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Within the effective Lagrangian approach, we carry out a unified study of the J=ψðψ 0Þ → VP, J=ψ →
Pγ and relevant radiative decays of light-flavor hadrons. A large amount of experimental data, including the
various decay widths and electromagnetic form factors, is fitted to constrain the numerous hadron
couplings. Relative strengths between the strong and electromagnetic interactions are revealed in the
J=ψ → VP and ψ 0 → VP processes. The effect from the strong interaction is found to dominate in the
J=ψ → ρπ decay, while the electromagnetic interaction turns out to be the dominant effect in ψ 0 → ρπ
decay, which provides an explanation to the ρπ puzzle. For the J=ψ → K�K̄ þ K̄�K and
ψ 0 → K�K̄ þ K̄�K, the former process is dominated by the strong interactions, and the effects from
the electromagnetic parts are found to be comparable with those of strong interactions in the latter process.
Different SUð3Þ breaking effects from the electromagnetic parts appear in the charged and neutral channels
for the ψ 0 → K�K̄ þ K̄�K processes explain the rather different ratios between Bðψ 0 → K�þK− þ
K�−KþÞ=BðJ=ψ → K�þK− þ K�−KþÞ and Bðψ 0 → K�0K̄0 þ K̄�0K0Þ=BðJ=ψ → K�0K̄0 þ K̄�0K0Þ.
DOI: 10.1103/PhysRevD.107.034022

I. INTRODUCTION

The strong suppression of the branching ratios of the
ψ 0 → ρπ and ψ 0 → K�K̄ þ c:c: processes, relative to those
of the corresponding decay channels of the J=ψ , has been a
long-standing puzzle in charmonium physics. The annihi-
lation of the cc̄ into three gluons is usually assumed to be
the dominant mechanism that rules the decays of the J=ψ
and ψ 0 to the light-flavor hadrons [1–3]. The annihilation
amplitudes of the latter processes and also the decays to the
lepton pairs are proportional to the wave functions of the
S-wave charmonium states J=ψ and ψ 0 at the origin. As a
result, the branching ratios with the light-flavor-hadron (h)
decays of the ψ 0 and J=ψ can be predicted by their leptonic
decay widths [4], i.e.,

Qh ≡ Bðψ 0 → hÞ
BðJ=ψ → hÞ ¼

Bðψ 0 → eþe−Þ
BðJ=ψ → eþe−Þ ¼ ð13.3� 0.4Þ%:

ð1Þ

However, according to the recent PDG averages [4], the
ratio of Qρπ ,

Bðψ 0 → ρπÞ
BðJ=ψ → ρπÞ ¼ ð0.2� 0.1Þ%; ð2Þ

and the various ratios of QK�K̄ ,

Bðψ 0 → K�þK− þ c:c:Þ
BðJ=ψ → K�þK− þ c:c:Þ ¼ ð0.5þ0.2

−0.1Þ%;

Bðψ 0 → K�0K̄0 þ c:c:Þ
BðJ=ψ → K�0K̄0 þ c:c:Þ ¼ ð2.6þ0.8

−0.7Þ%;

Bðψ 0 → K�K̄ þ c:c:Þ
BðJ=ψ → K�K̄ þ c:c:Þ ¼ ð1.4þ0.5

−0.4Þ%; ð3Þ

are drastically different from the prediction in Eq. (1). These
contradictions are generally referred as the ρπ puzzle,
which was first established in Ref. [5] four decades ago.
Tremendous efforts have beenmade to address this problem,
including the proposal of a vector glueball near the J=ψ mass
[6], higher Fock components in the charmonium states [7],
the intrinsic charm portions in the light-flavor vector ρ [8],
the nodes in the wave functions [9], the meson mixing
mechanisms [10], the final-state interactions [11–14].
Another important issue in those decays is the sizable
SUð3Þ breaking effects in the charged and neutral
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K�K̄ decays of the J=ψ and ψ 0. I.e., the strict
SUð3Þ flavor symmetry would give the prediction
QK�þK−þc:c: ¼ QK�0K̄0þc:c., which is however severely
violated according to the experimental measurements
in Eq. (3).
In this work, we aim at a unified description of the

processes J=ψðψ 0Þ → VP and γð�ÞP, with V and P the
light-flavor vector and pseudoscalar mesons in order. In
such kinds of decay processes, one needs to simultane-
ously take into account of the single-Okubo-Zweig-Iizuka
(OZI) or even the doubly suppressed OZI strong inter-
action effects, the electromagnetic contributions and the
SUð3Þ flavor symmetry breaking terms. The effective
Lagrangian approach can provide an excellent framework
to properly include all the aforementioned effects.
Regarding the well-celebrated OZI rule, a quantitative
way to understand such suppression mechanism is the
large NC QCD [15]. In the effective field theory (EFT)
approach, the NC counting order can be directly related to
the number of traces in the flavor space [16,17]. Typically
one additional flavor trace will introduce one more 1=NC
suppression order to the EFT operator. The single OZI/
double OZI effects can be systematically incorporated via
the EFT operators with the proper numbers of flavor
traces. Furthermore, the chiral EFT is constructed accord-
ing to the spontaneous and explicit chiral symmetry
breaking patterns of QCD. The SUð3Þ flavor symmetry
breaking effects can be then introduced through the basic
building tensors of the EFT involving the small but
nonvanishing light-flavor quark masses. Although the
chiral power counting scheme based on the momentum
expansion is not valid in the massive J=ψ or ψ 0 decays, the
basic building blocks and methodology of the EFT
Lagrangians are useful to conveniently take into account
all the relevant ingredients describing the J=ψðψ 0Þ → VP
and J=ψ → γð�ÞP processes, including the OZI
strong interaction parts, the electromagnetic contributions
and the SUð3Þ flavor symmetry breaking effects.
This formalism has been successfully applied to the
light-flavor decay processes of V → Pγð�Þ, eþe− →
K�K̄ þ c:c: and J=ψ → VP;Pγð�Þ in a series of works
in Refs. [18–20]. In this work we push forward the study
along the line of this research to address the mysterious ρπ
puzzle by including similar decay processes of ψ 0.
In addition, we also perform the global analyses
of the large amount of updated branching ratios of various
decay processes from the PDG [4] and the newly
measured different decay widths from the BESIII
collaboration [21].
This paper is organized as follows. In Sec. II, we

introduce the relevant effective Lagrangians and elaborate
the calculations of the decay amplitudes. The global fit to
the various experimental data and the phenomenological
consequences are analyzed in detail in Sec. III. We give a
short summary and conclusions in Sec. IV.

II. EFFECTIVE LAGRANGIAN AND
CALCULATIONS OF TRANSITION AMPLITUDES

The primary aim of this work is to study the various
decay processes of the J=ψ and ψ 0 into a light-flavor vector
and a light pseudoscalar meson, and the light-flavor meson
radiative decays and relevant form factors. Therefore we
need to include not only the transition operators between
the charmonia and the light-flavor mesons, but also the
EFT operators describing the interactions among the light-
meson themselves. To tightly constrain the free couplings,
we simultaneously take into account the experimental
data from both the decay processes with only light-
flavor mesons and also the processes involving the J=ψ
and ψ 0.
Resonance chiral theory (RχT) [22] provides a reliable

framework to study the interactions of the light-flavor
resonances and the light pseudoscalar mesons (π, K, η), the
latter of which are treated as the pseudo-Nambu-Goldstone
bosons (pNGBs) resulting from the spontaneous symmetry
breaking of QCD. As an extension of the chiral perturba-
tion theory (χPT), RχT explicitly introduces the heavier
degrees of freedom of QCD, i.e., the light-flavor resonan-
ces, such as the vectors ρ; K�;ω;ϕ, the axial vectors,
scalars, etc., into the chiral Lagrangians, together with
the pNGBs and external source fields, like the photons. The
RχT operators are constructed in a chiral covariant way,
therefore the physical amplitudes calculated in the RχT
automatically fulfill the requirements of chiral symmetry of
QCD in the low energy region. On the other hand, the large
NC expansion of QCD [15] has been widely used as
another useful guide to arrange the operators and ampli-
tudes of the RχT [23]. In addition, from the large NC point
of view, the QCD UAð1Þ anomaly effect, which is consid-
ered to be the most responsible factor for the large mass of
the physical state η0, is however 1=NC suppressed. As a
result, the η0 state would become the ninth pNGB both in
large NC and chiral limits. Based on this argument, the
nonet of the pNGBs (π; K; η; η0) can be systematically
included in the effective Lagrangian [24]. We closely
follow this guideline to include the singlet η0 state in the
RχT and adopt the general two-mixing-angle formalism to
study the physical processes with the η and η0 mesons. Next
we briefly introduce the relevant RχT Lagrangians.
In the present work, only the light-flavor vector reso-

nances will be relevant to our study and the minimal
interaction operators with the vectors in even-intrinsic-
parity sector of the RχT is given by [22]

Lð2Þ
V ¼ FV

2
ffiffiffi
2

p hVμνf
μν
þ i þ i

GVffiffiffi
2

p hVμνuμuνi; ð4Þ

where the nonet of the vector resonances is incorporated via
the 3 × 3 matrix
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Vμν ¼

0
BBB@

1ffiffi
2

p ρ0 þ 1ffiffi
6

p ω8 þ 1ffiffi
3

p ω0 ρþ K�þ

ρ− − 1ffiffi
2

p ρ0 þ 1ffiffi
6

p ω8 þ 1ffiffi
3

p ω0 K�0

K�− K̄�0 − 2ffiffi
6

p ω8 þ 1ffiffi
3

p ω0

1
CCCA

μν

; ð5Þ

the basic chiral tensors with the pNGBs and the external source fields are defined as

U ¼ u2 ¼ ei
ffiffi
2

p
Φ

F ; uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ulμÞu†�; fμν� ¼ uFμν
L u† � u†Fμν

R u;

Fμν
LðRÞ ¼ ∂

μlðrÞν − ∂
νlðrÞμ; χ� ¼ u†χu† � uχ†u; χ ¼ 2B0ðsþ ipÞ ð6Þ

and the flavor contents of the nonet pNGB matrix read

Φ ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η0 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η0 K0

K− K̄0 − 2ffiffi
6

p η8 þ 1ffiffi
3

p η0

1
CCCA: ð7Þ

The quark-mass terms are introduced by taking the scalar
external source filed s in Eq. (6) as s ¼ diagfmu;md;msg.
In this work, we will take mu ¼ md ¼ m̂ throughout, i.e.,
neglecting the isospin breaking effects from the strong
interaction parts. The physical vectors ω and ϕ can be well
described by assuming the ideal mixing of the octet ω8 and
the singlet ω0 [4]

ω0 ¼
ffiffiffi
2

3

r
ω −

ffiffiffi
1

3

r
ϕ;

ω8 ¼
ffiffiffi
2

3

r
ϕþ

ffiffiffi
1

3

r
ω: ð8Þ

In contrast, the mixing pattern of the η8 and η0 is more
involved. The modern chiral prescription introduces the
sophisticated two-mixing-angle scheme [25,26] to address
the η − η0 mixing system

�
η

η0

�
¼ 1

F

�
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

��
η8

η0

�
; ð9Þ

where F0 and F8 are the weak decay constants of the
singlet and octet axial-vector currents, respectively. The
conventional mixing formula with a single mixing
angle can be naturally recovered by taking F8 ¼ F0 ¼ F
and θ0 ¼ θ8 in Eq. (9). Equivalently one can also use
the quark-flavor basis to describe the two-mixing-angle
formalism

�
η

η0

�
¼ 1

F

�
Fq cos θq −Fs sin θs
Fq sin θq Fs cos θs

��
ηq

ηs

�
; ð10Þ

where the quark-flavor contents of the states ηq ¼ ðη8 þffiffiffi
2

p
η0Þ=

ffiffiffi
3

p
and ηs¼ð− ffiffiffi

2
p

η8þη0Þ=
ffiffiffi
3

p
are ðūuþ d̄dÞ= ffiffiffi

2
p

and s̄s, respectively.
The vector resonances in Eq. (4) are expressed in terms

of the antisymmetric tensors, instead of the commonly used
Proca fields. It is demonstrated in Refs. [22,27] that it is
convenient to use the antisymmetric tensors to describe the
vector resonances in RχT, since the high energy behaviors
of the resulting amplitudes and form factors automatically
match the QCD constraints without requiring the inclusion
of extra local chiral counterterms in the antisymmetric
tensor formalism. The RχT Lagrangians in the odd-intrin-
sic-parity sector comprise two different classes, namely the
VVP and VJP types, with J the external sources. Those
RχT operators written in terms of the antisymmetric tensor
fields that are relevant to the Oðp4Þ chiral low energy
constants, are worked out in Ref. [28], and the relevant RχT
Lagrangians and discussions on the VVP Green functions
by explicitly including the dynamical singlet η0 state are
given in Ref. [18]. A more complete basis of the odd-
intrinsic-parity RχT operators that contribute to the Oðp6Þ
chiral low energy constants, is given in Ref. [29]. A
proliferation of the unknown resonance couplings arise
in the more complete RχT Lagrangians, as expected. This
can hinder one from giving the definite conclusions on the
phenomenological discussions [30]. From the practical
point of view, we will work with the RχT operator basis
from Refs. [18,28] and we believe that the higher order
effects from the extra operators in Ref. [29] can be
accounted for by the uncertainties of the resonance cou-
plings in the former two references. For the sake of
completeness, we give the explicit expressions of the
relevant RχT Lagrangians [18,28]
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LVVP ¼ d1εμνρσhfVμν; Vραg∇αuσi þ id2εμνρσhfVμν; Vρσgχ−i þ d3εμνρσhf∇αVμν; Vραguσi

þ d4εμνρσhf∇σVμν; Vραguαi − id5M2
V

ffiffiffi
2

3

r
εμνρσhVμνVρσi lnðdet uÞ; ð11Þ

and

LVJP ¼ c1
MV

εμνρσhfVμν; fραþ g∇αuσi þ
c2
MV

εμνρσhfVμα; fρσþ g∇αuνi þ
ic3
MV

εμνρσhfVμν; fρσþ gχ−i

þ ic4
MV

εμνρσhVμν½fρσ− ; χþ�i þ
c5
MV

εμνρσhf∇αVμν; fραþ guσi þ c6
MV

εμνρσhf∇αVμα; fρσþ guνi

þ c7
MV

εμνρσhf∇σVμν; fραþ guαi − ic8MV

ffiffiffi
2

3

r
εμνρσhVμνf̃ρσþ i lnðdet uÞ; ð12Þ

where the covariant derivative acting on the chiral field X is
given by

∇μX ¼ ∂μX þ ½Γμ; X�;

Γμ ¼
1

2
½uþð∂μ − irμÞuþ uð∂μ − ilμÞuþ�: ð13Þ

As previously mentioned in the Introduction, both the
strong and electromagnetic interactions can be important in
the J=ψðψ 0Þ → VP processes. The effects from the strong
interactions are taken into account by the direct J=ψðψ 0ÞVP
transition operators [18]

Lψðψ 0ÞVP ¼ Mψðψ 0Þh
ð0Þ
1 εμνρσψ

ð0ÞμhuνVρσi

þ 1

Mψðψ 0Þ
hð0Þ2 εμνρσψ

ð0Þμhfuν; Vρσgχþi

þMψðψ 0Þh
ð0Þ
3 εμνρσψ

ð0ÞμhuνihVρσi; ð14Þ

where the couplings hð0Þi¼1;2;3 corresponding to the J=ψ and
ψ 0 will be separately fitted to the experimental data of the
two charmonium states. Two types of EFT operators are
introduced to account for the electromagnetic effects,
which include the direct ψPγ transition operators

LψPγ ¼ g1εμνρσψμhuνfρσþ i þ 1

M2
ψ
g2εμνρσψμhfuν; fρσþ gχþi;

ð15Þ

and the conversion vertex of the charmonium and the
photon

Lψγ ¼
−1
2

ffiffiffi
2

p fψ
Mψ

hψ̂μνf
μν
þ i; ð16Þ

being ψ̂μν ¼ ∂μψν − ∂νψμ. The values of the couplings g1,
g2, and fψ are different for the J=ψ and ψ 0 and they will be
determined by the relevant experimental data. Different
powers of the Mψðψ 0Þ are introduced in Eqs. (14)–(16), so

that the couplings appearing in those Lagrangians are
dimensionless.
It is found [20,31] that the J=ψ → ηð0Þγð�Þ amplitudes are

dominated by the ηc mediating diagrams, i.e., via the
J=ψ → ηcγ

ð�Þ → ηð0Þγð�Þ intermediate processes. The decay
amplitude of the ψ → ηð0Þγð�Þ can be written as

Mmixing

ψ→ηð0Þγ�
¼ eεμνρσϵ

μ
ψϵνγ�q

ρkσληcηð0Þgψηcγ� ðsÞeiδP ; ð17Þ

being P ¼ η; η0, where the electromagnetic transition form
factor between the ψ and ηc takes form [32–34]

gψηcγ�ðsÞ ¼ gψηcγ� ð0Þe
s

16β2 : ð18Þ

For the mixing parameters ληcηð
0Þ between the ηc and ηð0Þ

states, we take the determinations ληcη ¼ −4.6 × 10−3 and
ληcη0 ¼ −1.2 × 10−2 from Ref. [31]. The phenomenological
phase factors δηð0Þ in front of the ηc mediating diagrams
need to be separately fitted to the data of the J=ψ .
The various Feynman diagrams relevant to our study are

illustrated in Figs. 1–3. To be more specific, the diagrams in
Fig. 1 contribute to the light-flavor processes V → Pγð�Þ

and P → Vγð�Þ. The amplitudes of the J=ψðψ 0Þ → VP and
J=ψ → Pγð�Þ receive contributions from the diagrams in
Figs. 2 and 3, respectively. The formulas relevant to the
V → Pγð�Þ and P → Vγð�Þ processes are worked out in
Ref. [18], and the expressions of the J=ψ → VP;Pγð�Þ

(a) (b)

FIG. 1. Diagrams relevant to the V → Pγð�Þ processes: (a) direct
type and (b) indirect type.
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amplitudes are calculated in Ref. [20]. The corresponding
decay amplitudes of the ψ 0 state share similar expressions
as those involving J=ψ , with obvious replacements of the
resonance couplings. Nevertheless, for the sake of com-
pleteness and to set up the notations, we further elaborate
the amplitudes of the processes of ψ 0 → VP.
For the ψ 0 → VP decay, the first diagram (a) in Fig. 2

denotes the contributions from the strong interactions, i.e.,
from the Lagrangians in Eq. (14). Other diagrams in Fig. 2
correspond to the electromagnetic effects. The ψ 0 → VP
amplitude can be written as

Mψ 0→VP ¼ εμνρσϵ
μ
ψ 0ϵνVq

ρkσGψ 0→VP; ð19Þ

where the polarization vectors of the ψ 0 and V are given
by ϵμψ 0 and ϵνV , q and k stand for the four-momentum of the
ψ 0 and V, respectively. The effective couplings Gψ 0→VP

include various contributions from the individual diagram
of Fig. 2. The explicit expressions ofGψ 0→VP for the various
processes are given in the Appendix. The decay widths of
ψ 0 → VP read

Γðψ 0 → VPÞ ¼ 1

96πM3
ψ 0
λðMψ 0 ;MV;mPÞ32jGψ 0→VPj2; ð20Þ

with the Källén function λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy−
2xz − 2yz.
Similarly, the corresponding amplitude of the radiative

process J=ψðqÞ → γ�ðkÞPðq − kÞ can be given in terms of
one effective coupling as well

Mψ→Pγ� ¼ eεμνρσϵ
μ
ψϵνγ�q

ρkσGψ→Pγ� ðsÞ; ð21Þ

with s ¼ k2. The effective coupling Gψ→Pγ� can receive
contributions from all the diagrams in Fig. 3. The explicit
expressions are given in Ref. [20]. The formula of the decay
width of the J=ψ → Pγ process finds it form

Γψ→Pγ ¼
1

3
α

�
M2

ψ −M2
P

2Mψ

�
3

jGψ→Pγ� ð0Þj2: ð22Þ

The expression of the width for the Dalitz decay process
J=ψ → Pγ� → Plþl− is given by

Γψ→Plþl− ¼
Z ðMψ−mPÞ2

4m2
l

α2ð2m2
l þ sÞ

72M3
ψπs3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

l Þ
q

× ½λðs;Mψ ; mPÞ�32jGψ→Pγ� ðsÞj2ds: ð23Þ

III. COMPREHENSIVE FITS AND
PHENOMENOLOGICAL DISCUSSIONS

Compared to the previous studies in Refs. [18,20], we
incorporate in this work the data from the various ψ 0 → VP
decays, apart from other types of data from the V → Pγð�Þ,
P → Vγð�Þ, and J=ψ → VP;Pγð�Þ processes, to perform a
comprehensive fit, so that the ρπ puzzle can be addressed.
In addition, we update numerous types of data according to
the most recent PDG averages [4], and timely revise the
determinations of the resonance couplings.
In total, we include 135 data points from several different

types of processes in the comprehensive fit. To be more
specific, the data from the pure light-flavor processes
amount to 70, and they consist of both the decay widths,
such as those of the ω → ηγ, η0 → ωγ, η → γγ, etc., and the
form factors of the ϕ → ηγ� and ηð0Þ → γγ�. For the data
related to the J=ψ , they include all the available widths of
the J=ψ → VP, Pγ, and Peþe− from the PDG [4], and also
the recent BESIII measurements of the invariant-mass
distributions of the lepton pairs in the transition of J=ψ →
ηγ� [21]. Regarding the data of the ψ 0, we will include in the
joint fit all the available widths of the ψ 0 → VP processes
from PDG [4].
An efficient way to reduce the number of unknown

couplings in theRχT is to impose the high energy constraints
dictated by QCD to the various form factors and Green
functions calculated from the RχT Lagrangians in Eqs. (4),
(11) and (12). Furthermore, the high energy behaviors of the
resulting amplitudes after imposing such constraints will
mimic the properties as predicted by QCD. Following
the previous discussions in Refs. [18–20,28,35–37], we
take the following high energy constraints on the various
couplings

(a) (b) (c) (d)

FIG. 2. Feynman diagrams for the processes J=ψ → VP: (a) the
strong-interaction contributions from the hi¼1;2;3 terms; (b) the
electromagnetic contributions from the gi¼1;2 terms; (c) the ηc
mediated part; (d) the contributions from the γ� → VP vertexes.
See the text for details.

(a) (b) (c)

FIG. 3. Feynman diagrams for the processes J=ψ → Pγð�Þ:
(a) the direct type; (b) the light-vector mediated part; (c) the ηc
mediated part.
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4c3 þ c1 ¼ 0; c1 − c2 þ c5 ¼ 0; c5 − c6 ¼
NC

64π2
MVffiffiffi
2

p
FV

;

d1 þ 8d2 − d3 ¼
F2

8F2
V
; d3 ¼ −

NC

64π2
M2

V

F2
V
; c8 ¼ −

ffiffiffi
2

p
M2

0ffiffiffi
3

p
M2

V

c1; ð24Þ

where the pion weak decay constant takes the normaliza-
tion F ¼ 92.4 MeV throughout, the UAð1Þ anomaly
parameter is set to be M0 ¼ 900 MeV [38,39], the chi-
ral-limit mass of the lowest vector resonance multiplet is
fixed at MV ¼ Mρ ¼ 775 MeV and the vector-photon
transition coupling FV will be fitted. By taking into account
the leptonic widths of the J=ψ and ψ 0, we can determine
the charmonium-photon transition coupling fJ=ψðψ 0Þ in
Eq. (16), whose explicit values are found to be

fJ=ψ ¼293.8�3.5MeV; fψ 0 ¼208.1�5.1MeV: ð25Þ

We are then left with 23 undetermined parameters,
including the four η-η0 mixing parameters introduced in
Eq. (9), four couplings FV , c3, c4, and d2 that emerge from
the light-flavor resonance interactions, nine parameters
exclusively entering in the J=ψ decays and six parameters
that are dedicated to the ψ 0 processes. The couplings that
describe the interactions of the light-flavor resonances will
also enter in the charmonia decays. Therefore the joint fits
by simultaneously including the relevant data of the light-
flavor mesons, the data from the J=ψ → VP;Pγð�Þ and the
ψ 0 ones, will obviously give more stringent constraints on
the couplings than the situation by including just one of
these datasets. Furthermore, such comprehensive studies in
a unified framework are also expected to give a further
insight into ρπ puzzle elaborated in the Introduction.
The resulting parameters from the joint fit are given in

Table I. The updated parameters related to the light-flavor
resonances, the J=ψ decays and the η − η0 mixing are well

consistent with the previous determinations [18–20] where
the data of the ψ 0 processes are not included in these
studies. For the ψ 0 → Pγð�Þ processes, which could receive
significant contributions from the ψ 0 → J=ψP transition
vertexes, i.e., ψ 0 → J=ψη → γη [40], are not considered in
this work. Therefore we will not discuss such kinds of
processes here. The relative phases δηð0Þ of Eq. (17) for the

ηc mediating effects in the ψ 0 → Vηð0Þ decay processes, are
found to be insensitive to our present studies. As a result,
the phases of δηð0Þ in the ψ 0 decays will be fixed to zero

throughout. The previous study in Ref. [18] pointed out a
strong correlation between the d2 and d5 parameters, and
we find that this correlation still holds in our joint fit. The
resulting relation turns out to be d5 ¼ 3.57d2 þ 0.01.
Regarding the four parameters F8, F0, θ8, and θ0 related
with the η − η0 mixing, our current determinations of the
central values and uncertainties more or less resemble those
in Ref. [20]. In Ref. [18], only the data from the light-flavor
sector were considered and the resulting η − η0 mixing
parameters were found to bear large uncertainties. The
simultaneous inclusion of the relevant data from the J=ψ
and ψ 0 processes, together with the light-flavor ones, can
obviously pin down the uncertainties of the η − η0 mixing
parameters [20,41–43]. In Table I, we also give the
predictions to the mixing parameters in the quark-
flavor basis.
Generally speaking, the numerous types of data are well

reproduced in our comprehensive fit. The comparisons of
the various decay widths for the pure light-flavor processes

TABLE I. Parameters from the joint fit. The quantities marked with asterisk are predictions,
instead of free parameters in the fit.

F8 ð1.41� 0.02ÞFπ F0 ð1.36� 0.03ÞFπ

θ8 ð−24.3� 0.4Þ∘ θ0 ð−12.8� 0.5Þ∘
FV 139.04� 1.72 c3 0.0046� 0.0003
c4 −0.0014� 0.0001 d2 0.100� 0.008
h1 ð−2.35� 0.06Þ × 10−5 h2 ð−3.08� 0.60Þ × 10−5

h3 ð3.39� 0.22Þ × 10−6 g1 ð−2.40� 0.06Þ × 10−5

g2 ð−2.23� 0.48Þ × 10−4 r1 0.40� 0.04
h01 ð0.33� 0.23Þ × 10−6 h02 ð−4.01� 0.32Þ × 10−5

h03 ð0.85� 0.47Þ × 10−6 g01 ð−1.70� 0.47Þ × 10−4

g02 ð0.18� 0.95Þ × 10−3 δη ð117.12� 3.81Þ∘
δη0 ð50.03� 16.01Þ∘ β 512.86� 7.36 MeV
β0 112.97� 0.98 MeV Fð�Þ

q
ð1.24� 0.02ÞFπ

Fð�Þ
s

ð1.52� 0.02ÞFπ θð�Þq
ð37.3� 0.7Þ∘

θð�Þs
ð35.1� 0.4Þ∘ χ2=d:o:f 157.25=ð135 − 23Þ ¼ 1.40
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from the revised fit and the updated PDG values are shown
in Table II. Similar comparisons for the partial decay widths
of the J=ψ and ψ 0 are given in Tables III and IV,
respectively. The resulting curves of the form factors for
the η → γγ�, η0 → γγ�, ϕ → ηγ� and J=ψ → η0γ� are shown
together with the experimental data in Fig. 4. The fitted
results of the recent BESIII measurements on the eþe−

spectra in the J=ψ → ηeþe− processes are illustrated in
Fig. 5. We point out a subtlety about the effects of the light-
flavor vector resonances in the eþe− spectra. In the J=ψ →
η0eþe− decays, the light-flavor vectors are removed in the

BESIII analysis [44], and as a result we have also
subtracted the contributions from the intermediate light
vector exchanges in accord with the experimental setups.
This explains the smooth line shapes of the electromagnetic
J=ψ → η0eþe− transition form factors shown in Fig. 4.
Regarding the J=ψ → ηeþe− process, we keep the effects
of the intermediate light-flavor vector resonances, in order
to be consistent with the setups of the experimental
analyses in Ref. [21]. It should be stressed that the
prominent peaks of the narrow vectors ω and ϕ can be
diluted due to the large bin widths of the experimental
energy resolutions. To clearly show the influence of the bin
widths, we give the histograms by using the energy bin
width at 50 MeV. It is evident that the signals of narrow
light vector resonances can be obviously enhanced when
the energy bin width is reduced.

TABLE II. The decay widths in units of KeV for the light-flavor
hadrons.

Experiment Fit

Γω→πγ 724.78� 34.64 705.65� 17.40
Γρ0→π0γ 70.08� 12.37 73.23� 1.81
ΓK�0→K0γ 116.36� 11.27 108.95� 2.69
Γω→πe−eþ 6.68� 0.63 6.40� 0.16
Γω→πμ−μþ 1.16� 0.18 0.63� 0.02
Γω→ηγ 3.91� 0.41 5.30� 0.11
Γρ0→ηγ 44.73� 3.39 43.93� 0.96
Γϕ→ηγ 55.28� 1.23 55.01� 1.00
Γϕ→η0γ 0.26� 0.01 0.26� 0.01
Γη0→ωγ 4.74� 0.29 5.05� 0.18
Γη→γγ 0.52� 0.02 0.50� 0.01
Γη0→γγ 4.34� 0.20 3.92� 0.11
Γη→γe−eþ ð9.04� 0.89Þ × 10−3 ð8.32� 0.23Þ × 10−3

Γη→γμ−μþ ð0.41� 0.07Þ × 10−3 ð0.39� 0.01Þ × 10−3

Γη0→γμ−μþ ð2.12� 0.61Þ × 10−2 ð1.47� 0.04Þ × 10−2

Γϕ→ηe−eþ 0.459� 0.018 0.460� 0.008

TABLE III. Branching fractionsð×10−3Þ of the decay processes for J=ψ.

Experiment Fit

J=ψ → ρ0π0 5.6� 0.7 5.5� 0.3
J=ψ → ρπ 16.9� 1.5 16.2� 1.0
J=ψ → ρ0η 0.193� 0.023 0.185� 0.021
J=ψ → ρ0η0 0.081� 0.008 0.080� 0.007
J=ψ → ωπ0 0.45� 0.05 0.45� 0.04
J=ψ → ωη 1.74� 0.20 1.65� 0.09
J=ψ → ωη0 0.189� 0.018 0.189� 0.018
J=ψ → ϕη 0.74� 0.08 0.76� 0.06
J=ψ → ϕη0 0.46� 0.05 0.45� 0.05
J=ψ → K�þK− þ c:c: 6.0� 1.0 6.6� 0.3
J=ψ → K�0K̄0 þ c:c: 4.2� 0.4 3.8� 0.2
J=ψ → π0γ 0.0356� 0.0017 0.0341� 0.0016
J=ψ → ηγ 1.085� 0.018 1.085� 0.013
J=ψ → η0γ 5.25� 0.07 5.35� 0.04
J=ψ → π0eþe− ð0.076� 0.014Þ × 10−2 ð0.129� 0.004Þ × 10−2

J=ψ → ηeþe− ð1.42� 0.08Þ × 10−2 ð1.35� 0.02Þ × 10−2

J=ψ → η0eþe− ð6.59� 0.18Þ × 10−2 ð6.08� 0.05Þ × 10−2

TABLE IV. Branching fractionsð×10−3Þ of the decay processes
for ψ 0. The ψ 0 → ωη channel is not included in the fit, instead the
result corresponds to our prediction, which is around two times
smaller than the upper limit 1.1 × 10−5 reported in PDG [4].

Experiment Fit

ψ 0 → ρπ 0.032� 0.012 0.037� 0.010
ψ 0 → ρ0η 0.022� 0.006 0.021� 0.005
ψ 0 → ρ0η0 0.019� 0.017 0.028� 0.008
ψ 0 → ωπ0 0.021� 0.006 0.021� 0.004
ψ 0 → ωη ... 0.005� 0.003
ψ 0 → ωη0 0.032� 0.025 0.033� 0.019
ψ 0 → ϕη 0.031� 0.003 0.032� 0.003
ψ 0 → ϕη0 0.0154� 0.0020 0.016� 0.002
ψ 0 → K�þK− þ c:c: 0.029� 0.004 0.029� 0.004
ψ 0 → K�0K̄0 þ c:c: 0.109� 0.020 0.080� 0.011
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FIG. 5. The form factors and differential branching fractions for the J=ψ → ηeþe−. The experimental data are from the Ref. [21]. The
red solid lines represent the curves with the central values of the parameters in Table I, and the shaded areas stand for the error bands. The
histograms are obtained by taking energy bin width at 50 MeV.

FIG. 4. The form factors for the η → γγ�, η0 → γγ�,ϕ → ηγ�, and J=ψ → η0γ�. The red solid lines are obtained by taking the central values
of the parameters in Table I, and the shaded areas correspond to the error bands at 1-σ level. The experimental data on the form factors for the
η → γγ�, η0 → γγ�, ϕ → ηγ� and J=ψ → η0γ� are taken from Refs. [45–50], Refs. [45–47,50,51], Ref. [48], and Ref. [44], respectively.
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With the fitted parameters in Table I, it is then interesting
to decipher the roles of different mechanisms and reso-
nances played in a given process.
The J=ψ → Plþl− processes can provide an environ-

ment to study the intermediate hadron resonances [20,52].
Recently, the J=ψ → ηγ�ð→ eþe−Þ form factors are
reported by the BESIII collaboration in Ref. [21], in which
the experimental analysis includes only the ρ resonance in
the eþe− spectra, apart from the QED contributions.
However, it is pointed out that the ρ contribution should
come from an isospin violated intermediate process
J=ψ → ηρ → ηeþe−. In contrast, the contributions from
the ω and ϕ are expected to be more important, since they
enter via the isospin conserved intermediate processes
J=ψ → ηω and J=ψ → ηϕ, whose branching ratios are
around eight and four times larger than that of the J=ψ →
ρη in order. As a result, we expect that the effect of the ρ
resonance is much suppressed, compared to the contribu-
tions from ω and ϕ. Due to the narrow widths of the latter
two resonances, they manifest themselves as prominent
peaks in the eþe− spectra, as shown in Fig. 5. However,
these narrow peaks can be easily washed out when the
energy resolution is low. E.g., we also explicitly give
the energy distributions of the eþe− in Fig. 5 when taking
the energy bin width at 50 MeV. In the latter case the

signals of the narrow ω and ϕ become fairly visible. As
pointed out in Refs. [20,40,53], we also confirm the
importance of the ηð0Þ − ηc mixing mechanism in the
J=ψ → ηð0Þγð�Þ decay processes. A future experimental
measurement with higher energy resolution will be defi-
nitely helpful to discriminate the roles of different hadrons
in the J=ψ → ηeþe− process. In Table V, we give our
predictions to the branching ratios of various J=ψ → Plþl−
processes and also make comparisons with the results in
Refs. [20,54,55].
Our study reveals an interesting feature that can shed

light on the ρπ puzzle in the J=ψðψ 0Þ → VP decays. For
this purpose, let us focus on the interplay between the
electromagnetic and strong interactions in the J=ψðψ 0Þ →
VP processes. We separately show the contributions from
the strong and electromagnetic interactions to the isospin
conserved and violated decays for J=ψ and ψ 0 in Tables VI
and VII, respectively. The contributions from the strong
interactions are given by the hi¼1;2;3 terms in Eq. (14), while
the electromagnetic contributions are obtained by taking
hi¼1;2;3 ¼ 0. For the J=ψ → VP decays, the contributions
from strong interactions turn out to play major roles in most
of the isospin conserved channels, with the exception of the
J=ψ → ϕη0 process, where the strengths of the two types of
interactions are comparable. While the isospin violated

TABLE V. Branching ratios ð×10−5Þ for J=ψ → Plþl−.

Experiment This Work Ref. [20] Ref. [54] Ref. [55]

ψ → π0eþe− 0.076� 0.014 0.1294� 0.0044 0.1191� 0.0138 0.0389þ0.0037
−0.0033 ...

ψ → ηeþe− 1.42� 0.08 1.35� 0.02 1.16� 0.08 1.21� 0.04 1.38
ψ → η0eþe− 6.59� 0.18 6.08� 0.05 5.76� 0.16 5.66� 0.16 6.06
ψ → π0μþμ− ... 0.0304� 0.0010 0.0280� 0.0032 0.0101þ0.0010

−0.0009 ...
ψ → ημþμ− ... 0.40� 0.01 0.32� 0.02 0.30� 0.01 0.46
ψ → η0μþμ− ... 1.64� 0.02 1.46� 0.04 1.31� 0.04 1.72

TABLE VI. The effective couplings of Gψ→VP in units of 10−6 MeV−1.

Isospin conserved cases Experiment Strong interaction EM interaction

jGJ=ψ→ρ0π0 j 2.537� 0.154 2.899� 0.075 0.385� 0.006
jGJ=ψ→ρπ j 4.408� 0.191 5.022� 0.129 0.709� 0.009
jGJ=ψ→ωηj 1.497� 0.084 1.586� 0.037 0.132� 0.009
jGJ=ψ→ωη0 j 0.562� 0.026 0.647� 0.028 0.119� 0.008
jGJ=ψ→ϕηj 1.060� 0.056 1.270� 0.045 0.198� 0.031
jGJ=ψ→ϕη0 j 0.974� 0.052 1.074� 0.049 2.031� 0.044
jGJ=ψ→K�þK− j 2.011� 0.161 2.313� 0.048 0.216� 0.036
jGJ=ψ→K�0K̄0 j 1.686� 0.078 2.308� 0.048 0.715� 0.009

Isospin violated cases Experiment EM interaction Strong interaction

jGJ=ψ→ρ0ηj 0.498� 0.029 0.487� 0.028 ...
jGJ=ψ→ρ0η0 j 0.367� 0.018 0.365� 0.017 ...
jGJ=ψ→ωπ0 j 0.721� 0.039 0.720� 0.035 ...
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channels can only receive contributions from the electro-
magnetic interactions, since the isospin breaking effects
from the strong interaction parts are not included in this
work. According to the results shown in Table VII, for the
ψ 0 → VP processes, the strong interactions are found to
play comparable roles in many of the isospin conserved
channels as those from the electromagnetic parts.
Especially, the electromagnetic interaction turns out to
play the dominant role in the ψ 0 → ρπ process and the
effects from the strong interactions are found to be very
small. In contrast, the strong interactions dominate the
decay of J=ψ → ρπ process and the electromagnetic effects
appear to be small. This provides a sensible explanation to
the ρπ puzzle.
For the charged K�þK− þ c:c: and neutral K�0K̄0 þ c:c:

decay processes of J=ψ orψ 0, theSUð3Þ breaking effects can
originate from the strong interactions via the h2 term in
Eq. (14), which turns out to be the same for both charged and
neutral processes, and the electromagnetic interactions via
the cj terms in Eq. (12), where the c4 operator is found to
solely contribute to the charged process [19]. The contri-
butions from the electromagnetic parts to the J=ψ → K�K̄ þ
c:c: processes are obviously smaller than those from the
strong interactions, which explains the similar branching
ratios between J=ψ → K�þK− þ c:c: and J=ψ → K�0K̄0 þ
c:c: In contrast, our study reveals that the magnitudes of the
strong interactions in the ψ 0 → K�K̄ þ c:c: can be compa-
rable with those of the electromagnetic parts. While, the
SUð3Þ breaking effects in the electromagnetic parts are quite
different for the charged and neutral decay processes due to
the c4 operator [19]. This gives a new insight and also a
reasonable explanation to the very different branching ratios
of the ψ 0 → K�þK− þ c:c: and ψ 0 → K�0K̄0 þ c:c.

IV. SUMMARY AND CONCLUSIONS

We use the effective Lagrangian approach to simulta-
neously investigate the processes of J=ψðψ 0Þ → VP,

J=ψ → Pγ,J=ψ → Plþl−, the radiative decays of light-
flavor hadrons and their relevant form factors. High energy
constraints on the resonance couplings are used to reduce
the number of free parameters. The remaining resonance
couplings are then determined through the joint fit to a large
amount of experimental data, including the updated PDG
averages of the various partial decay widths and the most
recent J=ψ → ηγ� form factors from BESIII.
Thanks to the use of effective Lagrangian, the different

types of contributions from the OZI allowed/suppressed
strong interactions, SUð3Þ breaking terms and electromag-
netic effects can be easily identified in our study. We pay
special attention to the relative magnitudes from the strong
and electromagnetic interactions in the J=ψ → VP and
ψ 0 → VP processes, so as to provide an insight into the ρπ
puzzle. An anatomy of the J=ψ → ρπ and ψ 0 → ρπ
amplitudes reveals that the strong interaction dominates
the former process and the electromagnetic interaction
prevails the latter one. For the obviously distinct ratios
between the charged Bðψ 0 → K�þK− þ c:c:Þ=BðJ=ψ →
K�þK− þ c:c:Þ and the neutral Bðψ 0 → K�0K̄0 þ
c:c:Þ=BðJ=ψ → K�0K̄0 þ c:c:Þ processes, our study
uncovers that the J=ψ → K�K̄ þ c:c: processes are mainly
ruled by the strong interactions, where the SUð3Þ breaking
effects enter similarly in both the charged and neutral
amplitudes, while the ψ 0 → K�K̄ þ c:c: decays are found to
be importantly affected by the electromagnetic interactions,
where the SUð3Þ symmetry breaking terms appear differ-
ently in the charged and neutral processes.
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TABLE VII. The effective couplings of Gψ 0→VP in units of 10−6 MeV−1.

Isospin conserved cases Experiment Strong interaction EM interaction

jGψ 0 → ρπj 0.255� 0.044 0.029� 0.036 0.255� 0.016
jGψ 0 → ωηj ... 0.103� 0.038 0.036� 0.003
jGψ 0 → ωη0j 0.288� 0.096 0.212� 0.079 0.079� 0.013
jGψ 0 → ϕηj 0.275� 0.013 0.285� 0.030 0.565� 0.029
jGψ 0 → ϕη0j 0.213� 0.013 0.197� 0.068 0.412� 0.067
jGψ 0 → K�þK−j 0.181� 0.012 0.263� 0.021 0.093� 0.021
jGψ 0 → K�0K̄0j 0.352� 0.031 0.267� 0.021 0.568� 0.007

Isospin violated cases Experiment EM interaction Strong interaction

jGψ 0 → ρ0ηj 0.219� 0.028 0.216� 0.026 ...
jGψ 0 → ρ0η0j 0.222� 0.083 0.271� 0.040 ...
jGψ 0 → ωπ0j 0.207� 0.028 0.208� 0.019 ...
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APPENDIX: THE EXPRESSIONS OF THE EFFECTIVE COUPLINGS FOR ψ 0 → VP

The expressions of the effective couplings in the ψ 0 → VP processes defined in Eq. (20) take the form:
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ffiffiffi
2

p
πα

3

fψ 0

Mψ 0
Fϕη0γ� ðM2

ψ 0 Þ; ðA9Þ
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Gψ 0→K�þK− ¼ 2
ffiffiffi
2

p

FKMK�
h01Mψ 0 þ 8

ffiffiffi
2

p

FKMK�
h02m

2
K

1

Mψ 0
þ 8

ffiffiffi
2

p
πα

3

fψ 0

Mψ 0
FK�þK−γ� ðM2

ψ 0 Þ; ðA10Þ

Gψ 0→K�0K̄0 ¼ 2
ffiffiffi
2

p

FKMK�
h01Mψ 0 þ 8

ffiffiffi
2

p

FKMK�
h02m

2
K

1

Mψ 0
þ 8

ffiffiffi
2

p
πα

3

fψ 0

Mψ 0
FK�0K̄0γ� ðM2

ψ 0 Þ; ðA11Þ

with

a1 ¼
F

cosðθ0 − θ8Þ
�
cos θ0ffiffiffi
6

p
F8

−
sin θ8ffiffiffi
3

p
F0

�
;

a2 ¼
F

cosðθ0 − θ8Þ
�
sin θ0ffiffiffi
6

p
F8

þ cos θ8ffiffiffi
3

p
F0

�
;

a3 ¼
F

cosðθ0 − θ8Þ
�
−2 cos θ0ffiffiffi

6
p

F8

−
sin θ8ffiffiffi
3

p
F0

�
;

a4 ¼
F

cosðθ0 − θ8Þ
�
−2 sin θ0ffiffiffi

6
p

F8

þ cos θ8ffiffiffi
3

p
F0

�
: ðA12Þ

The expressions FK�þK−γ� and FK�0K̄0γ� that correspond to the electromagnetic contributions to the effective couplings of
Gψ 0→K�þK− and Gψ 0→K�0K̄0 are given by

FK�þK−γ� ðsÞ ¼
−2

ffiffiffi
2

p

3FKMVMK�
½ðc1 þ c2 þ 8c3 − c5Þm2

K þ ðc2 þ c5 − c1 − 2c6ÞM2
K� þ ðc1 − c2 þ c5Þs

þ 24c4ðm2
K −m2

πÞ� þ
2FV

3FKMK�
½ðd1 þ 8d2 − d3Þm2

K þ d3ðM2
K� þ sÞ�½DωðsÞ þ 3DρðsÞ − 2DϕðsÞ�; ðA13Þ

and

FK�0K̄0γ� ðsÞ ¼
4

ffiffiffi
2

p

3FKMVMK�
½ðc1 þ c2 þ 8c3 − c5Þm2

K þ ðc2 þ c5 − c1 − 2c6ÞM2
K� þ ðc1 − c2 þ c5Þs�

þ 2FV

3FKMK�
½ðd1 þ 8d2 − d3Þm2

K þ d3ðM2
K� þ sÞ�½DωðsÞ − 3DρðsÞ − 2DϕðsÞ�: ðA14Þ

It is pointed out that SUð3Þ breaking effect caused by the c4 term only enters in the charged FK�þK−γ� amplitude and is
absent in the neutral FK�0K̄0γ� process. For the expressions of other amplitudes FVPγð�Þ , they are given in Appendix of
Ref. [20] and we do not repeat them here.
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