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The three-body ηK�K̄�, πK�K̄�, and KK�K̄� systems are investigated within the framework of fixed-
center approximation to the Faddeev equations, where K�K̄� is treated as the scalar meson f0ð1710Þ. The
interactions between π, η, K, and K� are taken from the chiral unitary approach. By scattering the η meson
on the clusterized ðK�K̄�Þf0ð1710Þ system, we find a peak in the modulus squared of the three-body

scattering amplitude and it can be associated as a bound state with quantum numbers IGðJPCÞ ¼ 0þð0−þÞ.
Its mass and width are around 2054 and 60 MeV, respectively. This state could be associated with the
ηð2100Þmeson. For the πðK�K̄�Þf0ð1710Þ scattering, we find a bump structure around 1900–2000 MeV with

quantum numbers 1−ð0−þÞ, while for the KðK�K̄�Þf0ð1710Þ system, there are three structures. One of them is

quite stable and its mass is about 2130 MeV. It is expected that these theoretical predictions here could be
tested by future experimental measurements, such as by the BESIII, BelleII, and LHCb Collaborations.

DOI: 10.1103/PhysRevD.107.034019

I. INTRODUCTION

It is known that quark models have achieved great
success in studying the properties of hadrons, especially
for these ground states. Within the quark models, it is
commonly accepted that mesons are composed of quark
and antiquark (qq̄) and baryons are composed of three
quarks ðqqqÞ. Recently, the topic of meson-meson and
meson-baryon states, with hadrons and hadrons governed
by strong interactions, has been well developed by the
combination of the chiral effective Lagrangians with non-
perturbative unitary techniques in coupled channels, which
has been a very fruitful scheme to study the nature of many
hadronic states, both on light and heavy sectors [1–4].
Some of them are not easily explained by the classical
quark models. For example, a state with exotic quantum
numbers JPC ¼ 1−þ, denoted as η1ð1855Þ, is observed by
the BESIII Collaboration [5,6], which cannot be explained
by traditional qq̄ picture. However, it can be easily obtained

in the molecular picture. In Refs. [7,8], the η1ð1855Þ is
interpreted as a K̄K1ð1400Þmolecular state. In Ref. [9], the
η1ð1855Þ state was investigated by the method of QCD sum
rules and the results support the interpretation of the
η1ð1855Þ as a s̄sg hybrid meson.
On the other hand, those states with exotic quantum

numbers can be dynamically generated from the three-body
interactions. In Ref. [10], the meson π1ð1600Þ, with exotic
quantum numbers IGðJPCÞ ¼ 1−ð1−þÞ, is interpreted as a
dynamically generated state of the πK�K̄ system by using
the fixed-center approximation (FCA), where the two-body
K̄K� is fixed as f1ð1285Þ state [11–15]. Similarly, in
Ref. [16], possible exotic states with mass around
1700 MeV and quantum numbers IGðJPCÞ ¼ 0þð1−þÞ in
the ηK�K̄ system were predicted.
Indeed, there is growing evidence that some existing and

new observed hadronic states could be interpreted in terms
of resonances or bound states of three hadrons [17–19].
Furthermore, some new states are also predicted in three-
body systems [20–22]. For example, DKK and DKK̄
systems were studied in Ref. [23] within FCA, where
the evidence of a state with mass of about 2833–2858 MeV
was found in the DKK̄ system. In Ref. [22], D�D�K̄� is
studied by FCA, and they obtain bound states with isospin
I ¼ 1=2 in total spin J ¼ 0, 1, and 2. These states are very
narrow. In Ref. [24], the KDD̄ system is studied using the
Gaussian expansion method, minimizing the energy of the
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system. A new hidden-charm Kcc̄ð4180Þ excited state was
predicted. The same system is also studied in Ref. [25]
within the framework of FCA and the results obtained are
very similar. Besides, the FCA method have many achieve-
ments on the study of three-body systems [26–38]. Those
successes give us confidence in the FCA method that we
use in the present work to study the ηK�K̄�, πK�K̄�, and
KK�K̄� systems. In the framework of FCA, there is a
cluster of two bound particles (K�K̄� in this work) and the
third one (η, π, or K in this work) collides with the
components of this cluster without modifying its wave
function. Certainly, if the third particle is lighter than the
constituents of the cluster, the approximation is better.
Note that the η, π, and K mesons are much lighter than
the K�=K̄� meson. Whatever it is, one does not know the
accuracy of the FCA until a comparison is made with the
results by the full Faddeev calculations.
For the K�K̄� subsystem, it has strong attraction between

K� and K̄�. In fact, the well-established scalar meson
f0ð1710Þ was proposed to be a state dynamically generated
from the vector meson-vector meson interactions in
coupled channels [39–43]. Within this picture, the
f0ð1710Þ resonance can be interpreted as aK�K̄� molecular
state, and the properties of f0ð1710Þ resonance and its
production have been investigated in Refs. [44–50].
In thiswork,we investigate the three-body ηK�K̄�,πK�K̄�,

and KK�K̄� systems by considering the interactions of the
three components among themselves, keeping in mind the
expected strong correlations of theK�K̄� subsystem to make
the f0ð1710Þ state. Then, in terms of two-body pseudoscalar
meson-vector meson scattering amplitudes, which were
obtained from the chiral unitary approach [11,12], we solve

the Faddeev equations for the η, π, and K scattering on the
K�K̄� cluster in S wave by using the fixed-center approxi-
mation. In this way, it is quite probable to be able to generate
pseudoscalar mesons with three-body nature. The above
three-body systems have quantum numbers JPC ¼ 0−þ and
isospin I ¼ 0, 1, and 1=2, respectively.
The paper is organized as follows. In the next section, we

present the FCA method to the three-body ηK�K̄�, πK�K̄�,
and KK�K̄� systems. In Sec. III, our theoretical results and
discussions are presented. Finally, a short summary follows.

II. FORMALISM AND INGREDIENTS

We are interested in three different systems constituted
by three mesons: ηK�K̄�, πK�K̄�, and KK�K̄�. In order to
study the dynamics of these systems we will solve the
Faddeev equations using the fixed-center approximation to
obtain the total scattering amplitudes. One basic feature of
the FCA is that one has a cluster bound of two particles and
one allows the multiple scattering of the third particle with
this cluster, which is supposed not to be changed by the
interaction of the third particle. In this section we will
summarize the derivation of the three-body scattering
amplitudes within the framework of the FCA.

A. Fixed-center approximation

We are going to use the fixed-center approximation
formalism to study the three-body ηK�K̄�, πK�K̄�, and
KK�K̄� systems. In this framework, we consider the K�K̄�
as a cluster, which we take as the f0ð1710Þ state, and η, π,
or K interacts with it. The corresponding diagrams are
shown in Fig. 1. In the following we will label K�, K̄�, and
η (π or K) as particle 1, 2, and 3, respectively.

FIG. 1. Diagrammatic representation of FCA for the Faddeev equations for the three-body ηK�K̄�, πK�K̄�, and KK�K̄� systems.
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Following the formalism of Ref. [51], the three-body
scattering amplitude T for η (π or K) collisions with the
K�K̄� can be obtained by the sum of the partition functions
T1 and T2:

T1 ¼ t1 þ t1G0T2; ð1Þ

T2 ¼ t2 þ t2G0T1; ð2Þ

T ¼ T1 þ T2 ¼
t1 þ t2 þ 2t1t2G0

1 − t1t2G2
0

; ð3Þ

where T1 stands for the sum of all the diagrams in Fig. 1
where the third particle collides firstly with the particle K�
in the cluster, while T2 is the sum of all the diagrams where
the third particle collides firstly with particle K̄� of the
cluster. The t1 and t2 represent the unitary two-body
scattering amplitudes in coupled channels for the inter-
actions of particle 3 with particle 1 and 2, respectively.
These two-body scattering amplitudes will be discussed
later on.
Besides, in the above equations, G0 is the loop function

for the particle 3 propagating between the K� and K̄� of the
cluster, which can be written as

G0ðsÞ ¼
1

2Mf0ð1710Þ

Z
d3q⃗
ð2πÞ3

Ff0ð1710ÞðqÞ
q0

2 − jq⃗j2 −m2
3 þ iϵ

; ð4Þ

where s is the invariant mass square of the whole three-
body system, and Mf0ð1710Þ is the mass of the bound state
f0ð1710Þ. Besides, Ff0ð1710ÞðqÞ is the form factor of the
K�K̄� subsystem, which is treated as the f0ð1710Þ state.
The q0 is the energy of particle 3 with mass m3 in the
center-of-mass frame of particle 3 and the ðK�K̄�Þf0ð1710Þ
cluster, which is given by

q0ðsÞ ¼
sþm2

3 −M2
f0ð1710Þ

2
ffiffiffi
s

p : ð5Þ

Following the approach of Refs. [51–53], one can easily
get the expression of the form factor Ff0ð1710Þ for the
S-wave K�K̄� bound state f0ð1710Þ as

Ff0ð1710ÞðqÞ¼
1

N

Z
jp⃗j≤Λ;jp⃗−q⃗j≤Λ

d3p⃗
1

2ω1ðp⃗Þ
1

2ω2ðp⃗Þ

×
1

Mf0ð1710Þ−ω1ðp⃗Þ−ω2ðp⃗Þ

×
1

2ω1ðp⃗− q⃗Þ
1

2ω2ðp⃗− q⃗Þ
×

1

Mf0ð1710Þ−ω1ðp⃗− q⃗Þ−ω2ðp⃗− q⃗Þ ; ð6Þ

where ω1ðp⃗Þ ¼ ω2ðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

K�
p

, and the normali-
zation factor N is given by

N ¼
Z
jp⃗j≤Λ

d3p⃗

�
1

4ω2
1ðp⃗Þ

1

Mf0ð1710Þ − 2ω1ðp⃗Þ
�

2

: ð7Þ

The cutoff parameter Λ is needed to regularize the vector
meson–vector meson loop functions in the chiral uni-
tary approach [39,40]. In the present work, the upper-
integration limit of Λ has the same value of the cutoff used
in Refs. [39,40]. With the values of Λ, one can get the
f0ð1710Þ state in the vector meson–vector meson inter-
actions in coupled channels.
In Fig. 2, we show numerical results of the form factor

Ff0ð1710Þ as a function of q ¼ jq⃗j, where the solid and
dashed curves are obtained with Λ ¼ 945 and 1125 MeV,
respectively. Note that with these values for cutoff param-
eter Λ, one can get the f0ð1710Þ state in the vector-vector
interactions in coupled channels. Besides, the integration
condition jp⃗ − q⃗j < Λ implies that the form factor of
Ff0ð1710Þ is exactly zero when q > 2Λ.

B. Unitarized K�K̄� interaction for the f 0ð1710Þ
state and the loop function G0

The K�K̄� interaction in S wave has been analyzed
within the formalism developed in Ref. [39] for studying
the interaction of the nonet of vector mesons among
themselves. In Fig. 3, the module square of tK�K̄�→K�K̄�

obtained from the chiral unitary approach in ρρ, ωω, ωϕ,
ϕϕ, and K�K̄� coupled channels for isospin I ¼ 0 sector,
are shown, where one can see that there is a clear peak for
f0ð1710Þ state around 1704 MeV with Λ ¼ 1125 MeV,
while the peak moves to 1733 MeV if one takes
Λ ¼ 945 MeV. Note that in the calculations of these

FIG. 2. Form factor of ðK�K̄�Þf0ð1710Þ cluster with Λ ¼
945 MeV (solid line) and Λ ¼ 1125 MeV (dashed line).
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two-body loop functions of Gρρ and GK�K̄� , the widths of
vector mesons ρ and K� are taken into account, since they
have large total decay widths. On the other hand,
in the calculations for the form factor of Ff0ð1710ÞðqÞ,
the mass of cluster f0ð1710Þ is taken as 1704 MeV
when Λ ¼ 1125 MeV, whileMf0ð1710Þ ¼ 1733 if one takes
Λ ¼ 945 MeV. As pointed out in Ref. [39], the f0ð1710Þ
resonance is dynamically generated from the vector-vector
coupled interactions, with a small decay width. But, these
two pseudoscalars are its decay channles. By including
these effects of pseudoscalar-pseudoscalar channels, the
obtained width of f0ð1710Þ resonance is compatible with
the experimental result. Meanwhile, the obtained mass of it
does not change much (see more details in Ref. [39]). It is
worthy to mention that the “our evaluation” value in the
2020 version and 2021 updated of the Review of Particle
Physics (RPP) [54] for the mass of f0ð1710Þ resonance is
1704� 12 MeV, while the “our average” value for it is
1733þ8

−7 MeV. In fact, even though the f0ð1710Þ resonance
is well established in the RPP, there are still many doubts
about its nature [55]. We refer to the Review of Particle
Physics [54] for more details.
Next, we present the numerical results for the loop

function G0, which is the η (π and K) propagator between
the K� and K̄� of the cluster f0ð1710Þ. Note that G0 is
dependent on the invariant mass

ffiffiffi
s

p
of the three-body

system. In this work, there are three G0 functions for
η-ðK�K̄�Þf0ð1710Þ, π-ðK�K̄�Þf0ð1710Þ, and K-ðK�K̄�Þf0ð1710Þ
systems. In Fig. 4, we show the real and imaginary parts of
the G0 function for IK�K̄� ¼ 0 as a function of the total
three-body η-K�-K̄� system invariant mass. The other
two cases can be easily obtained by the replacements
of η → π and η → K, respectively. They are shown in
Figs. 5 and 6.

FIG. 3. Modulus squared of tK�K̄�→K�K̄� as a function of the
invariant mass of K�K̄� system with Λ ¼ 945 MeV (dashed line)
and Λ ¼ 1125 MeV (solid line).

FIG. 4. Real (solid line) and imaginary (dashed line) parts of the
loop function G0 for ηK�K̄� system with the cutoff parameter
Λ ¼ 945 MeV (red line) and Λ ¼ 1125 MeV (blue line).

FIG. 5. As in Fig. 4 but for the πK�K̄� system.

FIG. 6. As in Fig. 4 but for the KK�K̄� system.
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C. Contributions for the η, π, and K interaction
with the K�K̄� system

According to Figs. 1(a) and 1(e), the single-scattering
contribution from t1 and t2 are appropriate for the combi-
nation of the two-body unitarized scattering amplitudes.
For example, let us firstly consider the ηK�K̄� system with
the K�K̄� cluster in I ¼ 0 for the f0ð1710Þ state. The K�K̄�
isospin state is written as

jK�K̄�iI¼0 ¼
1ffiffiffi
2

p
�����12 ;− 1

2

�
−
����− 1

2
;
1

2

��
; ð8Þ

where the kets on the right side of the above equation
represent jIK�

z ; IK̄
�

z i for K�K̄�.
Then, the single-scattering contributions to the total

amplitude of hηK�K̄�jt̂jηK�K̄�i can be easily obtained in
terms of unitary two-body transition amplitudes tηK�→ηK�

and tηK̄�→ηK̄� derived in Ref. [12]. Here, we write explicitly
the case of ηðK�K̄�Þf0ð1710Þ → ηðK�K̄�Þf0ð1710Þ,

hηðK�K̄�Þjt̂jηðK�K̄�Þi
¼ ðhA1j þ hA2jÞðt̂31 þ t̂32ÞðjA1i þ jA2iÞ
¼ hA1jt̂31jA1i þ hA2jt̂32jA2i; ð9Þ

where jA1i stands for the state combined with η and K�,
while jA2i is the state of η and K̄�. They are given by

jA1i ¼
1ffiffiffi
2

p
����12 12 ;− 1

2

�
−

1ffiffiffi
2

p
����12 − 1

2
;
1

2

�
;

jA2i ¼
1ffiffiffi
2

p
����12 − 1

2
;
1

2

�
−

1ffiffiffi
2

p
����12 12 ;− 1

2

�
: ð10Þ

Thus, we have

t1 ¼ hA1jt̂31jA1i

¼ 1

2
t
I¼1

2

ηK�→ηK� þ 1

2
t
I¼1

2

ηK�→ηK� ;

¼ t
I¼1

2

ηK�→ηK�

t2 ¼ hA2jt̂32jA2i

¼ 1

2
t
I¼1

2

ηK̄�→ηK̄� þ 1

2
t
I¼1

2

ηK̄�→ηK̄�

¼ t
I¼1

2

ηK̄�→ηK̄� : ð11Þ

Similarly, for the case of πK�K̄�, we have

t1 ¼ hA1jt̂31jA1i ¼
2

3
t
I¼3

2

πK�→πK� þ 1

3
t
I¼1

2

πK�→πK� ;

t2 ¼ hA2jt̂32jA2i ¼
2

3
t
I¼3

2

πK̄�→πK̄� þ 1

3
t
I¼1

2

πK̄�→πK̄� : ð12Þ

Next, for the case of KK�K̄�, we can get the following
results:

t1 ¼ hA1jt̂31jA1i ¼
3

4
tI¼1
KK�→KK� þ 1

4
tI¼0
KK�→KK� ; ð13Þ

t2 ¼ hA2jt̂32jA32i ¼
3

4
tI¼1
KK�→KK̄� þ

1

4
tI¼0
KK̄�→KK̄� : ð14Þ

On the other hand, following the approach developed in
Refs. [34,51], we need to give a weight to t1 and t2 such that
we have the right normalization for the fields of mesons.
This is achieved by replacing

t1 → et1 ¼ Mf0ð1710Þ
mK�

t1;

t2 → et2 ¼ Mf0ð1710Þ
mK�

t2: ð15Þ

Finally, we have the three-body scattering amplitude:

T ¼ et1 þ et2 þ 2et1 et2G0

1 − et1 et2G2
0

: ð16Þ

It is worth to mention that the three-body total scattering
amplitude T is a function of the total invariant mass

ffiffiffi
s

p
of

the three-body system, while the two-body scattering
amplitudes t1 and t2 depend on the invariant masses

ffiffiffiffiffi
s1

p
and

ffiffiffiffiffi
s2

p
, which are the invariant masses of η (π or K) and

particle K� (K�) inside the cluster of f0ð1710Þ. The
arguments s1 and s2 are obtained as

s1 ¼ m2
η=π=K þm2

K� þ
s −m2

η=π=K −M2
f0ð1710Þ

2

s2 ¼ m2
η=π=K þm2

K̄� þ
s −m2

η=π=K −M2
f0ð1710Þ

2
; ð17Þ

where we have used mK� ¼ mK̄� .

III. NUMERICAL RESULTS

In this section we show the theoretical numerical results
obtained for the scattering-amplitude square of the three-
body ηK�K̄�, πK�K̄�, and KK�K̄� systems with total
isospin I ¼ 0, 1, and 1=2, respectively. We evaluate the
three-body scattering amplitude T and associate the peaks
in the modulus squared jTj2 resonances. In addition, the
masses of the particles considered in this work are shown
in Table I. These values are taken from the Review of
Particle Physics [54]. For the mass of f0ð1710Þ state,

TABLE I. Particle masses (in MeV) used in this work.

mK mπ mη mη0 ΓK� Mf0ð1710Þ (eva.)

495.6455 138.04 547.862 957.78 49.1 1704
mK�=K̄� mρ mϕ mω Γρ Mf1ð1710Þ (ave.)
893.1 775.26 1019.461 782.66 149.1 1733
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both “evaluation mass“ (eva.) and “average mass” (ave.)
are shown.

A. Three-body ηK�K̄� system

In order to obtain two-body system scattering amplitude
t1 and t2, we need the scattering amplitude of ηK� and ηK̄�,
which were studied in Refs. [12,56]. In this work, we have
considered also the effect of η0 meson as done in
Refs. [57,58]. Within the model parameters as used in
Refs. [12,56]: μ ¼ 900 MeV and αμ ¼ −1.85, one can
easily obtain the modulus squared of tηK�→ηK� , which is
shown in Fig. 7. One can see that there is a clear peak for
the K1ð1270Þ state [56], and the interaction of ηK� is
strong. Note that the widths of these vector mesons are
taken into account in the calculations for the loop functions
[39], and the effects of those channels including the η0
meson are very small and could be safely neglected.
On the other hand, one can also get the transition

amplitude tηK̄�→ηK̄� . Since the K�K̄�, ηK�, and ηK̄� inter-
actions are attractive and strong enough to generate bound
states, it is natural to expect the existence of multihadron
states composed of K�K̄� and η.
Then, we obtain the total three-body scattering

amplitude TηðK�K̄�Þf0ð1710Þ→ηðK�K̄�Þf0ð1710Þ . In Fig. 8 we show
the modulus squared jTηðK�K̄�Þf0ð1710Þ→ηðK�K̄�Þf0ð1710Þ j

2 for the

ηðK�K̄�Þf0ð1710Þ → ηðK�K̄�Þf0ð1710Þ scattering amplitude.
The picture shows a clear peak around 2100 MeV
with cutoff parameter Λ ¼ 945 MeV. If one takes
Λ ¼ 1125 MeV, the peak moves to 2054 MeV. This peak
with quantum numbers IGðJPCÞ ¼ 0þð0−þÞ could be
interpreted as ηð2100Þ that has mass 2050þ30þ75

−24−26 MeV
and width 250þ36þ181

−30−164 MeV. In addition, it is found that
the peak is not sensitive to the cutoff parameter Λ.

On the experimental side, the ηð2100Þ meson was
observed firstly by the DM2 Collaboration in 1988 [59].
Then, it was also observed by the BESIII Collaboration in a
partial wave analysis of the J=ψ → γϕϕ decay with 22σ
significance [60]. However, this state is not listed in the
summary meson tables of the RPP [54], which indicates
more analysis of it is needed. Besides, in Ref. [61], the
ηð2100Þmeson is interpreted as a candidate for ηð4SÞ of the
fourth pseudoscalar meson nonet.

B. Three-body πK�K̄� system

In the case of πK�K̄� system, we need the two-body
πK� → πK� scattering amplitude as inputs. Within the
formula and theoretical parameters of Ref. [12], one can
easily get the two-body scattering amplitude tπK�→πK� in
coupled channels. Note that we use the cutoff regularization
scheme for the loop functions of the intermediate vector–
pseduoscalar mesons, and the widths of the vector mesons
are also considered. Furthermore, we take cutoff parameter
ΛπK� ¼ 1000 MeV to regularize the loop function contain-
ing a vector and a pseudoscalar meson.
The modulus squared of tπK�→πK� in isospin I ¼ 1=2 is

shown in Fig. 9, from where one can see that there is a clear
peak around 1150 MeV. As discussed in Ref. [12], it could
be the lower pole of the two K1ð1270Þ states.
The interaction of πK� in isospin I ¼ 3=2 is much

weaker than the one with I ¼ 1=2. The numerical results
of tπK�→πK� with I ¼ 3=2 are shown in Fig. 10. One can see
that the strength of tI¼3=2

πK�→πK� is much smaller than the one

of tI¼1=2
πK�→πK� and there is no clear bump structure of the

jtI¼3=2
πK�→πK� j2 in a wide energy region.
In Fig. 11, we show the obtained modulus squared of

scattering amplitude jTπðK�K̄�Þf0ð1710Þ→πðK�K̄�Þf0ð1710Þ j
2 of the

three-body πK�K̄� system. It is found that there is a wide
bump structure around 1900–2000 MeV, which may be

FIG. 7. Modulus squared of tηK�→ηK� as a function of the
invariant mass of ηK� system.

FIG. 8. Modulus squared of scattering amplitude for ηK�K̄�
three-body system with Λ ¼ 945 MeV (solid line) and Λ ¼
1125 MeV (dashed line).
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associated with the πð2070Þ state, which was not quoted in
the RPP [54]. Around that energy region, the πð2070Þ state
was needed in a combined partial wave analysis of p̄p
annihilation channels in Ref. [62], and its mass and width
are about 2070� 35 MeV and 310þ100

−50 MeV, respectively.
The obtained width of πð2070Þ state is rather wide. Thus,
the mass of πð2070Þ state needs to be precisely measured
by further experiment since its large width will lead to
difficulties for the measurements.

C. Three-body KK�K̄� system

The interaction between K and K̄� is strong, and the
f1ð1285Þ state is dynamically generated from the KK̄�
interaction in Swave and isospin I ¼ 0 sector [12], while in
the I ¼ 1 sector, the a1ð1260Þ and b1ð1235Þ can be

obtained also [12]. Within the same parameters as used
in Ref. [12], the obtained modulus squared of tKK̄�→KK̄� in
I ¼ 0 and I ¼ 1 are shown in Figs. 12 and 13, respectively.
From these figures, one can see that there are clearly the
peaks for the f1ð1285Þ and a1ð1260Þ=b1ð1235Þ states, and
the former peak is much narrower; yet, the later one is wide
and the peak is superposition of a1ð1260Þ and b1ð1235Þ,
since in the calculations, we do not distinguish their G
parity. Furthermore, the interaction of KK̄� in I ¼ 1 sector
is much weaker than that in the I ¼ 0 sector.
On the other hand, the interaction between K and K� is

even weaker, and the two-body scattering amplitude of
tKK�→KK� in I ¼ 0 is zero. In the I ¼ 1 sector, the scattering
amplitude squared of tKK�→KK� is shown in Fig. 14. The
strength of jtKK�→KK� j2 is much smaller than those shown in
Figs. 12 and 13 for the case of KK̄� scattering.

FIG. 9. Modulus squared of scattering amplitude of tπK�→πK� in
isospin I ¼ 1=2 sector as the function of πK� system.

FIG. 10. Modulus squared of scattering amplitude of tπK�→πK�

in isospin I ¼ 3=2 sector as the function of πK� system.

FIG. 11. Modulus squared of scattering amplitude for πK�K̄�
three-body system with Λ ¼ 945 MeV (solid line) and Λ ¼
1125 MeV (dashed line).

FIG. 12. Modulus squared of tKK̄�→KK̄� in I ¼ 0 as a function of
the invariant mass of KK̄� system.
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In Fig. 15, the modulus squared of scattering amplitude
of three-body KK�K̄� system is shown, where there are
three peaks. The one around 2130 MeV is not sensitive to
the cutoff parameter, while the other two are much
dependent on the value of cutoff parameter Λ. The lowest
one is located at about 2072 MeV, and the highest one is
about 2219 MeV.
On the experimental side, there is a meson with

strangeness around 2062 MeV and named Xð2075Þ. It
was observed by the BESII Collaboration in the pΛ̄
invariant mass spectrum of the decay J=ψ → K−pΛ̄ [63].
Its Breit-Wigner mass and width are 2075� 12ðstat:Þ �
5ðsyst:Þ MeV and 90� 35ðstat:Þ � 9ðsyst:Þ MeV, respec-
tively. The spin of Xð2075Þ state could be 0 or 1. Note that
as pointed out in Ref. [63], its interpretation as a conven-
tional K� meson would be disfavored. In addition, a similar

near-threshold enhancement in the pΛ̄ system was also
observed inBþ → pΛ̄D0 by the Belle Collaboration [64]. In
fact, one can notice that there is a large blank space between
2000–3000 MeV in RPP for those strangeness states [54].
We look forward to further experiment that can give us more
information about those mesons with a strange quark in this
energy region.
In the FCA,we keep the cluster wave function unchanged

by the presence of the third particle. In order to estimate
uncertainties of the FCA due to this frozen condition we
admit that thewave function of the cluster could bemodified
by the presence of the third particle, which is the normal
situation in a full Faddeev calculation. In fact, the ηK�K̄� and
πK�K̄� systems may couple to each other or other three-
body channels, while the KK�K̄� system could be mixed
with, for example,KρK̄� andKωK̄� channels. However, the
mass thresholds of such channels are far from the energy
region we considered. Furthermore, including such contri-
butions, the three-body scattering amplitude would become
more complex due to additional parameters from the non-
diagonal transitions, and we cannot determine or constrain
these parameters.Hence,wewill leave these contributions to
future studies when more experimental data become avail-
able. For the sake of simplicity we do not include other
channels in the present work.

IV. SUMMARY

In the framework of fixed-center approximation, we have
performed a calculation for the three-body ηðK�K̄�Þf0ð1710Þ,
πðK�K̄�Þf0ð1710Þ, and KðK�K̄�Þf0ð1710Þ systems treating
f0ð1710Þ as a K�K̄� bound state as found in previous
studies of the vector-vector interactions. The total three-
body scattering amplitude can be obtained in terms of the

FIG. 13. Modulus squared of tKK̄�→KK̄� in I ¼ 1 as a function of
the invariant mass of KK̄� system.

FIG. 14. Modulus squared of tKK�→KK� in I ¼ 1 as a function of
the invariant mass of KK� system.

FIG. 15. Modulus squared of scattering amplitude for KK�K̄�
three-body system with Λ ¼ 945 MeV (solid line) and Λ ¼
1125 MeV (dashed line).
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two-body interactions which are taken from the chiral
unitary approach. We associate the peaks in the modulus
squared of the three-body scattering amplitude with had-
ronic states.
Our theoretical results for the obtained mass of f0ð1710Þ

state and these peak positions of squared three-body

scattering amplitudes with different values of the cutoff
parameter Λ are listed in Table II. The peak positions are
associated with the mass of the three-body state. The state
found in the ηK�K̄� system could be interpreted as ηð2100Þ
meson. For the πK�K̄� system, we find a bump structure
between 1900 and 2000MeV, while for theKK�K̄� system,
three peaks appeared. One of them is not sensitive to the
cutoff parameter, and its mass is about 2130MeV. The third
one disappeared if the cutoff parameter was less than
855 MeV. It is expected the theoretical calculations here
could be tested by future experiments.
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