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This is the first of a sequence of papers that addresses the nonperturbative origin of the central and
spin-dependent forces between quarks. Its main thrust is a focus on meson spectroscopy in the center-of-
mass frame. We suggest a novel “dense instanton ensemble” model for the QCD vacuum, to explain the
interquark forces in mesons, from quarkonia to heavy-light and light-light ones. The sequels will show how
to export these interactions to the light front, and derive the corresponding Hamiltonians, mesonic, and
baryonic light front wave functions. The ultimate aim of the series is to bridge the gap between hadronic
spectroscopy and partonic observables.
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I. INTRODUCTION

The physics of hadrons is firmly based in quantum
chromodynamics, a theory over half a century old. One
might think that by now this subject has reached a solid
degree of maturity with most issues settled. Unfortunately
this is not yet the case. The field of nonperturbative QCD
consists of several subfields, which can be defined as
follows:
(1) hadronic spectroscopy (masses and wave functions

of mesons, baryons, pentaquarks, etc.);
(2) QCD vacuum structure (vacuum condensates,

Euclidean correlation functions, etc.); and
(3) light-front observables (distribution amplitudes, par-

ton distribution functions or PDFs, etc.).
They are relatively weakly connected, although in the past
decade considerable efforts to bridge them has taken place.
Our current set of papers, in addition to this one [1–4],

represent efforts in this direction. In this introductory
section we will give a brief description of the first two
aforementioned subfields. The third one will be discussed
in the papers to follow, starting from [1].

A. Hadronic structure

This field originated in the early 1960s, and experienced
a rapid expansion in the last decade, due to the discoveries

of multiquark hadrons in the heavy-light sector. We will not
discuss these “exotic hadrons” in this work but focus on the
underlying physics at the origin of the interquark forces.
Parametrizing and understanding them is a needed step,
setting the stage for derivation of the effective Hamiltonians
on the light front.
Early nonrelativistic quark models achieved resounding

success, in part through simple formulas for the masses and
magnetic moments of baryons made of light quarks. The
revolutionary discoveries in the 1970s of “quarkonia,” the
bound states made of heavy c, b quarks, revealed families
of narrow bound states well described by the celebrated
Cornell potential

VCornellðrÞ ¼ −
4αs
3

1

r
þ σTr: ð1Þ

Further theory effort developed effective nonrelativistic
theories, such as nonrelativistic QCD (NRQCD) and
perturbative nonrelativistic QCD (pNRQCD). They put
spectroscopy of quarkonia close to that of atoms and nuclei
in accuracy. A number of universal (flavor independent)
central and spin-dependent potentials were defined,
expressed via certain nonlocal correlators of vacuum gauge
fields. For a short but concise summary see e.g. [5].
The Cornell potential attributes the short-distance poten-

tial to perturbative one-gluon exchange, and its large
distance OðrÞ contribution to the tension of the confining
flux tube (QCD string). The issues to be discussed in this
paper are the nonperturbative origins of the interquark
interaction at intermediate distances r ∼ 0.2–0.5 fm. Those
are especially important for small size hadrons, such as
bottomonia or pions (see below).
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A static quark potential VCðrÞ is defined through a
vacuum average of a pair of parallel Wilson lines,

e−VCðrÞT ¼ hWðx⃗1ÞW†ðx⃗2Þi ð2Þ

defined by

Wðx⃗Þ ¼ Pexp

�
ig
Z
W
dx4Aa

μðx4; x⃗ÞT̂a

�
ð3Þ

where color generator T̂a ¼ ta=2, with ta Gell-Mann
matrices. Pexp is a path-ordered matrix product. The
parallel lines are running in the Euclidean time direction,
separated by the spatial distance r ¼ jx⃗1 − x⃗2j. The lines
are connected at times �T=2, but eventually the limit of
large time T → ∞ is assumed; making connectors unim-
portant. Historically, the derivation of this potential has
been at the forefront of lattice studies of the QCD vacuum.
In a way, it is similar in spirit to the Born-Oppenheimer
approximation in molecular physics, where the probe
quarks backreaction is ignored. For recent developments
and references, we refer to the work by Brambilla et al. [6].
Traditionally, the central potential was used as linear

VcðrÞ ¼ σTrwith σT being the tension of the confining flux
tube (known also as the QCD string). So, one might think
the issue of the central potential is very simple.
Unfortunately, it is far from being so, and there are several
impediments for usage of the flux tubes.
The first is that the simple linear term is expected to be

correct at large distances only, while at smaller r there are
other nonperturbative effects as well. The simplest correc-
tions are due to quantum vibrations of the flux tube. The
first of them is the famous “Lusher term,” attractive ∼1=r.
If the string is described by a Nambu-Goto geometrical
action, these vibrations are summed up in the so-called
Arvis form [7]

EðrÞ ¼ σTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

π

6

1

σTr2

s
: ð4Þ

This expression predicts that potential vanishes at
r ≈ 1=3 fm. Furthermore, the QCD string may have a
much more complicated action, so the Arvis potential
cannot be really trusted when the corrections are large.
Yet the two first expansion terms are universal, see more in
[8]. Lattice studies of these corrections (e.g. [9]) in the
setting with two static charges, or a flux tube wrapped
around the lattice, do confirm these two terms.
An important issue to be discussed is the derivation of

the relativistic corrections ∼ðv=cÞ2 ∼ ðΛQCD=mQÞ2 where
mQ is a heavy quark mass and ΛQCD stands for a “QCD
scale.” Such perturbative terms are well known in atomic
and nuclear physics, and changing from one-photon to
one-gluon exchange is simple. So it is clear how spin-spin,

spin-orbit, and tensor force VSS; VSL; VT arise from per-
turbative contributions, being all just certain derivatives of
the Coulomb potential.
The question is what are the nonperturbative contribu-

tions to these potentials. Those can be related to Wilson
lines decorated by two extra field strengths [10,11].
Schematically, they have the form

hWGμνðxÞWW†GμνðyÞW†i:

More details of the invariant spin potentials are given in
Appendix B.
In a nonrelativistic setting, spin-dependent forces origi-

nate from quark (gluo-)magnetic moments interacting with
vacuum fluctuations of (mostly) gluo-magnetic fields.
Unfortunately, the QCD flux tubes carry electric flux:
models of their structure and lattice studies specify mostly
distribution of the gluo-electric fields in them, not the gluo-
magnetic ones needed for the spin forces. So, one has to
think about other origins of those in the vacuum.
In principle, the pertinent correlation functions can be

calculated on the lattice, so one might think that all spin-
dependent forces are by now well documented and their
origins explained. Unfortunately, this is not the case as
quantitative lattice studies have only started recently. Below
we will investigate to what extent such correlators, evalu-
ated using certain models of vacuum fields, can reproduce
the observed spin-dependent potentials. We will find that in
heavy quarkonia instanton-induced forces can provide
contributions to perturbative ones, leading together to a
good description of splittings for a number of the low-lying
states.
However, for spin splittings in light quark states these

forces coming from Wilson lines are not sufficient. The
resolution comes from additional terms in the quark
propagator, related to their disappearance/creation in/from
the Dirac sea. In Euclidean space-time a semiclassic
description of gauge field vacuum is technically described
by parts of the propagators built out of fermionic zero
modes. In other words, these spin forces are induced by a ’t
Hooft effective Lagrangian for light quarks.
In Fig. 1 we show schematically how these vertices

contribute to the pion and rho meson correlation functions.
The instanton-induced four-quark effective interaction,
derived by 0t Hooft using the fermionic zero modes, has
the chiral-flavor structure ðūRuLÞðd̄RdLÞ. For the anti-
instantons, the left and right spinor components are
interchanged. The upper illustration in Fig. 1 shows that
for the πþ propagation, the alternating 0t Hooft instanton
and anti-instanton vertices can be directly iterated, in the
mean-field approximation. In the π0 channel, the 0t Hooft
vertex acts in the annihilation channels

ūRuL → d̄RdL → ūRuL…:
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These processes make the pion massless, and the η, δ heavy,
owing to the attraction and repulsion of the 0t Hooft
vertices in these channels; see [12].
The lower illustration in Fig. 1 shows how the 0t Hooft

vertices contribute to the ρþ vector/axial (correlation
functions). The vector currents have the same chirality
for the quark-antiquark pair, while the instanton zero modes
generate quark-antiquark vertices of opposite chirality.
Therefore one has to go to the next order in the instanton
density, with effective interactions that are second order in
the 0tHooft Lagrangian. More specifically, by nesting these
vertices and contracting inside the loop the right uR and ūR,
as well as the right dR with d̄R, we have

ðūRuLÞðd̄RdLÞ × ðūLuRÞðd̄LdRÞ → ðūLuLÞðd̄LdLÞ

with the left chirality left uncontracted. The resulting
operator is chirality preserving (conserved axial charge),
since an instanton-anti-instanton pair as per the illustration
has zero topological charge. We will return to the light
vector ρ mesons in Sec. IV E. The analytic form of the
effective second-order four-fermion operator will be given
in (87).

B. QCD vacuum and instanton liquid model

Nonperturbative physics of strong interactions started
before the development of QCD in the 1970s. Nambu and
Jona-Lasinio (NJL) [13], inspired by BCS theory of
superconductivity, have qualitatively explained that strong
enough attraction of quarks can break SUðNfÞA chiral
symmetry spontaneously and, among many other effects,
create near-massless pions. Chiral effective Lagrangians
and related theory have lead to one important input, a
nonzero quark condensate hq̄qi ≠ 0.
The discussion of the QCD vacuum structure started with

the QCD sum rules [14], where the short-distance

description of Euclidean point-to-point correlation func-
tions via the operator product expansion (OPE) was related
to their long-distance description in terms of the lightest
hadrons. The (Euclidean) correlators of QCD operators
were calculated in terms of the leading vacuum conden-
sates, hG2i; hq̄qi, etc. Yet it was soon realized that the
strongest nonperturbative effects (in the scalar and pseu-
doscalar channels) are not described by the “mean fied”
OPE predictions [15].
Extensive studies of point-to-point (Euclidean) correlation

functions in multiple mesonic channels, based on phenom-
enology [16], have indeed found striking differences
between correlators of operators with different quantum
numbers. While for vector currents ðq̄γμqÞ made of light
quarks q ¼ u, d, s only small deviations from free quark
propagation is observed; correlators of the scalar and
pseudoscalar operators (γμ → 1; γ5) show strong splittings
from them at surprisingly small distances. As shown in detail
in [16], these splittings found their explanation in terms of
topological fluctuations of gluonic fields, described semi-
classically by instantons [17].
The semiclassical model of the QCD vacuum structure

based on instantons [18] is known as the instanton liquid
model (ILM). It introduced an important scale parameter of
the nonperturbative vacuum—the typical instanton size

ρ ∼
1

3
fm: ð5Þ

Because it is rather small compared to the size of most
hadrons (except for the lowestϒ’s and the pion, see below),
where possible we will use a quasilocal approximation in
which it is going to zero.
In the ILM the vacuum fields are very inhomogeneous:

blobs of strong gauge fields (at the instanton centers)
surrounded by “empty” space-time, free from nonpertur-
bative fields. Since the mid-1990s such field distributions
were obtained from lattice configurations by means of
various “cooling” methods. A picture is better than many
words, so we reproduce in Fig. 2 one visualization of the
topological charge distribution from [19–21] which reveals
a number of instantons and anti-instantons.
Note that the topological clusters are also threaded by a

thin center vortices or Z3-fluxed strings, which span world-
sheet surfaces in four dimensions. While the center vortices
are important for enforcing confinement at long distances,
Fig. 2 shows that they are on average decoupled from the
inhomogeneous and strong topological fields. Moreover,
their field strength in the vicinity of these topological fields
is about σT ρ̄ ≈ 0.3 GeV, which is weaker than the typical
chromoelectric or chromomagnetic field in the instanton
center

ffiffiffiffi
E

p ¼ ffiffiffiffi
B

p
≈ 2.5=ρ̄ ≈ 1.5 GeV, but crucial for long-

distance color correlations.
Instantons are not just semiclassical solitons made

of glue. As discovered by ’t Hooft [23], they generate
four-dimensional fermionic zero modes which lead to a

FIG. 1. Schematic representation of the role of instanton-
induced ’t Hooft Lagrangian in the structure of the pion (top)
and rho meson (bottom). In the latter case effective four-fermion
operator corresponds to combined instanton and anti-instanton
vertices.
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multifermion effective Lagrangian. The instanton-induced
four-quark not only solves the famous “UAð1Þ problem”—
by making the η0 non-Goldstone and heavy—but it also
produces a strong attraction in the σ and π channels.
Including those in the framework of the ILM [24] one gets a
microscopic understanding of chiral symmetry breaking,
chiral perturbation theory, the pion properties etc. The ’t
Hooft instanton-induced effective Lagrangian is a QCD
substitute to the hypothetical Nambu-Jona-Lasinio [13]
four-quark interaction.
Another version of this theory look at quarks “hopping”

from one instanton to another. The resulting loops in the
quark determinant can be either short or long (infinite in
thermodynamic limit V4 → ∞). The latter component is
responsible for the localization of the Dirac eigenvalues
close to zero λ ∼ 1=V4.
Two parameters of the original ILM are the size and the

density of instantons

ρ ¼ 1

3
fm; nIþĪ ¼

1

R4
¼ 1 fm−4 ð6Þ

which in turn defines the so-called diluteness parameter

κ ≡ π2ρ4nIþĪ : ð7Þ

So, the ILM predicts it to be small κILM ∼Oð1=10Þ ≪ 1.
These parameters have withstood the scrutiny of time, and
describe rather well the chiral dynamics related to pions,
the Euclidean correlation functions in the few femtometers
range, and much more; see [12] for a review.
Another formulation of chiral symmetry breaking relates

it to the collectivization of the instanton zero modes, into
the so-called zero mode zone (ZMZ). Due to nonzero

matrix elements of the Dirac operator, near-zero Dirac
eigenvalues are residing within a strip of small width

jλj ∼ width ðZMZÞ ∼ ρ2

R3
∼ 20 MeV ð8Þ

as predicted by the original ILM with the parameters given
above (6). In [25] the meson and baryon spectroscopy
was studied, with all Dirac states inside a certain strip
of eigenvalues jλj < Δ eliminated. A strong restructuring
of the light hadronic spectra was indeed observed if
Δ > width ðZMZÞ. In particular, the Nambu-Goldstone
modes (pions) totally disappear from the spectra, as
expected. It would be interesting to extend the same analysis
to the heavy-light sectors, and to addressmoregenerallywhat
happens with all forms of spin-dependent forces.
Further statistical description of interacting instanton

ensembles was developed by mean field methods and
statistical simulations; for review see [12]. Some related
lattice studies are [26,27].

C. Topological landscape and IĪ molecules

The “landscape” refers to the minimal energy gauge field
configurations, as a function of two main variables. The
first is the topological Chern-Simons number

NCS ≡ ϵαβγ

16π2

Z
d3x

�
Aa
α∂βAa

γ þ
1

3
ϵabcAa

αAb
βA

c
γ

�
: ð9Þ

For the second wewill use the rms size of the configuration,
related to the field strength

ρrms ¼
R
r2G2d3rR
G2d3r

: ð10Þ

For fixed ρ, the landscape is shown in Fig. 3. It has been
defined in Ref. [28] and is given in a parametric form,

Uminðκ; ρÞ ¼ ð1 − κ2Þ2 3π
2

g2ρ
;

NCSðκÞ ¼
1

4
signðκÞð1 − jκjÞ2ð2þ jκjÞ ð11Þ

FIG. 2. Instantons (yellow) and anti-instantons (blue) configu-
rations in the “deep-cooled” Yang-Mills vacuum. After center
projection, they are threaded by center P-vortices [20,21]. They
constitute the primordial gluon epoxy (hard glue) at the origin of
the light hadron masses [22]. The center P-vortices are respon-
sible for confinement. See text.

FIG. 3. The topological landscape: minimal energy (times rms
size) versus Chern-Simons number NCS (left); thimble path
(center); tunneling at nonzero energy (right).
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with parameter κ. At κ ¼ �1 the minimal energy is zero,
while κ ¼ 0 corresponds to a maximum of the energy.
This point was called “the sphaleron” in electroweak
theory [29]. The set of configurations at arbitrary κ is
called the sphaleron path. Those consist of static 3d
magnetic field configurations, known also as the turning
points (by analogy to points in quantum mechanics where
the semiclassical momentum vanishes).
The (anti-)instanton is a tunneling path connecting the

bottoms of two subsequent valleys, at energy zero. Since
they have topological chargeQ ¼ �1, they result in change
of Chern-Simons number ΔNCS ¼ �1.
However instanton paths are not the only form of

topological fluctuations which may occur in this landscape.
Indeed, wewill discuss two additional sets of paths: (i) those
that travel the landscape along the sphaleron path (or
“streamline”); and (ii) those that travel the landscape at
fixed energy, including the tunneling, all of which are
illustrated in Fig. 3.
The first set is described by a constrained Yang-Mills

equation with a nonzero right hand side, or external current,
which drags them up (or down) the potential along the
gradient. In the mathematical literature this construction is
known as “Lefschetz thimbles,” a special path connecting
two extrema of a function following its gradient. In QCD-
related literature they are known as “streamline” configura-
tions described by overlapping instanton–anti-instanton
pairs or molecules.
The second set is described by a Yang-Mills equationwith

a zero right hand side, and thus is occurring at fixed energy.
The path’s history passes the turning points twice, with
Euclidean time solution in between them, known as tunnel-
ing at nonzero energy. In general, those should be comple-
mented by Minkowskian time solutions, before and after
turning points. The technical name for those is “zigzag path”
indicating a turn from real to imaginary time and then back
to real.
Both sets of solutions, with proper references, are detailed

in the appendices.What wewould like to emphasize here the
fact that they describe gauge field fluctuations different from
well-separated instantons. They are neither self-dual nor
possess (near) zeroDirac eigenvalues—and therefore they do
not contribute to chiral symmetry breaking and were not
included in the original ILM. And still, they do describe
certain fluctuations of vacuum gauge fields, and therefore
can contribute to certain observables, especially the Wilson
lines. Therefore, we will investigate their contributions to
central and spin-dependent forces between quarks. The
inclusion of molecules or zigzag paths is the novel element
of the novel vacuum model we develop here.
Close instanton–anti-instanton pairs are of course known,

and in particular they were observed on the lattice. They are
however not seen in Fig. 2 obtained by so-called “deep
cooling” of configurations, during which close instanton–
anti-instanton pairs are already annihilated. The application
of the “molecular component” of the vacuum was made

previously in connection to phase transitions in hot/dense
matter. Indeed (if quark masses are neglected), this compo-
nent is the only one which survives at temperatures T > Tc,
where chiral symmetry is restored. Accounting for “atomic”
and “molecular” components together started with [30]. The
molecular component was also shown to be important at high
baryonic densities, where it contributes to quark pairing and
color superconductivity [31]. More recently, we have
explored it in the context through nonperturbative contribu-
tions to the mesonic form factors [32] and matching ker-
nels [33].
The theory of sphaleron processes (sketched in the

middle of Fig. 3) is related to he issue of IĪ interaction.
Numerical calculation of the “streamline” along the action
gradient was first done for quantum-mechanical instantons
in [34], for gauge theory the streamline equation was
derived in [35], solved approximately by [36], and numeri-
cally by [37]. The surprising finding of the latter paper was
that “Yung ansatz” was rather accurate not only at large
distances R ≫ ρ between instanton and anti-instanton,
where it was derived, but in fact for any distance till zero.
Note that the last two papers used conformal inversion at
the center of the instanton, making I and Ī co-central.
Consider I and Ī of the same size ρ and same color

orientation, with 4-distance between their centers R serving
as the parameter of the set, with x1μ ¼ ð0; 0; 0; R=2Þ,
x2μ ¼ ð0; 0; 0;−R=2Þ. In the mathematical literature such
a set is known as Lefschets thimble; it connects one
extremum at large R, the independent I and Ī, with another,
the zero field at R ¼ 0. Note that at the locations y4 < 0 the
gauge fields are approximately anti-self-dual E⃗ ≈ −B⃗, and
at y4 > 0 they are approximately self-dual E⃗ ≈ B⃗. At y4 ¼
0 the electric field vanishes. As shown in [28], these 3d
magnetic objects obtained using Yung ansatz are very close
to the sphaleron path configurations obtained by con-
strained energy minimization.
The instanton–anti-instanton streamline therefore pro-

vides a semiclassical description of the sphaleron produc-
tion. In the context of electroweak theory it was first used in
[38,39] three decades ago. Recent interest in the production
of QCD sphalerons at the LHC and RHIC is discussed in
our recent paper [40].
Let us now move to lattice observables, to which the

molecular component of the instanton ensemble contrib-
utes, the simplest of which is the so-called gluon con-
densate hG2

μνi introduced in the context of the QCD sum
rules framework [14]. The accuracy of this number was
later questioned and it was revised to a larger value. Further
discrepancies were shown in lattice studies, that were
attempting to extract local (or nonlocal) observables with
powers of the gauge field strength Gμν.
Nowadays, when “cooling” by the gradient flow method

can be consistently related to the renormalization group
flow [41], one can put the appropriate scale dependence of
the molecular component on a firm basis. Skipping several
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decades, let us take as an example the recent work [42]
which studies the 3- and 4-point gluon field correlators and
relates their evolution to topology during cooling. Their
original motivation was to extract the gluon coupling αsðkÞ,
so the observable was chosen to be the ratio of the 3-point
to 2-point Green’s function leading to effective coupling

αMOMðkÞ ¼
k6

4π

hGð3Þðk2Þi2
hGð2Þðk2Þi3 : ð12Þ

In the “uncooled” quantum vacuum (with gluons) the
effective coupling starts running downward at large
k > 1 GeV, as expected by asymptotic freedom. However
at low k → 0, one finds another persisting positive power of
k, with a slope thatmatches exactly the one following froman
instanton ensemble [43]

αMOMðkÞ →
k4

18πnIþĪ
: ð13Þ

Furthermore, it was observed that with increasing cooling
time τ, the same power spreads to higher momenta,
k > 1 GeV. It was observed that cooling eliminates not
only perturbative gluons, but close instanton–anti-instanton
pairs as well.
The dependence of the mean instanton sizes and density

as a function of the (gradient flow) cooling time is shown in
Fig. 2, from [42]. Their main conclusion is that the size and
density of instantons in the vacuum, extrapolated to zero
cooling time (τ → 0)—are approximately

ρ →
1

3
fm; n → 10 fm−4: ð14Þ

Therefore one can see that total instanton density is
significantly larger than known before from deep cooling
(large τ) of 1=fm4, as in the original ILM. In fact, the
density may even be larger than that, because the definition
of instantons used in this paper exclude pairs (molecules)
which are too close. We will use these numbers, as
indicative, for our dense instanton liquid model below.

D. Content of this paper

In Sec. II we will argue that the upper limit on the total
instanton density can be deduced from known magnitude of
the central potentials, e.g. from quarkonium spectroscopy.
The main purpose of the present paper is to quantify

nonperturbative spin-dependent forces. We begin by
reviewing their phenomenology in Sec. III A and then
the theory in Sec. III D which is based on the standard
“Wilson lines plus two field strengths” correlators. The
contribution of an instanton to a pair of Wilson lines can be
readily calculated analytically. This approach has been first
used to calculate the static Q̄Q potential by the original
Princeton group [10]. Two decades later we generalized it
to high energy Q̄Q and dipole-dipole scatterings [44]. In

the scattering approach, the Wilson lines are first assumed
to cross at an angle θ12 in Euclidean geometry. The final
result is analytically transformed to a scattering amplitude
(near) the light front by the substitution of the angle θ12
between two Wilson lines, to the hyperbolic angle iy with
relative rapidity y between two colliding particles in the
ultrarelativistic limit. Unfortunately, neither of these works
were widely noticed or actually used by phenomenologists
(except for [45,46]).
An extensive study of the instanton-induced effects on

heavy quarkonia has been revived recently by Musakhanov
et al. (see e.g. [47]), who calculated the magnitude of the
effect for the central as well as the spin-spin, spin-orbit, and
tensor forces. Using the original ILM parameters of [48], it
was found that the central potential is of magnitude
∼150 MeV at large r, a relatively small correction to the
phenomenological potential. The spin-spin potential was
also calculated, and was found to be short ranged and of
order of about 30 MeV, also a small correction. The spin-
orbit and tensor forces are even smaller.
We will modify these results by using our new model for

the instanton ensemble, and compare the results to the
lattice results for spin-spin forces in Sec. III C, and to the
phenomenological vector-pseudoscalar mass splittings in
Sec. III D. We will see that in this setting the splittings in
heavy-heavy quarkonia are reproduced.
The next challenge using the novel model is to extend

the same analysis to heavy-light mesons such as B;D…,
and eventually light-light mesons. The goal is to find out
whether these lighter systems can also be described analo-
gously using variants of the “constituent quark” models.
Not all instanton-induced effects are included using

temporal Wilson loops with straight fermion lines. The

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

FIG. 4. Comparison of the central potentials VCðrÞ versus the
interquark distance r in GeV−1 (so 1 fm ≈ 5 GeV−1 on this plot).
The solid line is the one derived from the “dense” instanton
ensemble. The potential produced by the confining flux tube is
illustrated by two blue dashed lines; the upper linear line is the
classical string, and the lower is the Arvis potential (4) accounting
for quantum string vibrations [7].
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part of the quark propagation, related to the chiral anomaly,
instanton zero modes, and the ’t Hooft Lagrangian has to be
treated separately as we detail in Sec. IV. Only the inclusion
of this effective interaction can describe pions.
Yet to get the correct mass and wave function of the

vector (ρ) mesons, we also need the effective forces origi-
nating from IĪ molecules; see Sec. IV E. The discussion of
the heavy-light systems is in Sec. IV F. The conclusions
reached in this study are summarized in Sec. V.

II. CENTRAL POTENTIALS

A. Flux tubes versus the instantons

The static quark potential VCðrÞ is defined via the
vacuum average of the Wilson line

W ¼ P exp

�
ig
Z

dxμAa
μT̂

a

�
ð15Þ

over a closed rectangle r × T. In the limit when the time
extent is much larger than the spacial extent T ≫ r, one
can ignore the small integrals over the spatial direction
r ¼ jx⃗1 − x⃗2j, and keep only two over the Euclidean time
direction, defining the potential by

e−VCðrÞT ¼ hWðx⃗1ÞWþðx⃗2Þi: ð16Þ

For decades this Wilson’s definition has been used in lattice
studies.
We already noted that due to quantum vibrations of the

QCD string, the flux tube contribution to VCðrÞ is in fact

rather uncertain at the distance scale ∼1=3 fm. Yet pre-
cisely this distance range happens to be the most important
one for spin-dependent forces.
Another important point is that the quark spins, due to

the magnetic moments, interact with magnetic fields. The
spin-dependent potentials can be defined via the average of
two Wilson lines to which either two magnetic field
strengths or product of electric and magnetic fields are
added. The QCD flux tubes description, however, provides
a description of the electric fields only. Therefore, one
might think that they cannot contribute significantly to the
spin forces.
The instantons (anti-instantons) are self-dual (anti-

self-dual) vacuum fluctuations, in which the modulus of
the magnetic and electric fields are equal. Furthermore,
the Belavin-Polyakov-Schwartz-Tyupkin (BPST) instanton
fields have “hedgehog” structureAa

μ ∼ ηaμνxν, and since along
the straight line dxμ is the same vector, the colors are rotated
around the same direction. Therefore, the accumulated
rotation angle is given by an integral along the line
[10,11]. The instanton-induced central potential has the form

V instantonðrÞ ¼
4πnĪþIρ

3

Ncρ
I
�
r
ρ

�
: ð17Þ

Here nĪþI is the instanton plus anti-instanton four-dimen-
sional density, ρ is the typical instanton size, and the function
IðxÞ is defined by an integral over the location of the
instanton center yμ,

IðxÞ ¼
Z

∞

0

dyy2
Z

1

−1
dc

�
1 − cosðα1Þ cosðα2Þ −

yþ xcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2 þ 2xyc

p sinðα1Þ sinðα2Þ
�

ð18Þ

in which c is the cosine of the angle between r⃗ and y⃗,
going through the instanton center. The two color rotation
angles are

α1 ¼ π
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ ρ2
p ; α2 ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2 þ 2xyc

y2 þ x2 þ 2xycþ ρ2

s
:

ð19Þ
Note that they vanish for zero impact parameter of the line
y ¼ 0 and become π if their impact parameter gets large. In
the former case the integrand above vanishes as cosðαÞ ¼ 1,
in the latter cosðαÞ ¼ −1 and the integrand is maximal.
Using the instanton parameters of the ILM (6) one finds

the large distance value of about 150MeV [47]. We however
extend the original ILM including also a molecular IĪ
component. As a first approximation (to be improved later)
we will do so by just enhancing the density, keeping the

function with the same instanton size ρ ¼ 1=3 fm [as
justified by lattice data of Fig. 2(a) of [42]].
The molecular density nmol should be limited from

above by thephenomenological value of the central potential.
The instanton contribution to VCðrÞ is shown in Fig. 4 (solid
line) for

n≡ nmol þ nILM ¼ 7. fm−4: ð20Þ

Note that this density is about twice lower than indicated by a
triangle and extrapolation lines in Fig. 2(b) of [42]. The
instanton-induced central potential, shown in Fig. 4 by the
black solid curvewill play a central role for the determination
of the spin-dependent potentials aswell. For future reference,
record the corresponding numerical values below, with the
entries (rðGeV−1Þ, V instðGeVÞ),
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ð0; 0Þ; ð:333; 0.0114Þ; ð0.666; 0.043Þ; ð1.; 0.0912Þ; ð1.33; 0.147Þ; ð1.66; 0.207Þ; ð2.; 0.265Þ; ð2.33; 0.31Þ; ð2.6660.368Þ;
ð3.; 0.410Þ; ð3.33; 0.447Þ; ð3.66; 0.479Þ; ð4.; 0.506Þ; ð4.33; 0.529Þ; ð4.66; 0.548Þ; ð5.; 0.565Þ; ð5.33; 0.579Þ; ð5.66; 0.591Þ;
ð6.; 0.601Þ; ð6.33; 0.610Þ; ð6.66; 0.617Þ; ð7.; 0.623Þ; ð7.33; 0.628Þ; ð7.66; 0.632Þ; ð8.; 0.635Þ; ð8.33; 0.637Þ; ð8.66; 0.639Þ;
ð9.; 0.641Þ; ð9.33; 0.642Þ; ð9.66; 0.642Þ; ð10:; 0.642Þ: ð21Þ

The instanton-induced central potential is quite close to
the phenomenological linear potential, for not-too-large
distances r < 3 GeV−1. Assuming it is indeed the case, we
proceed to calculate the spin-dependent effects below, and
will show that the results are quite reasonable.
Note further that, with this choice, the diluteness

parameter κ ≈ 1. In other words, the ensemble is very
dense, with the mean interparticle distance as low as

Rdense ≡ n−1=4 ¼ 0.61 fm ≈ 2ρ:

(It may appear too dense; but remember that the IĪmolecules
are not in fact two independent instantons, and their fields
and action are partially cancelling each other.)
But before we do so, let us take a well-studied example

—the bottonium states—and check to what extent the
difference between the linear and instanton-induced poten-
tial at r > 1 fm is reflected in the mass spectra. We have

calculated the levels of bottomonium b̄b states using both
potentials. In Fig. 5 we show their nonrelativistic energies
for four radial excitations, with S-shell, orbital momentum
L ¼ 0. (The spin-dependent forces were not included—we
return to those in the next subsections—therefore the
calculation corresponds to the spin averaged combination,
of J ¼ 1 Upsilons and J ¼ 0 ηb states.) The difference
between these two potentials at large distances r >
5 GeV−1 ≈ 1 fm does indeed translates into different pre-
dictions for radially excited states.
At large n, the instanton-induced version does not keep

with the expected Regge behavior m2
n ∼ n. However, for

experimentally observed (and usually discussed) bottomo-
nia there is little practical difference between the potentials
used. This is displayed in Fig. 5. Using the spin-averaged
1S statesϒð1SÞ; ηb in input, we calculated masses of higher
states for both potentials. As one can see, for 2S and 3S
states the instanton-based potential gives masses closer to
experiment than linear potential. Only by 4S do these
deviations become of the same magnitude (but opposite
sign), and for still higher states the linear potential is
presumably better. The message from this plot is that,
unless one goes beyond the 4S shell—to very large
distances—both potentials predict masses with comparable
accuracy.

B. Contributions to VC of IĪ molecules

We start with IĪ pairs, with a fixed distance Rμ between
the centers. The contribution to the central potential
strongly depends on the orientation of this vector. When
it is lined in time direction, Rμ ¼ ð0; 0; 0; RÞ, as shown in

the left of Fig. 6, the electric field and potential E⃗ðxÞ; A4ðxÞ
are time-odd, with the opposite sign between lower and

1 2 3 4

–0.5

0.0

0.5

1.0

FIG. 5. Nonrelativisitc energiesMi − 2Mb for spin averaged b̄b
states as a function of the principal quantum number n. Five red
squares show the experimentally determined masses of
ϒ½1S�; ηb½1S�;ϒ½2S�;ϒ½3S�;ϒ½4S�, the blue circles correspond
to the standard Cornell potential, while the black closed circles
are based on the instanton-induced potential shown in Fig. 4.

B E

FIG. 6. Instanton–anti-instanton molecule oriented along the
time axes (left) and space axes (right).
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upper subvolumes, the instanton and anti-instanton.
Therefore, the color rotation angles in the Wilson lines
—integrated over time along the lines with arrows—get
contributions of opposite sign which cancel. We thus come
to the somewhat surprising conclusion that this configu-
ration would not contribute to the central potential.
This is not so if Rμ has other orientations, e.g. in one

of the space directions. Then the time-oriented Wilson
lines would go through either the self-dual or anti-self-
dual parts of the molecule. At small enough distance
between both of them r < ρ they are likely to go through
the same duality, and therefore the result would be
qualitatively the same as for a single instanton (discussed
in the preceding subsection). At large r ∼ 2ρ the opposite
would be dominant, with one of the angles in expression
(18) changing sign.

C. Fixed energy tunneling events
and their contribution to VC

Tunneling in vacuum in a topological landscape
proceeds at energy zero. But for quarks moving inside
hadrons, or during some hadronic reactions, a certain
amount of kinetic energy is available. Therefore tunneling
through topological barriers may occur not via a BPST
instanton but with modified tunneling solution, at some
nonzero energy. These paths were sketched in the right
side of Fig. 3: they include two Minkowskian sections of
the path and an Euclidean one. The analytic solutions for
a family of such paths, of Yang-Mills equations, can be
obtained.
Their Euclidean part interpolates between two “turning

point” magnetic configurations. As a result, the change in
Chern-Simons number is fractional. Depending on the
energy, one can obtain a single-parameter family of
solutions, which interpolate between the bottom of the
topological barrier (instanton) and its top (the sphaleron
configuration). When analytically continued to Minkowski
signature they describe implosion and explosion to and
from the magnetic turning points.
Step 1: In order to obtain such solutions, use the O(4)

static and symmetric ansatz for the SU(2) configuration in
regular gauge

Aa
MðyÞ ¼ 2η̄aMN

yN
y2

fðξÞ ð22Þ

with the conformal variable ξðyÞ ¼ 1
2
lnðy2=ρ2Þ. The passage

to singular gauge follows from the substitution fðξÞ →
fðξÞ − 1. The corresponding gauge invariant action is

SS ¼ −
1

4

Z
d4yFa

MNF
a
MN ð23Þ

or in terms of the conformal variable

SS ¼ 24π2
Z

dξ

�
f02ðξÞ
2

þ VðfðξÞÞ
�

ð24Þ

with the inverted double well potential

−VðfÞ ¼ −2f2ð1 − fÞ2

in Euclidean signature. TheO(4) profile fðξÞ extremizes (23)
and solves the Jacobi equation

d2f
dξ2

¼ 4ðf2 − fÞð2f − 1Þ: ð25Þ

The solution to (25) with a sphaleronlike turning point at
ξ ¼ 0 with zero momentum f0ðξ ¼ 0Þ ¼ 0 is

fkðξÞ ¼
1

2

�
1þ

�
2k2

1þ k2

�1
2

sn

�
ξ

�
2

1þ k2

�1
2

− KðkÞ; k
�

ð26Þ
with sn the Jacobi sine function. Equation (26) forms a k
family of ξ-periodic functions with the period

Tk ¼ 4KðkÞ
�
1þ k2

2

�1
2 ð27Þ

with KðkÞ the elliptic function.
The solution (26) carries energy (conjugate to ξ coor-

dinate) at the turning point

Ek ¼
24π2

ρ
Vðfkðξ ¼ 0ÞÞ ¼ E0

�
1 − k2

1þ k2

�
2

ð28Þ

with E0 ¼ 3π2=ρ. Equation (28) interpolates continuously
between the sphaleron and the instanton for 0 ≤ k ≤ 1.
At k ¼ 0 the energy E0 is maximal and corresponds to
sphaleron mass, the period is T0 ¼

ffiffiffi
2

p
π, and the profile

f0ðξÞ ¼ 1
2
is constant. At k ¼ 1 the instanton energy is

E1 ¼ 0, the period T1 ¼ ∞, and the profile is

f1ðξÞ ¼
1

2
þ 1

2
snðξ − Kð1Þ; 1Þ ¼ e2ðξ−Kð1ÞÞ

1þ e2ðξ−Kð1ÞÞ
: ð29Þ

Note that the argument shift with Kð1Þ in (29) amounts to a
rescaling of the instanton size in the conformal coordi-
nate ρ → ρeKð1Þ.
In general, the solution (26) carries Chern-Simons

number Nk as well, that is tied to the energy Ek through
the profile of the potential�

Ek

E0

�
¼ 16N2

kð1 − NkÞ2 ð30Þ

withNk¼1¼1 the instanton topological charge, andNk¼0 ¼ 1
2

the sphaleron Chern-Simons number. Only the solution with
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N1¼1 is self-dual and stable. All the other sphaleronlike
configurations withNk < 1 are unstable extrema. The flavor
analog of these configurations was recently used to construct
stable holographic tetraquark states [49,50].
Step 2 is applying the conformal (stereographic) map-

ping of the previous solutions that projects the O(4) turning
points on the sphere at ξ2 ¼ ρ2 onto the planar turning point
at tE ¼ 0,

ðxþ aÞμ ¼
2ρ2

ðyþ aÞ2 ðyþ aÞμ ð31Þ

with aμ ¼ ð0; 0; 0; ρÞ. As a result, the gauge fields depend
separately on the Euclidean coordinates tE ¼ x4 − Z4 and
r ¼ jx⃗ − Z⃗j (and parametrically on k)

Aa
4ðtE; r; kÞ ¼

�
8ρtExa

½ðtE þ ρÞ2 þ r2�½ðtE − ρÞ2 þ r2�
�
fkðξEÞ;

Aa
i ðtE; r; kÞ ¼

�
δaið−t2E − r2 þ ρ2Þ þ 2ρϵaijxj þ 2xixa

½ðtE þ ρÞ2 þ r2�½ðtE − ρÞ2 þ r2�
�
4ρfkðξEÞ; ð32Þ

with Zμ ¼ ðZ⃗; Z4Þ the collective position, and

ξE ¼ 1

2
ln

�ðtE þ ρÞ2 þ r2

ðtE − ρÞ2 þ r2

�
: ð33Þ

In Euclidean signature, A4 and the electric field are real
and vanishing at tE ¼ 0 as they should, while Ai and the
magnetic field are finite and real. Similar configurations
were originally discussed in [51,52]. The half-periodicity
(27) maps onto the tunneling time (r ¼ 0)

T k ¼ ρ

�
e
1
2
Tk − 1

e
1
2
Tk þ 1

�
¼ ρ tanh

�
1

4
Tk

�
≤ ρ: ð34Þ

The conformal transforms of the electric and magnetic
fields in (D1) are lengthy. The sphaleron configuration
with k ¼ 0 and f0 ¼ 1

2
has A4 ¼ 0 at the turning point

tE ¼ 0, with an O(3) symmetric and well-localized squared
magnetic field

B⃗2ð0; r; 0Þ ¼ 96ρ4

ðρ2 þ r2Þ4 : ð35Þ

When analytically continued to Minkowski signature
tE → −it, the gauge fields (32) describe a spherically
outgoing (incoming) luminal thin shell, as the exiting
sphaleron explodes (implodes) on its way downhill (uphill).
The luminal shell supports only lightlike fields which are
purely transverse, and fall off as 1=t at large times. It was
previously used to describe “sphaleron explosion” in [28].
The fixed energy topological solutions contribute to

Wilson lines, as a heavy quark travels from one vacuum
to another vacuum with one added (subtracted) topological
charge. In Minkowski signature, it corresponds to the
zigzag path shown in Fig. 7,

C ¼∪� −∞þ iT k; iT k� ∪ ½iT k; 0� ∪ ½0;þ∞½ ð36Þ

where on the purely imaginary ½iT k; 0� path, the heavy quark
is riding the tunneling process.A similar path choicewas also
advocated for scatteringprocesses through instantons in [53].
The chief contribution to the timelike Wilson line follows

from this path, since the gauge field on the paths with real
time support is luminal and transverse asymptotically,

Wðr; kÞ ¼ exp

�
i

�Z
iT k

−∞þiT k

dt
1

2
Aa
4ð−it; r; kÞτa þ

Z
0

iT k

dt
1

2
Aa
4ð−it; r; kÞτa þ

Z
∞

0

dt
1

2
Aa
4ð−it; r; kÞτa

��
: ð37Þ

At the sphaleron point withfk¼0 ¼ 1=2, we can check that
Wðr; k ¼ 0Þ ¼ 1 and no self-energy is generated in going
through a finite energy tunneling configuration. This result
follows by deforming the contour on the real axis, without

encountering poles for T k¼0 < ρ, and noting that A4 is
time-odd. Away from the sphaleron point, a fraction of the
instanton self-energy canbepicked through the emergenceof
a complex singularities solution to fkðξÞ ¼ ∞.

FIG. 7. Zigzag path for a temporal Wilson line describing a
heavy quark traveling from one vacuum to another with a
different topological charge, and riding a fixed energy tunneling
configuration with tunneling time T k.
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III. SPIN-DEPENDENT POTENTIALS

A. Phenomenology, from heavy to light quarks

To start, let us consider the first 1S-shell, with zero
orbital momentum L ¼ 0, to recall the magnitude of the
spin-spin forces. Starting from heavy quarkonia and pro-
ceeding to lighter systems, we focus on the following
selection of mass splittings (all in MeV)

MðϒÞ −MðηbÞ ¼ 61; ð38Þ

MðJ=ψÞ −MðηcÞ ¼ 116; Mðψ2SÞ −Mðη2Sc Þ ¼ 51;

MðB�Þ −MðBÞ ¼ 35.5; MðD�Þ −MðDÞ ¼ 137;

MðK�Þ −MðKÞ ¼ 398; MðρÞ −MðπÞ ¼ 636:

Note that these splittings grow for lighter quarks, eventually
getting comparable to the scale of the mesonic masses:
therefore in those cases spin forces cannot be treated as a
perturbation.
Naively, the flavor dependence of the spin-spin forces

should just follow from the product of the quark magnetic
moment, which is ∼1=mQ1

mQ2
, times some universal

magnetic fields in the QCD vacuum as defined in the
correlators of Appendix B. Yet the select splittings above
show that that it is not the case even for heavy quarks:
e.g. charm and bottom effects are different by a factor of
2, not 10 as the mass ratio would suggest. Yet universal
vacuum correlators/potentials do not imply universal
(mass-independent) matrix elements, since all of these
mesons have vastly different wave functions. Especially
interesting is the case of charmonium [second line in
(38)] in which one has both the splittings of 1S and 2S
levels. Not only the overall volume and ψðr ¼ 0Þ are
different, but also the wave function of the 2S state has a
node. The ratio of wave functions squared is shown in
Fig. 8, and one can see that it changes from 0.538 at
r ¼ 0 to zero at r ≈ 2 GeV−1. The ratio of the observed

splittings is 51=113 ≈ 0.45 is comfortably in between, but
much closer to the former number than to the latter one.
This observation alone tells us that VSS must be con-
centrated at very small distances.
Going further in phenomenology, we now proceed to the

1P shell, with L ¼ 1. For any flavor combination, there are
four states we will be interested in as above, starting
from heavy quarkonia to heavy-light and all the way to
mesons made of light quarks. For the light mesons we
select two channels, the strange-light K mesons and
charge I ¼ 1 sector of the light-light. (The I ¼ 0 sector
has complicated mixing between quark states and glue-
balls, which we prefer not to include.) The results are
listed in Table I. For example, the χb2 state is the b̄b
state with S ¼ 1, L ¼ 1, J ¼ 2, and the hb state has
S ¼ 0, L ¼ 1, J ¼ 1. All the names and masses are from
the 2020 PDG tables.
With L ¼ 1 all three spin-dependent terms come into

play, and with four masses one has three differences which
allow us to solve for each individual contribution. We
define the differences from the χ to h states as

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

FIG. 8. The ratio of wave functions squared ψ2SðrÞ2=ψ1SðrÞ2 as
a function of distance rðGeV−1Þ.
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FIG. 9. Perturbative (top) and instanton-induced (bottom) spin-
dependent potentials for charmonium. The black solid, blue
dashed, and red dash-dotted lines are for r2VSS; r2VSL; r2VT, in
GeV−1, versus r in GeV−1.
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ahðS⃗ · L⃗Þi þ bhS12i þ chðS⃗1 · S⃗2Þi:

We can solve for a, b, c by using the corresponding
quantum numbers for these states, namely

Mðχb2Þ −MðhbÞ ¼ a − ð2=5Þbþ c;

Mðχb1Þ −MðhbÞ ¼ −aþ 2bþ c;

Mðχb0Þ −MðhbÞ ¼ −2a − 4bþ c: ð39Þ
The results are listed in the last three columns of Table I.
The ensuing comments are as follows:
(1) The spin-orbit matrix element a for heavy quarks is

dominant.

(2) The spin-orbit gets smaller for light quarks. Why?
(3) The tensor force grows for heavy-light but then flips

sign for light quarks. Why?
(4) The spin-spin term grows and is dominant for light

quarks.
We now proceed to see whether these observations can

be explained by the theory we discuss below.

B. Wilson lines and the five potentials

Eichten and Feinberg [11] defined general spin-depen-
dent interactions of heavy quarks in terms of a priori five
potentials (see their definitions and further discussion in
Appendix A) which contribute as follows:

VSD ¼
�
SQ · LQ

2m2
Q

−
SQ̄ · LQ̄

2m2
Q̄

��
1

r
d
dr

ðVCðrÞ þ 2V1ðrÞÞ
�

þ
�
SQ̄ · LQ

mQmQ̄
−
SQ · LQ̄

mQ̄mQ̄

��
1

r
d
dr

V2ðrÞ
�
þ ð3SQ · r̂SQ̄ · r̂ − SQ · SQ̄Þ

3mQmQ̄
V3ðrÞ þ

1

3

SQ · SQ̄
mQmQ̄

V4ðrÞ: ð40Þ

S⃗Q;Q̄ and L⃗Q;Q̄ are the spin and orbital angular momenta
of the Q̄Q pair. VðrÞ is the central static potential, V1ðrÞ
and V2ðrÞ are obtained by inserting a chromoelectric or
chromomagnetic field on the temporal Wilson loop. The
spin-spin and tensor contributions V3;4ðrÞ follow from the
insertion of two chromomagnetic fields on the Wilson
loop. Equation (40) is exact to order 1=m2

Q. The last spin-
spin part is fixed as V4ðrÞ ¼ 2∇2V2ðrÞ [11]. Lorentz
invariance ties the central potential VCðrÞ to the spin-
orbit potentials V1;2ðrÞ through the so-called Gromes
relation [54]

VCðrÞ ¼ V2ðrÞ − V1ðrÞ: ð41Þ

The spin-dependent contributions emerging from the
string were discussed by Buchmuller [55] and others
[54,56]. Since the spin-spin interactions are short ranged,
only the spin-orbit contributions survive at large separa-
tion b⊥. This is manifest from (41) with V2ðrÞ → 0 and
VCðrÞ → −V1ðrÞ asymptotically, hence [54–56]

VSL;stringðb⊥Þ ¼ −
�
SQ · LQ

2m2
Q

−
SQ̄ · LQ̄

2m2
Q̄

�
σT
b⊥

→ −
σT

2m2
Qb⊥

S · L ð42Þ

with VCðrÞ ¼ σTr, S⃗ ¼ S⃗Q þ S⃗Q̄ and L⃗ ¼ L⃗Q ¼ −L⃗Q̄.
Since the electric flux tube is confined to the string,
the spin-orbit contribution is only due to Thomas
precession which is of opposite sign and half the spin-
orbit contribution from the cental potential. This can be
understood from (40) to (41) if we assume that V2ðrÞ is
short range, so that VCðrÞ ¼ −V1ðrÞ. This string-induced
spin-orbit effect is dubbed scalarlike in contrast to the
Coulomb-induced spin-orbit effect which is vectorlike.

C. Lattice studies

The static spin-spin potentials have been evaluated on
the lattice, using correlators of Wilson lines with explicit
field strengths. In particular, Koma and Koma [57] find that
while VSS is indeed rather short range, it does not fit to

TABLE I. The first column is the flavor composition. The next four columns refer to four states of the n ¼ 1; P-
shell with the quantum numbers explained in the text. The last three columns are matrix elements of spin-orbit,
tensor, and spin-spin terms, in MeV.

S ¼ 1, J ¼ 2 S ¼ 1, J ¼ 1 S ¼ 1, J ¼ 0 S ¼ 0, J ¼ 1 a b c

b̄b χb2ð9912Þ χb1ð9893Þ χb0ð9859Þ hbð9899Þ 13.7 3.3 0.5
c̄c χc2ð3556Þ χc1ð3511Þ χc0ð3415Þ hcð3525Þ 35 10 0.1
c̄q D�

2ð2461Þ D1ð2430Þ D�
0ð2300Þ D1ð2421Þ 34 16 12

s̄q K2ð1430Þ K1ð1403Þ K0ð1430Þ hsð1270Þ 6.7 −5.6 151
q̄q a2ð1317Þ a1ð1230Þ a0ð1450Þ b1ð1235Þ 0.5 −36 68
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the vector þ scalar exchange paradigm: a pseudoscalar
glueball exchange has been proposed. Skipping a decade,
Kawanai and Sasaki [58] accurately derived the central
and spin-spin potentials for the c̄c and c̄s families, and
used them in effective Schrödinger equations for a
spectroscopic analysis with nice agreement with the
spectroscopic data. In Fig. 12 we show (solid line) their
exponential fit (for c̄c),

Vc̄c
SS ≡ αe−βr; α ¼ 2.15 GeV; β ¼ 2.93 GeV: ð43Þ

Let us try to interpret this result: Naively, the coefficient
in the exponent should be the mass of the object
exchanged: for a gluon it should be about half of glueball
masses, of the order of 1 GeV or so. It is in fact larger by
a factor of 3. Why is it so large?
Fortunately, one can check it phenomenologically and

find that it does describe well the 2S to 1S splitting in
charmonium. Using this VSS parametrization from [58] we
calculate 1S triplet-singlet splitting to be 113.7 MeV
(experimental value is 113 MeV) and 2S to be
47.3 MeV (experimental value is 51 MeV). While not
perfect, this version of VSS clearly does the job, at least in
charmonium.

D. Spin-dependent forces from instantons

We decided first not to rely on general relations, some-
times leading to singular functions, and evaluated the
correlators of Wilson lines with fields directly.
The notations we use for the evaluation of the spin-

dependent potentials are shown in Fig. 10. The Wilson line
W1 is located at the origin of the spatial coordinates 0⃗, and
W2 at r⃗ ¼ ðr; 0; 0Þ. Two magnetic fields are inserted on
them, and act at times t1 and t2, respectively. The SU(2)

color matrix associated with the field Bm is τm, and the
overall color trace defines the following tensor:

Cmm̄ ¼ Tr½Wupper
1 ðWupper

2 Þþτm̄ðWlower
2 ÞþWlower

1 τm:

This construction is implicitly included in what we denote
by the “double average,” for example the spin-spin poten-
tial is related to the correlator of two magnetic fields
integrated over their time difference

V4ðrÞ ¼
Z

dt⟪Bmað0⃗; 0ÞBmaðr⃗; tÞ⟫: ð44Þ

The center of the instanton is put at time zero and spatial
location y⃗. On dimensional grounds, the instanton of size ρ
should contribute to those potentials ∼κ1=ρ3Fðr=ρÞ.
The field strength for an instanton (in regular gauge),

located at point y, is

Ga
μνðxÞ ¼ −4ηaμν

ρ2

ððx − yÞ2 þ ρ2Þ2 : ð45Þ

Four Wilson lines are written in their canonical form W ¼
cosðAÞ þ iðn⃗ · τ⃗Þ sinðAÞ with certain angles, which in
regular gauge are

Alower
1 ¼ −

�
π þ 2 arctan

�
t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ ρ2
p

��
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ρ2=y2
p ;

Alower
2 ¼ −

�
π þ 2 arctan

�
t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ y2 − 2ry cosðθÞ þ ρ2
p

��
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ρ2=ðr2 þ y2 − 2ry cosðθÞÞ
p : ð46Þ

0 1 2 3 4 5
0.1

0.5

1

5

10

FIG. 11. The dependence of the integrated correlator of two
magnetic fields (44) on the distance, in units of r=ρ, is shown by
points. The two thin lines are drawn for comparison, the upper is
∼1=r and the lower ∼1=r2.

FIG. 10. Notations of vectors in evaluation of Wilson lines with
two field strengths.

HADRONIC STRUCTURE …. I. INSTANTON EFFECTS … PHYS. REV. D 107, 034023 (2023)

034023-13



The “upper” lines are given by the same expressions with
opposite signs of arctan. If there are no field insertions,
these terms cancel as they should, and their sum becomes
the angles we already met in the expression for central
potentials.
In total, the correlator includes integration over

d3y; t1; t2. With the azimuthal angle ϕy being irrelevant,
it is a four-dimensional integral performed numerically.
The results are shown in Fig. 11. In this log plot one can see
that the resulting spin-spin force rapidly decreases with

distance. For comparison, we show two lines with 1=r and
1=r2, which approximately reproduces the behavior. One
should not however conclude that they give a correct
analytic asymptotic: in fact, expanding the integrand in
inverse powers of r leads to divergences of the remaining
integrals, indicating that the true asymptotic behavior
cannot be just powers.
In the instanton vacuum, with (anti-)self-dual fields E⃗a ¼

�B⃗a in Euclidean signature, all potentials in (40) can be
tied to the central potential VCðrÞ [10,11,47]

VCðrÞ þ 2V1ðrÞ → 0; V2ðrÞ →
1

2
VCðrÞ; V3ðrÞ → −

�
1

r
V 0
C − V 00

C

�
ð47Þ

and the simplified spin-orbit contribution

�
1

2m2
Q

1

r
d
dr

VCðrÞ
�
ðSQ þ SQ̄Þ · LQ ≡

�
1

2m2
Q

1

r
d
dr

VCðrÞ
�
S · L: ð48Þ

Schematically, the central electric interaction hEa
i ðxÞ×

½x; 0�abEb
i ð0Þi is amenable to the spin-orbit interaction

hEa
i ðxÞ½x; 0�abBb

i ð0Þi and also the spin-spin and tensor
interaction hBa

i ðxÞ½x; 0�abBb
i ð0Þi.

In Fig. 12 we compare the perturbative (dashed-dotted
black line) and nonperturbative (dashed blue line) spin-
spin potentials with the lattice result (solid black line).
Recall that the Laplacian of the Coulomb force is a delta
function, well known in atomic and positronium physics.
However, one should use Coulomb potential 1=r in some

regulated form, for several reasons. First, when the
potential gets as deep as (minus) mass, the nonrelativistic
approximation itself should break down, so the spread
cannot be smaller than Oð1=mQÞ. Second, lattice studies
include nonlocality in the form of the lattice spacing a.
Third, a Gaussian-smeared delta function is actually used
in many spectroscopic calculations, see e.g. [59]. For the
perturbative spin-spin interaction, we use a simpler
version, as the Laplacian of a Coulomb contribution
regulated by a fixed parameter δ ¼ 0.6 GeV−1

VC
SSðrÞ ¼ −

A
3mQmQ̄

∇⃗2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ δ2

p : ð49Þ

For the nonperturbative spin-spin part, we use the
instanton contribution, which is given by the Laplacian
acting on the central potential

V inst
SS ðrÞ ¼

1

3mQmQ̄
∇⃗2V inst

C ðrÞ: ð50Þ

All the potentials shown are multiplied by r2, as they
appear in the volume integrals. So, if the wave functions are
roughly constant at this small scale, the area under the
curves in Fig. 12 gives an estimate of the relative con-
tributions. So, one finds that the perturbative and non-
perturbative parts contribute comparably to the total
spin-spin potential, in sum roughly reproducing the
lattice-based result. This observation is among the main
findings of this work.
Of course, the actual magnitude of the spin splittings

depends on the quark masses involved, explicitly via 1=m2
Q

0 1 2 3 4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

FIG. 12. Spin-spin potential for c̄c system multiplied by
distance squared r2VSSðGeV−1Þ versus rðGeVÞ−1. The solid line
is the exponential fit (43) to lattice measurements [58]. The dash-
dotted line shows the regulated Laplacian of the Coulomb
potential (49) with δ ¼ 0.6 GeV−1. The blue dashed line shows
the instanton contribution. Note that the area under the last two
curves is roughly equal to that under the solid one, the lattice fit.
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factors and implicitly, via the wave functions. Lighter
quarks lead generally to hadrons of larger size, or smaller
wave functions at small distances.
The matrix elements of all three potentials shown in

Fig. 12 were evaluated using wave functions from the
Cornell potential irrespective of flavor. The results for the
spin-spin contributions are in Table II. The results show
that perturbative and nonperturbative contributions for
heavy quarkonia do reproduce the splittings if taken
together. Already for heavy-light mesons one can see that
some additional effect seems to be missing; it will indeed
as will be explained below. Furthermore, for the mesons
containing only light quarks, both contributions together
definitely fail to describe large splittings seen experi-
mentally. Clearly some other effects are in play here, to
be discussed below.
We continue our phenomenological description of the

spin-dependent interactions, by considering the next four
states in the 1P shell, with the onset of the spin-orbit and
tensor potentials The empirical information to be used on
several mesonic families is listed in Table III. The
theoretical estimates follow from 1P wave functions
derived with standard Cornell potential. For both com-
ponents of the central potential—perturbative and instan-
ton-induced—we calculated the matrix elements of the
three spin-dependent potentials using the formulas given
above, and then calculated their matrix elements in the
1P shell.

One observation from this table is that the “theory” (the
sum of the last two rows) and the lattice-induced one (the
second row) are basically in agreement. The other is that
their disagreement with experiment (the upper row) is
dramatically growing for light quark systems. This implies
that for light quarks something important is missed in the
description as developed so far.

E. Contributions of IĪ molecules to spin forces

Like in Sec. II B, let us start with the IĪ molecules
oriented in the time direction, for which E⃗ ∼G4m and A4

are time-odd. Therefore, as we noted before, there is no
contribution to the central potential.
Yet the spin-spin and tensor forces are not at all zero, as

the main contributors to the correlator come from the
magnetic fields B⃗, which have the same sign in the I and Ī
parts of the molecule.
A detailed description of the IĪ configuration can be

achieved by the Yung ansatz, which is quite accurate. The
corresponding expressions for field strengths were
obtained in Mathematica, which are way too complicated
to be given here. Yet the field strengths are approximately
additive, and this approximation will be used in what
follows.
Let us start with the correlator of two magnetic fields,

measured at integrated times t1 and t2 on two temporal lines
separated by a spatial distance r,

TABLE II. “Hyperfine” splittings of certain L ¼ 0mesons with J ¼ 1 and J ¼ 0. The first row of numbers shows
the experimental values (MeV) (rounded to 1 MeV). The second row gives the matrix elements of the lattice-based
spin-spin potential (43), the next two rows are the (regulated) Coulomb and instanton-induced spin-spin
contributions.

Flavors Mϒ −Mηb MJ=ψ −Mηc MðD�Þ −MðDÞ MðK�Þ −MðKÞ MðρÞ −MðπÞ
Experiment 61 116 137 398 636

hV lat
SS=3mQmQ̄i 46 108 98 170

h∇⃗2VC=3mQmQ̄i 28 58 48 82

h∇⃗2V inst=3mQmQ̄i 7 30 48 90

TABLE III. Groups of three matrix elements of spin-spin, spin-orbit, and tensor potentials VSS; VSL; VT ,
respectively. The first one in each group is the observed “exp” value from Table I; the second and the third values are
the perturbative (pert) and instanton-induced contributions, corresponding to the Coulomb and instanton-induced
(inst) parts of the central potential.

SS “exp” SS pert SS inst SL “exp” SL pert SL inst T “exp” T pert T inst

c̄c 0.1 0.56 1.9 35 3.2 3.8 10 5.8 −5.7
s̄q 151 5 29 6.7 31 38 −5.6 58 −46
q̄q 68 8 48 0.5 52 64 −36 96 −78
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Z
dthBmað0; 0⃗ÞBmaðt; 0⃗Þi ¼

Z
dt1dt2d3yð48nmolρ

4Þ

×

�
1

ððt1 − R=2Þ2 þ ρ2þ y2Þ2 þ
1

ððt1 þ R=2Þ2 þ ρ2þ y2Þ2
�

×

�
1

ððt2 − R=2Þ2 þ ρ2þ y22Þ2
þ 1

ððt2 þ R=2Þ2 þ ρ2þ y22Þ2
�
: ð51Þ

Here y2 and y22 ¼ y2 þ r2 − 2ry cosðθryÞ are the
squared 3d distances to the first and second Wilson
lines. We assumed additivity of the magnetic fields
from I and Ī, and ignored the color rotation angles on
the Wilson lines (which vanish at the instanton center, as
we already know).
At zero distance between the line r ¼ 0, all integrations

can be done analytically, with the result

Z
dthBma

1 ð0; 0⃗ÞBma
2 ðt; 0⃗Þir¼0 ¼ 12π4ρnmol: ð52Þ

For qualitative orientation, one can compare this expression
to (the extrapolation of) the lattice spin-spin potential (43)
to r ¼ 0; they are equal if nmol ≈ 7 fm−4.
Note that in this approximation there is no dependence

on the (time) separation R of I and Ī centers. For nonzero r
the volume integral over y; cosðθryÞ is done numerically;
see the results in Fig. 13.
Now let us calculate the same correlator, but for a

molecule rotated so that its vector Rμ joining the centers,
lines in the spatial direction, say the same as the vector r⃗
between the Wilson lines. The electric and certain magnetic
fields exchange places and the expression changes into

Z
dthBamð0; 0⃗ÞB⃗amðt; 0⃗Þi ¼

Z
dt1dt2dy12πy⊥dy⊥ð48nmolρ

4Þ

×

�
1

ðt21 þ ρ2 þ ðy1 − R=2Þ2 þ y2⊥Þ2
−

1

ðt21 þ ðy1 þ R=2Þ2 þ ρ2 þ y2⊥Þ2
�

×

�
1

ðt22 þ ρ2 þ ðy1 − R=2þ rÞ2 þ y2⊥Þ2
−

1

ðt22 þ ðy1 þ R=2þ rÞ2 þ ρ2 þ y2⊥Þ2
�
: ð53Þ

In Fig. 13 we compare the correlators for two molecule
orientations with averaging factors, ð1=4Þ (51) and ð3=4Þ
(53) by upper and lower points, as well as their sum (the
line). So, while the two contributions have different
dependence on r, the orientation-average VSSðrÞ decreases
monotonously, and has the effective width (at half maxi-
mum) close to the average instanton size ρ. Note that this
range is shorter than VSSðrÞ from the instantons alone
(calculated from the Laplacian of the contribution to the
central potential in the previous subsection), and it does not
have a negative part. It is therefore closer in shape to what
was found on the lattice.
The spin-orbit force is qualitatively different from spin-

spin ones, being related to a correlator
R
dtE⃗ B⃗. For a time-

oriented molecule Rμ ¼ ð0; 0; 0; RÞ E⃗ðtÞ is time-odd and

B⃗ðtÞ is time-even, so for this molecule orientation this
correlator vanishes. The situation is different for a space-
oriented molecule, say along x1. Now G1m;m ¼ 2, 3, 4
fields are odd in x1 inversion, but everything is even along
the time axes. The expression for the correlator can easily
be constructed and calculated in a way similar to what was
done above for VSSðrÞ.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
–100

0

100

200

300

400

FIG. 13. The normalized correlators ð1=4Þ (51) (upper points)
and ð3=4Þ (53) for R ¼ ρ (lower points) in units of nmolρ, versus
the distance between the Wilson lines r=ρ. The solid line shows
their sum.
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We conclude that the “molecule-induced” spin forces
are quite similar to the instanton induced ones (apart
from, of course, normalization to quite different den-
sities) at small distances, but are significantly reduced
at r > 2ρ due to the partial cancellations by different
orientations.
In the previous section we have seen that, in the

approximation of molecules represented as two indepen-
dent pseudoparticles, the nonperturbative VSSðrÞ have about
the right magnitude, but somewhat too large range. We now
see that a better description of the field structure has the
potential to remedy this problem.

F. Contributions of the fixed energy tunneling
configurations to spin forces

The finite energy tunneling configurations contribute to
the spin forces, through close Wilson loops dressed by E, B
fields. However, since these configurations cease to be self-
dual for 0 ≤ k < 1, the induced spin potentials are in general
independent. Moreover, these configurations carry t-odd
electric fields, and are purely magnetic at the exit points
(tE ¼ 0). They may only contribute to the spin-spin and
tensor potentials.
The explicit expression of the magnetic field in

Euclidean time is

BmaðtE; x⃗Þ ¼ δma

�
−
16ρ2

D
f þ 8ρ2r2

D2
fF þ 32ρ3tEr2

D2
f0 þ 32r2ρ2

D2
f2F̄

�

þ xmxa
�
−
8ρ2

D2
fF −

32tEρ3

D2
f0 þ 32ρ2

D2
f2F

�

þ ϵmaixi
�
16ρ

D
f þ 4ρ

D2
fFF̄ þ 16tEρ2

D2
f0F̄ −

32ρ3

D2
ð2r2 þ F̄Þf2

�
ð54Þ

with f0 ¼ ∂ξfkðξÞ,
D ¼ ðt2E þ r2 þ ρ2Þ2 − 4t2Eρ

2 ð55Þ
and

F ¼ t2E þ r2 þ ρ2; F̄ ¼ −t2E − r2 þ ρ2: ð56Þ
The magnetic field in Minkowski signature follows from the substitution tE → −it.
The induced spin-spin interaction follows from the complexified path in the t plane shown in Fig. 7. An estimate of the

magnitude of the spin-spin interaction, follows from zero separation between a path C and C̄
Z
C
dt

Z
C̄
dt̄hBmað−it; 0⃗ÞBmað−it̄; 0⃗Þi ¼ ½3 28ρ4nk�

Z
C
dt

Z
C̄
dt̄

Z
d4Z

�
ff̄
DD̄

�
ð57Þ

with now

D → ðð−it − Z4Þ2 þ Z⃗2 þ ρ2Þ2 − 4ð−it − Z4Þ2ρ2;
D̄ → ðð−it̄ − Z4Þ2 þ Z⃗2 þ ρ2Þ2 − 4ð−it̄ − Z4Þ2ρ2; ð58Þ

and F ¼ fkðξÞ and f̄ ¼ fkðξ̄Þ with

ξ →
1

2
ln

�ð−it − Z4 þ ρÞ2 þ Z⃗2

ð−it − Z4 − ρÞ2 þ Z⃗2

�
;

ξ̄ →
1

2
ln

�ð−it̄ − Z4 þ ρÞ2 þ Z⃗2

ð−it̄ − Z4 − ρÞ2 þ Z⃗2

�
; ð59Þ

with the Euclidean-Minkowski time assignments in (36).
At the sphaleron point fk¼0 ¼ 1=2, and (57) reduces toZ

C
dt

Z
C̄
dt̄hBmað−it; 0⃗ÞBmað−it̄; 0⃗Þi → ½192ρ4nk¼0�

Z
C
dt

Z
C̄
dt̄

Z
d4Z

×
1

ððð−it − Z4Þ2 þ Z⃗2 þ ρ2Þ2 − 4ð−it − Z4Þ2ρ2Þððð−it̄ − Z4Þ2 þ Z⃗2 þ ρ2Þ2 − 4ð−it̄ − Z4Þ2ρ2Þ
: ð60Þ
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Overall time translational invariance allows us to set
Z4 ¼ 0 in the integrand, with the final result

R
C dt

R
C̄ dt̄hBmaðt; 0⃗ÞBmaðt̄; 0⃗ÞiR

dZ4

¼ π4

4ρ3
: ð61Þ

This result follows by deforming the complexified path
to the real axis, without encountering poles for T k¼0 < ρ.
The spin-spin interaction (61), stemming from the finite
energy tunneling configurations, is comparable to the spin-
spin interaction (52) from the thimbles. At the sphaleron
point and for zero separation, they are comparable when

nk¼0

nmol
¼ 12π4

192π4=4
¼ 1

4
: ð62Þ

IV. INTERQUARK FORCES INDUCED BY
INSTANTON ZERO MODES (’T HOOFT

EFFECTIVE LAGRANGIAN)

A. Pseudoscalar mesons which are and are not the
Nambu-Goldstone modes

It has been known since the 1970s that in the chiral limit
light-quark pseudoscalar mesons consist of octet π, K, η
Nambu-Goldstone modes and a singlet η0 which does not
belong to that set, and is instead very heavy. It happens
because the ’t Hooft effective Lagrangian violates UAð1Þ
and quite effectively generates flavor-changing annihilation
processes

ūu ↔ d̄d ↔ s̄s:

When a strange quark mass is added, one finds η − η0
mixing which describes well the phenomenology of their
decays. It sharply contrasts with the vector counterparts,
ρ;ω;ϕ mesons, for which the mixing is very small.
To avoid these annihilation processes, one can discuss

“flavored” channels, like πþ ¼ d̄u, in which case the ’t
Hooft effective Lagrangian acts as a force between the
quark and antiquark. Yet it is still different from the
conventional forces we so far discussed, in that it exists
for quarks of different flavors only. In Fig. 1 we illustrate
how the ’t Hooft induced vertex operates in the pion and
rho charged meson channels.
Before we turn to specifics, let us comment on some

lattice implementations of theories with different quarks.
The simplest case is a single quark flavor theory, Nf ¼ 1.
In it the ’t Hooft action is a 2-fermion operator: it gives the
quark an effective mass but does not generate annihilations
or interactions as we noted. The only pseudoscalar mesons
is the analog of η0; no π, K, η modes exist.
In lattice implementations nowadays one uses gauge

ensemble for physical QCD, but still uses certain diagram
and mass selections aiming to study certain unphysical
particles. For example, in [60], an artificial particle called ηs

made of s̄s was introduced, with no mixing to other flavors.
Its properties are deduced from the connected diagram,
without the disconnected one in which the flavor is
changed. One may explain its absence by introducing an
extra valence quark species s0, and view source/sink
operators as flavor-nondiagonal s̄s0. Our comment is that
such setting, while eliminating the annihilations, still keeps
the ’t Hooft effective Lagrangian producing a force
between the quark and antiquark, as they are not of the
same flavor. Apart from the mass values, this channel is no
different from say πþ ¼ d̄u we consider.
In our first take on spin-spin forces in (38) we already

observed anomalously large splitting between the ρ; S ¼ 1
and π; S ¼ 0 states in the lowest light quark shell, and have
seen that the magnitude of VSSðrÞ discussed so far, is not
sufficient to explain it. [In particular, adding VSSðrÞ as
detailed above to the basic quark model, with the Cornell
potential and a light quark constituent mass of 0.35 GeV,
reduces the ground state 1S mass substantially, from
1.4 GeV to about 0.85 GeV. Yet it is still far from the
observed pion mass of 0.138 GeV and from zero, which it
should be in the chiral limit.]
Of course, a correct pion mass can only be explained in

an approach, consistently explaining chiral symmetry
breaking, as well as other parameters of chiral perturbation
theory. Two famous models—NJL and ILM—are well-
known examples of that.
Before we focus on the theory, let us return for a brief

moment to the phenomenological constituent quark model,
to see what kind of interaction one needs to add in order to
obtain the experimentally observed pions. Let us assume
that there is an additional interaction, that operates only
between quarks of different flavors, on top of the flavor-
blind forces so far discussed. Note that the usual discussion
of π − η0 splitting is based on “annihilation channels” (like
ūu ↔ d̄d) as we continue to consider only charged mesons,
like d̄u.
The ’t Hooft Lagrangian is usually written as a local

operator a la NJL one, corresponding to a potential of the
type GHooftδ

3ðr⃗Þ potential. This form assumes that the
instanton size ρ is much smaller than the hadronic sizes, as
it appears in the standard LSZ “amputation” of external
propagator lines. Unfortunately, in the Euclidean setting of
the instanton calculus, taking these lines on-shell amounts
to the limit pμ → 0 for all components. And yet, it is clear
that the process is nonlocal, and that the scale of its size is ρ.
Thus in model applications one includes form factors,
usually the Fourier transform of the zero modes. We will
use another “regulated delta function” form described in
Appendix C.
Note: When the nonlocality induced by the parameter ρ

is small compared to the hadron size, it can be well
approximated by a delta function. However, this is not
true for pions. This can be seen from the pion wave
function (with or without the effective ’t Hooft term): its
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r2ψ2
πðrÞ peaks at r ≈ ρ in this case. Therefore, in the pion

case there remains certain dependence on a choice of the
nonlocal approximation.
Finally, the coupling strength for the ’t Hooft effective

interaction to add to the discussed potentials above needed
to reproduce the physical pion mass is found to be

GHooft ≈ 17 GeV−2: ð63Þ

B. Chiral anomaly and instanton zero modes

It was well understood already in the 1970s that
instantons provide an example of explicit violation of
the UAð1Þ chiral symmetry. The divergence of the corre-
sponding axial current is proportional to the topological
charge density GG̃, which in turn is a divergence of the
topological Chern-Simons current. Thus the axial charge of
fermions, or the number of right minus left-polarized
quarks, is intimately related to gauge topology.
How this happens in the instanton case was explained

by ’t Hooft [23], who found the existence of a four-
dimensional bound state, or the fermion zero mode of the
Dirac operator in the instanton background. Formally it
amounts to an additional term in the four-dimensional
quark propagator

Sðx; yÞ ¼
X
λ

ψλðxÞψλðyÞþ
λþ im

ð64Þ

with the zero mode λ ¼ 0. The physical meaning is that the
negative energy Dirac sea creates a new state, into which
the original quark is pushed into. At the same time, a quark

of opposite chirality emerges from the Dirac sea as a
physical (positive energy) state.
This process can be described by a “chirality flip” of a

quark. However, the phenomenon is not reduced just to
this: all light quark flavors must experience this together
and flip their chiralities simultaneously. Because of the
Pauli principle, only the zero modes with different flavors
can undergo simultaneous tunneling, the ’t Hooft effective
Lagrangian is therefore a six-quark operator, with ūud̄ds̄s
quarks. As emphasized by ’t Hooft, it is repulsive in the η0
channel, and solves the famousUAð1Þ problem. But the fact
that it is attractive in the scalar σ and pseudoscalar π, K, η
octet channels leads to even more important consequences,
breaking the SUðNfÞ chiral symmetry spontaneously [24].
The account for these effects led to the statistical studies of
instanton ensembles in the 1990s, for a review see [12].
Many more studies based on these observations were
carried in the last two decades as well; let us just mention
our recent study of the so-called instanton-sphaleron
production process, which can be studied experimentally
in colliders [40].
For clarity, let us now discuss some technical issues

already discussed in the literature. The first is the explicit
analytic form of the ’t Hooft operator, which, by Fierz
transformations, can take several different forms. A
straightforward reduction of the product of six unitary
color rotation matrices, averaged over the SUð3Þ group,
leads to color structures containing fabcλaλbλc and
dabcλaλbλc terms, which is difficult to use in practice.
However they (and in fact all color matrices) can be
eliminated using specific properties of zero modes produc-
ing the following result [61]:

VLþR
qqq ¼ GHooft

NcðN2
c − 1Þ

2
64
�

2Nc þ 1

2ðNc þ 2Þ
�������

ūRuL ūRdL ūRsL
d̄RuL d̄RdL d̄RsL
s̄RuL s̄RdL s̄RsL

������

−
1

2ðNc þ 1Þ
X3
a¼1

0
B@
������
ūRσauL ūRσadL ūRsL
d̄RσauL d̄RσadL d̄RsL
s̄RuL s̄RdL s̄RsL

������þ
������
ūRσauL ūRdL ūRσasL
d̄RuL d̄RdL d̄RsL
s̄RσauL s̄RdL s̄RσasL

������þ
������
ūRuL ūRdL ūRsL
d̄RuL d̄RσadL d̄RσasL
s̄RuL s̄RσadL s̄RσasL

������

1
CA
3
75

þ ðL ↔ RÞ ð65Þ

with the strength of the six-quark operator

GHooft ¼
nIþĪ

2
ð4π2ρ3Þ3

�
1

m�
uρ

��
1

m�
dρ

��
1

m�
sρ

�
ð66Þ

with the effective quark masses m�
q to be explained a bit

later.
In (65) all quarks and antiquarks have opposite chiralities.

In a completely massless theory we cannot have “loop”

quarks by a propagator conserving chirality. However, the
spontaneousbreakingof chiral symmetry in theQCDvacuum
leads to nonzero quark condensates hq̄fqfi ≠ 0. This fact
leads to “dimensional reduction” of the six-quark operator to
four- (and even two-) quark expressions, by “looping” some
quark-antiquark pairs into the corresponding condensates.
For example, strange quark loops generate an effective ud
interaction. It alsohas a structure of two-by-twodeterminants,
which (with some abuse of notations) we write as
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VLþR
qq ¼ κ2A2NðdetðUDÞ þ B2N detðUμνDμνÞÞ þ ðL ↔ RÞ

ð67Þ

with

A2N ¼ ð2Nc − 1Þ
2NcðN2

c − 1Þ ; B2N ¼ 1

4ð2Nc − 1Þ : ð68Þ

The coefficient

κ2 ¼ 3!GHoofths̄RsLi ¼ 3GHoofths̄si < 0

is negative and thus attractive. In the Weyl basis, σμν →
iηaμνσawith the 0tHooft symbol satisfying ηaμνηbμν ¼ 4δab, and
(67) can be simplified further

VLþR
qq ¼ κ2A2NðdetðUDÞ − 4B2N detðUaDaÞÞ þ ðL ↔ RÞ:

ð69Þ

Another possible “looping” of quarks is possible if we
account for nonzero quark masses, in particular the largest
strange quark mass ms. As a result, the effective ud
interaction (containing the ms term) is stronger than
us; ds interactions, as they only contain negligibly small
light quark masses. As noticed by one of us and Rosner
[62], the ratio of the coefficients for light-light and light-
strange four-fermion terms is

Gðūud̄dÞ
Gðūus̄sÞ ¼ m�

q þms

m�
q

≈ 1.5: ð70Þ

One consequence of this is the relatively large violation
of SUð3Þf symmetry. Another is that the ’t Hooft-operator-
induced spin-dependent forces have flavor ratios similar to
the magnetic moment ratios (provided one ignores the
difference between the onshell “constituent quark mass”
and the determinantal masses m�.) Therefore, one cannot
trace their origin simply by the mass dependence.
Now let us define m� in the Lagrangian coefficient,

following [63], see also [64–66]. If there is a single
instanton in the “empty” vacuum, as considered in the
original ’t Hooft paper, those are just quark masses mq.
The product of the quark masses is however also present in
the instanton density (in this setting), and they all cancel
out, leaving a finite Lagrangian even in the chiral
limit mq → 0.

In an ensemble of instantons, the quark propagator in the
QCD vacuum and restricted to the zero modes, is approxi-
mated by the form

Sðx; yÞ ¼ SZðx; yÞ þ
X
I;J

ψ�
0IðxÞ

�
1

T

�
I;J
ψ0JðyÞ ð71Þ

where TIJ denotes the so-called “instanton hopping”matrix,
constructed out of the Dirac zero modes overlaps between
neighboring instantons I, J. Note that it contributes as an
inversematrix, as propagators are inverse to Dirac operators.
So,whenone discusses a process inwhich bothpointsx,y are
inside the same instanton I�, as per the definition of a hard
block, we can restrict the sum to only the term with the zero
mode of this very instanton. This leads to the following
redefinition of the “determinantal mass”

1

mu
≡

��
1

T

�
I�I�

	
: ð72Þ

Furthermore, in the diagrams containing two quark propa-
gators of different flavors one has a different averaging

1

m2
uudd

≡
��

1

T

�
2

I�I�

	
: ð73Þ

These two quantities were evaluated in the random and
interacting instanton liquid model, with

1

m2
u
≈

1

ð177 MeVÞ2 ≪
1

m2
uudd

≈
1

ð103 MeVÞ2 : ð74Þ

The chief consequence of these substantial deviations from
mean field can be captured by a “’t Hooft operator enhance-
ment factor”

ftHooft ≡
�

mu

muudd

�
2

≈ 3: ð75Þ

This enhancement of a four-fermion operator relative to two-
fermion squared has also been observed on the lattice in [27].

C. Spin and flavor-dependent interactions
from zero modes

Since the ’t Hooft induced interaction is nonlocal, there
are additional contributions besides the local terms retained
earlier. More specifically, for two flavors its generic form is

L ¼ κ2A2N

Z Y4
i¼1

d4ki
ð2πÞ4

�
MðkiÞ
Mð0Þ

�1
2ð2πÞ4δ4ðk1 þ k3 − k2 − k4Þ

×
1

2
ϵf1f2ϵg1g2ðψ̄Rf1ðk1ÞψLg1ðk2Þψ̄Rf2ðk3ÞψLg2ðk4Þ − 4B2Nψ̄Rf1ðk1ÞσaψLg1ðk2Þψ̄Rf2ðk3ÞσaψLg2ðk4ÞÞ þ ðL → RÞ ð76Þ

EDWARD SHURYAK and ISMAIL ZAHED PHYS. REV. D 107, 034023 (2023)

034023-20



with form factors, from a Fourier transform of the quark zero mode

MðkÞ
Mð0Þ ¼

�
2z

�
I0ðzÞK1ðzÞ − I1ðzÞK0ðzÞ −

1

z
I1ðzÞK1ðzÞ

��
2

z¼kρ=2
: ð77Þ

We note that the antisymmetric operator for flavor exchange can be rewritten as

ϵf1f2ϵg1g2 ¼ 1

2
ðδf1g1δf2g2 − τa;f1g1τa;f2g2Þ → 1

2
ð1 − τ1 · τ2Þ ð78Þ

so that (76) reads

L ¼ 1

2
κ2A2N

Z Y4
i¼1

d4ki
ð2πÞ4

�
MðkiÞ
Mð0Þ

�1
2ð2πÞ4δ4ðk1 þ k3 − k2 − k4Þ

× ½ðψ̄ðk1Þψðk2Þψ̄ðk3Þψðk4Þ þ ψ̄ðk1Þγ5ψðk2Þψ̄ðk3Þγ5ψðk4Þ
− ψ̄ðk1Þτaψðk2Þψ̄ðk3Þτaψðk4Þ − ψ̄ðk1Þτaγ5ψðk2Þψ̄ðk3Þτaγ5ψðk4ÞÞ
− 4B2Nðψ̄ðk1Þσaψðk2Þψ̄ðk3Þσaψðk4Þ þ ψ̄ðk1Þσaγ5ψðk2Þψ̄ðk3Þσaγ5ψðk4Þ
− ψ̄ðk1Þσaτbψðk2Þψ̄ðk3Þσaτbψðk4Þ − ψ̄ðk1Þσaτbγ5ψðk2Þψ̄ðk3Þσaτbγ5ψðk4ÞÞ�: ð79Þ

Going ahead of ourselves, we note that in the sequel on
the light-front Hamiltonian, we will use this operator with
light-cone kinematics, ultrarelativistic on-shell spinor, in
spin or chiral basis. In this paper, however, we are in the
center-of-mass frame, in the nonrelativistic setting of a
constituent quark model. Therefore, we perform the non-
relativistic reduction of (79) with on-mass-shell normalized
Dirac spinors

UsðpÞ ¼
�

fðpÞχs
gðpÞσ · pχs

�
; VsðpÞ ¼

�
gðpÞσ · pχCs
fðpÞχCs

�

ð80Þ

with standard normalization factors

fðpÞ ¼
�
Ep þm

2Ep

�1
2 ¼ ðEp þmÞgðpÞ ð81Þ

and Ep ¼ ðp2 þm2Þ12. For the reduction to central, spin-
orbit, and spin-spin interactions, we set the kinematics in the
center of mass defined in Fig. 14 with k1 ¼ ðEpþq; p⃗þ q⃗Þ,
k2 ¼ ðEp; p⃗Þ, k3 ¼ ðEp0−q; p⃗0 − q⃗Þ, k4 ¼ ðEp0 ; p⃗0Þ, insert
(80) into (79), and expand up to order p2=m2. Recall that
in a meson state q̄q, the labels in Fig. 14 refer also to the
flavor and spin 1; 2 → U with mass mQ for the quark, and
3; 4 → V with massmQ̄ for the antiquark. More specifically
after settingm ¼ mQ ¼ mQ̄, the order q

0=m0 amounts to the
two-body central and spin-spin operators

−
1

4
jκ2jA2Nð1 − τ1 · τ2Þð1 − 16B2NS⃗1 · S⃗2Þ ð82Þ

in the U(1) or η0 channel. For clarity, the form factor is
temporarily set to 1 (zero size approximation). Taking into
account the overall negative sign in κ2, and 16B2N ¼ 4=5,
and the values of S⃗1 · S⃗2 ¼ −3=4 for S ¼ 0 states, one finds
that the last bracket simplifies to −8=5 for the pseudoscalar
(pion) channel. Note that (79) is only active in the
ðσ; π; σ5; π5; η0Þ channels. Equation (79) does not contribute
to the vector channels.
The relativisitc correction ∼q2=m2 amounts to the two-

body operators (with again the form factor set to 1)

−
1

4
jκ2jA2Nð1 − τ1 · τ2Þ

�
1

4m2

�
ð−LS − 4ST

þ 4B2Nð3LS þ 4ST þ 8q2S1 · S2ÞÞ ð83Þ

with spin-orbit and tensor operators

FIG. 14. Kinematics in the center-of-mass frame of the two-
flavor instanton induced interaction with in-out on-shell Dirac
fermions.
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LS ¼ ðS1 þ S2Þ · ðiq × ðp − p0ÞÞ;
ST ¼ S1 · qS2 · q; S12 ¼ 3ðS1q̂ÞðS2q̂Þ − ðS1S2Þ; ð84Þ

with LS symmetrized using p⃗þ p⃗0 ¼ 0. The translation
iq → ∇ to configuration space will be understood.

D. Zero-mode-induced potential for pions

In Sec. IVA we have already studied the pion case, and
defined the value of the ’t Hooft effective coupling (63)
needed to put the pion at the empirical mass. The first
question we now discuss is whether the ILM (component of
the instanton ensemble) can provide a coupling of this
magnitude. The answer to this question is affirmative.
The “determinantal masses” induced by the quark

condensates are given by the following expressions for
light and strange quarks:

m�
q ¼

2π2ρ2

3
jhq̄qij; m�

s ¼
2π2ρ2

3
jhs̄sij þms: ð85Þ

Using them, for a fixed instanton radius ρ ¼ 0.33 fm≈
1.4 GeV−1, we get the following value of the coupling of
ūdd̄u ’t Hooft vertex:

Gud ¼ A2N
3n
8

ð4π2Þ3ρ9
ðm�

qρÞ2ðm�
sρÞ

jhs̄sij ≈ 27 GeV−2: ð86Þ

It is larger than the value of 17 GeV−2 we fitted from the
pion mass using the Schrödinger equation above, by about
50%. However, note that it contains a large (sixth) power of
the instanton size, which is not yet defined with sufficiently
high precision. The numbers would match if one reduced it
from 1=3 to 0.29 fm.
Now, assuming that the ’t Hooft-induced potential puts

the pion at the right mass, we now turn our attention to the ρ
meson. In the previous section we have found that there is
an attractive ’t Hooft-induced potential which, at the
leading nonrelativistic order (82), is just half of that for
the pion. Naively, one might think that this potential will
pull the mass of the ρ to half of what it does to the pion,
putting it right at the experimentally observed value.
Unfortunately, that is not the case. The effects of the ’t
Hooft operator are too large to be treated as small
perturbations. A factor of 2 difference in a potential does
not imply a factor of 2 in the energy, because the wave
function itself depends strongly on it. What we found is
that, due to the ’t Hooft-induced potential, the pion’s size
gets reduced, making it comparable to the instanton
potential range ∼ρ. Half of it, acting against the repulsive
VSSðrÞ from the earlier contributions, fails to shrink the ρ
size, which remains roughly twice the size of π. This
reduces the wave function at small distances roughly by a
factor of 23, and effectively reduces the matrix element of

the VHooftðrÞ in the ρ case by a comparable factor. The
corresponding potentials and wave functions are shown
in Fig. 15.

E. The ρ meson and the “molecule-induced”
potential

This leaves us with the model prediction for the ρ meson
mass mρ in the vicinity of the mass following from a
“generic Cornell meson,” with m ≈ 1.4 GeV, far from its
experimental mass. The theory part is missing something
very important for the vector light quark channel.
Fortunately, there is still one more effect, already

discussed in the literature, the second-order ’t Hooft
effective forces due to “molecular” configurations; see
the lower plot in the Introduction, Fig. 1. In particular,
the effective Lagrangian induced by these molecules was
used in the theory of color superconductivity at high
density [67], from which we borrow its analytic form
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FIG. 15. The total potentials including the ’t Hooft ones (top)
and wave functions as r2ψðrÞ2 (bottom) for the ρ channel (solid
curves), the π channel (blue dashed curves), and the generic
Cornell potential (black dots). All potentials are shown versus the
distance r in GeV−1.
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Lmol=Gmol ¼
1

N2
c
½ðψ̄γμψÞ2 þ ðψ̄γμγ5ψÞ2� −

1

2NcðNc − 1Þ ½ðψ̄γμλ
aψÞ2 þ ðψ̄γμγ5λaψÞ2�

−
1

N2
c
½ðψ̄γμψÞ2 − ðψ̄γμγ5ψÞ2� −

2Nc − 1

2NcðN2
c − 1Þ ½ðψ̄γμλ

aψÞ2 − ðψ̄γμγ5λaψÞ2�: ð87Þ

It follows by using the same color orientation for the
instanton and anti-instanton, which locks them to their most
attractive channel. The quark fields come from zero modes
of I and Ī, so there is no Pauli principle and the flavors can
be both the same or different. Note that in this case the
chiralities of the quarks and antiquarks are the same in each
term, which is suitable for the ρ meson channel. Choosing
the vector γμλa terms and reducing the color matrices for
the meson case, we can reduce it to

Lmol ¼ GmolðūγμuÞxðd̄γμdÞyFmolðx − yÞ ð88Þ

where we introduced another form factor to account for the
nonlocality of the instanton–anti-instanton molecule. In
principle, one can evaluate (88) in a way that is analogous
to our treatment of the ’t Hooft Lagrangian. However, it
would now include two four-dimensional integrations over
positions of both centers, plus the relatively complicated IĪ
interaction depending on the relative color orientations.
Qualitatively, one expects its nonlocality size to approxi-
mately double, so we may just substitute the instanton size
ρ → 2ρ in the instanton form factor as an estimate. As a
result, its coefficient is reduced by 1=23 in the form factor
(C1). Such a size reduction of the potential range is precisely
what is needed to obtain the correct ρ meson mass.
More specifically, setting the corresponding potential

into the Schrödinger equation, along with the Cornell and

spin-spin terms, we find that the correct ρ mass is indeed
obtained for

Gmol

GHooft
¼ 120 GeV2

17 GeV2
∼
nmol þ nILM

nILM
≈ 7: ð89Þ

Note that this ratio of couplings (or densities) agrees well
with what was deduced from the central potential fitting the
linear potential discussed above.
(As a parting comment, we remind the reader that the

NJL model—the pioneering effort to describe chiral sym-
metry breaking and nonperturbative interactions in hadrons
—involves flavor-diagonal terms like the one we used here.
In later papers based on the NJL model, those contributions
were attributed to the “strong coupling part” of one gluon
exchange.)

F. Zero mode effects in heavy-light systems

The spin interactions for heavy-light quarks split into the
contributions solely from the nonzero modes which give rise
to the same general spin-dependent interactions as in (40).
For simplicity, we start with the heavy-light mesons,

with a single light quark. The contributions to the quark
propagators come from the zero mode for the light quark,
and the nonzero modes for the heavy quark. The resulting
spin-independent interaction was derived in [61]

LqQ ¼ −
�
ΔmQΔmq

2nNc

��
Q̄
1þ γ0

2
Qq̄qþ 1

4
Q̄
1þ γ0

2
λaQq̄λaq

�
ð90Þ

while the spin-dependent interaction is more suppressed,

Lspin
qQ ¼ −

�Δmspin
Q Δmq

2nNc

�
×
1

4

�
Q̄
1þ γ0

2
λaσμνQq̄λaσμνq

�
ð91Þ

with Δmspin
Q =Δmq ∼ 1=100 (charm). The local potential

stemming from (90) and (91) is

VqQðrÞ ¼
�
ΔmQΔmq

2nNc

��
1þ 1

4
λaqλ

a
Q

�
δ3ðrÞ: ð92Þ

In the mesons, the colors on the two lines are opposite and
the second term dominates the first, so this local potential
is negative. For the D meson it amounts to hVqQi ≈
−180 MeV [61], to be compared with the nonrelativistic

energy due to the standard Hamiltonian, kinetic plus central
potential average

hP2=2mq þ VcðrÞi ≈þ250 MeV:

The spin-spin potential is

Vspin
qQ ðrÞ ¼ −

�Δmspin
Q Δmq

2nNC

�
Sq · SQλaqλaQδ

3ðrÞ: ð93Þ
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For the D meson both the relative spin and color are
negative, so the contribution of this term is negative as well,
giving hVspin

qQ i ≈ −42 MeV [61]. The contribution of this
term to the spin splitting is then

MðD�Þ −MðDÞ ¼ ð4=3Þ42 MeV ¼ 56 MeV

to be compared with our calculations above giving together
hVpert

SS þ V inst
SS i ≈ 96 MeV. We thus conclude that all three

contributions together—the perturbative one and the two
instanton-induced ones—do finally reproduce this mass
difference, close to the experimental value MðD�Þ−
MðDÞ ¼ 137 MeV.

V. SUMMARY AND DISCUSSION

The purpose of this work, the first in a series, is to relate
the current views on the QCD vacuum with the quark-
antiquark forces (both central and spin-dependent ones),
known to us via spectroscopy of nonrelativistic quarkonia
and other mesons.
While most of our efforts in the series will focus on the

light-front formulation, in this paper we addressed the
mesonic spectroscopy in its center-of-mass frame. Its main
theory content is the reformulation of the 40-year-old
“dilute instanton liquid model,” parametrized in (6).
Unlike previous studies [which mostly focused on the
spontaneous breaking of SUðNfÞa chiral symmetry and
explicit breaking of Uð1Þa, pions and η0 and instanton
fermionic zero modes] we now focus on the vacuum
average of Wilson lines, without and with additional field
strength insertions. The novel element is the inclusion
of “incomplete tunneling events,” or IĪ “molecules.”
Including those, one finds that the instanton-induced
contribution to the static central potential is nearly linear,
and can reproduce the magnitude of the phenomenological
potential up to distances r < 0.8 fm. This normalization of
the “molecule density” crudely corresponds to the lowest
lattice extrapolations of Fig. 2(b) of Ref. [42] to zero
cooling time (that is, to the physical vacuum). We have
referred to this model as the dense instanton liquid with a
diluteness parameter κ ∼ 1. The density of molecules
is nmol ¼ 6 fm−4.
This novel model has nontrivial predictive power: unlike

the electric flux tube model, instantons are self-dual and
include magnetic field strength as large as the electric ones.
One therefore can calculate the instanton-induced spin-
dependent forces. The setting is explained in Fig. 10. Using
uncorrelated instantons, we found the spin-spin, spin-orbit,
and tensor forces shown in the lower part of Fig. 9. In
particular the spin-spin potential VSS in Fig. 12 shows that
the instanton-induced potential (blue dashed line) is com-
parable to the perturbative potential (black dash-dotted
line). Their combined area agrees with the lattice result
(black solid line). The matrix elements of VSS are compared
with the experimental splittings of the 1S mesons (e.g.

J=ψ − ηc) in Table II, with good agreement. We emphasize
that there are no free parameters in this calculation.
Another observation from Fig. 12, shows that instantons

of “standard” size ρ ¼ 1=3 fm produce a VSS potential of a
correct area but larger range, in comparison to lattice
results. We have shown that incorporating the structure
of the magnetic fields stemming from the instanton-anti-
instanton molecules (see Fig. 13 and related discussion)
cures this problem.
Moving from the 1S shell (with two states J ¼ 0, 1) to

the 1P shell (with four states), we carried similar compari-
son using the matrix elements of all three spin-dependent
potentials. We have evaluated the matrix elements of all
three potentials, both perturbative and instanton induced.
As shown in Table III, here the situation is much more
complex, and a good agreement between theory and the
empirical values is not achieved. In particular, a large
empirical value of the spin-orbit force is an order of
magnitude above both the perturbative and instanton-
induced matrix elements. The reasons why the 1P shell
splitting is not reproduced remains unclear, although we
suspect that it may be related to the negative spin-orbit
contribution from the string, to be discussed in paper II [1]
later in this series. Clearly more work is required, especially
on the lattice side.
Although our straightforward evaluation of the pertur-

bative and instanton-induced potentials have not repro-
duced the apparently negative tensor force for light quarks,
the negative sign of the instanton-induced term indicates
that, with some play of parameters, it may be done.
Let us also mention that we will return to the spin-

dependent forces on the light front in paper III [2],
discussing in detail the quadrupole moment of the vector
mesons. The issue of the instanton-induced interquark
forces will be studied for the three quark case (baryons)
in paper IV [3].
While for heavy quarks the spin forces as given by

Wilson lines are sufficient, for light quarks there exists
extra “anomalous” processes, in which quarks do not travel
continuously in time, but are instead dumped into the Dirac
sea and substituted by another quark, with opposite
chirality. The nonrelativistic reduction of a six-quark ’t
Hooft operator has produced novel spin-dependent forces.
Their application to the pion case is successful, as well as to
the heavy-light systems. The effects related to the zero
modes and the ’t Hooft effective interactions can still be put
in the form of quasilocal flavor-nondiagonal potentials, i.e.
central and spin dependent. The phenomenological impli-
cations of this is a reminder of the two-component instanton
model discussed here, meaning that for the ’t Hooft
potential the instanton density is the smaller one, taken
from the original ILM. The magnitude of such ’t Hooft
potential is found of the size needed to put the pion mass at
its small physical value. It is in agreement with the long-
known view of the pion as depicted in the top panel
of Fig. 1.
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A significant part of this work is devoted to two
alternative description of instanton–anti-instanton configu-
rations, or “molecules” for short. As we show in Fig. 13 and
the text around it, using their fields in Wilson lines does
modify the shape of spin-dependent forces, making them
shorter range. Yet this part is open ended in the sense that it
is intended for future quantitiative calculations of the
potentials.
As a parting comment, novel interpretations of inter-

quark potentials we propose in this paper need and should
be tested. One way to do this is to calculate corresponding
potentials on the lattice and compare the results from a full
vacuum field ensemble to those during a gradient flow
cooling process, eventually with only an instanton remain-
ing. This will allow one to single out molecular and single
instanton-induced contributions.
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APPENDIX A: ASYMPTOTICS OF VCðrÞ
The instanton-induced central potental VCðrÞ in Fig. 4

asymptotes twice the self-energy 2ΔmQ. This asymptotics
is reached from above in singular gauge contrary to
expectations. The simplest way to see this, is to note that

2ΔMQρ ¼ 8πnρ4

Nc

Z
∞

0

dyy2
�
1þ cos

�
πy

ρ2 þ y2

��
≈
8πnρ4

Nc
2.2 ðA1Þ

is substantially smaller than the potential in Fig. 4. A
numerical evaluation of IðxÞ as in (18) at large x, is shown
in Fig. 16. It confirms that the asymptotics is slowly
reached from above.
We note that a Taylor expansion of the integrand in IðxÞ

suggests 1=r3 as the leading contribution, but the remaining
integration is divergent, thereby invalidating the expansion.
In [68] it was suggested that the asymptotics is reached
from below through −π2=2r. This result is correct in a
perturbative regular gauge with no additional color rota-
tions, but not in a nonperturbative singular gauge with
additional color rotations. Also, the 1=r central potential
yields a spin-spin potential VSSðrÞ as a delta function which
is also not compatible with the 1=r2 behavior noted above.
Figure 16 can be fitted numerically by 2ΔMQ þ C=rp with

p ≪ 1 and C > 0. Its ensuing Laplacian then gives
pð1 − pÞ=r2þp, which is consistent with VSSðrÞ at large r.

APPENDIX B: DEFINITIONS OF THE SPIN-
DEPENDENT POTENTIALS

Following Ref. [11], we give for completeness the
correlation functions generating the five spin-dependent
potentials. The integrals over points z, z0 are taken along
two Wilson lines located at x⃗1; x⃗2 and running in the
Euclidean time direction, from −T=2 to T=2. The limit of
large T → ∞ is not written explicitly but assumed. The
normalization to h1i means subtraction of the central
potential coming from the correlator of Wilson lines
without the extra field strengths

rk

r
dV1ðrÞ
dr

¼ ϵijk

Z
dzdz0

�
z − z0

T

�
g2

2
hBiðx⃗1; zÞEjðx⃗1; z0Þi=h1i;

rk

r
dV2ðrÞ
dr

¼ ϵijk

Z
dzdz0

�
z − z0

T

�
g2

2
hBiðx⃗2; zÞEjðx⃗1; z0Þi=h1i

× ½ðr̂ir̂j − δij=3ÞV3ðrÞ þ δij=3ÞV4ðrÞ� ¼
Z

dzdz0
g2

T
hBiðx⃗2; zÞEjðx⃗1; z0Þi=h1i: ðB1Þ
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FIG. 16. IðxÞ versus x as given in (4).
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Although it involves only the vector product of electric
and magnetic fields, using the Bianchi identity one can
express it via a correlator of two B fields, as expected for
nonrelativistic spin interactions. It is however of little
importance for instantons, which are (anti-)self-
dual E⃗ ¼ �B⃗.
Note that the reduction of the dressed Wilson line

“WEW” line with an electric field insertion can be made
into a derivative of the Wilson line over its location, via the
following steps:

DmðyÞWðx0; y0Þ −Wðx0; y0ÞDmðyÞ

¼ hx0jD0

1

iD0

−
1

iD0

Dmjy0i

¼ hx0j
1

iD0

½iD0; Dm�
1

iD0

jy0i

¼ hx0j
1

iD0

ð−F0mÞ
1

iD0

jy0i

¼
Z þ1

2
T

−1
2
T

dz0Wð−T; z0Þð−F0mÞðz0ÞWðz0; TÞ ðB2Þ

and in the large jTj → ∞ asymptotic the field is assumed to
vanish, so the covariant derivative can be changed to an
ordinary one.
Subsequent discussions of theOð1=m2Þ of the potentials

have been made, starting from complete effective actions
of NRQCD and pNRQCD to this order, and some mod-
ifications of the expressions in [11] were found (see
Eqs. (49)–(51) in [5]). Modulo matching, the only differ-
ence was noted in the spin-orbit coefficient with no 1

2
in

(B1). However, for the purposes of our work, it is enough to
note that the spin-spin and spin-orbit potentials are related
to the correlators of two magnetic fields, and the spin orbit
to the correlator of electric and magnetic fields. (Of course,

the correlators include the appropriate Wilson lines, and are
integrated over the time difference between the field
strengths.)

APPENDIX C: FORM FACTOR IN THE ’T
HOOFT LAGRANGIAN

Inmany applications, the instanton induced form factor on
the tunnelingquarks is used in themomentumrepresentation,
more specifically, as the Fourier transform of the zero modes
in (77). However, in the effective potential we use, there are
four zero modes, thus the fourth power of MðkÞ. Its inverse
Fourier transform to coordinate space is complicated.We use
instead directly the coordinate expression, with two densities
of zero modes separated by a distance r, with the explicit
integration over the location of the instanton center zμ

FðrÞ ∼
Z

d4zjψ0ðzμ − rμ=2Þj2jψ0ðzμ þ rμ=2Þj2

∼
Z

z3dz sin2ðθÞdθ
ðz2 þ r2=4þ zr cosðθÞ þ ρ2Þ3ðz2 þ r2=4 − zr cosðθÞ þ ρ2Þ3 ≈ 0.18 expð−0.89r2Þ: ðC1Þ

The last expression is a fit, normalized by
R
d3FðrÞ ¼ 1,

with our standard size ρ ¼ 1.4 GeV−1. The comparison
between the numerical integral and the fit is shown in
Fig. 17.

APPENDIX D: FIELD STRENGTHS THROUGH
CONFORMAL MAPPING

The field strength FMN and its dual ⋆FMN for the
tunneling at fixed energy in O(4) symmetric form (Step 1)
are given by

y2E⃗ ¼ σ⃗

�
f0 −

ðy⃗Þ2
y2

ðf0 − 2ff̄Þ
�

þ ðy⃗ · σ⃗ y⃗−y4σ⃗ × y⃗Þ
y2

ðf0 − 2ff̄Þ;

y2B⃗ ¼ σ⃗

�
2ff̄ þ ðy⃗Þ2

y2
ðf0 − 2ff̄Þ

�

−
ðy⃗ · σ⃗ y⃗−y4σ⃗ × y⃗Þ

y2
ðf0 − 2ff̄Þ; ðD1Þ
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FIG. 17. Numerically integrated and normalized integral (C1)
(points), compared to a fit (solid line). Also for comparison we
show (dashed line) the normalized “smoothed delta function” as
used in (49) for δ ¼ ρ. It was our initial choice, but as shown here,
it does not provide an accurate description of the form factor and
therefore is not used.
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with Ei ¼ Fi4 and Bi ¼ 1
2
ϵijkFjk. For self-dual fields f0 ¼

2ff̄ and E⃗ ¼ B⃗ are hedgehogs in color spin as expected for the
instanton path. For the sphaleron path, we have f ¼ 1

2
and

ðE⃗þ B⃗Þ ¼ σ⃗=2y2, as only the electric plusmagnetic field sum
is hedgehog in color spin. We then use the conformal (stereo-
graphic) map (Step 2), as explained in the text.
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