHamitonian and the
momentum operators, which are difficult to achieve. Still,
one can compare certain boost-independent quantities—
excitation masses and transverse momenta.

A. Confinement in 1 + 1 dimensions

As we already mentioned, chiral symmetry breaking
basically solves the “mass problem,” giving rise to a con-
stituent quark mass mQ ∼ 0.35 GeV. In the timelike gauge
x0 ¼ τ, the free Hamiltonian containing these masses is

H ≡ P0 ¼ p0
q þ p0

q̄ ¼ ðp⃗2
q þm2

QÞ
1
2 þ ðp⃗2

q̄ þm2
QÞ

1
2 ð8Þ

which is the expected result for relativistically moving end
points. In the light-cone gauge xþ ¼ ðx0 þ x1Þ= ffiffiffi

2
p ¼ τ, the

on-shell relation reads 2pþ
q;q̄p

−
q;q̄ ¼ m2

Q. The free light-cone
Hamiltonian is then

H ≡ P− ¼ p−
q þ p−

q̄ ¼ m2
Q þ p⃗2

q⊥
2pþ

q
þm2

Q þ p⃗2
q̄⊥

2pþ
q̄

ð9Þ

Confinement is produced by the so-called QCD
strings (electric flux tubes) with a string tension σT ≈
ð420 MeVÞ2 ∼ 1 GeV=fm. For sufficiently long strings,
their world-sheet dynamics is captured by the classical and
universal Nambu-Gotto action

0 2 4 6 8
0

2

4

6

8

10

FIG. 2. The squared masses of the nþ 1th states E2
nþ1ðGeV2Þ

versus the radial quantum number nþ 1. The closed points are
for constituent quarks with mass 0.35 GeV. The solid line
corresponds to the massless limit with E2

nþ1 ¼ ðnþ 1=2Þ=α0.
The red five-polygons are the experimental data for the ωmesons,
and the red triangles are for the ω3 mesons listed in the PDG. The
open points show the corresponding values from the Jia-Vary
confining Hamiltonian (39), with their recommended value
κ ¼ 0.227 GeV. The dashed line corresponds to the same
expression with κ ¼ 0.5 GeV.
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SP½x� ≈ σT

Z
T

0

dτ
Z

π

0

dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x · x0Þ2 − _x2x02

q

þmQ

Z
T

0

dτ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2ðτ; 0Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2ðτ; πÞ

q �
ð10Þ

with xμðτ; σÞ the string coordinate. The last term represents
the massive end points, and for simplicity we set the masses
equal with mQ ¼ mQ̄. Without the string, the end points
carry momenta pα

q;q̄ ¼ mQ _xαq;q̄=j_xq;q̄j with p2
q;q̄ ¼ m2

Q. The
addition of the string will change the energy, momentum,
and angular momentum of the Q̄Q pair, as we now detail.
As a warmup, consider first the simpler case where the

string is embedded in 1þ 1 dimensions and ignore the
transverse directions. Equation (10) readily leads to [23,24]

H ≡ P− ¼ m2
Q

2pþ
q
þ m2

Q

2pþ
q̄
þ σT jx−q̄ − x−q j: ð11Þ

Using the CM R ¼ ðx−q þ x−q̄ Þ=2 and relative coordinate
r ¼ ðx−q̄ − x−q Þ, and their corresponding momenta Pþ ¼
ðpþ

q þ pþ
q̄ Þ and kþ ¼ ðpþ

q̄ − pþ
q Þ=2, the light-cone

Hamiltonian (11) yields the squared meson mass operator

M2 ¼ 2PþP− ¼ 2Pþ
�

2m2
QP

þ

Pþ2 − 4kþ2
þ σT jrj

�

¼ m2
Q

1
4
− ξ2

þ 2σT jPþrj ð12Þ

with the Bjorken ξ ¼ kþ=Pþ ¼ 1
2
þ x for the fraction of

relative momentum carried by the quark at the end point,
and jξj ≤ 1

2
or 0 ≤ x ≤ 1. Since kþ is canonically conjugate

to the relative end-point lightlike coordinate r or ½r;kþ� ¼ i,
we can either use the k or r representation for the squared
mass. In the k representation with fixed Bjorken x, the
coordinate is then the operator r ¼ id=dkþ and the squared
mass Hamiltonian (12) reads

M2 ¼ 2PþP− ¼ m2
Q

xx̄
þ 2σT jid=dxj ð13Þ

with x̄≡ 1 − x.
The meson LFWFs and masses follow by diagonali-

zing (13)

�
m2

Q

xx̄
þ 2σT jid=dxj

�
φnðxÞ ¼ M2

nφnðxÞ ð14Þ

which can be rewritten in the ’t Hooft equation form [25]

M2
nφnðxÞ ¼

m2
Q

xx̄
φnðxÞ −

2σT
π

PV
Z

1

0

dy
φnðyÞ − φnðxÞ

ðx − yÞ2
ð15Þ

with the identification of the string with the gauge coupling
through σT ≡ g2Nc=2 for QCD in 1þ 1 dimensions, as
originally noted in [23,24] in the large number of colors Nc
limit. The two-dimensional confining potential in the
Bjorken x representation is

hxjjid=dxjjyi ¼
Z þ∞

−∞

dq
2π

eiqðx−yÞjqj→ PV
−1

πðx− yÞ2þ
−1
πxx̄

ð16Þ
using the principal value prescription,

PV
1

z2
¼ 1

2

�
1

ðzþ i0Þ2 þ
1

ðz − i0Þ2
�
: ð17Þ

The induced self-energy which is negative in (15)

−
2σT
π

PV
Z

1

0

dy
−φnðxÞ
ðx − yÞ2 ¼

−2σT=π
xx̄

φnðxÞ ð18Þ

can be made more manifest by recasting the ’t Hooft
equation (15) in the equivalent form

M2
nφnðxÞ ¼

m2
Q − 2σT=π

xx̄
φnðxÞ −

2σT
π

PV
Z

1

0

dy
φnðyÞ
ðx − yÞ2 :

ð19Þ
The spectrum following from (19) admits a massless

mode φ0ðxÞ → θðxx̄Þ, provided that the current quark mass
mQ → 0. (The constituent quark mass in QCD in 1þ 1

dimensions is gauge dependent and divergent.) The positive
string pair interaction balances the induced Coulomb self-
energy which is negative. In QCD in 1þ 1 dimensions, the
massless mode appears only in the large number of colors
limit owing to the Berezenskii-Kosterlitz-Thouless mecha-
nism. In massless QCD in 1þ 3 dimensions, the pion is a
true Nambu-Goldstone mode.
The semiclassical spectrum following from (15)

Reggeizes with a mass gap
Z

xþ

x−

dx

�
M2

n −
m2

Q

xx̄

�
¼ M2

n −m2
Q ln

�
xþx̄−
x−x̄þ

�
¼ 2πσTn

ð20Þ
with the turning points

x� ¼ 1

2

�
1�

�
1 −

4m2
Q

M2
n

�1
2

�
ð21Þ

and with Mn ≥ 2mQ. The mass gap vanishes for mQ → 0

with a radial Regge trajectory M2
n ¼ n=α0, and α0 ¼

1=2πσT the slope of the open bosonic string as it should.
At large n, the ’t Hooft equation (15) can be solved
semiclassically giving the light-cone wave functions
φnðxÞ ≈

ffiffiffi
2

p
sinððnþ 1ÞπxÞ [25]. In the massive case, the

Regge trajectory is modified to M2
n ≈ n=α0 þ 2m2

Q ln n.
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B. Light-front Hamiltonian for a string
in 1 + 3 dimensions

We now return to our main problem, the mesonic
Hamiltonian and wave functions on the light front. We
use the string (10) in the light-cone gauge in 1þ 3
dimensions. Ignoring the string vibrations (Luscher term
and its corrections in higher order) the result can be read off
from (13)

M2 ¼ 2PþP− ¼ m2
Q þ k2⊥
xx̄

þ 2σT

�
jid=dxj2 þ Pþ2x2⊥

γ2

�1
2

ð22Þ
with the Lorentz factor γ ¼ Pþ=Mv → ∞ as v → c gets
close to the light cone,

M2 ¼ 2PþP− ¼ m2
Q þ k2⊥
xx̄

þ 2σTðjid=dxj2 þM2x2⊥Þ
1
2

ð23Þ
Again, the transverse coordinate and momenta x⊥; k⊥ are

conjugate and (for fixed Bjorken x) it is appropriate to use

x⃗⊥ ¼ i∇⃗⊥ to diagonalize the squared mass operator in full
momentum representation. The generalization of (13) in
1þ 1 dimensions to (23) in 1þ 3 dimensions was also
noted in [26].
The squared mass operator (Hamiltonian) is now given

in terms of a nonlinear differential operator. It is a symbolic
form since one still has to define certain procedures for
calculating its matrix elements, which can be done only
modulo ordering ambiguities. A good test for these
procedures is provided by a requirement that the mass
spectrum be the same as in the CM frame. In particular, the
semiclassical spectrum should “Reggeize” to M2

nl ≈
2πσTðnþ lÞ for the n-radial and l-orbital excitations.
Another issue is thatM2 appears not only in the left-hand

side of (23) but also in the right-hand side. For heavy
mesons on the light cone, one can assumeM ≈ 2mQ on the
right-hand side,

M2
H ≈

m2
Q þ k2⊥
xx̄

þ 2σTðjid=dxj2 þ ð2mQÞ2x2⊥Þ
1
2 ð24Þ

and avoid the iterative process. Furthermore, in the heavy-
quark limit, x ≈ x̄ ≈ 1

2
and (24) simplifies to

M2
H ≈ ð2mQÞ2 þ 4k2⊥ þ 4mQσT jx⊥j: ð25Þ

Note that the effective string tension is now growing with
mQ. This is reasonable, since the binding energy for a
slowly moving but heavy quark should compensate its
kinetic energy mQv2Q=2, which depends on mQ. The
semiclassical spectrum follows from

Z
ρþ

ρ−

dρ

�
M2

H;nl− ð2mQÞ2−
4l2

ρ2
− 4mQσTρ

�1
2 ¼ 2πn ð26Þ

with the turning points ρ� fixed by the positive and real
solutions to the cubic equation

M2
H;nl ¼ ð2mQÞ2 þ

4l2

ρ2�
þ 4mQσTρ� ð27Þ

which exists for

M2
H ≥ ð2mQÞ2 þ 8ðlmQσTÞ23: ð28Þ

For l ¼ 0, the radial excitations follow:

M2
H;n0 ≈ ð2mQÞ2 þ

�
6mQ

α0

�2
3

n
2
3 ð29Þ

with again, the open string Regge slope α0 ¼ 1=2πσT .
As we noted earlier, the Regge trajectory is now bent.
The heavier mQ, the more bound the Regge spectrum.
Equation (24) applies also to heavy-light mesons modulo
minor changes for asymmetric masses.
Returning to light-light mesons, we note that the non-

relativistic approximation M ≈ 2mQ may still be semi-
quantitatively suited for the “ordinary mesons” (like vectors
ϕ; ρ) but not the Nambu-Golstone pseudoscalars. In order
to reproduce the mesonic spectra correctly, (23) needs to be
supplemented by the spin and flavor-dependent inter-
actions, as we will discuss later.
Finally, we note that if the constituent massmQ → 0, (23)

admits a non-normalizable massless solution φ0ðx; b⊥Þ∼
θðxx̄Þ for xx̄ ≠ 0 since

½M2�mQ¼0φ0ðx;k⊥Þ ¼
�
k2⊥
xx̄

þ 2σT jid=dxj
�
θðxx̄Þ ¼ 0: ð30Þ

At x ¼ 0, 1 it vanishes as a power proportional to the mass
ðxx̄Þ#mQ . This is the same massless solution in the 1þ 1
dimensional ’t Hooft equation (15) as the would-be pion
emerges as a massless mode in the chiral limit at large Nc
only if mQ ¼ 0 is identified with the current quark mass.
However, this kinematical solution is not the physical pion,
since for the latter mQ ≠ 0 is identified with the constituent
mass, and does not vanish in the chiral limit.

C. Eliminating the square root in the Hamiltonian

The inconvenient square root of the differential operator
can be avoided by the “einbein trick.” With this in mind,
consider the operator

M2ða; bÞ ¼ m2
Q þ k2⊥
xx̄

þ σT

�jid=dxj2 þ bx2⊥
a

þ a

�
ð31Þ

with the auxillary parameters a (inverse einbein a ¼ 1=e)
and b. Note that minimization over a would return us to
the original Hamiltonian with the square root: but we
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will do minimization in a afterwords, after diagonalization.
The parameter b would be iteratively selected to reach
self-consistency when b → M2

nl. (Strictly speaking b is
originally M2, so the minimization in a is more subtle.

This subtlety will be ignored for now, as well as the
ordering issue we pointed out.)
Let us represent this Hamiltonian as a sum of two terms,

M2 ≡H0 þ V,

H0 ¼
σT
a

�
−

∂
2

∂x2
− b

∂
2

∂k2⊥

�
þ σTaþ 4ðm2

Q þ k2⊥Þ: ð32Þ

Note that the last term is artificially added; it is then
subtracted from the “potential” defined by

Vðx; k⃗⊥Þ≡ ðm2
Q þ k2⊥Þ

�
1

xx̄
− 4

�
: ð33Þ

Eigenstates ofH0 provide the functional basis set described
in Appendix B. The Hamiltonian M2 consists of the
diagonal part H0, and nondiagonal “potential” V part. In
the orthonormal set of functions defined in Appendix B,M2

is represented by (infinite) matrices, with its 12 × 12 part
given explicitly.
For the simple “bare mass approximation” with the

parameter b ¼ ð2mQÞ2, one can diagonalize the (part of
the) Hamiltonian. The dependence of the (three lowest)
eigenvalues on the parameter a is shown in the upper plot of
Fig. 3. There are clear minima as a function of a. While
they do not happen to be at the same values, the dependence
M2

nðaÞ is relatively minor, and selecting a certain com-
promise value gives reasonable numerical accuracy. We use
a ¼ 2.36 (a minimum for the lowest n ¼ 1 state).
With the parameters a, b fixed, the Hamiltonian becomes

a numerical matrix, which can be readily diagonalized.
Keeping the 12 × 12 part of the matrix, we obtain the 12
eigenvalues shown in the lower part of Fig. 3 (red
triangles). For comparison we also show the semiclassical
results. The Regge slope is well reproduced, while the
intercept aM is not. This can be attributed to the fact that our
LF Hamiltonian includes zero mode oscillation energy in
all three directions, missing in the semiclassical treatment.
In principle, one may tune the parameters a, b for each

state separately, to reach agreement for the masses.
However, this would mean that different states are not
eigenstates of the same Hamiltonian, and therefore not
mutually orthogonal. Instead of doing that, we keep the a, b
values the same for all considered states, and look at the
main object of our interest, the derived wave functions. For
example, in the approximation considered, the lowest state
has the following LFWF:

ψ1ðρ; xÞ ¼ βe−β
2ρ2=2ðð0.831 − 0.0371β2ρ2 þ 0.00100β4ρ4Þ sinðπxÞ

þ ð−0.0252 − 0.0107β2ρ2 þ 0.000566β4ρ4Þ sinð3πxÞ
þ ð−0.00427 − 0.00207β2ρ2 þ 0.000168β4ρ4Þ sinð5πxÞ
þ ð−0.00145 − 0.000743β2ρ2 þ 0.0000633β4ρ4Þ sinð7πxÞÞ: ð34Þ

0 2 4 6 8 10 12
0

2

4

6

8

0 2 4 6 8
0

2

4

6

8

10

12

FIG. 3. The upper plot shows the dependence of the three
lowest eigenvalues M2

n on the parameter a, in the region around
their minima. The lower plot shows M2

nþ1 versus nþ 1 ¼ 1…7.
The results obtained from the Hamiltonian diagonalization with
fixed a ¼ 2.36 are shown by red triangles. The blue disks are the
semiclassical results discussed previously, the line is a simple
linear expression M2

n ¼ n=α0, both shown for comparison.
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We recall that here ρ ¼ p⊥, and the oscillator parameter is
β ¼ ð4a=σTbÞ14.
Note that only the first coefficient (0.831) is large, while

the others are at few percent level or smaller. If plotted,
the Gaussian curve is hard to separate from the full expres-
sion. This means that the main p⊥ dependence is mostly
Gaussian, while the x dependence is nearly ∼ sinðπxÞ
(amusingly as in 1þ 1 dimensions). This is explained
by our definition of the oscillator term 4ðm2

Q þ p2⊥Þ (which
was added and subtracted), making the nondiagonal matrix
elements of the Hamitonian relatively small. Using the
Gaussian approximation for the ground state, the absolute
scale of the rms of the transverse momentum is

hp2⊥i ¼
1

β2
¼

ffiffiffiffiffiffiffiffi
σTb
4a

r
: ð35Þ

Finally, (31) can be solved in three dimensions x; px; py

without recourse to the matrix diagonalization. The method

consists of solving directly the partial differential equation,
with Dirichlet boundary conditions on the support with
Bjorken x. The ground state eigenvalue isM2 ¼ 2.58 GeV2,
in good agreement with the matrix diagonalization. The
difference between the numerical solution and (34) is inside
the width of the line. No change in the normalization was
needed. Orthogonality also works very accurately.
Since we have two solutions, one numerical and one

analytical (34), they can be plotted in various ways. One
way is to make a comparison to the form suggested in the
literature

Ψ0ðx; ξÞ ¼ 4C2xx̄e−C1ξ
2

; ð36Þ

with

ξ2 ¼ p2⊥
xx̄

ð37Þ

the Brodsky-DeTeramond variable. The constants are
fixed as C2 ¼ 2.6, C1 ¼ 1. The comparison between our
exact ground state (34) with a simplified form (36) is shown
in Fig. 4. The simplified form (36) with the ξ variable is
qualitatively similar but not very accurate, especially at the
end points.

IV. OTHER LIGHT-FRONT HAMILTONIANS

The method of writing a Hamiltonian as a large matrix
in some convenient basis functions, with its subsequent
diagonalization, is widely used in atomic and nuclear
physics. Jia and Vary in [16] pioneered such an approach
to LFWFs. Their assumed Hamiltonian consists of four
terms: (i) sthe effective quark masses originating from the
spontaneous breaking of chiral symmetry (HM); (ii) the
longitudinal confinement (Hjj); (iii) the transverse motion
and confinement (H⊥); and last but not least, (iv) the NJL
four-quark effective interaction HNJL, which we will not
detail here. More specifically,

H ¼ HM þHjj þH⊥ þHNJL;

HM ¼ m2
Q

x1
þ
m2

Q̄

x2
;

Hjj ¼
κ4

ðmQ þmQ̄Þ2
1

JðxÞ ∂xJðxÞ∂x;

H⊥ ¼ k2⊥
�
1

x1
þ 1

x2

�
þ κ4x1x2r2⊥; ð38Þ

wheremQ;Q̄ are the constituent quark and antiquark masses,
κ is the confining parameter, JðxÞ ¼ x1x2 ¼ ð1 − sÞ2=4 is
the integration measure, and k⃗⊥; r⃗⊥ are the transverse
momentum and coordinate. Note that if the masses are
the same, one can simplify

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 4. The upper plot shows the dependence of the ground state
wave functionΨ0ðx; p⊥Þ onx arp2⊥ ¼ 0; 0.2; 0.4; 0.6 GeV2, top to
bottomcurves. The lower plot is onp⊥ atx ¼ 0.1, 0, 2, 0.3, 0, 4.All
solid curves are from the exact solution, while all dashed lines are
for the simplified form (36).
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1

x1
þ 1

x2
¼ 1

x1x2
¼ 4

ð1 − s2Þ :

The matrix element of HM lacks the factor of ð1 − s2Þ
normally present in their integration measure.
Note that the confining terms are quadratic (rather than

linear) in coordinates, and the transverse and longitudinal
parts are additive. Therefore it resembles harmonic oscil-
lators. This simplifies the problem of finding its eigen-
functions. Those are explicitly defined in [16]. We will not
explain them here, but just mention that with those the
Hamiltonian (other than NJL) is diagonal, and its spectrum
is analytic,

M2
nml ¼ ðmQ þmQ̄Þ2 þ 2κ2ð2nþ jmj þ lL þ 3=2Þ

þ κ4

ðmQ þmQ̄Þ2
lLðlL þ 1Þ; ð39Þ

where n is the principal quantum number of the transverse
oscillator, m is the angular momentum helicity [from
expðimϕÞ], and lL is the index of the longitudinal wave
functions (not orbital momentum).
The term k2⊥=xx̄ is kinematically natural on the light

front. We try to separate dependence on the transverse and
longitudinal momenta by using a certain expansion in basis
functions, in the diagonalization presented above.
Trying to cut through these difficulties (and following

Brodsky et al.) Jia andVary proposed to changevariables to ξ
as given in (37), and call the offensive term its square.
Unfortunately, if this change of variables is to be done
explicitly, it would complicate significantly the “kinetic
energy” of the problem, producing extra terms which were
not included.
Let us now compare this spectrum with that of our “basic

problem” discussed above. Note first, that the main linear
dependence on the integer quantum numbers n, m is in
agreement with the linear Regge trajectories. So qualita-
tively it is in agreement with the data.
Unfortunately, the particular selection of the parameter

κ¼ 0.227 GeV makes the slope of the resulting Regge
trajectory much smaller than needed: see the open points in
Fig. 2 (form ¼ l ¼ 0). To fix this, one needs a larger value,
such as e.g. κ¼ 0.5 GeV as indicated by the dashed line in
the same figure.

Another test, using the same Fig. 2, can be made
using the ω3 − ω splitting, corresponding to a change
in m by two units. From the expression above, one finds
that it should be 4κ2 ≈ 0.2 GeV2 if the recommended value
κ ¼ 0.227 GeV is used. Experimentally, for the three
lowest ω3;ω states it is ≈1.8 GeV2, nearly an order of
magnitude larger.
We conclude that while the description of confinement

by a Jia-Vary Hamiltonian is qualitatively correct, leading
to a Regge-type behavior, the particularly recommended
value of the parameter κ leads to a significant under-
estimation of the confinement effects. The reason is that
their analysis focused on the lowest states—specifically on
π, ρ mesons—rather than on Regge phenomenology of the
excited states. However (as we detailed in our paper [27]) ρ
and especially π mesons are a very special case. Being most
compact in size, they are strongly affected by the short-
range effects (spin potentials and residual interactions),
rather than generic effects of confinement.

V. CENTRAL POTENTIAL FROM INSTANTONS
ON THE LIGHT FRONT

In the first paper of this series [14] we discussed a
“dense instanton liquid” model, including both the dilute
instanton ensemble of the original ILM, responsible for the
disordering of the lowest Dirac eigenstates, as well as the
“IĪ molecules” with a larger density. We have shown that
such a vacuum model can reproduce both the central
potential VCðrÞ at intermediate distances r ∼ 0.5 fm, and
the nonperturbative spin-dependent forces. We recall that
the use of instantons is motivated by the fact that the spin-
dependent forces stem from (a nonlocal correlator of)
magnetic fields.
To evaluate the light-cone Wilson loop in Fig. 1 in the

instanton vacuum, we follow our original idea for QQ̄
scattering in [27]. For that we assign a relative angle θ
between Wilson lines in Euclidean space, carry the sum-
mation and tracing over the ensemble of instantons with
fixed density N=V4, and then analytically continue the
result to the light front using the substitution θ ¼ −iχ with
χ being the rapidity difference of the QQ̄ beams. The
connected loop can be written in terms of traces over
individual instantons in leading order in N=V4. More
explicitly, the connected result exponentiates to

hWðθ; 0⊥ÞW†ðθ; b⊥ÞiC ≈ exp

�
−2 ×

N
2NcV4

Z
d4zTrcð1 −WIðθ; 0⊥ÞW†

I ðθ; b⊥ÞÞ
�

ð40Þ

with WIðθ; b⊥Þ the sloped Wilson line running through an instanton at a transverse separation b⊥. The extra overall factor
of 2 in the exponent accounts for the anti-instanton contribution.
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A. Case _x · b⊥ = 0

Each sloped Wilson line contributes in singular gauge

WIðθ; b⊥Þ ¼ cos

�
π −

πγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ ρ2

p
�
− in̂aτa sin

�
π −

πγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ ρ2

p
�

ð41Þ

with

na ¼ ηaμν _xμðz − bÞν;
γ2 ¼ n · n ¼ ðz4 sin θ − z3 cos θÞ2 þ ðz⊥ − b⊥Þ2: ð42Þ

In this first case bμ ¼ ð0; b⊥; 0Þ, xμðsÞ ¼ ðcos θs; 0⊥; sin θsÞ with _x · b⊥ ¼ 0. Carrying the color trace and using the new
coordinates

z− ¼ sin θz4 − cos θz3;

zþ ¼ cos θz4 þ sin θz3 ð43Þ
yields the result

2N
NcV4

Z
dzþdz−dz⊥

�
1 − cos

�
πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃2 þ ρ2

p
�
cos

�
πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃2 þ ρ2

q
�

−
z · b⊥ − z2− − z2⊥

γ̃ γ̃
sin

�
πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃2 þ ρ2

p
�
sin

�
πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃2 þ ρ2

q
��

ð44Þ

with

γ̃2 ¼ z2− þ ðz⊥ − b⊥Þ2; γ̃2 ¼ z2− þ z2⊥: ð45Þ

Since (44)–(45) are zþ independent, the result scales with Zþ
E ¼ R

dzþ

hWðθ; 0⊥ÞW†ðθ; b⊥ÞiC ≈ exp
�
−Zþ

E

�
4κ

Ncρ

�
I
�
ξ ¼ b⊥

ρ

��
ð46Þ

and the dimensionless cylindrical integral

IðξÞ ¼
Z þ∞

−∞
dy−

Z
∞

0

y⊥dy⊥
Z

2π

0

dϕ
2π

×

�
1 − cos

�
πyffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
�
cos

�
π

�
y2 þ ξ2 þ 2ξy⊥ cosϕ

y2 þ ξ2 þ 2ξy⊥ cosϕþ 1
Þ12
�

−
y2 þ ξy⊥ cosϕ

ðy2ðy2 þ ξ2 þ 2ξy⊥ cosϕÞÞ12 sin
�

πyffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
�
sin

�
π

�
y2 þ ξ2 þ 2ξy⊥ cosϕ

y2 þ ξ2 þ 2ξy⊥ cosϕþ 1
Þ12
��

ð47Þ

with the radial variable y2 ¼ y2− þ y2⊥. Note that for the
temporal Wilson loop or θ ¼ 0 in our case, a similar
integral arises for the static potential between two infinitely
heavy QQ̄ with two major differences: (i) the dimension-
less integral involves spherical coordination and a spherical
measure, and (ii) y⊥ cosϕ → y cos θS with θS the spherical
angle.
Although θ has dropped out of (46) it is worth noting

through (43) that Zþ
E analytically continues to the

transverse light-cone coordinate iZþ
M. With this in mind,

(46) analytically continues to

hWðθ; 0⊥ÞW†ðθ; b⊥ÞiC → exp

�
−iZþ

M

�
4κ

Ncρ

�
I

�
b⊥
ρ

��

ð48Þ
which allows for the identification of the instanton con-
tribution to the light-cone Hamiltonian
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P−
I ¼ 1

γβ

�
4κ

Ncρ

�
I

�
b⊥
ρ

�
ð49Þ

with the extra Lorentz factor γβ ¼ cosh χ correcting for the
missing time-dilatation factor in the exponent in (48). The
corresponding instanton contribution to the invariant
squared mass is

2PþP−
I ¼ 2γβMP−

I ≈ 2M

�
4κ

Ncρ

�
I

�
b⊥
ρ

�
ð50Þ

in leading order in the packing fraction κ. In the chiral limit
with zero current quark masses, the full squared mass
(without the confining string) is kinetic plus potential

M2 ¼ k2⊥
xx̄

þ 2PþP−
I ≈

k2⊥
xx̄

þ 2M

�
4κ

Ncρ

�
I

�
b⊥
ρ

�
ð51Þ

which amounts to the mass operator

M ¼ jk⊥jffiffiffiffiffi
xx̄

p þ
�

4κ

Ncρ

�
I
�
b⊥
ρ

�
þOðκ2Þ: ð52Þ

For ξ ¼ b⊥=ρ ≪ 1 the transverse potential is harmonic
with IðξÞ ≈ αξ2, while for ξ ¼ b⊥=ρ ≫ 1 the transverse
potential asymptotes twice the induced self-energy IðξÞ ≈
2ΔmQ þ C=ξp with p ≪ 1. Typically, the self-energies on
the Wilson lines are small ΔmQ=mQ < 1.

B. Case _x · b⊥ ≠ 0

In this second case bμ ¼ ð0; b⊥; b3Þ, xμðsÞ ¼
ðcos θs; 0⊥; sin θsÞ with _x · b⊥ ≠ 0. The analysis follows
the same reasoning without a longitudinal component b3,
with (44) now reading

2N
NcV4

Z
dzþdz−dz⊥

2
641 − cos

�
πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃2 þ ρ2

p
�
cos

0
B@ πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ̃2 þ ρ2
q

1
CA

−
z2− þ cos θz−b3 þ z⊥ · ðz − bÞ⊥

γ̃ γ̃
sin

�
πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃2 þ ρ2

p
�
sin

0
B@ πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ̃2 þ ρ2
q

1
CA
3
75 ð53Þ

and

γ̃2 ¼ ðz− þ cos θb3Þ2 þ ðz⊥ − b⊥Þ2;
γ̃2 ¼ z2− þ z2⊥: ð54Þ

We now analytically continue θ → −iχ or cos θ → cosh χ ¼ γβ, and Z
þ
E → iZþ

M, and change to the dimensionless variables
z−=ρ → z− and z⊥=ρ → z⊥. The result for (53) is now

iZþ
M
2Nρ3

NcV4

H

�
1

Mρ

id
dx

;
b⊥
ρ

�
ð55Þ

with the dimensionless integral

H

�
1

Mρ

id
dx

; ξ

�
¼ 1

2π

Z
dz−dz⊥

2
641 − cos

�
πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃2 þ 1

p
�
cos

0
B@ πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffi

γ̃2 þ 1
q

1
CA

−
z−ðz− þ id=dx=MρÞ þ z⊥ · ðz⊥ − ξ⊥Þ

γ̃ γ̃
sin

�
πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃2 þ 1

p
�
sin

0
B@ πγ̃ffiffiffiffiffiffiffiffiffiffiffiffiffi

γ̃2 þ 1
q

1
CA
3
75 ð56Þ

with ξ⊥ ¼ b⊥=ρ and ξ ¼ jξ⊥j and

γ̃2 → ðz− þ id=dx=MρÞ2 þ ðz⊥ − ξ⊥Þ2;
γ̃2 → z2− þ z2⊥: ð57Þ
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The integral in (56) is only a function of the combination

ξ̃x ¼ ððid=dx=MρÞ2 þ ξ2⊥Þ
1
2 ≡ ξx=ρ ð58Þ

with the spherical integral

HðξxÞ ¼
Z

∞

0

y2dy
Z þ1

−1
dt

�
1 − cos

�
πyffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
�
cos

�
π

�
y2 þ ξ̃2x þ 2ξ̃xyt

y2 þ ξ̃2x þ 2ξ̃xytþ 1

�1
2

�

−
yþ ξ̃xt

ðy2 þ ξ̃2x þ 2ξ̃xytÞ12
sin

�
πyffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
�
sin

�
π

�
y2 þ ξ̃2x þ 2ξ̃xyt

y2 þ ξ̃2x þ 2ξ̃xytþ 1

�1
2

��
: ð59Þ

The corresponding instanton contribution to the invariant squared mass is now

M2 ≈
k2⊥ þm2

Q

xx̄
þ 2PþP−

I ≈
k2⊥ þm2

Q

xx̄
þ 2M

�
4κ

Ncρ

�
Hðξ̃xÞ≡ k2⊥ þm2

Q

xx̄
þ 2MVCðξxÞ ð60Þ

which is an iterative equation for the mass M. HðξxÞ admits the short and large distance limits

Hðξ̃xÞ ≈þ
�
π3

48
−
π3

3
J1ð2πÞ

�
ξ̃2x þ

�
−
π3ð438þ 7π2Þ

30720
þ J2ð2πÞ

80

�
ξ̃4x;

Hðξ̃xÞ ≈ −
2π2

3
ðπJ0ðπÞ þ J1ðπÞÞ þ

C

ξ̃px
: ð61Þ

VI. SPIN INTERACTIONS
ON THE LIGHT FRONT

To construct the spin-dependent interactions on the
light front, we apply the general construction by
Eichten and Feinberg [28] to the slated Wilson loop
shown in Fig. 1 in Euclidean signature, followed by
the analytical continuation θ → −iχ to Minkowski
signature. For that, we first need the expansion of
the heavy-quark propagator shown as a straight line
in leading order or 1=m0

Q, at next-to-next-to-lead-
ing order.

A. Heavy-quark reduction

The heavy quark expansion of a Dirac fermion of mass
mQ with fixed velocity in an arbitrary gauge field is best
achieved using the Foldy-Wuthuysen transformation on the
relativistic fermion propagator,

e
−i D⊥

2mQ
1

i=D −mQ
e
−i D⊥

2mQ ð62Þ

with i=D ¼ i=∂þ =A and =D⊥ ¼ =D − =vv ·D satisfying
½=D⊥; =v�þ ¼ 0. We will refer to vμ the two-dimensional
light-conelike velocity along the two-dimensional light-
conelike coordinate xþ in Euclidean signature, and to v⊥μ

its orthogonal velocity along the two-dimensional light-
conelike coordinate x− also in Euclidean signature,

vμ ¼ ð0⊥; sin θ; cos θÞ;
v⊥μ ¼ ð0⊥;− cos θ; sin θÞ; ð63Þ

with xþ ¼ v · x and x− ¼ v⊥ · x. These light-conelike
Euclidean coordinations (lower indices) are not to be
confused with the Minkowski light-cone coordinates x� ¼
x0 � x3 (upper indices). With this in mind, and to order
1=m2

Q the heavy quark propagator is

1

iv ·D
−

1

iv ·D

�
1

2mQ
ði=D⊥Þ2 −

1

4m2
Q
ði=D⊥Þðiv ·DÞði=D⊥Þ

�
1

iv ·D
: ð64Þ

The bracket in (64) gives rise to a vertex insertion, which can be rearranged

1

2mQ

�
ðiDÞ2 − 1

2
σμνFμν

�
−

1

4m2
Q
ðiσανiDαvμFμν þ iDνvμFμνÞ ð65Þ

with σαν ¼ 1
2i ½γα; γν�. In (65) we have dropped all terms that vanish on-shell, i.e. v ·DQv ¼ 0withQv the heavy quark field.

When inserted on a straight Wilson line, (65) produces the spin corrections up to order 1=m2
Q.
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Note that in the Dirac representation σ4i is off-diagonal.
The electric contribution mixes particles and antiparticles.
It does not contribute when inserted on a straight Wilson
line defined as

Wðy; xÞ ¼ hyþj
1

v ·D
jxþiδðx − yÞ

¼ Pe
i
R

yþ
xþ

A·dz
θðyþ − xþÞδðx − yÞ ð66Þ

with the ordering along xþ and the shorthand notations

xμ ¼ ðx⊥; x−; xþÞ≡ ðx; xþÞ;
yμ ¼ ðy⊥; y−; yþÞ≡ ðy; yþÞ: ð67Þ

B. Slated Wilson loop dressed with fields

The undressed Wilson loop in the resummed instanton
vacuum is

h1θi ¼ hWðθ; 0⊥ÞW†ðθ; b⊥ÞiC ≈ e−ZþVCðξθÞ ð68Þ

with

ξθ ¼ ðcos2 θb23 þ b2⊥Þ
1
2 ð69Þ

and where VCðξθÞ → VCðξxÞ follows by analytical con-
tinuation θ → −iχ. The spin dressed Wilson loop to order
1=m2

Q follows by inserting the corrections (64) on the
Wilson lines

h1θiδ12 þ
�
þ i
4m2

Q1

Z þ1
2
Zþ

−1
2
Zþ

dzþ½σ1ανvμhFμνðx1; zþÞiDαðx1; zþÞ1θi þ 1 ↔ 2�

þ 1

4m2
Q1

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þ½hσ1μνFμνðx1; zþÞðiDÞ2ðx1; z0þÞ1θi þ 1 ↔ 2�

þ 1

8mQ1mQ2

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þ½hσ1μνFμνðx1; zþÞðiDÞ2ðx2; z0þÞ1θi

þ hðiDÞ2ðx1; zþÞσ2μνFμνðx2; z0þÞ1θi

−
1

2
hσ1μνFμνðx1; zþÞσ2αβFαβðx2; z0þÞ1θi�

�
δ12 ð70Þ

after dropping the terms that vanish on-shell, the terms that vanish by parity after averaging in the presence of the undressed
Wilson loop, and those with no contribution to the spin-dependent potentials. In (70) we have labeled the quark masses for a
general Wilson loop with unequal masses, and used the shorthand notation

δ12 ¼ δðx1 − y1Þδðx2 − y2Þ:

Throughout, the affine integration parameters zþ; z0þ in (70) are proper times. The conversion to ordinary times ðzþ; z0þÞ →
ðzþ; z0þÞ=γE amounts to extra Lorentz contraction factors of 1=γE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _x2E

p
in Euclidean signature, that will be added at

the end by inspection.

C. Identities

To simplify (70) we use the identities with slated Wilson lines (dropping the delta functions)

Wðxþ; yþÞWðyþ; zþÞ ¼ hxþj
1

v ·D
jyþihyþj

1

v ·D
jzþi ¼ hxþj

1

v ·D
jzþi ¼ Wðxþ; zþÞ ð71Þ

which is a property of the eikonalized and ordered Wilson line. More importantly, we have the identity

DνðxþÞWðxþ; yþÞ −Wðxþ; yþÞDνðyþÞ

¼ hxþjDν
1

v ·D
−

1

v ·D
Dνjyþi ¼ hxþj

1

v ·D
½v ·D;Dν�

1

v ·D
jyþi

¼ hxþj
1

v ·D
ð−ivμFμνÞ

1

v ·D
jyþi ¼

Z þ1
2
Zþ

−1
2
Zþ

dzþWðxþ; zþÞð−ivμFμνÞðzþÞWðzþ; yþÞ: ð72Þ

The end-point derivative of a Wilson line amounts to an insertion of a pertinent field strength (plaquette in a lattice form)
along the line

HADRONIC STRUCTURE …. II. QCD STRINGS, WILSON … PHYS. REV. D 107, 034024 (2023)

034024-13



vμFμν ¼ v4F4ν þ v3F3ν ¼ cos θF4ν þ sin θF3ν: ð73Þ

Finally, we have the large jzþj → ∞ identity

Wðy; zþ; x; zþÞDαðx; zþÞWðx; zþ; y; zþÞ → ∂
y
α ð74Þ

as the fields are assumed to vanish at asymptotic zþ. A repeated use of (71)–(74) allows one to simplify (70).

D. First contribution in Eq. (70)

Consider the first contribution in (70) without 1 ↔ 2,

Z þ1
2
Zþ

−1
2
Zþ

dzþσ1ανvμhFμνðx1; zþÞiDαðx1; zþÞ1θi ¼
Z þ1

2
Zþ

−1
2
Zþ

dzþσ1ανvμhFμνðx1; zþÞ1θii∂1α ð75Þ

after using (72) forward and dropping a vanishing con-
tribution by symmetry. Using again (72) backward we get

−σ1αν∂1νh1θi∂1α → −ϵijkσ1k∂1ih1θi∂1j: ð76Þ

Recall that σ4i is off-diagonal in the Dirac representation. It
drops out on a straight Wilson line, with no particle-
antiparticle mixing. Hence the result

Zþ
γE

e−ZþVCðξ0Þϵijkσ1kð∂1iVCðξθÞÞ∂1j; ð77Þ

with the additional Lorentz contraction factor in Euclidean
signature, is restored.
The analytical continuation of (77) follows by taking

θ → −iχ, γE → γ → ∞, with

ξθ → ξx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγb3Þ2 þ b2⊥

q
→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðid=dx=MÞ2 þ b2⊥

q
ð78Þ

Hence,

1

γ
∂13VCðξxÞ ¼

∂VCðξxÞ
∂γb13

→
ðid=dx1Þ
Mξx

V 0
CðξxÞ;

1

γ
∂13 ¼

∂

γ∂x13
→

ip13

γ
¼ is1mQ1 ð79Þ

are the dominant contributions in (77) at large γ. The
contribution to the squared mass operator is

M2
LS;C ¼ 2M

�
σ1 · ðb12 × s13̂Þ

4mQ1

−
σ2 · ðb21 × s23̂Þ

4mQ2

�
1

ξx
V 0
CðξxÞ

ð80Þ

after symmetrization, and dropping the higher order
1=Mm2

Q contribution. Here

b21 ¼ ðb2 − b1Þ⊥ ≡ b⊥;

s1 ¼ sgnp13 is the signum of the 3-momentum of particle 1
(sign of the helicity), and x1 refers to Bjorken x for particle
1 (x for particle and x̄ for antiparticle). This is the light-front
form of the spin-orbit potential familiar from atomic
physics.

E. Last contribution in Eq. (70)

Consider the spin-spin interaction in (70)

−
1

16mQ1mQ2

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þ½hσ1μνFμνðx1; zþÞσ2αβFαβðx2; z0þÞ1θi�: ð81Þ

Since σ4i drops out of the straight Wilson line, the chief contribution in (81) is

−
1

4mQ1mQ2

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þσ1iσ2jhBiðx1; zþÞBjðx2; z0þÞ1θi: ð82Þ

The magnetic correlation function in the presence of the Wilson loop 1θ can be rewritten as

σ1iσ2jhBiðx1; zþÞBjðx2; z0þÞ10i ¼ σ1⊥iσ2⊥jhB⊥iðx1; zþÞB⊥jðx2; z0þÞ1θi þO
�

1

cos θ

�
: ð83Þ
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Here σ⃗1;2 ¼ ðσ⊥; σ3Þ1;2 with particle sublabeling 1,2,
and the notation ⊥ ¼ 1, 2 (not to be confused with the
projection orthogonal to vμ above). The longitudinal
contribution of the magnetic field B3 ties to B3 ¼
−B−= cos θ, with B− ¼ v⊥ · B the component orthogonal
to 1θ. After analytical continuation θ → −iχ the contribu-
tions in 1= cos θ in (81) are suppressed by cos θ → γE → ∞

and will be dropped. This is expected since in the
infinite momentum frame the transverse components
of the gauge fields E⊥; B⊥ dwarf the longitudinal ones
E3, B3.
With this in mind, the result for the two-dimensional and

transverse spin-spin potential prior to the analytical con-
tinuation is

σ1⊥iσ2⊥j

4mQ1mQ2

��
b̂⊥ib̂⊥j −

1

2
δ⊥ij

�
V3ðξθ; θÞ þ

1

2
δ⊥ijV4ðξθ; θÞ

�

¼ σ1⊥iσ2⊥j

4mQ1mQ2

�
lim

Zþ→∞

1

Zþh1θiγ2E

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þhB⊥iðx1; zþÞB⊥jðx2; z0þÞ1θi
�

ð84Þ

with the Lorentz contraction factor in Euclidean signature γE restored. Note the overall sign change in passing from the
interaction (82) to the potentials (84). The analytical continuation in (84) will be carried explicitly below in the instanton
vacuum. For general gauge fields, a numerical procedure needs to be developed.

F. Remaining contributions in Eq. (70)

The remaining contributions in (70) are spin orbitlike. They can be simplified through a repeated use of the identities
(71)–(74), and the observation that the longitudinal contributions of the gauge fields B3 ¼ −B−= cos θ and similarly
E3 ¼ −E−= cos θ drop out after the analytical continuation and can be ignored.
The two cross spin-orbit contributions in the last line in (70),

þ 1

8mQ1mQ2

�Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þðhσ1μνFμνðx1; zþÞðiDÞ2ðx2; z0þÞ1θi

þ hðiDÞ2ðx1; zþÞσ2μνFμνðx2; z0þÞ1θiÞ
�
; ð85Þ

can be simplified. First, we recall that σ4i mixes particles and holes and does not contribute to the straight Wilson worldlines
under consideration, so that the relevant contribution in (85) is

þ 1

4mQ1mQ2

�Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þðhσ1kBkðx1; zþÞðiDÞ2ðx2; z0þÞ1θi

þ hðiDÞ2ðx1; zþÞσ2kBkðx2; z0þÞ1θiÞ
�
: ð86Þ

Using the identities (72) and (74) we can rearrange the 12-integral in (86)

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þhσ1kBkðx1; zþÞðiDÞ2ðx2; z0þÞ1θi

≈ 2σ1k

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þhBkðx1; zþÞz0þvμFμjðx2; z0þÞ1θii∂2j ð87Þ

where only the spin contributing terms are retained. In deriving (87) we used (74) to trade iD with i∂2 at the
edge of the Wilson line, followed by an integration by parts along z0þ using vD and then ½vD; iD� ¼ vF. With
the analytical continuation in mind, the dominant contribution to the potential stems from j ¼ 3 and
v4=γE ¼ cos θ=γE → 1, hence

lim
Zþ→∞

1

Zþh1θiγE

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þhBkðx1; zþÞz0þv4F43ðx2; z0þÞ1θi → ϵk3ib21i
1

ξx
V 0
2ðξxÞ ð88Þ
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for the interaction, with b21 ¼ −b12 ≡ b⊥. If we recall the sign flip in passing from the interaction vertex to the potential, the
12þ 21 spin-orbit contribution to the squared mass operator is

M2
LS;12 ¼ 2M

�
−

1

4mQ1mQ2

�
2σ1kϵk3ib21i

i∂23
γ

þ 1 ↔ 2

�
1

ξx
V 0
2ðξxÞ

�

¼ 2M
��

σ2 · ðb12 × s13̂Þ
2mQ2

−
σ1 · ðb21 × s23̂Þ

2mQ1

�
1

ξx
V 0
2ðξxÞ

�
: ð89Þ

Using similar arguments, the spin-orbit contribution in the second line of (70) yields the dominant contribution to the
interaction

lim
Zþ→∞

1

Zþh1θiγE

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þhBkðx1; zþÞðz0þ − zþÞv4F43ðx1; z0þÞ1θi → ϵk3ib21i
1

ξx
V 0
1ðξxÞ ð90Þ

with the corresponding 11þ 22 spin-orbit contribution to the squared mass operator

M2
LS;11 ¼ 2M

�
−
�

2

4m2
Q1

σ1kϵk3ib21i
i∂13
γ

þ 1 ↔ 2

�
1

ξx
V 0
1ðξxÞ

�

¼ 2M

��
σ1 · ðb12 × s13̂Þ

2mQ1

−
σ2 · ðb21 × s23̂Þ

2mQ2

�
1

ξx
V 0
1ðξxÞ

�
: ð91Þ

Below, we explicitly show how to evaluate V1;2ðξxÞ in
the instanton vacuum. For general gauge fields, a numerical
procedure needs to be developed, as we noted earlier for the
spin-spin interaction (84).

VII. LIGHT-FRONT HAMILTONIAN
IN THE INSTANTON VACUUM

For the particular case of the instanton vacuum, these
spin potentials are essentially generated by nonzero modes

(those due to the zero modes will be discussed below).
They are related to the central electric potential VCðξxÞ in
(60), since the induced spin correlators satisfy BB ¼ EE
and BE ¼ �EE by self-duality.

A. Spin-spin interaction

More specifically, the spin-spin interaction (84) with
self-dual fields, reads

−
σ1⊥iσ2⊥j

4mQ1mQ2

�
lim

Zþ→∞

1

Zþh1θiγ2E

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þhE⊥iðx1; zþÞE⊥jðx2; z0þÞ1θi
�

ð92Þ

with here i, j ¼ 1, 2. With this in mind, we now note that (73) amounts to

vμFμi ¼ −RijðθÞEj ð93Þ

using again the self-duality for the instanton, with the rotation matrix

RðθÞ ¼
�
cos θ − sin θ

sin θ cos θ

�
→ γR ¼ γ

�
1 þi

−i 1

�
ð94Þ

and its analytical continuation. Note that for the anti-instanton which is anti-self-dual, RðθÞ → Rð−θÞ and R → R�.
Inserting the inversion of (93) in (92) gives

−
σ1⊥iσ2⊥j

4mQ1mQ2

�
lim

Zþ→∞

RimðθÞRjnðθÞ
Zþh1θiγ2E

Z þ1
2
Zþ

−1
2
Zþ

dzþ

Z þ1
2
Zþ

−1
2
Zþ

dz0þhvμFμmðx1; zþÞvνFνnðx2; z0þÞ1θi
�
: ð95Þ

Using twice the identity (72) allows to simplify (95)
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−
σ1⊥iσ2⊥j

4mQ1mQ2

�
lim

Zþ→∞

−RimðθÞRjnðθÞ∂1m∂2nh1θi
Zþh1θiγ2E

�
: ð96Þ

Recalling the overall sign flip in passing from the interaction to the potentials, the analytical continuation of (96) gives the
instanton spin-spin contribution to the squared mass operator

M2
SS ¼ 2M

�
σ1⊥iσ2⊥j

4mQ1mQ2

��
b̂12ib̂12j −

1

2
δ⊥ij

�
V3ðξxÞ þ

1

2
δ⊥ijV4ðξxÞ

��

¼ 2M

�
σ1⊥iσ2⊥j

4mQ1mQ2

½RimRjn∂1m∂1nVCðξxÞ�
�
: ð97Þ

Hence the relation of V3;4ðξxÞ to the central Coulomb
potential VCðξxÞ induced by instantons (anti-instantons)
reads

V3ðξxÞ ¼
2b2⊥
ξ2x

V 00
CðξxÞ;

V4ðξxÞ ¼ 0: ð98Þ

In the instanton vacuum, the light-front spin-orbit poten-
tials V1;2 in (88)–(90), can be shown to be tied by the same
identity as their counterparts in the rest frame [28], namely

V2ðξxÞ ¼ V1ðξxÞ þ VCðξxÞ →
1

2
VCðξxÞ ð99Þ

with the rightmost result following in the instanton vacuum.
Indeed, while on the light front V2;4ðξxÞ are no longer tied by
the Bianchi identity (covariantized Lenz law), we note that
the leading contributions in (88)–(90) match the rest frame
contributions at θ ¼ 0. Therefore, the rest frame relation
V2ðRÞ ¼ 1

2
VCðRÞ in the instantonvacuum [28] (note the sign

convention difference) carries to the light front V2ðξxÞ ¼
1
2
VCðξxÞ. This is not the case for V3;4ðξxÞ as we have shown.

B. Light-front Hamiltonian

The sum of the spin contributions to the squared mass
operator on the light front in the instanton vacuum is now
explicit and of the form

M2
SD;Iðξx; b⊥Þ ¼ 2MVSD;Iðξx; b⊥Þ ¼ 2M

��
σ1 · ðb12 × s13̂Þ

4mQ1

−
σ2 · ðb21 × s23̂Þ

4mQ2

�
1

ξx
V 0
Cðξx

�

þ
�
σ1 · ðb12 × s13̂Þ

2mQ1

−
σ2 · ðb21 × s23̂Þ

2mQ2

�
1

ξx
V 0
1ðξxÞ

þ
�
σ2 · ðb12 × s13̂Þ

2mQ2

−
σ1 · ðb21 × s23̂Þ

2mQ1

�
1

ξx
V 0
2ðξxÞ

þ 1

4mQ1mQ2

σ1⊥iσ2⊥j

��
b̂21ib̂21j −

1

2
δ⊥ij

�
V3ðξxÞ

��
ð100Þ

with b21 ¼ −b12 ¼ b⊥ and s1;2 the signum of the velocity
along the 3-direction (sign of the helicity). The contribu-
tions in (100) are in (80), (89), and (91). All spin potentials
V1;2;3ðξxÞ are tied to the central potential VCðξxÞ in the
instanton vacuum, as in (98) and (99).
A key feature of the spin orbit contributions in (100) is

that a flip of a spin, say σ1, can be compensated by a flip in
the sign of the helicity say s1 or s2. This is reminiscent of
the rest frame symmetry of the spin-orbit interactions, that
show that a flip in the spin can be compensated by a flip in
the angular momentum, thereby preserving the total angu-
lar momentum.
The light-front Hamiltonian in the instanton vacuum is

the squared mass operator for a QQ̄≡Q1Q2 pair, that

includes the free plus the central contribution in (60), and
the spin contributions (100),

M2 ¼
X
i¼1;2

k2⊥ þm2
Qi

xi
þ 2MðVCðξxÞ þ VSD;Iðξx; b⊥ÞÞ

ð101Þ

with Bjorken xi¼1;2 and satisfying x1 þ x2 ¼ 1. A detailed
analyses of the spectrum and light-front wave func-
tions following from (101) as applied to heavy and light
mesons, with comparative estimates from perturbative
one-gluon exchange and confinement, will be detailed in
a sequel [11].

HADRONIC STRUCTURE …. II. QCD STRINGS, WILSON … PHYS. REV. D 107, 034024 (2023)

034024-17



VIII. SPIN INTERACTION FROM A STRING
ON THE LIGHT FRONT

In the rest frame, the spin-dependent contributions
emerging from the string were discussed by Buchmuller
[29] and others [30,31]. Since the spin-spin interactions are
short ranged, only the self-spin-orbit contributions survive
at large separation R, where the string is active. Also, the
electric flux tube is confined to the string, so the self-spin-
orbit contribution is mostly induced by Thomas precession
which is of opposite sign to the spin-orbit contribution from
the standard Coulomb field.
More specifically, in the rest frame and at large sepa-

ration only the self-spin-orbit potential survives [29–31],

VLS;stringðRÞ ≈
�
σ1 · L1

4m2
Q1

−
σ2 · L2

4m2
Q2

��
1

R
V 0
CðRÞ þ

2

R
V 0
1ðRÞ

�

≈
�
σ1 · L1

4m2
Q1

−
σ2 · L2

4m2
Q2

�
ð1 − 2Þ σT

R
ð102Þ

with the convention for the orbital angular momenta
L1 ¼ −L2 ¼ L. Here, VCðRÞ ¼ σTR, and V1ðRÞ ≈
−VCðRÞ from (99), since the cross spin-orbit potential
being short ranged is expected to vanish at large R, i.e.
V2ðRÞ ≈ 0. On the light front, (102) can be recast, and its
contribution to the squared mass operator is

M2
LS;string ≈ 2M

��
σ1 · ðb12 × s13̂Þ

4mQ1

−
σ2 · ðb21 × s23̂Þ

4mQ2

�
ð1 − 2Þ σT

ξx

�
ð103Þ

after using (99), and borrowing from the spin reduction
structure in (80) and (91). As we noted in [14] (see
Appendix B), the spin-orbit potential following from the
analysis in [28] which we have followed (for both the
instantons and string) is twice larger [32].
Finally, we note that on the light front, the sign of the

string induced formulas spin-orbit in (103) is similar to the
one expected from instantons in the dense regime, but
opposite to the sign following from the perturbative
Coulomb exchange, as originally noted in the rest frame
in [29–31].

IX. SPIN-FLAVOR INTERACTIONS
FOR LIGHT QUARKS

The spin-flavor interactions for light quarks are well
understood in the rest frame. They involve chiefly the
fermionic zero modes as they tunnel through instantons
and anti-instantons. Because of the Pauli principle, only the
zero modes with different flavors can undergo simultaneous
tunneling, resulting in the famed 0t Hooft interactions. For
three flavors and in the zero size approximation, the 3-flavor
interaction is repulsive and mostly active in the flavor singlet
channel [33,34]

VLþR
qqq ¼ GHooft

NcðN2
c − 1Þ

�
2Nc þ 1

2ðNc þ 2Þ detðUDSÞ

þ 1

8ðNc þ 1Þ ðdetðUμνDμνSÞ þ detðUμνDSμνÞ þ detðUDμνSμνÞÞ
�
þ ðL ↔ RÞ ð104Þ

with a strength

GHooft ¼
nIþĪ

2

�
4π2ρ3

mQρ

�
3

ð105Þ

and the short hand notations (Q≡U, D, S)

Q ¼ q̄RqL; Qμν ¼ q̄RσμνqL; Qa ¼ q̄RσaqL: ð106Þ

The 2-flavor ud interaction is attractive and follows by
vacuum averaging the s contribution. It is also determi-
nantal

VLþR
qq ¼ κ2A2NðdetðUDÞ þ B2N detðUμνDμνÞÞ þ ðL ↔ RÞ

ð107Þ

and attractive

κ2 ¼ 3!GHoofths̄RsLi ¼ 3GHoofths̄si < 0;

A2N ¼ ð2Nc − 1Þ
2NcðN2

c − 1Þ ; B2N ¼ 1

4ð2Nc − 1Þ : ð108Þ

In the Weyl basis σμν → iηaμνσa with the 0t Hooft symbol
satisfying ηaμνη

b
μν ¼ 4δab, and (104) can be simplified as

VLþR
qq ¼ κ2A2NðdetðUDÞ − 4B2N detðUaDaÞÞ þ ðL ↔ RÞ:

ð109Þ
In the rest frame, (109) contributes an ultralocal interaction
potential. In leading order in 1=Nc, the potential in the U(1)
or η0 channel is
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1

2
κ2A2N

1

2
ð1 − τ1 · τ2Þδðx⃗12Þ ð110Þ

with x⃗12 ¼ x⃗1 − x⃗2. The corrections to (110) are nonrelativistic ∇=mQ.
The corresponding pair interaction on the light front in the eikonalized approximation can be written schematically as

VLþR
12 ðξ̃xÞ →

1

2
κ̃2A2N

1

2
ð1 − τ1 · τ2Þσ⊥1 · σ⊥2δðξ̃xÞ≡ VLþR

η0 δðξ̃xÞ ð111Þ

in the η0 channel, with κ̃2 ¼ κ2=ρ3. We dropped the spin-
independent mass contributions; in writing (111) the delta
function is assumed to depend only on the invariant 1D-like
distance ξ̃x defined in (58), in the local approximation. The
alternative delta function

δðξ̃xÞ → δðPþz−Þδðx⊥=ρÞ;

which is 3D-like and local, will be discussed elsewhere.
The flavor permutation inherent to the flavor singlet ’t
Hooft vertex is manifest in

1 − P12 ¼
1

2
ð1 − τ1 · τ2Þ ð112Þ

with P12 the flavor pair permutation operator. The spin-flip
interaction σ⊥1 · σ⊥2 remains on the light front in the near
mass-shell limit, and flips the helicity of the incoming
quark pair from L-left to R-right in the instanton contri-
bution, and vice versa in the anti-instanton contribution.
The corresponding interactions in the scalar and pseudo-
scalar channels follow by Fierzing. There is no induced
interaction by Fierzing in the vector and pseudovector
channels. In particular, it is attractive in the pion channel
and zero in the rho channel (Nc ¼ 3),

VLþR
π ðξ̃xÞ ≈ κ̃2δðξ̃xÞ;

VLþR
ρ ðξ̃xÞ ≈ 0: ð113Þ

For light quarks solely in the instanton vacuum, the light
front mass operator (60) now reads

M2 ≈
k2⊥þm2

Q

xx̄
þ 2M

��
4κ

Ncρ

�
Hðξ̃xÞþVLþR

P ðξ̃xÞ
�
; ð114Þ

where P refers to the nonvanishing Fierz contributions
(P ¼ π; σ; π5; σ5; η0), with the constituent quark mass mQ

added. The instanton contributions and the constituent
mass are of order κ in the packing fraction.

X. THE PION ON THE LIGHT FRONT

The spontaneous breaking of chiral SUðNfÞA symmetry
is a fundamental and important phenomenon of nonper-
turbative QCD, much like confinement. The pion plays a
very special role in it, being a Nambu-Goldstone (near
massless) mode, a wave riding the vacuum quark con-
densate. The question then is, how does the pion emerge
from (114) on the light front, with a nonvanishing con-
stituent quark mass mQ? We will return to the pion wave
function, including its quark spin-orbital wave functions, in
our next publication. Here we give a qualitative description
of the pion on the light front, in a vacuum randomly
populated with only instantons and anti-instantons.
Let us start by noting that as M → 0, then ξ̃x →

jid=dxj=Mρ ≫ 1 in (58), and Hðξ̃xÞ is dominated by its
large asymptotic constant in (61),

Hðξ̃x ≫ 1Þ → −
2π2

3
ðπJ0ðπÞ þ J1ðπÞÞ ð115Þ

which should be removed because of confinement. With
this in mind, and using (113) in the pion channel, we can
rewrite (114) as

M2 ≈
M2⊥
xx̄

þ 2M2VLþR
π δðMξ̃xÞ

with M2⊥ ¼ k2⊥ þm2
Q and VLþR

π ¼ κ̃2. Since

δðMξ̃xÞ ¼ ρδðjid=dxjÞ

we can formally solve for the squared mass operator
in (115)

M2 ≈ ð1 − 2ρVLþRδðjid=dxjÞÞ−1 M
2⊥

xx̄
→

�
1ffiffiffiffiffi
xx̄

p ð1 − 2ρVLþRδðjid=dxjÞÞ−1 1ffiffiffiffiffi
xx̄

p
�
M2⊥; ð116Þ

where the ordering ambiguity is fixed by symmetrization, to enforce hermiticity of M2. Equation (116) admits a
normalizable massless state
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φπðx; b⊥Þ ¼ ð6xx̄Þ12
�
mQffiffiffi
π

p K0ðmQjb⊥jÞ
�

ð117Þ

with the normalization
R
dxdb⊥φ2

πðx; b⊥Þ ¼ 1. Indeed, the longitudinal part of (117) satisfies

�
1ffiffiffiffiffi
xx̄

p ð1 − 2ρVLþRδðjid=dxjÞÞ−1 1ffiffiffiffiffi
xx̄

p
� ffiffiffiffiffi

xx̄
p ¼

�
1ffiffiffiffiffi
xx̄

p ð1 − 2ρVLþRδð0ÞÞ−1
�
1 ¼ 0:

When a small current mass mq is added, the constituent
mass shifts in leading order mQ → mQ þmq, and the pion
becomes massive,

M2
π ¼ 2mqmQ

Z
1

0

dx
φ2
πðxÞ
xx̄

þOðm2
qÞ

¼ 12mqmQ þOðm2
qÞ; ð118Þ

as expected for a Goldstone mode. In the random instanton
vacuum (RIV), the constituent mass mQ follows from the
breaking of chiral symmetry with explicitly

hq̄qi ¼ −NcmQ=2ðπρÞ2

(see for instance Eq. (84) in [14]), and (118) reduces to the
GOR relation

M2
π ¼ −2mq

�hq̄qi
f2π

�
þOðm2

qÞ: ð119Þ

The squared pion decay constant is identified as

f2π ¼ Nc=ðπρÞ2=12 ¼ 1=ð2πρÞ2: ð120Þ

The numerical value is surprisingly accurate, with fπ ∼
96 MeV for ρ ∼ 1

3
fm.

Note that in our case the pion—as a true Goldstone
mode—is massless, even though the constituent quark mass

mQ ≠ 0. The would-be pion in 1þ 1 dimensions becomes
massless only in the large Nc → ∞ limit.
In Fig. 5 we show the longitudinal pion distribution

amplitude in the random instanton vacuum on the light-
front RIV (LFRIV) versus Bjorken x, following from (117)
with φA

π ðxÞ ¼ 8
π

ffiffiffiffiffi
xx̄

p
normalized as

R
dxφA

π ðxÞ ¼ 1, at the
low resolution of 1=ρ. It is in good agreement with the pion
DA in the random instanton vacuum RIV obtained in the
rest frame, at the same resolution [35]. Both results are
compared to the asymptotic pion DA of 6xx̄ (dashed curve),
and the lattice pion DA (green curved band) [36]. LFRIV is
similar to the one derived using the Schwinger-Dyson
construction [37], and identical to the pion longitudinal DA
discussed using light-front holography [10].
The pion DA is driven by the spontaneous breaking of

chiral symmetry, which is the same whether in the rest
frame or in the light-cone frame, and as expected is not
sensitive to the confinement mechanism. What is sensitive
to confinement are the pion excited states, for instance the
radial πð1300Þ excitation with assignments 1−ð0−þÞ and
higher, as we discussed earlier. In this case, the instanton
contribution in (114) is only asymptotic and the role of
confinement as in (23) is important. The relevant squared
mass operator on the light front is now

M2 ≈
M2⊥
xx̄

þ 2M½spin� þ 2σTMξx: ð121Þ

The short-range spin interactions due to the instantons’
nonzero modes are given in Sec. VII.

XI. CONCLUSIONS

We started this paper by discussing the basic problem of
two massive relativistic quarks, connected by a classical
Nambu-Gotto string. The problem was first set in the CM
frame, in which the spectrum and the wave functions are
readily obtained, by solving numerically in Mathematica
(semiclassically or directly) a relativistic Klein-Gordon
equation.
Then we considered the same problem on the light front

(without spin effects), and derived the ensuing Hamiltonian.
After turning it to a quadratic form (using the einbein trick),
we defined an appropriate functional basis in which its
diagonalization can be carried explicitly. It yields a meson
spectrum that is consistent with the one from the rest frame,
and with the expected and observed Regge behavior in terms

FIG. 5. RIV is the pion longitudinal DA from the instanton
vacuum in the rest frame [35]; LFRIV is the pion DA from the
instanton vacuum on the light front; Michigan State University
lattice collaboration is the pion DA from the lattice [36]; the
asymptotic pion DA of 6xx̄ is shown for comparison.
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of Regge slope. The Regge intercept turned out to be higher
than the observed one, at least for the vector mesons we
discussed.
The LFWFs of the low-lying states are obtained, as a

function of the transverse momentum ρ ¼ p⊥ and Bjorken
x, see e.g. (34) for the ground state. To a good approxi-
mation, they are dominated by the lowest harmonic of the
pertinent diagonalization set, a Gaussian in the p⊥ direc-
tion, and a sinðπxÞ in the longitudinal direction.
A massless left-handed quark tunneling through an

instanton emerges as a right-handed massless quark as a
zero mode, a remarkable feature of a vector interaction.
This is the essence of the dynamical breaking of chiral
symmetry, which gives a running constituent mass. The
collectivization of these zero modes is well understood in
the rest frame, and yields the octet of massless Golstone
modes. The QCD vacuum in the zero mode zone is
“metallic,” with the scalar and vector mesons as weakly
correlated “excitons.” Their orbitally excitations are sensi-
tive to confinement.
The role of the nonperturbative vacuum structure on

the light cone is best seen by noting that all hadron
correlators on the light cone map onto a Wilson loop
sloped at an angle θ in Euclidean space, that analytically
continues to −iχ the rapidity in Minkowski space, a
proposal we made long ago. An excited and confined
meson, whether light or heavy, is characterized by a
straight string with massive end points, to account for the
scalar masses from the spontaneous breaking of chiral
symmetry, plus current masses. In this sense all mesons
behave democratically on the light cone.
The role of instantons and anti-instantons on the mesons

in the light cone follows from the parallel Wilson lines
before analytical continuation. Their effects fall into two
categories: (i) the nonzero modes and (ii) the zero modes.
The contribution of the nonzero modes can be explicitly
calculated using the sloped Wilson loop, and then analyti-
cally continued to Minkowski space, giving rise to central
and spin contributions to the mass operator. The contribu-
tion of the zero modes is still captured by the local form of
the ’t Hooft pair interaction, in addition to the constituent
quark mass. We have explicitly assessed these contribu-
tions, and derived the pertinent mass operator in
Minkowski signature. Modulo ordering ambiguities, it is
iterative and nonlocal.
For a tightly bound pion where confinement is less active

in a vacuum dominated by instantons, we have shown that
this operator admits an exact Golstone mode on the light
front, with the correct GOR relation and pion decay
constant, and a universal and normalizable light-front
DA. The latter is in good agreement with the one derived
in the rest frame, using the quasi-DA construction.
The role of the spin effects on the light-light, heavy-light,

and heavy-heavy mesons on the light front will be
discussed next.
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APPENDIX A: KLEIN-GORDON EQUATION
AND THE LOWEST MESON STATES

Now we return to the quantized version of the relativistic
wave equation (5). Unlike the nonrelativistic Schrödinger
equation, the energy E does not appear in it linearly, but is
solvable. The problem with it is related with the solution
behavior at large distances, beyond the turning point
r > r�. This is a textbook situation for the Schrödinger
equation, where p2 changes sign and therefore p becomes
imaginary. The correct solution decays exponentially in this
region, hence the quantization condition ψðr → ∞Þ ¼ 0.
The Klein-Gordon equation in this situation leads to a

change of sign for
ffiffiffiffiffi
p2

p
, leading to complex p, so at large r
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FIG. 6. The ground state wave function ψ0ðrÞ versus rðGeV−1Þ
(top) and its Fourier transform ψ0ðpÞ (points, botton) versus
momentum pðGeVÞ. The line is a Gaussian shown for comparison.
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the solutions are oscillating with increasing frequency.
Physically, this corresponds to the acceleration of produced
quanta in a constant electric field, which obviously has no
relation with the confining string problem we are after. This
is at the origin of the Klein-paradox following from pair
creation.
As an approximation, one may choose to consider the

wave function only inside the “normal region” r < r�, and
use as a quantization condition the wave function vanishing
at the turning point ψðr�Þ ¼ 0.
For the constituent quark mass and string tension,

the ground state wave function is shown in Fig. 6. The
energy in the Klein-Gordon equation, corresponding to a
half or reduced system, is 1.06 GeV, so the total mass is
M0 ¼ 2.12 GeV. Its Fourier transform (also calculated for
r < r�) is shown in the lower plot for ψ0ðpÞ. For com-
parison we show a Gaussian fit with hp2i1=2¼ 0.33 GeV.

APPENDIX B: BASIS FUNCTIONS

1. The transverse oscillator

As explained in the text, we use the set of two-
dimensional oscillator functions, with transverse momenta
as the argument. One may either use a double set of
standard one-dimensional oscillator functions in Cartesian
coordinates, with quantum numbers nx, ny, or polar
coordinates with quantum numbers n⊥; m. We use the
latter option. Although this is standard quantummechanics,
this set is less known. For completeness, we show how
these functions are explicitly constructed and present
several lowest functions explicitly for numerical use.
In Cartesian coordinates, the two-dimensional harmonic

oscillator Hamiltonian and angular momentum along the z
axis read

Ĥ ¼ 1

2μ
ðp̂2

x þ p̂2
yÞ þ

μω2

2
ðx̂2 þ ŷ2Þ;

L̂z ¼ x̂p̂y − ŷp̂x: ðB1Þ
Since those operators commute, we will seek a common
basis for both using the ladder construction. The operators
reducing one quantum of oscillations are now defined as

aR ≡ 1ffiffiffi
2

p ðax − iayÞ; aL ≡ 1ffiffiffi
2

p ðax þ iayÞ; ðB2Þ

in terms of the one-dimensional operators ax, ay. These
operators change the eigenvalue of Lz or m by ∓ 1 unit.
Their Hermitian conjugates change the eigenvalue by one
more energy quantum. Furthermore,

L̂z=ℏ ¼ aþRaR − aþLaL ðB3Þ

and these two terms can be readily associated with the
number of right- or left-rotating quanta. The energy is of
course their sum, plus one from zero point oscillation

E=ℏω ¼ NR þ NL þ 1: ðB4Þ

From now on wewill use the notation n⊥ ¼ NR þ NL;m ¼
NR − NL in reference to the two quantum numbers of the
states.
The explicit wave functions can be expressed in polar

coordinates ρ;ϕ in which the reduction operators have the
form

aR ¼ 1

2
e−iϕ

�
βρþ 1

β

∂

∂ρ
−

i
βρ

∂

∂ϕ

�
; ðB5Þ

aL ¼ 1

2
eiϕ

�
βρþ 1

β

∂

∂ρ
þ i
βρ

∂

∂ϕ

�
; ðB6Þ

where β ¼ ffiffiffiffiffiffiffiffiffiffiffi
μω=ℏ

p
. Their Hermitian conjugates are

obvious. Their actions on the ground state

χ00 ¼
βffiffiffi
π

p expð−β2ρ2=2Þ ðB7Þ

yield all excited states. For example, the state with maximal
orbital momentum has m right-rotating quanta m ¼ NR;
NL ¼ 0

χRNR ¼ βffiffiffiffiffiffiffiffiffiffiffi
πNR!

p eiNRϕðβρÞNRexpð−β2ρ2=2Þ ðB8Þ

and the minimal one m ¼ −NL follows using the
change ϕ → −ϕ; NR → NL.
The main advantage of this basis set is that the orbital

momentum L̂z commutes not only with H0 but with V as
well: so m remains a good quantum number before we
consider the spin-flip residual interactions. Here are the
next two m ¼ 0 functions (after χ00):

χRL ¼ βffiffiffi
π

p expð−β2ρ2=2Þðβ2ρ2 − 1Þ; ðB9Þ

χRRLL ¼ βffiffiffiffiffiffi
2π

p expð−β2ρ2=2Þð2 − 4β2ρ2 þ β4ρ4Þ: ðB10Þ

2. The longitudinal harmonics

Since the zeroth order Hamiltonian is quadratic in
z2 ∼ ∂=∂pz, and pz ≡ xP, the corresponding wave func-
tions in [0, 1] are standing waves

fnlðxÞ ∼ sinðπð2nl − 1ÞxÞ ðB11Þ

that vanish at x ¼ 0, 1 and symmetric in x ↔ x̄ ¼ 1 − x. In
addition, we also have the constant wave function
f0ðxÞ ¼ 1, with the quantum number nl ¼ 0. Some matrix
elements of this function are logarithmically divergent at
the endpoints, in which case pertinent but physical cutoffs
will be needed.
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