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We calculate the strong decay couplings for p — 27, ¢ - KK, K* — Kz, and D* — Dz in a unified and
consistent approach based on the impulse approximation, nonperturbative solutions of the quark-gap
equation and the Poincaré invariant Bethe-Salpeter amplitudes of vector and pseudoscalar mesons. In

particular, we obtain the coupling gpp, = 17.243_’%’

in very good agreement with the experimental value

by CLEO, which corresponds to a strong effective coupling between heavy vector and pseudoscalar

mesons to the pion of § = 0.58010.
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I. INTRODUCTION

One of the challenges in hadron physics is to understand
the spectrum, constituent composition and momentum
distribution of quarks and gluons within the hadrons. To
obtain deeper insight into the hadron’s structure, their
excitations have been intensively investigated in the past
decades. This includes radial excitations, higher angular-
momentum states and exotic states containing constituent
gluons that contribute to the total angular momentum of the
hadron.

The vector mesons, being the lowest-spin excitations of
the pseudoscalars, offer a first glimpse into an electromag-
netic excitation of a gqg pair. This is because neutral vector
mesons can directly couple to the photon via an electro-
magnetic current since their quantum numbers, J°¢ = 177,
are those of the photon. Naturally, they have been much
studied and from the viewpoint of functional approaches to
quantum chromodynamics (QCD) they were helpful to
establish the ladder truncation of the Bethe-Salpeter equa-
tion (BSE) [1], at least for the ground states of lighter vector
mesons. Of course, beyond the masses of the pseudoscalar
and vector mesons, their electromagnetic and electroweak
properties are of fundamental interest and there is no lack of
studies dedicated to weak decay constants, elastic and
transition form factors [2-16].

Beyond these observables, the strong decays of vector
mesons into two light(er) mesons provide another
source of information on the nonperturbative dynamics
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complementary to electromagnetic interactions and weak
decays. They are the simplest possible decays that proceed
via strong interactions and since the vector meson decays
via a P-wave interaction, the Bethe-Salpeter amplitude
(BSA) is probed differently than in the electroweak sector.
In here, our main object of interest is the reaction D* — Dx
which we studied in Refs. [17-20] within the limitations of
not having the BSA of charmed mesons at hand, but
motivated by the first measurement of the D* width,
['(D*") =96 £ 4 £+ 22 keV [21]. This result is of great
interest, as it is one of the few quantities in flavor physics
that does not probe electroweak properties of heavy mesons
and which opens a window on nonperturbative QCD in
mesons with two very distinct mass scales. Moreover, the
strong coupling gp+p, one can extract from the decay width
is related to a putative universal coupling § between heavy-
light mesons and a low-momentum pion in the heavy-
meson chiral Lagrangian [22-24]. At leading order in the
1/mp expansion this relation is gp-p, = 2+/mpmpg/ f.

These calculations were based on one-covariant models
of the D and D* wave functions and were therefore not
Poincaré invariant, so that the momentum partition param-
eters had to be chosen according to some semiclassical
criterium [17]. This, of course, was not satisfactory and the
motivation remained to compute the decay amplitude
guided by Ref. [25] which dealt with the decays
p— an, ¢ - KK and K* — Kx. In this work we close
this gap and compute the vector-meson decay with the
complete Poincaré covariant structure of the BSA for the D,
D* and pion. Along the way, we also obtain the strong
couplings considered in Ref. [25] which we update.

The remainder of this paper is composed of five sections:
In Sec. II we explain the framework in which the strong
couplings are calculated and define the decay kinematics;
in Sec. III we describe the functional approach to QCD we
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use to calculate the quark propagators and the BSA of the
mesons within a given truncation scheme in Euclidean
space; in Sec. IV the numerical method to solve the BSE is
summarized and the meson’s masses and weak decay
constants are calculated. Finally, in Sec. V we present
our results for the strong couplings and wrap up with final
remarks in Sec. VL.

II. STRONG DECAY AMPLITUDE

In what follows, we limit ourselves to the impulse
approximation of the strong decays depicted in Fig. 1.
As argued in Ref. [25], since the p and ¢ appear as
resonance poles in the timelike electromagnetic form
factors of the pion and kaon, the pole residues are propor-
tional to the respective coupling constants g,., and g,xk-
Hence, if these form factors are obtained in impulse
approximation, so will be the couplings. Now, the impulse
approximation for the electromagnetic coupling to mesons
conserves the current as long as the meson’s BSA and
quark-photon vertex are calculated in the ladder and the
quark propagators in rainbow truncation, respectively, and
the resulting electromagnetic form factors are in excellent
agreement with experiment [2,8—10].

In the timelike region, on the other hand, the ladder
truncation of the BSE fails to produce the p pole in ete™ —
y* = a2~ and was amended to include effective pion
degrees of freedom in the BSE scattering kernel [26-28].
Therefore, we expect that the impulse approximation for
the strong decays of lighter mesons misses some of the
relevant physics, in particular in the case of the p meson
whose decay width is almost 20% of its mass. Going
beyond this approximation, not merely in the BSE kernel
but also in the decay amplitude, is a technically and
numerically challenging task. As the main aim here is to
improve on earlier calculations of D* — Dx, we deliber-
ately ignore these corrections.

FIG. 1. Decay diagram depicting a generic strong decay V —
PP in the impulse approximation of Eq. (2). The shaded ovals
represent vector (V) and pseudoscalar (P) meson BSAs (15),
while the dark-shaded circles symbolize dressed quark propa-
gators (34) and the double-lined arrows describe the incoming
vector-meson momentum and outgoing pseudoscalar-meson
momenta.

The strong decay coupling for a process V — PP is
defined as

(P(p2)P(q)|V(p1,4)) = gvrp€* - q, (1)

where the initial state is a vector meson with transverse
polarization € and momentum p? = —m7, while the light
(er) mesons have on shell momenta pj = —m3, ¢°> = —m>,
with ¢ = p; — p,, and can have different flavor content.
The decay amplitude in impulse approximation can be

expressed by the loop integral,
A A dk 2
gypp€’ - q = / WTrCD[e Ty (ky, p1)Ss(ky)
X Tp(kp. =p2)S;(ka)Cp(kp, —q)Sp(k3)]. (2)
Here, I'(k, P) are the BSAs of the mesons, S(k;) are the
quarks propagators and the trace is over color and Dirac

indices. Following the momentum flow in Fig. 1, the quark
momenta are defined as

ky = k+wip, (3)
ky =k +wip, = pa, (4)
ky =k —wyp;, (5)

with the constraint w; + w, = 1 on the partition parameters
due to momentum conservation. The relative BSA
momenta are given by

1
ky = k+§(W1 —w2)pi, (6)
1
kp =k +wip 5P (7)
Kp = k2 (g = wa)py — 2 (3)
P = 2W1 w2)P1 2192-

Note that the relative momentum of the vector meson is
only real if w; = w,, as in the meson’s rest frame p; =
(0, imy) in the Euclidean-space formulation we use. This
will be discussed in more detail in Sec. V.

We conclude this section by mentioning some definitions
with respect to the charge when one of the final mesons is
an isovector state. We follow Ref. [29] and define the
generic D* Dz coupling as the one containing the neutral
meson,

90*Dr = Ip**DF2° = 9ID*ODOr0
1 1
= EgD*—Doﬁﬂr = 7§gD*+DOn_' (9)

Likewise, considering SU(3) flavor algebra one has

3
9Kk Kn = \/ggK*ﬂﬁnO = \/;QK*+K%+, (10)

and moreover g,,, = 907t 7> 9pkK = 9pK+K--
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In Sec. III we describe how the ingredients of the strong
decay amplitude (2), namely the quark propagators and
BSAs, are obtained from solving the quark-gap equation
and the BSE.

III. PSEUDOSCALAR AND VECTOR MESON
BOUND STATES

A. Bethe-Salpeter equation

The relativistic initial and final bound states in the decay
amplitude (2) are described by Poincaré covariant BSAs,
I}7(k, P) and TY¢ (k,P), which are the solutions of the
homogeneous BSE in the JP¢ =0"* and JPC =1-"
channels, respectively [30],

4 A d*q
tpn = [

A d4q
/9 (k, P) =
Vl/( ’ ) / (2”)4

In these BSEs, k is the relative quark-antiquark momentum,
P is the meson momentum and K/9(k,q, P) is the fully
amputated scattering kernel which sums up all possible
quark-antiquark interactions. The Bethe-Salpeter wave
functions, ;(1’;9 (k, p) and 1 (k, P), are obtained by attach-
ing the quark propagators to the BSA,

K'9(k.q.P)z}(q.P). (11)

K'(k,q.P)zyi(q.P).  (12)

27 (k. P) = Sy (k)T (k. P)S,(ky). ~ (13)

(k. P) = 8 (k, UV, (k. P)S, (ky). (14)

with the shorthands, k, = k+nP and k; = k — 7P, that
define momentum-partition parameters, 7 + 77 = 1.

The BSA has the most general Poincaré covariant form
that can be composed of the Dirac matrices and the relative
and total momenta consistent with the quantum numbers P
and C of a given meson,

T} (k, P) = Z

=

Ti(k,P)FI(k.P.z),  (15)

where Ti(k,P) are Dirac covariants, F { 9 are scalar
Lorentz-invariant amplitudes and z;, = k- P/|k||P| is an
angle between k and P. In the case of pseudoscalar mesons,
we choose the usual N = 4 covariants,

T'(k, P) = iys (16)
T*(k,P) =ysr - P, (17)
T3(k,P) = ysy - kk - P, (18)
T4k P) = 750k, P, (19)

and for a vector meson N = 8 covariant vector components
are required,

Ty (k, P) = iy, (20)

Ty (k, P) = i[3k[y - k" =yl (K")?], (21)
T3(k,P) = ik - Py - PkT, (22)

Ty (k,P) = ilyJy - Py - k" + Ky - P, (23)
T3 (k, P) = kI, (24)

T9(k,P) = k- Plyly - k" —y - K"y[], (25)

T)(k.P) =yly-P—y- Pyl —2T5(k,P),  (26)

T8(k,P) = kly - k"y - P. (27)

The transverse projections are V! =V, — P, (V- P)/P?
with P- VT =0 for any four-vector V, and Kk =1.
Note that the T,’, (k, P) in Egs. (20)—(27) form an orthogonal
basis [1,31] with respect to the Dirac trace.

In order to calculate the meson’s weak decay constant,
one has to normalize the meson’s BSA. We do so with the
derivative of the eigenvalue trajectory, A(P?), of the BSE
[32,33],

oln A\ !
opP?

With this we calculate the weak decay constant of the
pseudoscalar meson defined by

4
:trCD/(‘ZH)‘ 9 (k; —P)

x S (kT3] (ks P)S,,(Kz). (28)

frPy = (01ggrsy,qys|P(k, P)). (29)

which can be expressed by the integral

fPPy

zfg/x;@%mmﬁwm.cm

Likewise, the weak decay constant of a vector meson is
defined by the amplitude,

fvmv€ <O|qq7ﬂ‘1f|v(k P /1)> (31)
where my is the vector-meson mass and e, (P) is the
polarization vector of the transverse vector meson of

helicity 1 which satisfies ¢* - P = 0 and is normalized as
e** - ¢ = 3. This can again be expressed by a loop integral,
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Z,N, [N d*k ‘

—= [ —Tr g (k,P)]. (32
In both expressions for the decay constants we define
Zy(u, N) = /Z4+/Z4, as in Sec. IIC, and N, = 3.

fymy =

B. Quark gap equation

Amongst the Green functions that enter the BSE,
whether in Eq. (11) or Eq. (12), are the flavor-dependent
dressed quark propagators described by Schwinger func-
tions we obtain as solutions of the Dyson-Schwinger
equation (DSE),

S'(p) = Zi(iy - p + miy™)
D@ S S T )
(33)
where m?m is the bare current-quark mass, Z{(u,A) and

7] (1. A) are the vertex and wave-function renormalization
constants at the renormalization point y, respectively. The
integral in Eq. (33) represents the self-energy of the quark
and involves the dressed-quark propagator S;(k), the
dressed-gluon propagator D, (¢) with momentum g = k —
p and the quark-gluon vertex, 'Y (k, p) = 12T, (k, p) [34-
36], where the SU(3) color matrices A are in the funda-
mental representation. The Poincaré-invariant regulariza-
tion scale is A > u and can be taken to infinity. The
solution of the DSE can be cast in the most general
covariant form as

S¢(p) = =iy - pov(p?) + ol (p?)
=Z;(p*)/liy - p + Ms(p?)]. (34)
In this DSE, Z;(p?) defines the wave function and M ;(p?)

is the running mass of the quark. The scalar functions

ol (p?) and o/ (p?) thus depend on Z;(p?) and M(p?). In
a subtractive renormalization scheme the two renormaliza-
tion conditions,

Zi(w) =1, (35)
SF (W) = iy - p 4+ ms(u), (36)

are imposed, where m(u) is the renormalized current-
quark mass related to the bare mass by

Zl (. N)mp(u) = Z5(u, AymB™(A), (37)

and Zf: (u, A) is the renormalization constant that pertains to
the mass term in the QCD Lagrangian.

C. Truncation scheme

The rainbow-ladder (RL) truncation of the integral
equation (33) and of the BSE kernel has proven to be a
robust and successful symmetry-preserving approximation
and allows for the description of light ground-state mesons
in the isospin-nonzero pseudoscalar and vector channels.
The RL truncation is realized by restricting the fully
dressed quark gluon vertex to the perturbative vertex,

Iy— Z’;yy. The DSE kernel then reduces to [37]

a

(206, (a2) D (q)

Zlg D;w(‘])r‘u,f(k’ p) = 2

Voo (38)
in which an Abelianized Ward identity is enforced that
leads to Z{ =

gluon interaction in I',(k, p). An additional factor Z’; in
Eq. (38) ensures multiplicative renormalizability of the
DSE and therefore the mass function M ¢(p?) is a renorm-
alization-point invariant quantity [38].

We work in Landau gauge in which the free-gluon
propagator is transverse,

Zé [30] and implies the omission of the three-

. 9,9, 1
Di<(q) ==5b(5,w— ud );, (39)

q

and introduce the flavor-dependent interaction,

Gr(q?)

Z GR(q?) + 4napr(q®), (40)

where we deliberately absorb a factor 1/¢> from the gluon
propagator (39). The dressing function § f(qz) consists of a
term that dominates in the infrared domain,
and is suppressed at large momenta, and a second term that
implements the regular continuation of the perturbative
QCD coupling and dominates large momenta. We use the
model of Ref. [39] given by

2 2
Rq?) = FDfe v/ (41)

8%y wé(q*)
In [z + (1 + qz/AQCD> ]

47[&}71“ (qz) ’ (42)

in which y,, = 12/(33 —2N/) is the anomalous mass
dimension and N/ is the active flavor number. Agcp =
0.234 GeV, 7 =e> -1, £(¢%) = [1 —exp(—¢*/4m?)]/¢*
and m, = 0.5 GeV.

The flavor dependence of the interaction Gif(¢) has
been used in Refs. [40-45] to accommodate the strong
flavor-symmetry breaking effects that led to complications
in the calculation D- and B-meson properties [46,47]; see
Refs. [44,45,48] for the details of the implementation of the
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TABLE I. Parameters of the interaction model in Egs. (41) and
(45), m;(u), w; and k = (wDy)"/3 (in GeV). MY is the Euclidean
constituent quark mass, Mf = {p*|p* = Mz(p )}

Flavor ~ m;(19 GeV) m (2 GeV)  w; K M}
u, d 0.0034 0.018 0.500 0.80 0.408
s 0.082 0.166 0.500 0.80 0.562
c 0.903 1.272 0.698 0.60 1.342
b 3.741 4.370 0.640 056 4.259

BSE kernels (11) and (12) consistent with Eq. (38). Suffice to
say that herein we choose G,(¢%) = G4(q%) = G,(q°) #
Ge(q)-

The form of the quark-antiquark ladder kernel we
therefore employ differs somewhat from the usual one in
case of heavy-flavored mesons,

gfq(lz)
l2

A2l

Kf_(](k7QaP):_Z2 2}//42

Dfree( l) ( 43)
in which the relative momentum is / = k — ¢g. In other
words, in Eq. (43) we combine the wave function renorm-

alization constants of both quarks, Z,(u, A) = \/Zg VZ5,
and use the averaged interaction,
Gr() _
= GR(P) + dndpn (), (44)

which leads to a different treatment of the light and heavy
quarks. The interaction in the low-momentum domain is
given by the Gaussian form,

872

(o VDD ). (45)

gIR( ) =
(0w,
while 4zd@pr(q?) is as in Eq. (42). The parameters of this
interaction model are listed in Table I [44].

The only missing ingredient now is the quark propagator
for complex momenta,

S(4y) = =ir - 4,04 (a3) + o (a}), (46)

and likewise for S;(g;), as in Euclidean space the argu-
ments q% and q,% define parabolas on the complex plane,

q% = q2 — nzmﬁd + 2il7mM|Q|Zq,
q% = qZ — ﬁzmﬁd - 211_7mM|q|Zq, (47)

where z, = ¢ - P/|q||P|. We apply Cauchy’s integral theo-
rem as described, e.g., in Ref. [49] and obtain the solutions
of the DSE on the complex plane with the contour para-
metrization of the parabola defined in Ref. [46]; see
Refs. [44,50] for graphic visualizations of o%(g32).

IV. PSEUDOSCALAR AND VECTOR MESON
PROPERTIES

Using the quark propagators on the complex momentum
plane (47) and the BSE kernel (43) in Eqgs. (11) and (12),
we treat the BSE as an eigenvalue problem [51,52]. For
instance, in case of the vector mesons, the covariant
decomposition in Eq. (15) along with the orthogonality
of the basis in Egs. (20) to (27) allow to recast the
homogeneous BSE (12) with the kernel (43) in a set of
eight coupled-integral equations,

19 4 [N 2\ pfr 19
i P.x) = =323 [ Gu(PIDEOF ] a.P.2)

x Trp[Th (k, P)y,S;(a,)Th(q. P)S,(q7)7.).

(48)

where the mnemonic shortcut for the integral represents the
same integral with Poincaré-invariant cutoff as before. In
solving this equation system numerically, we expand the
scalar amplitudes in terms of Chebyshev moments,

Flo(k, P),

m

FlI(k, P, z,) fog (k, P)U,(z0),  (49)

which allows for a faster convergence. We consider m = 3
Chebyshev polynomials, U,,(z,), of second kind. The
eigenvalue problem for the vector F := {F;, ..., Fg} is
then solved by means of Arnoldi factorization in the
ARPACK library [53]. Details of the practical implementa-
tion of ARPACK in a numerical treatment of the BSE are
reviewed, for instance, in Refs. [46,54].

The masses, mp and my, of the ground state pseudo-
scalar and vector mesons are the solutions of the eigenvalue

TABLE II. Masses and weak decay constants (in GeV) of
ground-state pseudoscalar and vector mesons, M = P, V. The
experimental mass values are taken from the Particle Data Group
(PDG) [55] and the leptonic decay constants for the p, K* and ¢
mesons are derived from their experimental decay width via
fr = %/erv_»we-- The decay constant of the D* meson is a
lattice-QCD prediction by the ETM Collaboration [56]. The
relative deviations from experimental values are given by
€, = ‘Uexp _ Uth‘/vexp'

my myY e, B fu o S e, (%)

a(ud) 0.140 0.138  1.45  0.094 0.092(1) 2.17
K(us) 0.494 0494 0.0 0.110 0.110(2) 0.0

D(cd) 1.867 1.864 0.11 0.144 0.150 (0.5) 4.00
p(un) 0730 0.775 5.81 0.145 0.153(1) 5.23
¢(ss) 1.070 1.019 520 0.187 0.168(1) 11.31
K*(us) 0.883 0.896 145 0.163 0.159(1) 2.55
D*(cir) 2.021 2.009 0.60 0.165 0.158(6) 443

034021-5
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020
Re{Fa(k*, 21)} 015

FIG. 2. Real and imaginary parts of the scalar amplitudes F(k, P) and F,(k, P) of the D* meson.

trajectory A(P? = —m3} ) = 1. They are listed along with
the leptonic decay constants in Table I and are in very good
agreement with experimental data, when available, or
lattice-QCD results otherwise. As a byproduct we obtain
the BSA of the mesons, which we illustrate with the real
and imaginary parts of the dominant scalar functions of the
D* meson in Fig. 2.

V. RESULTS

As we work in Euclidean space, the relative momenta, kp
and k, in the decay, Eqs. (7) and (8), of the final
pseudoscalar mesons and of the D* (6) are complex.
This is because in the center of mass of the initial vector
meson its four-momentum is p; = (0, imy ) and thus ky, =
k+ (w; —w,)p;/2 is only real if w; = w,. In case of the
final-state mesons, the relative momentum is inevitably
complex. In principle, due to the Poincaré invariance of the
BSAs, our calculations are independent of the choice for
the partition parameters. Practically, though, we are limited
by numerical constraints as choosing w, = 0.5 in the case
of my = mp: implies probing the light-quark propagator at
large timelike momenta, much larger than the light quark’s
mass. In this region, the solutions of the quark propagator
on the complex momentum plane are characterized by
branch cuts and/or complex-conjugate poles [50,57] and a
contour deformation is not trivial.

Having in hand the numerical BSA for real momenta, we
therefore parametrize it with a Nakanishi type of repre-
sentation which allows for an analytical continuation of the

]-"{ 9(k, P) (49) in the complex plane. In order to do so, we
split the BSA in even and odd components,

Fi(k,P)=Fk,P)+ k- PF!(k,P), (50)

in which F%!(k, P) are even under k-P — —k- P and
where we henceforth suppress the flavor indices fg. As
discussed, for instance, in Ref. [44], F!(k,P)=0 for
flavorless pseudoscalar mesons, such as the neutral pion, as
they are eigenstates of the charge-conjugation operator
defined as

Dy (k. P)—5Ty (k. P) = CTT (=, P)CT.  (51)

The constraint that the covariant basis (15) satisfies
[y (k, P) = ATy (k, P) with 4. = +1 for pseudoscalar
mesons and 1. = —1 for vector mesons, respectively,
therefore imposes a definite parity of the scalar amplitudes
Fi(k,P) under k-P — —k-P. For the neutral vector
mesons, p and ¢, this implies that the F;(k, P) are
necessarily even and F}(k, P) =0 again. In case of the
K, K*, D, and D* mesons, which are not eigenstates of C,
both amplitudes in Eq. (50) must be considered.

When the relative momentum of the meson is complex,
we choose the following analytic representation of the
scalar amplitudes for / =0, 1,

1 N 1 UjAan
‘7:l<k’P> = Zl/_] dapj(a)m, (52)
Jj=

034021-6
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FIG. 3.

Real and imaginary parts of the leading BSA of the D meson analytically continued on the complex momentum plane with the

representation in Eq. (52). Note that the amplitude is plotted on the parabola spanned by k3 (7) whose vertex lies in the timelike region.

On the real axis the BSA normalization is E D(k}7 =0,py) = 1.

where A = k? + ak - P + A* and the spectral density p;(c)
is given by,

pj(a) =5 (Cy(a) + 0;C3(a)). (53)

NS

Cf(a) and C%(a) are Gegenbauer polynomials of order
1/2. The parameters U j» A\, njand o; are listed in Tables IV,
V, VI, and VII of the Appendix for the pion, kaon, D and
D* mesons. We use real numerical BSA solutions for the
remaining mesons considered in this work, namely the p, ¢
and K*. This approach, frequently employed in calculations
of distribution amplitudes [44,58], differs from the method
in Ref. [25] based on a second-order Taylor expansion of
F(k, P) about the closest point on the positive real axis to
the complex-valued relative momenta k. We checked that
the BSA parametrization of Eq. (52) produces the correct
weak decay constants of the pseudoscalar and vector
mesons. An illustration of the analytic continuation of
the D-meson’s dominant amplitude with the parametriza-
tion of Eq. (52) is given in Fig. 3.

With these technical considerations taken into account,
we can take the trace and calculate the loop integral in
Eq. (2) for different initial and final states in the strong

TABLE III.

two-body decay of a vector meson. The couplings, gypp,
we obtain are listed in Table III, where the errors are due to
the fit uncertainties of the Nakanishi representations. We
remind that this error would increase if we included a
systematic error of the ladder truncation, as explored in
Ref. [44] for example. More precisely, it is known that
some typical observables, such as the pion and kaon masses
and weak decay constants, are insensitive to a range
w; £ Aw;, i =u, d, s, of the interaction parameter in
Eq. (41). Varying w; alters the BSA of the mesons and
this can add to the uncertainty in the strong V — PP decay
amplitude. However, modifying w,, in the D and D*
mesons is a numerically delicate matter, as no solution of
the BSA is found for the uncertainties +Aw, ;. We there-
fore abstain from including this source of error.

We consider the cases of limiting the BSA to the
dominant covariant in Eq. (15), namely ys and y, for the
pseudoscalar and vector mesons, respectively. Using
merely the dominant amplitude, g,,, is 56% larger than
the value obtained with the complete BSA. We find a
difference of 102% for the gyxx coupling which increases
to 116% for gp-p,. Clearly, this leading approximation is
not adequate even for couplings that involve only light
quarks. On the other hand, including the next four leading

Strong couplings gypp for the decay channels p — 7z, ¢ - KK, K* = Kx, and D* — Dx. The pair

(V, P) denotes the number of scalar amplitudes employed in the BSA of the vector and pseudoscalar mesons,
respectively. The theoretical errors stem from the fit to Nakanishi representations of the BSA. The reference

couplings are derived from the experimental decay widths [55] via = gjp p k*/6zmi, with k* =

[m}, = (mp, + mp,)*|[m}, — (mp, — mp,)*]/4m3,. The experimental D*Dx coupling was obtained by the CLEO

Collaboration [21]. The relative deviations from experimental values are defined as €, = |gypp — Gppl/Gvp

gvpp VPP
gypp (V,P)=(8,4) (V,P)=(5,4) (V,P)=(1,1) Reference €gypp (%)
Yprr 5137932 5.14 7.99 5.94 £+ 0.44 13.6
JprK 5.027013 5.03 10.12 5.53+0.31 9.2
9k Kn 5101022 5.25 9.08 547 £0.99 6.8
9" Dx 17.2473% 16.41 37.22 17.94£0.3 +£1.90 3.7
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FIG. 4. Comparison of theoretical values for gp-p, with the
experimental coupling extracted from the D* decay width by the
CLEO Collaboration [21] (shaded band). The couplings are taken
from Ref. [17] (DSE-BSE), Refs. [59,60] (LQCD), Ref. [29]
(QCDSR) and Ref. [61] (DQM).

covariants of the vector meson’s BSA, the dominant
physics in the impulse approximation is captured and
the couplings are within 1-5% of the values obtained with
(V,P) = (8,4).

Our values for the strong couplings mostly agree with
reference values, except for the p — 7z coupling which is
found to be the 13.6% smaller than the experimental
coupling. As mentioned in Sec. II, this is expected given
our limitation to the impulse and ladder approximation
which omits intermediate zz, KK and Kz channels.
Including explicit two-pion exchange in the BSE kernel,
the decay width of the p-meson can be determined from the
imaginary part of the resonance pole from which one
deduces a coupling constant g,,, = 5.7 [26]. The widths of
the ¢, K* and D*, on the other hand, are much smaller than
their masses and our approximation is more accurate,
though we still notice a deviation of 9.2% for g,x-

As our focus is on the D* — Dx decay, we also compare
our result with couplings obtained with lattice QCD
(LQCD), QCD sum rules (QCDSR) and a dispersion
relation quark model (DQM) in Fig. 4. Our calculation
is a significant improvement on earlier work [17-20] which
also considered the impulse approximation but employed
model wave functions for the mesons, based on the
dominant covariant term of the BSA, and a simplified,
constant-mass propagator for the charm quark. This, as we
noted in Table III, has detrimental effects on translational
invariance and the couplings depend on a suitable choice of
the partition parameters w; and w,, see the discussion in
Ref. [17]. Since our calculation is fully Poincaré covariant,
our decay amplitudes are independent of the momentum
distribution, as we verified with variations of w; and w, up
to a critical limit where we encounter singularities in the
quark propagators on the complex plane.

VI. CONCLUSION

We revisited the strong decays of vector mesons into two
pseudoscalar mesons within the framework of the DSE and
BSE, having in mind the particular decay D* — Dx. As we
argued, these decays are the simplest hadronic observables
beyond the meson’s masses, weak decay constants and
electromagnetic form factors, and thus provide additional
information about the dynamics of QCD in the nonpertur-
bative regime. In particular, the vector-meson decay to a
pair of pseudoscalars proceeds via a P-wave interaction and
therefore involves the BSA differently than the meson’s
weak decay constants. The strong D* decay is then even
more interesting, as it probes nonperturbative QCD simul-
taneously at two distinct scales, namely the light- and
charm-quark masses.

We limited ourselves to the impulse approximation for
the aforementioned reason: our BSE kernel in ladder
truncation is too simple to include 7z, KK and Kz channels
in these decays and this is most likely the largest source
of error in our calculation of the p — zz coupling.
Nonetheless, this calculation represents an important theo-
retical and numerical improvement over the simpler
approaches in Refs. [17-20], as the full Poincaré invariant
BSA structure of all mesons is included and the quark
propagators are calculated on the complex momentum
plane for all flavors. This present calculation can also
serve as a guidance to reevaluate off shell spacelike
couplings between the p and D- and D* mesons in
Ref. [20] without resorting to model wave functions.

Our final value for gp:p, is 3.7% lower than that
extracted from the experimental decay width and well
within the experimental errors. It corresponds to a universal
coupling in a chiral heavy meson Lagrangian which at
leading order in the heavy-mass expansion is given by

5= 9D Dz
2\/mpmp

A consensus seems to be growing that the most recent
theoretical couplings are in good agreement with the CLEO
value [21] extracted from the D* decay width. Future
improvements ought to consider strong zz interactions,
likely along the lines presented in Refs. [26-28], in the BSE
kernels and to go beyond the impulse approximation.

fr=0.58700. (54)
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APPENDIX: PARAMETERS OF BETHE-SALPETER AMPLITUDE REPRESENTATION

TABLE IV. Parameters of the BSA representation in Eq. (52) for the pion. In the isospin limit, m, = my, only F? contributes which
we fit to the sum of the zeroth and second Chebyshev moments.

fg A Ul U2 U3 (] () 03 n ny ns
E? 1.280 2.558 —1.559 0.0 1.810 1.548 0.0 4 5 0
FO 1.150 1.838 —0.948 —0.381 —2.679 —2.547 -5.107 4 5 3
GY 1.106 2.402 -1.950 0.0 —0.4590 —0.474 0.0 6 7 0
H° 1.056 1.253 —0.857 —0.140 —0.696 —-0.634 —2.662 5 6 3

TABLE V. Parameters of the BSA representation in Eq. (52) for the kaon. Both, the F¥ and ! amplitudes contribute, as the kaon is
not an eigenstate of charge conjugation. In the fit we include the sum of the 1st and 3rd Chebyshev moments in the odd component of the
BSA.

Fl A U, U, Us o 0> 03 n n, n3
E° 1.557 2.590 —1.590 0.0 1.342 0.891 0.0 5 6 0
E! 1.495 -0.810 3.769 —2.251 —1.039 —0.680 —0.680 5 6 7
FO 1.514 2.756 —3.558 1.220 —0.527 —-0.173 0.323 7 8 9
F! 1.604 3.150 —5.480 2.537 —1.074 —0.881 -0.718 10 11 12
G° 1.631 -0.613 1.139 -0.522 0.595 2.134 2.651 8 10 12
G' 1.229 2.949 —4.542 1.880 —0.558 -0.747 —0.920 8 10 12
H° 1.727 —0.276 1.031 —0.594 1.722 0.661 0.303 8 10 12
H! 1.443 —1.564 4.434 —2.663 —0.8104 —0.905 —0.938 8 9 10

TABLE VI. Parameters of the BSA representation in Eq. (52) for the D meson. Even and odd components of the BSA are in terms of
Chebyshev moments as described in Tables IV and V.

F! A U, U, U, o o) 03 ny ny n3
E° 1.750 2.078 —1.077 0.0 -1.274 —1.126 0.0 5 6 0
E! 2.146 —-0.207 0.209 0.0 -1.115 -1.115 0.0 6 9 0
FO 2222 0.060 0.155 0.0 -0.934 -2.211 0.0 6 9 0
F! 2.583 0.003 —0.043 0.0 -1.372 -1.757 0.0 6 9 0
G° 1.543 —1.596 2.008 —0.427 —1.439 -1.596 —1.795 6 7 10
G! 1.423 0.197 0.201 —-0.233 —1.289 —2.657 -2.097 5 6 9
H° 1.711 —0.249 0.868 —-0.530 —1.535 -1.618 -1.621 8 9 10
H! 1.155 -0.481 0.937 —-0.470 -1.917 -2.011 —2.086 6 7 8
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TABLE VII. Parameters of the BSA representation in Eq. (52) for the D* meson. Even and odd components of the BSA are in terms of
Chebyshev moments as described in Tables IV and V.

Fl A U, U, Us oy 0y 03 n ny n3
a 1.942 3.510 -2.509 0.0 —1.666 —1.851 0.0 7 8 0
Fl 0.998 2.441 —1.533 —0.680 —1.856 —2.027 —1.167 4 5 3
F9 1.107 0.440 -0.216 0.0 —1.656 —1.312 0.0 4 6 0
Fl 0.902 2.493 —3.754 1.278 —2.500 —2.522 —2.550 7 8 10
F 1.445 —1.536 1.372 0.0 —1.838 —1.831 0.0 7 8 0
Fl 1.005 0.099 —0.032 0.0 —1.030 —4.365 0.0 3 9 0
F9 1411 —1.235 0.837 0.0 —1.844 —1.833 0.0 5 6 0
Fl 1.554 1.192 —2.367 1.181 —1.949 —2.040 -2.10 7 8 9
F 1.895 —4.279 2.958 0.0 —1.775 —1.787 0.0 7 8 0
Fl 1.730 2.657 —4.797 2.212 —1.831 —-1.932 —2.00 7 8 9
F 1.384 0.815 —0.639 0.0 -1.916 —1.942 0.0 6 8 0
Fi 1.250 —3.728 2.097 0.0 —2.229 —3.453 0.0 7 12 0
F9 1.183 —0.557 0.971 -0.412 -0.711 —1.517 —1.927 4 5 6
Fi 1.091 —0.190 0.076 0.080 —1.453 —2.005 —0.520 4 8 3
F 1.316 0.601 —0.746 0.147 —-1.917 -2.011 —2.086 4 5 8
Fi 0.909 0.073 —0.647 0.501 —2.127 -2.312 —2.331 4 5 6
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