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We compute the chromopolarizabilities of the fully heavy baryons ΩQQQ0 (Q;Q0 ¼ b, c) in the
framework of potential nonrelativistic quantum chromodynamics. At leading order, the fully heavy hadrons
are considered as ground chromo-Coulombic bound states. We find that the chromopolarizability βΩ of a
fully heavy baryon QQQ is 2.6 times the chromopolarizability βψ of the quarkonium Q̄Q with the same
heavy quark flavorQ. This result is accurate up to the correction of the order 0.3 forQ ¼ b and provides an
order-of-magnitude estimate for Q ¼ c. We discuss the dependence of the ratio βΩ=βψ on the heavy quark
mass mQ and the strong coupling constant αs as well as on the ratio of the masses mQ0=mQ, in the case not
all quarks in the baryon are identical. Since the chromopolarizability of heavy hadrons defines the strength
of their interaction at low energies mediated by soft gluons, which at long range hadronize into pairs of
pions and kaons, our findings argue in favor of the existence of near-threshold states composed of pairs of
fully heavy baryons.
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I. INTRODUCTION

Light-meson exchanges are important as binding forces
in nuclei and other hadrons as well as in extended objects
like hadronic molecules. The Okubo-Zweig-Iizuka (OZI)-
allowed light-meson exchanges are only possible between
hadrons containing light quarks as constituents while fully
heavy hadrons can interact and, in some cases, form
bound states through soft-gluon exchanges. Theoretical
foundations of such soft-gluon-driven interactions in
heavy-quark systems were discussed in Ref. [1]. At the
hadronic level, this mechanism corresponds to exchanges
of pairs of light hadrons which are formally OZI sup-
pressed, when the isospin or SU(3) breaking is switched
off. A typical example of such a situation is provided by the
double-J=ψ system studied experimentally by the LHCb

Collaboration [2] and more recently by the ATLAS [3] and
CMS [4] Collaborations. In particular, a theoretical coupled-
channel analysis of the LHCb data for the J=ψJ=ψ invariant
mass distribution indicates the possible existence of a
resonance near the double-J=ψ threshold [5–7] with a
large molecular component in its wave function [5,6].
Furthermore, it is argued in Ref. [8] that soft-gluon
exchanges, hadronized in the form of correlated two-pion
and two-kaon exchanges,might be strong enough to provide
a sizable attraction between two J=ψ ’s, consistent with the
existence of a near-threshold pole on the first or second
Riemann sheet of the energy complex plane.
Then a natural question arises that whether or not similar

mechanisms could be operative in the systems composed of
two fully heavy baryons to result in the creation of dibaryon
bound or virtual states. Interestingly, recent simulations
using lattice quantum chromodynamics (QCD) indeed indi-
cate that both double-Ωccc and double-Ωbbb systems may be
bound. In particular, the binding energy of the double-Ωccc

system in the 1S0 channel is computed by the HAL QCD
Collaboration to be −5.68þ1.28

−0.90 MeV (with the electric
Coulomb interaction ignored; the statistical and systematic
errors have been added in quadrature) [9] while the double-
Ωbbb system was found to be deeply bound in the 1S0
channel, with a binding energy of −89þ16

−12 MeV [10].
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These results suggest that theoretical studies of the inter-
actions in the systems formed by fully heavy hadrons are
quite important and timely.
Crucial information on such interactions is encoded in

the chromopolarizability—the parameter which is deter-
mined by the intrinsic properties of a given fully heavy
hadron and defines the strength of its interaction with soft
gluons.
The underlying idea of the approach stems from the fact

that the effective field theory (EFT) Lagrangian for an S-
wave heavy field H in the external chromoelectric field Ea

(with a the color index) can be written in the form [11,12]

LH
EFT ¼

Z
d3XH†ðt;XÞ

�
i∂0 þ

∇2
X

2mH

þ 1

2
βHg2Ea2 þ…

�
Hðt;XÞ; ð1Þ

where the scales mH, αsmH, and α2smH (with mH for the
heavy hadron mass and αs for the strong coupling constant)
are integrated out, so the ellipsis denotes higher-order
operators, g is the strong coupling, and the coefficient
βH is the chromopolarizability mentioned above. If the size
of a hadronic system is small compared with a typical
length scale of the fluctuations in the nonperturbative
QCD vacuum, then, to the leading order in the ratio of
these scales, the interaction of the heavy hadron with the
soft gluons can be considered as generated by two
instantaneous color dipoles [1]. Formally, this picture is
obtained by matching the Lagrangian in Eq. (1) with
the one of weakly coupled potential nonrelativistic QCD
(pNRQCD) [13–15]. In this way one can derive an
analytical expression for the chromopolarizability; see,
for example, Ref. [12] where such an approach was applied
to the ground-state bottomonium. Equipped with the value
of the chromopolarizability, one can use it as a building
block to establish the strength of the interaction potential
between the corresponding fully heavy hadrons.
The electromagnetic interaction between neutral com-

posite particles is known as the van der Waals force. Two
cases can be distinguished depending on the distance
between the particles compared with their intrinsic
scales [16]. On the one hand, the London potential arises
if the time interval between the emission of the two
photons is much larger than their travel time between the
neutral particles. On the other hand, in the case of the
Casimir-Polder interaction, the two photons are emitted
almost simultaneously compared with their travel time. The
interaction between two heavy quarkonia or two fully
heavy baryons mediated by two-gluon exchanges can be
viewed as a QCD analog of the van der Waals force.
One such interaction is generated by the polarizability
operator in the Lagrangian (1) and corresponds to the
Casimir-Polder type since the two gluons are emitted
simultaneously. In most practical cases, the latter are

nonperturbative, and it is necessary to consider their
hadronization when constructing the van der Waals poten-
tial. The long-distance part of the potential is dominated by
pairs of pions—the determination of the corresponding
matrix elements of the operator Ea2 can be found in
Refs. [17,18]. An analytic expression and plots of the
two-pion exchange potential are provided in Ref. [12]. At
medium distances, the two-kaon contribution and the
formation of the two-pion resonance, the f0ð500Þ, play a
role. In this case, the potential can be constructed employ-
ing a dispersive technique [8]. Heavier resonances, quark
exchanges and other short-range interactions are encoded in
the contact term which renders the resulting potential well-
defined and provides cutoff-independent predictions, as
required by the renormalization group analysis. Further
discussions of the regularization procedure and a typical
shape of the potential which arises can be found in Ref. [8].
In any case, the shape of the potential is independent of
the value of the chromopolarizability, which enters as an
overall multiplicative factor.
In this paper, we employ weakly coupled pNRQCD to

calculate the chromopolarizability βΩ of a fully heavy
ground-state baryon ΩQQQ0 consisting of two heavy quarks
of the same flavor Q and mass mQ and the third quark of
possibly (but not necessarily) a different flavor Q0 of the
mass mQ0 . Therefore, for Q;Q0 ¼ c, b, we study the three-
quark systems, ccc, ccb, cbb, and bbb, simultaneously.
In particular, we obtain the relation between the chromo-
polarizabilities of a QQQ0 baryon, βΩ, and that of a Q̄Q
meson, βψ , and establish the dependence of the ratio
βΩ=βψ on the ratio of the masses mQ0=mQ. We treat the
heavy hadrons (Q̄Q meson or QQQ0 baryon) as purely
Coulombic systems thus neglecting the nonperturbative
dynamics inside of them. This approximation is valid if the
ratio of the nonperturbative and perturbative contributions
to the energy of the system,

Enp

Epert
∼

hσri
hαs=ri

∼
Λ2
QCD

α3sm2
Q
; ð2Þ

is small. Here hi denotes averaging, the string tension σ,
which introduces the nonperturbative scale related with
confinement, was roughly estimated as σ ∼ Λ2

QCD, and the
mean size of the hadron was taken as hr−1i ∼ hri−1 ∼ αsmQ,
which is valid for a purely Coulombic system. For ΛQCD ¼
300 MeV and αs ¼ 0.35 (see also Eq. (28) below and the
discussion around it) the ratio (2) takes values of the order
unity and 0.1 for the c and b quarks, respectively. In other
words, the approximation of a fully heavy hadron by a purely
color-Coulombic system predictably works well for the
ground-state meson or baryon composed of the bottom
quarks. In themeantime, correctionsmay appear comparable
with the leading term for the ground-state charmonium and
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Ωccc baryon. In the latter case we are aimed at an order-of-
magnitude estimate.
The paper is organized as follows. In Sec. II we consider

a heavy quarkonium and present a numerical computation
of its chromopolarizability based on placing the system in a
finite box. We compare our results with the analytical ones
contained in the literature and find a good agreement.
Therefore, equipped with the investigation method, we
proceed to Sec. III and evaluate the chromopolarizability
of a fully heavy baryon. We conclude in Sec. IV. Various
details related to the calculations performed in this paper
are collected in appendices. In particular, generalized
Jacobi coordinates for a three-body system are introduced
in Appendix A; in Appendix B we provide some details of
numerical calculations of the fully heavy baryon chromo-
polarizability; Appendix C is devoted to calculations for a
three-quark system in a finite box; finally, in Appendix D
we discuss the effect of the mixing of the octet representa-
tions for a fully heavy baryon.

II. CHROMOPOLARIZABILITY
OF A HEAVY QUARKONIUM

A. Derivation of βψ
In this section, as a warm-up and to introduce the

necessary essentials, we reproduce the results for the
chromopolarizability of a heavy quarkonium Q̄Q. We
follow the lines of Ref. [12]. The underlying idea of the
approach is a multipole expansion performed to the order
OðrÞ (with r for the interquark separation) in the non-
relativistic Lagrangian for the given heavy hadronic sys-
tem. Since the QQ̄ pair can be either in the color-singlet or
color-octet state, the Lagrangian is written in terms of the
effective fields S (for the singlet) and O (for the octet).
Up to leading and next-to-leading order in the heavy quark
mass and multipole expansion the Lagrangian of the
interacting singlet and octet fields takes the form [13,14]

Lð0Þ
pNRQCD ¼

Z
d3rTr½S†ði∂0 − ĥSÞS

þOa†ði∂0 − ĥOÞOa þ ðS†r · gEaOa þ H:c:Þ�;
ð3Þ

where the potential which appears in front of the singlet–
octet mixing term has been set to unity at the given level of
matching. Further details on pNRQCD can be found in the
reviews [19,20].
In the Lagrangian (3) ĥS and ĥO are the singlet and octet

Hamiltonians, respectively,

ĥS ¼ T̂ðpÞ þ VSðrÞ ¼ −
1

mQ
∇2
r −

4

3

αs
r
; ð4Þ

ĥO ¼ T̂ðpÞ þ VOðrÞ ¼ −
1

mQ
∇2
r þ

1

6

αs
r
; ð5Þ

where mQ is the mass of the quark and only the terms
responsible for the relativemotion in the system are retained.
The heavy quarkonium Q̄Q (for brevity we denote it

as ψ ) of a massMψ is identified with the ground state of the
Hamiltonian (4),

ĥSjψi ¼ Eψ jψi; ð6Þ

with Eψ ¼ Mψ − 2mQ for the binding energy. The wave
function jψi in the coordinate space can be decomposed
into the radial and angular parts,

hrjψi ¼ 1

r
uðrÞY00ðr̂Þ; ð7Þ

where the radial wave function uðrÞ is normalized asZ
∞

0

drjuðrÞj2 ¼ 1 ð8Þ

and obeys the radial Schrödinger equation

�
−

1

mQ

∂
2

∂r2
−
4

3

αs
r

�
uðrÞ ¼ EψuðrÞ: ð9Þ

At the same time, the spectrum of the octet Hamiltonian
ĥO from Eq. (5) consists of the continuum states jp; l; lzi
such that

ĥOjp; l; lzi ¼ Epjp; l; lzi; ð10Þ

where p is the 3-momentum while l and lz are the orbital
angular momentum and its projection, respectively. In the
coordinate space one has

hrjp; l; lzi ¼
1

r
vp;lðrÞYllzðr̂Þ; ð11Þ

with the radial wave function vp;lðrÞ normalized as

Z
∞

0

drjvp;lðrÞj2 ¼ 1 ð12Þ

and obeying the eigenstate equation

�
−

1

mQ

∂
2

∂r2
þ lðlþ 1Þ

mQr2
þ 1

6

αs
r

�
vp;lðrÞ ¼ Epvp;lðrÞ: ð13Þ

Unlike Ref. [12] where the exact Coulombic eigenfunc-
tion hrjp; 1i was used, in this work we place the system in a
finite box of the size Lbox in the radial direction and impose
the boundary conditions
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uð0Þ ¼ uðLboxÞ ¼ 0; vp;lð0Þ ¼ vp;lðLboxÞ ¼ 0: ð14Þ

Matching weakly coupled pNRQCD quoted in Eq. (3) to
the EFT defined by the Lagrangian in Eq. (1), with H ¼ ψ ,
one can obtain the chromopolarizability as

βψ ¼ 1

9
hψ jr 1

ĥO − Eψ

rjψi: ð15Þ

This expression can be understood as a double emission of
soft gluons with an octet state propagating between the two
emission vertices.
Before we proceed to the numerical calculations of the

chromopolarizability βψ, we notice that Eq. (15) allows one
to make some general conclusions about the behavior of βψ
as a function of mQ and αs. Indeed, in the Coulombic
system at hand the following simple relations hold (as
before, hi stand for the averaged values):

hpi ∼ 1

hri ∼ αsmQ; Eψ ∼ α2smQ; ð16Þ

which imply that

βψ ¼ Cψ

α4sm3
Q
; ð17Þ

with Cψ a constant independent of αs and mQ. The
expression for βψ quoted in Eq. (17) was obtained
analytically in Ref. [12], and the factor Cψ was evaluated
to be 0.93.
Since the chromopolarizability demonstrates such a

strong dependence on mQ and αs, its numerical value
depends significantly on the renormalization scale and
scheme used to obtain these two quantities. In principle,
the physical observables should be independent of the
renormalization scale and scheme used, however, working
in perturbation theory some dependence is unavoidable. In
particular, the expressions for the chromopolarizability
used in this work are derived at leading order, so a strong
dependence on the renormalization scale has to be antici-
pated. Therefore, to sidestep this issue, we provide the
results for the constant Cψ and quote some representative
values of the chromopolarizability βψ in Table I below.

B. Numerical evaluation of βψ
Here we recalculate the factor Cψ by putting the system

in a finite box; see Eq. (14). The same technique will be
applied later to the fully heavy baryon case where analytical
expressions are not available.
In order to proceed with the numerical calculations, we

use the completeness condition for the continuum spectrum
to write

βψ ¼ 1

9

X
p;l;lz

X
ri¼x;y;z

hψ jrijp; l; lzi
1

Ep − Eψ
hp; l; lzjrijψi

¼ 1

9

X
p

jIðrÞðpÞj2
Ep − Eψ

; ð18Þ

where the integration over the momentum is transformed to
a summation as the system is put in a finite box. The
function IðrÞðpÞ is defined as

IðrÞðpÞ≡
Z

∞

0

rdr uðrÞvp;1ðrÞ; ð19Þ

where only the term with l ¼ 1 contributes since the octet
field is a P-wave operator, and the following easily
verifiable matrix elements were used in the calculation:

hψ jxjp; l; lzi ¼ ∓ δl;1δlz;�1

1ffiffiffi
6

p IðrÞðpÞ;

hψ jyjp; l; lzi ¼ −δl;1δlz;�1

iffiffiffi
6

p IðrÞðpÞ;

hψ jzjp; l; lzi ¼ δl;1δlz;0
1ffiffiffi
3

p IðrÞðpÞ:

A direct numerical computation performed according
to Eqs. (18) and (19) demonstrates a perfect agreement of
the result obtained with the scaling behavior described in
Eq. (17) with

Cψ ≈ 0.93: ð20Þ

This result applies both to charmonium (c̄c) and bottomo-
nium (b̄b) systems. Moreover, the value in Eq. (20) is in a
good numerical agreement with the result for the chromo-
polarizability of a bottomonium reported in Ref. [12].
Before we come to a numerical evaluation of the

chromopolarizability βψ, let us compare the exact result
(20) with a simple estimate which will also be convenient
for the discussions of the baryons below. To this end we
notice that, in the Coulombic system at hand, the energies
of the bound states are negative while the eigenenergies in
the continuum spectrum are positive. Therefore, recon-
structing the identity from the closure relation and then
setting Ep ¼ 0 in Eq. (18), we arrive at an upper bound,

TABLE I. The mean radii and chromopolarizabilities of the
ground-state heavy Q̄Q mesons with Q ¼ c, b evaluated in this
work. See the main text for the discussion of the uncertainties.

State c̄c b̄b

hri [fm] 0.85þ0.13
−0.23 0.26þ0.04

−0.07
βψ [GeV−3] 19þ15

−14 0.54þ0.43
−0.39
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βψ ≲ hr2i
9jEψ j

; ð21Þ

where hi stands for averaging over the ground state jψi of
the Hamiltonian (4). Then, with the help of the easily
verifiable relations,

Eψ ¼ −
4

9
α2smQ; hr2i ¼ 27

4ðmQαsÞ2
; ð22Þ

we finally arrive at the inequality

Cψ ≲ 27

16
≈ 1.7: ð23Þ

The exact result (20) complies well with the upper
bound (23).
Notice that Eq. (15) can be approximately rewritten in

the form

βψ ≈
1

9

hr2i
hT̂ðpÞi þ hVOðrÞi − Eψ

; ð24Þ

where hVOðrÞi ¼ α2smQ=9. Then it is easy to check that the
exact result (20) is rather accurately reproduced for the
averaged kinetic energy hT̂ðpÞi ≈ jEψ j=2.
Let us now estimate the correction to the chromopolar-

izability βψ due to a possible contribution of the non-
perturbative interaction in the system. To this end we treat
the confining interaction σr as a perturbation to arrive at the
correction,

δβψ ¼ 1

9
hψ jr 1

ĥO − Eψ

σr
1

ĥO − Eψ

rjψi; ð25Þ

that allows one to find the ratio,

δβψ
βψ

∼
Λ2
QCD

α3sm2
Q
: ð26Þ

Quite naturally, the ratio (26) is defined by the same
combination of the scales involved as provided in Eq. (2),
so that the numerical estimates made after Eq. (2) are valid
here as well. Clearly, the same conclusion holds for the
ground-state fully heavy baryons to be studied below. Thus,
for the chromopolarizabilities of the ground-state charmo-
nium and Ωccc baryon we pretend to provide order-of-
magnitude estimates which nevertheless are expected to lie
in the right ballpark, especially given the large uncertainties
they have (see the discussion below). On the other hand, the
corrections to the chromopolarizability of the ground-state
bottomonium and Ωbbb baryon due to the nonperturbative
dynamics are expected to be at the level of about 10%.
Now, to provide numerical estimates for the chromopo-

larizabilities of the ground-state b̄b and c̄c quarkonia, we
use the following values of the heavy quark masses:

mRS0
c ð1 GeVÞ ¼ 1.496ð41Þ GeV;

mRS0
b ð1 GeVÞ ¼ 4.885ð41Þ GeV; ð27Þ

obtained in the renormalon-subtracted scheme (RS0) of
Ref. [21] which improves the convergence of the pertur-
bative expansion while keeping the leading order potential
unchanged. The strong coupling constant is taken at the
renormalization scale νr ¼ 1.5 GeV, which is large enough
for a reasonable convergence of perturbation theory
while minimizing contributions of logarithms associated
with the soft scale. Using the RunDec routine at the 4-loop
accuracy [22,23] we find

αsðνr ¼ 1.5 GeVÞ ¼ 0.3485: ð28Þ

The uncertainty of the chromopolarizabilities associated to
picking the renormalization scale is estimated by varying νr
between 1 and 2 GeV, which corresponds to the following
boundary values of the strong coupling constant:

αsðνr ¼ 1 GeVÞ ¼ 0.4798;

αsðνr ¼ 2 GeVÞ ¼ 0.3015: ð29Þ

The results for the mean radii and chromopolarizabilities of
the heavy Q̄Q mesons with Q ¼ c, b are listed in Table I.
The large uncertainties, especially for βψ , stem from a large
spread in the values of αs quoted in Eq. (28) and (29) and
the α−4s scaling of βψ in Eq. (17).

III. CHROMOPOLARIZABILITY
OF A FULLY HEAVY BARYON

A. Derivation of βΩ
As was discussed in the Introduction, we consider a

baryon made of two quarks of the same flavor (with the
mass mQ) and the third quark of potentially another flavor
(with the mass mQ0 ). The interactions between three heavy
quarks in an EFT context incorporating the heavy quark and
multipole expansions have been worked out in Ref. [15].
The three heavy quark fields can be decomposed into a

singlet (S), two octets (OA, OS) and a decuplet (Δ) in the
color space,

3 ⊗ 3 ⊗ 3 ¼ 1 ⊕ 8 ⊕ 8 ⊕ 10; ð30Þ

however, only the octet fields can couple to the singlet via a
single chromoelectric field insertion. These fields depend
on the three Jacobi coordinates. The choice of the latter is
not unique, and for the future convenience we stick to the
following relations (see Appendix A for further details on
the Jacobi coordinates in a three-body system):
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X ¼ mQðx1 þ x2Þ þmQ0x3
M

;

λ ¼ 2

ζ

�
x1 þ x2

2
− x3

�
;

ρ ¼ x1 − x2; ð31Þ

where x1, x2, and x3 are the positions of the quarks
with the masses mQ, mQ, and mQ0 , respectively,
M ¼ 2mQ þmQ0 , and

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=mQ0

q
: ð32Þ

The case of mQ0 ¼ mQ corresponds to ζ ¼ ffiffiffi
3

p
. Then

1

2
mQð_x21 þ _x22Þ þ

1

2
mQ0 _x23 ¼ 1

2
M _X2 þ 1

4
mQð_λ2 þ _ρ2Þ

ð33Þ

and, therefore, the kinetic energy of the relative motion in
the baryon is

T̂ðpρ; pλÞ ¼
p̂2ρ þ p̂2λ
mQ

¼ −
1

mQ
ð∇2

ρ þ ∇2
λÞ; ð34Þ

where the hat stands for a differential operator in the
coordinate space, with the eigenenergy

Epρ;pλ
¼ p2

ρ þ p2
λ

mQ
: ð35Þ

The Hamiltonian in a given color representation
(R ∈ fS;OS;OAg) reads

ĥR ¼ T̂ðpρ; pλÞ þ VRðρ; λÞ; ð36Þ

with

VS ¼ −
2αs
3

�
1

jρj þ
2

jρþ ζλj þ
2

jρ − ζλj
�
; ð37Þ

VOS ¼ αs
6

�
2

jρj −
5

jρþ ζλj −
5

jρ − ζλj
�
; ð38Þ

VOA ¼ −
αs
6

�
4

jρj −
1

jρþ ζλj −
1

jρ − ζλj
�
: ð39Þ

For the chromopolarizability of the baryon ΩQQQ0 we
consider the dipolar couplings of the singlet with other
fields. In particular, there are two such couplings to the
octet fields,

LS−O
pNRQCD ¼

Z
d3ρd3λ

�
1

2
ffiffiffi
2

p ½S†ρ · gEaOSa þ H:c:�

−
ζ

2
ffiffiffi
6

p ½S†λ · gEaOAa þ H:c:�
�
; ð40Þ

where, similar to the case of heavy quarkonium, the
potentials which appear as the coefficients in front of each
term in Eq. (40) are set to unities at the tree level of
matching.
Strictly speaking, the octet fields OS and OA can

mix [24], however the effect of such mixing on the chromo-
polarizability is negligibly small, so we disregard it here
and check the validity of this neglect a posteriori—see
Appendix D for the details. The (small) effect of mixing is
then treated as a source of the systematic uncertainty.
We can now define the chromopolarizability βΩ in the

same way as it was done for the quarkonium, with the only
difference that now there are two terms corresponding to
two different dipoles in Eq. (40). We, therefore, proceed
along the lines ofRef. [12] and define a lower-energyEFT for
the ground state ΩQQQ0 interacting with gluonic fields
assuming that the typical energies are smaller than the
binding energy of the ΩQQQ0 baryon. Then the Lagrangian
again takes the same form as given in Eq. (1), with H ¼ Ω,
mΩ ¼ M þ EΩ, andEΩ for the ground-state binding energy.
Thus, one can derive an explicit expression for the

chromopolarizability βΩ by matching Eqs. (40) and (1),

βΩ ¼ βðρÞΩ þ βðλÞΩ ; ð41Þ

where

βðρÞΩ ¼ 1

12
hΩjρ 1

ĥOS − EΩ
ρjΩi;

βðλÞΩ ¼ ζ2

36
hΩjλ 1

ĥOA − EΩ
λjΩi: ð42Þ

The ground state jΩi is defined through the Schrödinger
equation

ĥSjΩi ¼ EΩjΩi: ð43Þ

B. Evaluation of βΩ

1. Some generalities

Consider first the matrix element

hΩjρ 1

ĥOS − EΩ
ρjΩi; ð44Þ

where the operator ĥOS
is given by Eqs. (36) and (38). To

proceed we employ the completeness of the continuum
eigenstates of the operator ĥOS,
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ĥOS jΨS
νi ¼ ES

ν jΨS
νi; ð45Þ

where the quantum number ν includes both the discrete
angular momenta and the continuous quantum numbers,
that is, momenta; see Eq. (62) below for details.
Then, for the matrix element (44) we find

hΩjρ 1

ĥOS − EΩ
ρjΩi

¼ 3hΩjρz
1

ĥOS − EΩ
ρzjΩi

¼ 3
X
ν;ν0

hΩjρzjΨS
νihΨS

ν j
1

ĥOS − EΩ
jΨS

ν0 ihΨS
ν0 jρzjΩi

¼ 3
X
ν

jhΩjρzjΨS
νij2

ES
ν − EΩ

; ð46Þ

where we have used that the x, y, and z directions contribute
equally. Applying the same approach to the matrix element

hΩjλ 1

ĥOA − EΩ
λjΩi; ð47Þ

we finally arrive at the following expressions for the two
contributions to the chromopolarizability βΩ:

βðρÞΩ ¼ 1

4

X
ν

jhΩjρzjΨS
νij2

ES
ν − EΩ

;

βðλÞΩ ¼ ζ2

12

X
ν

jhΩjλzjΨA
ν ij2

EA
ν − EΩ

; ð48Þ

where EA
ν and ΨA

ν are the eigenenergy and the correspond-
ing eigenfunction of the Hamiltonian ĥOA ,

ĥOA jΨA
ν i ¼ EA

ν jΨA
ν i: ð49Þ

2. The singlet wave function

To proceed with the bound state spectrum of a heavy
baryon we introduce a hyperspherical basis [25,26],

ρ ¼ R cos θ; λ ¼ R sin θ; ð50Þ

so that a complete 6-dimensional set of variables in the
coordinate space reads

fR; θ; ρ̂; λ̂g≡ fR;O5g; ð51Þ

where ρ̂ and λ̂ are the unit vectors in the directions of the
Jacobi coordinates ρ and λ, respectively, and

Z
dO5 ¼

Z
π=2

0

sin2θcos2θdθ
Z

dρ̂
Z

dλ̂ ¼ π3: ð52Þ

Since the spin variables are factorized out, they are not
considered here. Then the bound-state wave function can
be decomposed in a set of K-harmonics [27–29],

ΨðbÞðR;O5Þ ¼
1

R5=2

X
K;α

ψ ðbÞ
K;αðRÞYK;αðO5Þ; ð53Þ

where ψ ðbÞ and Y are the radial and angular parts of the
wave function. The latter are known as the hyperspherical
harmonics, and their explicit form can be built through
spherical functions and Jacobi polynomials; see, for exam-
ple, Ref. [30]. Here

α≡ fL; Lz; lρ; lλg; ð54Þ

with lρ, lλ, and L for the angular momenta (L being the total
one). Then K ¼ 2nr þ lρ þ lλ is a non-negative integer
number and nr is the radial excitation quantum number.
The wave functions of the form (53) are normalized as

hΨðbÞjΨðbÞi ¼
Z

R5dRdO5jψ ðbÞ
K;αj2 ¼ 1; ð55Þ

with ψ ðbÞ
K;αðRÞ obeying a system of coupled Schrödinger

equations,

1

mQ

�
−

d2

dR2
þ LKðLK þ 1Þ

R2

�
ψ ðbÞ
K;αðRÞ

þ
X
K0;α0

hK; αjVjK0; α0iψ ðbÞ
K0;α0 ðRÞ ¼ EK;αψ

ðbÞ
K;αðRÞ; ð56Þ

where LK ≡ K þ 3=2, and

hK; αjVjK0; α0i ¼
Z

dO5Y�
K;αðO5ÞVðR;O5ÞYK0;α0 ðO5Þ:

ð57Þ

For the spherically symmetric ground-state solution
which represents the ΩQQQ0 baryon studied in this work,
we have, in coordinate space,

hρ; λjΩi ¼ 1

π3=2R5=2 ψ
ðbÞ
0 ðRÞ; ð58Þ

and, aiming at an order-of-magnitude estimate, we simplify
the bound state equation (56) by neglecting all off-diagonal
transitions mediated by the potential and retaining only the
diagonal term,

hVSi≡
Z

dO5

π3
VSðρ; λÞ; ð59Þ
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so that, for the ground-state baryon, the Schrödinger
equation (56) reduces to a one-dimensional radial equation

for the wave function ψ ðbÞ
0 ðRÞ formulated entirely in terms

of the hyperspherical radius R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ λ2

p
,

1

mQ

�
−

d2

dR2
þ 15=4

R2
þ hVSi

�
ψ ðbÞ
0 ðRÞ ¼ EΩψ

ðbÞ
0 ðRÞ: ð60Þ

From the normalization condition (55) it is easy to find
that ψ ðbÞ

0 ðRÞ is normalized as a one-dimensional radial
wave function, Z

∞

0

dRjψ ðbÞ
0 ðRÞj2 ¼ 1: ð61Þ

3. The octet wave function

For the continuum wave function we have

Ψν ¼ ψpρ;pλ
ðρ; λÞYνðρ̂; λ̂Þ; ð62Þ

where ν ¼ fpρ; pλ; L; Lz; lρ; lλg, with pρ and pλ for the
momenta conjugated to the Jacobi coordinates ρ and λ,
respectively. The angular wave function can be represented
in the form

Yνðρ̂; λ̂Þ ¼
X

mρþmλ¼Lz

CLLz
lρmρjλmλ

Ylρmρ
ðρ̂ÞYlλmλ

ðλ̂Þ: ð63Þ

The radial wave function ψpρ;pλ
ðρ; λÞ is found as a

continuum-spectrum solution of the equation

hĥOSiψS
pρ;pλ

ðρ; λÞ ¼ Epρ;pλ
ψS
pρ;pλ

ðρ; λÞ ð64Þ

or

hĥOAiψA
pρ;pλ

ðρ; λÞ ¼ Epρ;pλ
ψA
pρ;pλ

ðρ; λÞ; ð65Þ

where the superscript A or S is used to distinguish between
the two octet representations, and

hĥOSi ¼
Z

dρ̂dλ̂Y�
10ðρ̂ÞY�

00ðλ̂ÞĥOSY10ðρ̂ÞY00ðλ̂Þ;

hĥOAi ¼
Z

dρ̂dλ̂Y�
00ðρ̂ÞY�

10ðλ̂ÞĥOAY00ðρ̂ÞY10ðλ̂Þ: ð66Þ

The radial Schrödinger equations (64) and (65) are
solved in a finite box with the length Lbox in both the ρ
and λ directions; see Appendix C for further details of the
formalism used. Thus, ψX

pρ;pλ
ðρ; λÞ (X ¼ A, S) is normal-

ized asZ
ρ2dρλ2dλψX†

pρ;pλðρ; λÞψX
p0
ρ;p0

λ
ðρ; λÞ ¼ δpρ;p0

ρ
δpλ;p0

λ
: ð67Þ

4. Numerical evaluation of βΩ
Now, with both the bound-state and continuum-spectrum

solutions at hand, the matrix element hΩjρzjΨνi can be
evaluated as

IðρÞðpρ;pλÞ≡hΩjρzjΨS
νi

¼
Z
d3ρd3λ

ρz
π3=2R5=2ψ

ðbÞ
0 ðRÞψS

pρ;pλ
ðρ;λÞYS

νðρ̂;λ̂Þ

¼ 4ffiffiffiffiffiffi
3π

p
Z

dρdλ

R5=2 ρ
3λ2ψ ðbÞ

0 ðRÞψS
pρ;pλ

ðρ;λÞ ð68Þ

and, similarly,

IðλÞðpρ; pλÞ≡ hΩjλzjΨA
ν i

¼ 4ffiffiffiffiffiffi
3π

p
Z

dρdλ

R5=2 ρ
2λ3ψ ðbÞ

0 ðRÞψA
pρ;pλ

ðρ; λÞ: ð69Þ

Further details can be found in Appendix B.
Then the two contributions to the chromopolarizability

βΩ take the form

βðρÞΩ ¼ 1

4

X
pρ;pλ

jIðρÞðpρ; pλÞj2
Epρ;pλ

− EΩ
; ð70Þ

βðλÞΩ ¼ ζ2

12

X
pρ;pλ

jIðλÞðpρ; pλÞj2
Epρ;pλ

− EΩ
: ð71Þ

Similar to the case of the Q̄Q quarkonium, the depend-
ence of the chromopolarizability on mQ and αs can be
inferred from applying the scalings in Eq. (16) to the
definitions of the chromopolarizability of theΩQQQ0 baryon
in Eq. (42). For the case of mQ0 ¼ mQ one finds:

βðρÞΩ ðmQ0 ¼ mQÞ ¼
CðρÞ
Ω

m3
Qα

4
s
; ð72Þ

βðλÞΩ ðmQ0 ¼ mQÞ ¼
CðλÞ
Ω

m3
Qα

4
s
: ð73Þ

From these expressions we can expect that βðρÞΩ and βðλÞΩ will
be strongly dependent on the renormalization scale through
the values of mQ and αs. Therefore, as before, we focus our
attention on the values of the dimensionless coefficients

CðρÞ
Ω and CðλÞ

Ω .
The values of CðρÞ

Ω and CðλÞ
Ω are computed numerically by

putting the system in a finite box and for αs ∈ ½0.3; 0.5� and
mQ ∈ ½1.5; 5.0� GeV. From these numerical computations
we confirm the dependence on αs and mQ in Eqs. (72) and
(73) and find the following values for the constants:
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CðρÞ
Ω ≈ 1.1; CðλÞ

Ω ≈ 1.3; ð74Þ

so that

CΩ ¼ CðρÞ
Ω þ CðλÞ

Ω ≈ 2.4 ≈ 2.6Cψ : ð75Þ

Therefore, we conclude that for the same values of mQ
and αs the chromopolarizability of the QQQ baryon is 2.6
times that of the Q̄Q meson. This results in a stronger
interaction potential from the exchange of soft gluons in the
double-ΩQQQ system than in the double-Q̄Q one.
The two main sources of the uncertainty in CΩ can be

identified. The first one, of the order of 7%, is related to the
neglect of the mixing of the color-octet representations—
see Appendix D for the details. The second source is the
approximation of the fully heavy hadron by a purely
Coulombic system. As discussed above, this approximation
is accurate up to about 10% for the bottom systems, but
may provide a correction of the order of magnitude of the
central value for the charmed systems.
In the general case ofmQ0 ≠ mQ, one can parametrize the

heavy quark mass dependence as

βΩ ¼ CΩ

m3
Qα

4
s
φðmQ0=mQÞ; ð76Þ

where the function φðxÞ, normalized as φð1Þ ¼ 1 and
shown in Fig. 1 (left plot), can be approximated by

φðxÞ ¼ CðρÞ
Ω

CΩ

�
ζðxÞffiffiffi

3
p

�
nρ þ CðλÞ

Ω
CΩ

�
ζðxÞffiffiffi

3
p

�
nλ
; ð77Þ

with ζðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=x

p
(here x ¼ mQ0=mQ), and nρ ≈ 1.95

and nλ ≈ 4.15. Equation (77) comes from the dependence
of the individual contributions to βΩ on the ratio ζ, as

shown in the right plot in Fig. 1, and is a result of a simple
powerlike fit to a representative set of points calculated
numerically for different values of the ratio mQ0=mQ.
The upper bound on the chromopolarizability βΩ can be

estimated by employing the same approach as in the case of
the quarkonium to arrive at the result

βupperΩ ¼ hR2iðζ2 þ 3Þ
72jEΩj

; ð78Þ

which is shown as the dotted-dashed blue curve in Fig. 2
while the exact result (76) is given by the black solid curve.
It is also instructive to derive approximate formulas for

the chromopolarizabilities βðρÞΩ and βðλÞΩ of a fully heavy
baryon employing the same technique as in the case of the
quarkonium discussed above. To this end, we consider
approximate expressions following from Eq. (42),

FIG. 1. Dependence of the correcting function φ, introduced in Eq. (76), on the mass ratio mQ0=mQ (left) and the scaling behavior of

βðρÞΩ and βðλÞΩ from Eqs. (72) and (73) as functions of ζ (right).

FIG. 2. The constant CΩ as a function of ζ: the upper bound as
given in Eq. (78) (the blue dotted-dashed curve), the exact result
quoted in Eq. (76) (the black solid curve), and the approximate
value provided by Eq. (79) (the red dashed curve).

CHROMOPOLARIZABILITIES OF FULLY HEAVY BARYONS PHYS. REV. D 107, 034020 (2023)

034020-9



βðρÞΩ ≈
1

12

hρ2i
hT̂ðpρ; pλÞi þ hVOSðρ; λÞi − EΩ

;

βðλÞΩ ≈
ζ2

36

hλ2i
hT̂ðpρ; pλÞi þ hVOAðρ; λÞi − EΩ

; ð79Þ

where hi stands for the averaging over the ground state jΩi.
Given the empirical relation derived for the quarkonium, it
is natural to expect that each degree of freedom (in ρ and in
λ) will contribute an equal amount jEΩj=2 to the averaged
kinetic energy, so that hT̂ðpρ; pλÞi ≈ jEΩj in total. Indeed,
with this substitution, the approximate result for the
coefficient Capprox

Ω which follows straightforwardly from
Eq. (79) agrees very well with the exact result from Eq. (76)
—see the red dashed and black solid curves in Fig. 2,
respectively.
Similar to the case of the heavy quarkonium studied in

Sec. II, the dependence of the chromopolarizability βΩ
from Eq. (76) on mQ and αs is quite strong. As mentioned
above, the estimate from Eq. (75) is obtained under the
assumption that the same quark mass and strong coupling
constant are used in both cases, for βψ and βΩ. Numerical
values of the fully heavy baryon chromopolarizabilities for
the values of mc, mb, and αs quoted in Eqs. (27) and (28)
and discussed in Sec. II B, are listed in Table II.

IV. SUMMARY AND DISCUSSIONS

In this paper we evaluate the chromopolarizability of a
fully heavy ground-state baryon ΩQQQ and find it to be 2.6
of that for the heavy meson Q̄Q composed of the quark and
its antiquark of the same flavor. To estimate the uncertainty
of this result we notice that the approximation of a fully
heavy hadron by a purely color-Coulombic system
employed in this study predictably works well for the
ground-state heavy quarkonium and baryon composed of
the bottom quarks, that is, for b̄b and bbb systems. Indeed,
the corresponding mean radii quoted in Tables I and II
appear fairly small compared with the scale rnp ∼ 1=

ffiffiffi
σ

p
∼

1=ΛQCD ≃ 0.7 fm which roughly quantifies the relevance
of the nonperturbative interaction in the hadron. Then, for
such systems, we sum in quadrature the uncertainties which
come from the nonperturbative dynamics (about 10%) and
from neglecting the off-diagonal chromopolarizabilites
(about 7%) to obtain

βΩbbb
=βb̄b ≈ 2.6� 0.3: ð80Þ

In the meantime, corrections from the nonperturbative
interaction may appear at the level of the leading order for
the c̄c charmonium and fully charmed baryon Ωccc.
Therefore, for such systems, the ratio above should be
regarded as an order-of-magnitude estimate.
We further extend our analysis to fully heavy baryons

containing different flavors of heavy quarks, Q and Q0, and
discuss the dependence of the chromopolarizability of the
baryonQQQ0 on the mass ratiomQ0=mQ. We notice that the
system cbb appears to be rather compact, with the mean
size of the same order as that of the bbb one, so corrections
from the nonperturbative dynamics for such system are
expected to be at the same level of 10% or so. In the
meantime, the ccb system is rather large, like the ccc one,
so we pretend to provide only an order-of-magnitude
estimate for it. Nevertheless, we still expect our results
for the chromopolarizabilities of such baryons to lie in the
right ballpark, especially given the large estimated uncer-
tainty in βΩ related to those in the quark mass and strong
coupling constant determination.
Our findings imply that the interaction from the exchange

of soft gluons in the double-ΩQQQ system appears
to be considerably stronger than that in the double-heavy-
quarkonium pair and, as such, provides an argument in favor
of the existence of near-threshold (bound or virtual) states in
such a dibaryon system. It is interesting to notice the fact that
lattice calculations indeed report a possible existence of
bound states in both double-Ωccc [9] and double-Ωbbb [10]
systems, with the binding energies of the order of several
MeV, in the former case (when the electric Coulomb
repulsion is neglected), and several dozen MeV, in the latter.
It has to be noticed that the current situation with the

experimental studies of the properties of fully heavy
baryons does not look very promising even in the charm
sector at the present stage; the existing experimental data
are limited to some candidates for the singly charmed
baryons [31] and only one doubly charmed baryon reported
by the LHCb Collaboration [32]. However, on one hand,
the integrated luminosity of LHCb at the end of the planned
Run 5 will reach 300 fb−1 [33], two orders of magnitude
higher than 1.7 fb−1 of Run 1 from which the observation
of the Ξþþ

cc was made [32]. According to the calculations
in Ref. [34], it is promising to observe theΩccc andΩccb in
the data of future runs of the Large Hadron Collider.
On the other hand, there is some progress in lattice studies
of the mass and electromagnetic form factor of the fully
charmed baryons [35,36] as well as double-Ωccc [9] and
double-Ωbbb [10] systems. As favored by our findings
reported in this work, further experimental and lattice
searches for near-threshold hadronic molecules of fully
heavy hadrons would look like an appealing and prom-
ising task and are very likely to result in discoveries of
new two-hadron resonances.

TABLE II. The mean radii and chromopolarizabilities of the
fully heavy QQQ0 baryons with Q;Q0 ¼ c, b evaluated in this
work. See Sec. II B for the discussion of the uncertainties.

State ccc ccb cbb bbb

hRi [fm] 1.66þ0.26
−0.46 1.44þ0.23

−0.40 0.65þ0.10
−0.18 0.51þ0.08

−0.14

βΩ [GeV−3] 49þ38
−35 19þ15

−14 6.7þ5.3
−4.8 1.4þ1.1

−1.0
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APPENDIX A: GENERALIZED JACOBI
COORDINATES

In this appendix we provide a generalized form of the
Jacobi coordinates in a 3-body system.We follow Ref. [37].
In particular, the center-of-mass coordinate X and the two
relative coordinates, λ and ρ, can be introduced as

x1 ¼ X þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μm3

Mðm1 þm2Þ
r

λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μm2

m1ðm1 þm2Þ
r

ρ;

x2 ¼ X þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μm3

Mðm1 þm2Þ
r

λ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μm1

m2ðm1 þm2Þ
r

ρ;

x3 ¼ X −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðm1 þm2Þ

Mm3

s
λ; ðA1Þ

where xi (i ¼ 1, 2, 3) are the individual coordinates of the
particles,M ¼ m1 þm2 þm3, and μ is an arbitrary param-
eter with the dimension of mass. The inverse of Eq. (A1)
reads

X ¼ 1

M

X3
i¼1

mixi;

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þm2Þm3

μM

s �
m1x1 þm2x2
m1 þm2

− x3

�
;

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1m2

μðm1 þm2Þ
r

ðx1 − x2Þ; ðA2Þ

so that ρ can be regarded as the relative coordinate of the
particles 1 and 2 while λ describes the separation between
particle 3 and the center-of-mass of particles 1 and 2.
The nonrelativistic kinetic term in the Lagrangian turns

to be

1

2

X3
i¼1

mi _x2i ¼
1

2
M _X2 þ 1

2
μð_λ2 þ _ρ2Þ; ðA3Þ

where the arbitrary parameter μ plays the role of the mass
for both motions in ρ and λ, which makes the coordinate
transformation (A1) particularly convenient in practical
calculations. The physical observables do not depend on a
particular choice of μ, so for convenience, in case of m1 ¼
m2 ¼ mQ and m3 ¼ mQ0 , we set μ ¼ mQ=2, so that
Eqs. (A2) and (A3) turn to Eqs. (31) and (33), respectively.
As an additional check we have verified that the results
reported in this paper do not depend on a particular choice
of μ, as required.

APPENDIX B: DETAILS OF THE βΩ
CALCULATIONS

In this appendix we collect some formulas used in
Sec. III B to evaluate the chromopolarizability of the fully
heavy baryon βΩ.
We start from the averaged value of the interaction

potential in the color-singlet representation defined in
Eq. (59) to find that

hVSi ¼ −
2αs
3

Z
dO5

π3

�
1

jρj þ
2

jζλþ ρj þ
2

jζλ − ρj
�

¼ −
32αs
9πR

�
1þ 4ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ζ2
p �

; ðB1Þ

where an easily verifiable master formula,

hjaρþ bλj−1i ¼
Z

dO5

π3
1

jaρþ bλj ¼
16

3πR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ;

was used, which is valid for arbitrary numerical coefficients
a and b. The averaged Hamiltonians for the octet repre-
sentations as defined in Eq. (66) are evaluated as

hĥOSi ¼
Z

dρ̂dλ̂Y�
10ðρ̂ÞY�

00ðλ̂ÞĥOSY10ðρ̂ÞY00ðλ̂Þ

¼
Z

dρ̂jY10ðρ̂Þj2
Z

dλ̂
4π

ĥOS

¼
Z

dρ̂λ
4π

ĥOS ½lρ ¼ 1; lλ ¼ 0�

¼ 1

mQ

�
−
1

ρ

∂
2

∂ρ2
ρ −

1

λ

∂
2

∂λ2
λþ 2

ρ2

�

þ αs
3

�
1

ρ
−

5

maxðρ; ζλÞ
�

ðB2Þ

and, similarly,
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hĥOAi ¼
Z

dρ̂dλ̂Y�
00ðρ̂ÞY�

10ðλ̂ÞĥOAY00ðρ̂ÞY10ðλ̂Þ

¼ 1

mQ

�
−
1

ρ

∂
2

∂ρ2
ρ −

1

λ

∂
2

∂λ2
λþ 2

λ2

�

−
2αs
3

�
1

ρ
−

1

2maxðρ; ζλÞ
�
; ðB3Þ

where the following master formula was used:

1

4π

Z
d ˆvw

jvþ wj ¼
1

2

����� 1vþ 1

w

���� −
���� 1v − 1

w

����
�

¼ 1

maxðv; wÞ :

Finally, the evaluation of the angular part of the integral
in Eq. (68) is done as

X
mρ;mλ

CLLz
lρmρjλmλ

Z
dρ̂dλ̂ρ̂zYlρmρ

ðρ̂ÞYlλmλ
ðλ̂Þ ¼ 4π

X
mρ;mλ

CLLz
lρmρjλmλ

Z
dρ̂dλ̂Y00ðρ̂ÞY00ðλ̂Þρ̂zYlρmρ

ðρ̂ÞYlλmλ
ðλ̂Þ

¼ 4π
X
mρ;mλ

CLLz
lρmρjλmλ

hL ¼ 0; Lz ¼ 0; lρ ¼ 0; lλ ¼ 0jρ̂zjL;Lz; lρ; lλi

¼ δL1δLz0
δlρ1δlλ0hlρ ¼ 0jρ̂zjlρ ¼ 1i

¼ 4πffiffiffi
3

p δL1δLz0
δlρ1δlλ0; ðB4Þ

where it was used that, for an arbitrary 3-vector v,

hl−1;mjvzjl;mi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2−m2

lð2l−1Þð2lþ1Þ

s
hl−1jjvzjjli; ðB5Þ

and the reduced matrix element for vz ¼ nz reads

hl − 1jjnzjjli ¼
ffiffi
l

p
: ðB6Þ

A similar calculation was performed for the integral defined
in Eq. (69).

APPENDIX C: EVALUATION OF THE QQQ0
CONTINUUM SPECTRUM IN A 2D WELL

In this appendix we provide some technical details
related to building the continuum spectrum of the
Hamiltonians ĥOS and ĥOA defined in Eqs. (64) and (65).
Employing the same technique as was previously used to

build the continuum spectrum of the Hamiltonian ĥO in
Sec. II A, we embed the studied three-quark system in a
finite rectangle box of the size Lbox in each spatial
direction, so that for 0 < ρ, λ < Lbox the potentials (38)
and (39) averaged as defined in Eq. (66) [see also Eqs. (B2)
and (B3)] take the form

VOSðρ; λÞ ¼ 2

mQρ
2
þ αs

3

�
1

ρ
−

5

maxðρ; ζλÞ
�

ðC1Þ

and

VOAðρ; λÞ ¼ 2

mQλ
2
−
2αs
3

�
1

ρ
−

1

2maxðρ; ζλÞ
�
; ðC2Þ

respectively.
It is convenient then to define a length scale L0 ¼

0.197 fm (1=L0 ¼ 1 GeV) and proceed to the dimension-
less Jacobi coordinates, ρ̃ ¼ ρ=L0 λ̃ ¼ λ=L0, as well as
other quantities relevant for the calculation,

L̃box ¼Lbox=L0; m̃Qð0Þ ¼mQð0ÞL0; Ẽ¼EL0: ðC3Þ

It also proves convenient to define a radial wave function
χ ¼ ρλψ and its dimensionless counterpart χ̃ which is
normalized as

Z
L̃box

0

dρ̃
Z

L̃box

0

dλ̃jχ̃ðρ̃; λ̃Þj2 ¼ 1 ðC4Þ

and obeys the radial Schrödinger equation

1

m̃Q

�
−

∂
2

∂ρ̃2
−

∂
2

∂λ̃2
þ Ṽðρ̃; λ̃Þ

�
χ̃ðρ̃; λ̃Þ ¼ Ẽ χ̃ðρ̃; λ̃Þ; ðC5Þ

with

Ṽðρ̃; λ̃Þ ¼ 2

ρ̃2
þ 1

3
αsm̃Q

�
1

ρ̃
−

5

maxðρ̃; ζλ̃Þ

�
ðC6Þ

or

Ṽðρ̃; λ̃Þ ¼ 2

λ̃2
−
2

3
αsm̃Q

�
1

ρ̃
−

1

2maxðρ̃; ζλ̃Þ

�
; ðC7Þ

depending on which contribution to βΩ is considered.
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The boundary conditions imposed on the wave function
χ̃ read

χ̃ð0; λ̃Þ ¼ χ̃ðL̃box; λ̃Þ ¼ χ̃ðρ̃; 0Þ ¼ χ̃ðρ̃; L̃boxÞ ¼ 0: ðC8Þ

Equation (C5) is then solved numerically using the spec-
trum method of Ref. [38].

APPENDIX D: DIAGONALIZATION
OF THE OCTET FIELDS

In this appendix we discuss the effect of the octet fields
mixing for the fully heavy baryon Ω. The effective
Lagrangian at leading order reads

Lð0Þ
pNRQCD ¼

Z
d3ρd3λfS†½i∂0 − Vs�Sþ Δ†½i∂0 − Vs�Δ

þ O†½iD0 − Vo�Og; ðD1Þ

where O ¼ ðOA;OSÞ and

Vo ¼
�

VOA VOAS

VOAS VOS

�
: ðD2Þ

The diagonal octet potentials VOA and VOA are quoted in
Eqs. (38) and (39), respectively, and the off-diagonal
mixing term reads [24]

VOAS ¼ −
ffiffiffi
3

p
αs
2

�
1

jρþ ζλj −
1

jρ − ζλj
�
: ðD3Þ

To deal with the octets mixing term one can follow two
equivalent approaches. One possibility is to resum the
mixing potential insertions in the octet propagators [24].
The other possibility, which we employ below, is to
diagonalize the octet potential matrix. Thus we define
the rotation matrix,

R ¼
�
cos θo − sin θo
sin θo cos θo

�
; ðD4Þ

which diagonalizes the potential matrix,

RTVR ¼ diagðVþ; V−Þ: ðD5Þ

Then it is easy to find that

sin 2θo ¼
2VOASffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVOA − VOSÞ2 þ 4V2
OAS

q ;

cos 2θo ¼
VOA − VOSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVOA − VOSÞ2 þ 4V2
OAS

q ; ðD6Þ

and

V� ¼ 1

2

�
VOA þ VOS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVOA − VOSÞ2 þ 4V2

OAS

q 	
: ðD7Þ

Nowwe can express the interactionLagrangian in Eq. (40)
in terms of the rotated octet fields by using O ¼ RÕ,

LS−O
pNRQCD¼

Z
d3ρd3λ

�
1

2
ffiffiffi
2

p ½S†ρ ·gEaðcosθoÕSa

þ sinθoÕ
AaÞþH:c:�− ζ

2
ffiffiffi
6

p ½S†λ ·gEaðcosθoÕAa

− sinθoÕ
SaÞþH:c:�

�
: ðD8Þ

Then for the chromopolarizability we find

βΩ ¼ β̃ðρÞΩ þ β̃ðλÞΩ þ β̃ðρλÞΩ ; ðD9Þ

where

β̃ðρÞΩ ¼ 1

12
hΩjρ

�
sin θo

1

ĥÕA
− EΩ

sin θo

þ cos θo
1

ĥÕS
− EΩ

cos θo

�
ρjΩi; ðD10Þ

β̃ðλÞΩ ¼ ζ2

36
hΩjλ

�
cos θo

1

ĥÕA
− EΩ

cos θo

þ sin θo
1

ĥÕS
− EΩ

sin θo

�
λjΩi; ðD11Þ

β̃ðρλÞΩ ¼ −
ζ

6
ffiffiffi
3

p hΩjρ
�
sin θo

1

ĥÕA
− EΩ

cos θo

− cos θo
1

ĥÕS
− EΩ

sin θo

�
λjΩi; ðD12Þ

and the Hamiltonians take the form

ĥÕA
¼ T̂ðpρ; pλÞ þ Vþðρ; λÞ;

ĥÕS
¼ T̂ðpρ; pλÞ þ V−ðρ; λÞ: ðD13Þ

Consider first the mixed term,

β̃ðρλÞΩ ¼ β̃ðρλÞΩ ½A� − β̃ðρλÞΩ ½S�; ðD14Þ

where

β̃ðρλÞΩ ½X� ¼ −
ζ

12
ffiffiffi
3

p hΩj ρ · λ sin 2θo
ĥÕX

− EΩ
jΩi; ðD15Þ

with X ¼ A, S. Then, employing the same approximate
approach as in Eq. (79), we can write
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β̃ðρλÞΩ ½S� ≈ −
ζ

12
ffiffiffi
3

p hρ ·λsin2θoi
hT̂ðpρ;pλÞiþhV−ðρ;λÞi−EΩ

;

β̃ðρλÞΩ ½A� ≈ −
ζ

12
ffiffiffi
3

p hρ ·λsin2θoi
hT̂ðpρ;pλÞiþhVþðρ;λÞi−EΩ

; ðD16Þ

where, as before, hi stands for the averaging over the
ground state jΩi and hT̂ðpρ; pλÞi ¼ jEΩj. The correspond-

ing coefficients CðρλÞ
Ω ½S� and CðρλÞ

Ω ½A� are shown in the left
plot in Fig. 3. From this plot one can conclude that the

mixed term β̃ðρλÞΩ provides a contribution to the full

chromopolarizability at the level of few percent (see the
black solid curve) and as such can be neglected. This result
should not come as a surprise given that the octets mixing
potential (D3) is antisymmetric with respect to the coor-
dinates inversion, ρ → −ρ and λ → −λ, while we consider
the ground-state baryon made of heavy quarks with the
wave function symmetric with respect to this coordinates
change.
We now turn to the diagonal contributions given in

Eqs. (D10) and (D11) and rewrite them using the same
approximation as was used above for the mixed term,

β̃ðρÞΩ ≈
1

12

� hρ2sin2θoi
hT̂ðpρ; pλÞi þ hVþðρ; λÞi − EΩ

þ hρ2cos2θoi
hT̂ðpρ; pλÞi þ hV−ðρ; λÞi − EΩ

�
;

β̃ðλÞΩ ≈
ζ2

36

� hλ2cos2θoi
hT̂ðpρ; pλÞi þ hVþðρ; λÞi − EΩ

þ hλ2sin2θoi
hT̂ðpρ; pλÞi þ hV−ðρ; λÞi − EΩ

�
: ðD17Þ

The result of the direct numerical calculation based on
Eq. (D17) is shown in the right plot of Fig. 3 and compared
with both the exact result without octets mixing [for
θo ¼ 0; see Eq. (76)] and a similar approximate result
also obtained in neglect of the mixing [see Eq. (79)]. Thus
one can see that the difference between the above three
curves is small and can be regarded as a systematic
uncertainty.
Summarizing the results obtained in this appendix one

can state that

βΩ ≈ β̃ðρÞΩ þ β̃ðλÞΩ ≈ βðρÞΩ þ βðλÞΩ ; ðD18Þ

which justifies working in the zero-mixing approximation
in Sec. III.
The mixing term βðρλÞΩ is then treated as a source of the

systematic uncertainty; from the left plot in Fig. 3 one can

see that the corresponding contribution CðρλÞ
Ω does not

exceed about 7% of the total CΩ.

FIG. 3. Left plot: the ratio of the mixed coefficient CðρλÞ
Ω to the full coefficient CΩ (the black solid curve) and the individual

contributions to this ratio. Right plot: the approximate coefficient CΩ evaluated for the zero (the red dashed curve) and nonzero (the blue
dot curve) mixing compared with the exact result obtained for zero mixing—see Eq. (76) (the black solid curve).
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Phys. Rev. D 93, 054002 (2016).
[13] A. Pineda and J. Soto, Nucl. Phys. B, Proc. Suppl. 64, 428

(1998).
[14] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Nucl. Phys.

B566, 275 (2000).
[15] N. Brambilla, A. Vairo, and T. Rosch, Phys. Rev. D 72,

034021 (2005).
[16] N. Brambilla, V. Shtabovenko, J. Tarrús Castellà, and A.
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