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A nonrelativistic unparticle can be defined as an excitation created by an operator with a definite scaling
dimension in a nonrelativistic field theory with an approximate conformal symmetry. The point-production
rate of an unparticle has power-law dependence on its total energy with an exponent determined by its
scaling dimension. We use the exact result for the 3-point function of primary operators in a nonrelativistic
conformal field theory to derive the contribution to the point production rate of the unparticle from its decay
into another unparticle recoiling against a particle. In the case where the conformal symmetry is broken by a
large positive scattering length, we deduce the exponent of the energy in the point production rate of the
loosely bound two-particle state recoiling against a particle with large relative momentum.
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I. INTRODUCTION

A definition of an elementary particle that is popular in
group-theoretic circles is an irreducible representation of
the Poincaré group. The concept of an unparticle was
introduced by Georgi [1]. An unparticle is a system created
by a local operator with a definite scaling dimension in a
conformal field theory (CFT). It can therefore be defined as
an irreducible representation of the conformal symmetry
group. The conformal group on a (3þ 1)-dimensional
Minkowski space-time is a 15-dimensional group that
includes the Poincaré group and scale transformations as
subgroups. A relativistic unparticle is characterized by a
single number: the scaling dimension of the operator. If the
CFT belongs to a hidden sector beyond the Standard Model
of particle physics, the unparticle cannot be observed
directly. However it can be observed indirectly through
the momentum distribution of Standard Model particles
produced in association with the unparticle [1]. If the
unparticle is produced in association with a single Standard
Model particle, the invariant mass distribution of the
unparticle can be determined by measuring the recoil-
momentum distribution of the Standard Model particle.

It has power-law behavior with an exponent determined by
the scaling dimension of the unparticle. The existence of
unparticles in a hidden sector would produce novel signals
in high energy colliders [2–4]. The CMS Collaboration has
searched for signals of unparticles in pp collisions at the
Large Hadron Collider [5–7].
Hammer and Son recently pointed out that unparticles can

also arise in nonrelativistic physics [8]. The nonrelativistic
conformal symmetry group on a (3þ 1)-dimensional
Galilean space-time is a 13-dimensional group that includes
the Galilean group and scale transformations as subgroups.1

It is also called the Schrödinger group, because it is the
symmetry group of the free Schrödinger equation. A non-
relativistic conformal field theory (NRCFT) is a field
theory with nonrelativistic conformal symmetry [10]. A
nonrelativistic unparticle is a system created by a local
operator with a definite scaling dimension in such a theory.
In contrast to the relativistic case, a nonrelativistic unparticle
is characterized by two numbers: its kinetic massM and the
scaling dimension Δ of the operator [8].
Hammer and Son pointed out that systems of low-energy

neutrons produced by a short-distance reaction provide
physical examples of nonrelativistic unparticles [8].
Neutrons have a negative scattering length a that is much
larger than their effective range r0. As a consequence, the
behavior of a system of neutrons whose kinetic energies inPublished by the American Physical Society under the terms of
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1For a discussion of the relation to the relativistic conformal
group, see e.g. Ref. [9].
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their center-of-momentum (CM) frame are all in the scaling
region between 1=ðmna2Þ and 1=ðmnr20Þ, where mn is the
neutron mass, is approximately scale invariant. In the
unitary limit 1=a → 0, r0 → 0, a nonrelativistic effective
field theory describing the neutrons has nonrelativistic
conformal symmetry. A convenient basis for local operators
in the effective field theory are those with definite scaling
behavior under the conformal symmetry. A system of N
neutrons created by a local operator with scaling dimension
ΔN can be interpreted as an unparticle with mass Nmn. For
the 2-neutron unparticle, the lowest scaling dimension is
Δ2 ¼ 2. For unparticles with larger N, the scaling dimen-
sions are transcendental numbers. For the 3-neutron
unparticle, the lowest scaling dimension is Δ3 ¼ 4.27272.
The lowest scaling dimensions for 4 and 5 neutrons are 5.07
and 7.6, respectively. A summary of the lowest scaling
dimensions for up to six neutrons is given in Table I of [10].
An N-neutron unparticle can be created by a short-

distance nuclear reaction of the form A1 þ A2 →
Bþ ðnn…Þ [8]. The invariant energy E of the N neutrons,
which is their total kinetic energy in their CM frame, can be
determined by measuring the momentum of the recoiling
nucleus B or by detecting the neutrons directly. There is a
scaling region of E in which the differential cross section
has the scaling behavior EΔN−5=2dE. The corresponding
power-law behavior for N noninteracting particles as E
approaches the threshold is governed by the N-particle
phase space, Eð3N−5Þ=2dE. In the case of fermions, there is
an additional Pauli suppression factor E for each pair of
identical particles. For E of the order of the energy scale set
by the neutron-neutron scattering length εnn ¼ 1=ðmna2Þ,
there is a transition from the phase-space behavior for
noninteracting particles to the power-law behavior gov-
erned by ΔN in the scaling region. This nontrivial scaling
behavior is the smoking gun for an unparticle. The resulting
predictions for the invariant energy distributions of 2, 3,
and 4 neutrons are shown in Fig. 1. In the case of 2
neutrons, there is a maximum in the region E ∼ εnn. For
larger neutron numbers, there is a change in the slope of the
log-log plot in the region E ∼ εnn.
The predicted invariant energy distribution, dR=dE, for

four neutrons in Fig. 1 is not consistent with a resonance-
like structure at E=εnn ≈ 20 in the point production of
four neutrons. Such a structure was recently observed in
the 4n spectrum measured in the knock-out reaction
8Heðp; pαÞ4n by Duer et al. [11]. However, the neutron
distribution of the initial 8He nucleus clearly plays a role in
this process and the applicability of the point-production
approximation is questionable as the neutrons are emitted
from a 8He source. A recent theoretical study of the reaction
[12] attributes the structure to the final-state interaction
among the four neutrons and the presence of preexisting
four neutrons in the periphery of the 8He nucleus projectile.
While the former effect is captured in the invariant 4n
energy distribution of Fig. 1, the latter is not.

In Ref. [13], we pointed out that a low-energy system of
neutral charm mesons created by a short-distance reaction
is an unparticle because of the Xð3872Þ resonance in the
D�0D̄0 þD0D̄�0 channel [14]. The scattering length a in
that channel is large and negative. Because the resonant
channel is a superposition of charm mesons, there is no
Efimov effect [15,16]. The behavior of a system of neutral
charmmesons whose kinetic energies in their CM frame are
all in the scaling region between 1=ð2μa2Þ and 1=ð2μr20Þ,
where μ is the reduced mass of D�0 and D̄0, is therefore
approximately scale invariant. In the unitary limit 1=a → 0,
r0 → 0, a nonrelativistic effective field theory describing
the neutral charm mesons has nonrelativistic conformal
symmetry. A convenient basis for local operators in the
effective field theory are those with definite scaling
behavior under the conformal symmetry. A system of N
neutral charm mesons created by a local operator with
scaling dimension ΔN can be interpreted as an unparticle.
The scaling dimensions for 2-charm-meson unparticles are
the same as for two neutrons. The lowest scaling dimen-
sions for 3-charm-meson unparticles are Δ3 ¼ 3.10119
for D0D̄�0D0 and D̄0D�0D̄0 as well as Δ3 ¼ 3.08697 for
D0D̄�0D̄�0 and D̄0D�0D�0. In each case, there are two pairs
of particles with a large scattering length a. The slight
difference in the two values of Δ3 is due to the different
masses of the D0 and D�0. The 2-charm-meson unparticle
can be observed through the recoil-momentum spectrum of
the kaon in the inclusive decay B� → K� þ ðanythingÞ.
A 3-charm-meson unparticle can be observed through the
prompt production of Xð3872ÞD0 at the Large Hadron
Collider.
Because the scattering length a in the case of neutral

charm mesons is large and positive, the unparticles have
components that include bound states. There are reactions
for producing final states that include bound states whose

FIG. 1. Scaling prediction of Ref. [8] for the invariant energy
distribution dR=dE of 2, 3, and 4 neutrons in their CM frame. The
transition from the free phase-space behavior to the scaling region
around E ∼ εnn is illustrated by the dotted lines.
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rates have power-law behavior with exponents determined
by conformal symmetry. The simplest such reaction
is the production of Xð3872ÞD0 from the creation of a
3-charm-meson unparticle at a point, whose rate scales as a
power of the unparticle energy E [13].
In this paper, we consider the production of a pair of

unparticles from the creation of a single unparticle at a
point. We use the analytic result for the 3-point function of
primary operators in a NRCFT to derive the contribution to
the production rate from another unparticle recoiling
against a single particle. In the case where the conformal
symmetry is broken by a large positive scattering length,
we deduce the exponent of the energy in the point
production rate of the loosely bound two-particle state
recoiling against a particle with large relative momentum.

II. THREE-POINT FUNCTION
FOR PRIMARY OPERATORS

We start by calculating the Fourier transform of the
3-point function for primary operators in a NRCFT. We
take the dimension of space to beD, and we denote a space-
time position by x ¼ ðx; tÞ. An operator ϕ†

3ðxÞ with scaling
dimension Δ3 creates an unparticle with mass M3. An
operator ϕ2ðxÞ with scaling dimension Δ2 annihilates an
unparticle with mass M2. An operator ϕ1ðxÞ with scaling
dimensionΔ1 annihilates an unparticle with massM1 ¼ M.
The masses satisfy the constraint M1 þM2 ¼ M3 from
Galilean symmetry. We are particularly interested in the
case where ϕ1ðxÞ annihilates a single particle with massM,
in which case its scaling dimension is Δ1 ¼ D=2.

A. Propagators

The space-time propagator for a primary operator ϕnðxÞ
with mass Mn and scaling dimension Δn is

hϕnðx1Þϕ†
nðx2Þi ¼ Cnðt12Þ−Δnθðt12Þ exp

�
i
Mnx212
2t12

�
; ð1Þ

where tij ¼ ti − tj, x2ij ¼ ðxi − xjÞ2, and Cn is a constant.
We represent the space-time propagator by the diagram
in Fig. 2.
The energy-momentum propagator is obtained by

Fourier transforming in both space-time positions and then
factoring out an energy-momentum delta function. It is
advantageous to take the variables ðx1 þ x2Þ=2 and x1 − x2
for the Fourier transform. After performing the trivial

Fourier transform in ðx1 þ x2Þ=2, the remaining Fourier
transform in space is a Gaussian integral that depends on
the momentum p,

Z
dDx12 exp

�
−ip · x12 þ i

Mnx212
2t12

�

¼
�
2πi

t12
Mn

�
D=2

exp

�
−i

t12
2Mn

p2

�
: ð2Þ

The subsequent Fourier transform in time gives a simple
function of the energy E,

Z
∞

0

dt12ðit12ÞD=2−Δn exp

�
iEt12 − i

p2

2Mn
t12

�

¼ −iΓ
�
D
2
þ 1 − Δn

��
p2

2Mn
− E

�Δn−D=2−1
: ð3Þ

With an appropriate choice for the constant Cn in Eq. (1),
our final result for the energy-momentum propagator is

DnðE; pÞ ¼ −iC0
n

�
p2

2Mn
− E

�Δn−D=2−1
; ð4Þ

where C0
n is a constant.

In the case where ϕ1ðxÞ annihilates a single particle, its
scaling dimension is Δ1 ¼ D=2 and the propagator in
Eq. (4) has a simple pole in the energy E at p2=ð2MÞ.
With the conventional choice C0

1 ¼ 1, the discontinuity in
the energy is

D1ðEþ iϵ; pÞ −D1ðE − iϵ; pÞ ¼ 2πδ

�
E −

p2

2M

�
: ð5Þ

For other unparticles, the discontinuity in the energy is

DnðEþ iϵ; pÞ −DnðE − iϵ; pÞ

¼ 2C0
n sinðπðΔn −D=2ÞÞ

�
E −

p2

2Mn

�Δn−D=2−1

× θ

�
E −

p2

2Mn

�
: ð6Þ

B. Space-time three-point function

The 3-point function hϕ1ðx1Þϕ2ðx2Þϕ†
3ðx3Þi for primary

operators in a NRCFT was first considered by Henkel in
1993 [17]. The 3-point function can be represented by the
diagram in Fig. 3. He used the Schrödinger symmetry to
determine the 3-point function analytically up to a scaling
function of a single variable,

FIG. 2. Space-time propagator for unparticle n with kinetic
mass Mn and scaling dimension Δn.
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hϕ1ðx1Þϕ2ðx2Þϕ†
3ðx3Þi¼ðt13Þ−Δ13;2=2θðt13Þexp

�
i
M1x213
2t13

�

×ðt23Þ−Δ23;1=2θðt23Þexp
�
i
M2x223
2t23

�

×ðt12Þ−Δ12;3=2ΦðwÞ; ð7Þ
where Δij;k ¼ Δi þ Δj − Δk and the argument of the
scaling function Φ is

w ¼ ðt23ðx1 − x3Þ − t13ðx2 − x3ÞÞ2
2t13t23t12

¼ 1

2

�
x212
t12

−
x213
t13

þ x223
t23

�
:

ð8Þ
The first expression shows that the sign of w is the same as
the sign of t12. The scaling function ΦðwÞ depends also on
the masses M1 and M2 and on the scaling dimensions Δ1,
Δ2, and Δ3. The 3-point function in Eq. (7) is symmetric
under the interchange of the subscripts 1 and 2.
An integral representation for the scaling function ΦðwÞ

was first obtained by Henkel and Unterberger from the
3-point function for a CFT in two higher dimensions [18].
It has also been obtained by Fuertes and Moroz and by
Volovich and Wen using holography and the AdS=CFT
correspondence [19,20]. In the anti-de Sitter space (AdS)
formulation, the external points in Fig. 3 are on the
boundary of AdS and the blob is replaced by a point
interaction inside the bulk of AdS. In Refs. [18,19], the
3-point function is expressed as a function of Euclidean

times. The expression in Ref. [20] in terms of real times is
more directly useful for our purposes. The integral repre-
sentation for the scaling function is

ΦðwÞ ¼ C12;3

Z þ∞

−∞
du ðuþ iϵÞ−Δ13;2=2e−iM1u

×
Z þ∞

−∞
dv ðvþ iϵÞ−Δ23;1=2e−iM2v

× ½u − vþ ð1þ iϵÞw�−Δ12;3=2; ð9Þ
where C12;3 is a constant. Because the signs of t12 and w are
identical [cf. Eq. (8)], the product of ðt12Þ−Δ12;3=2 and the last
factor in Eq. (9) has a well-defined imaginary part,

ðt12Þ−Δ12;3=2½u − vþ ð1þ iϵÞw�−Δ12;3=2

¼ ½t12ðu − vþ wÞ þ iϵ�−Δ12;3=2: ð10Þ

The scaling function can also be expressed analytically in
terms of a confluent hypergeometric function [20].

C. Fourier transform in space

The Fourier transform of the 3-point function in position
space can be represented by the diagram in Fig. 4. To
evaluate the Fourier transforms in the three spatial posi-
tions, it is convenient to express the last factor in Eq. (10) as
the integral of an exponential,

½t12ðu − vþ wÞ þ iϵ�−Δ12;3=2 ¼ ðeiπ=2jt12jÞ−Δ12;3=2
1

ΓðΔ12;3=2Þ
Z

∞

0

dmmΔ12;3=2−1 expð−m½ϵ − isignðt12Þðu − vþ wÞ�Þ: ð11Þ

The Fourier transform can be expressed as the product of the momentum-conserving delta function δDðp1 þ p2 − p3Þ and a
Gaussian integral in x13 and x23. In the case t12 > 0, the Gaussian integral is

FIG. 3. Space-time 3-point function for primary operators
associated with unparticles 1, 2, and 3.

FIG. 4. Fourier-transformed 3-point function for primary oper-
ators associated with unparticles 1, 2, and 3.
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Z
dDx13 exp

�
−ip1 · x13 þ i

M1x213
2t13

�Z
dDx23 exp

�
−ip2 · x23 þ i

M2x223
2t23

�
eþimw

¼
�
2πi

t12t13
t12M1 þ t23m

�
D=2

�
2πi

t23ðt12M1 þ t23mÞ
t12M1M2 þ t13M1mþ t23M2m

�
D=2

× exp

�
−i

t12t13ðM2 þmÞp2
1 þ t12t23ðM1 −mÞp2

2 þ t13t23mp2
3

2ðt12M1M2 þ t13M1mþ t23M2mÞ
�
: ð12Þ

We can go to the CM frame by setting p3 ¼ 0 and jp1j ¼ jp2j ¼ p. In the case t12 > 0, the 3-point function with the
momentum delta function factored out reduces to

C0
12;3ðt13ÞðD−Δ13;2Þ=2θðt13Þðt23ÞðD−Δ23;1Þ=2θðt23Þjt12j−Δ12;3=2

Z
∞

0

dmmΔ12;3=2−1e−mϵ

×
Z þ∞

−∞
du ðuþ iϵÞ−Δ13;2=2e−iðM1−mÞu

Z þ∞

−∞
dv ðvþ iϵÞ−Δ23;1=2e−iðM2þmÞv

×

�
t12M1M2

t12M1M2 þ t13M1mþ t23M2m

�
D=2

exp

�
−i

t12ðt23M1 þ t13M2 þ t12mÞ
2ðt12M1M2 þ t13M1mþ t23M2mÞp

2

�
; ð13Þ

where C0
12;3 is a constant. The integrals over u and v can be evaluated analytically by closing the integration contour in the

lower half-plane,

Z þ∞

−∞
du ðuþ iϵÞ−Δ=2e−iMu ¼ e−iπΔ=4

2π

ΓðΔ=2ÞM
Δ=2−1θðMÞ: ð14Þ

After these integrals have been evaluated, the limit ϵ → 0 can be taken in the remainder. The choice t12 > 0 breaks the symmetry
under interchange of the subscripts 1 and 2. Given this choice, it is convenient to change to a dimensionless integration variable
x ¼ m=M1. Our final result for the spatial Fourier transform of the 3-point function in the CM frame with t12 > 0 is

C00
12;3ðt13ÞðD−Δ13;2Þ=2θðt13Þðt23ÞðD−Δ23;1Þ=2θðt23Þjt12j−Δ12;3=2

Z
1

0

dx xΔ12;3=2−1ð1 − xÞΔ13;2=2−1½1þ ðM1=M2Þx�Δ23;1=2−1

×

�
t12

t12 þ ðM1=M2Þxt13 þ xt23

�
D=2

exp

�
−i

t12½xt12 þ ðM2=M1Þt13 þ t23�
2M2½t12 þ ðM1=M2Þxt13 þ xt23�

p2

�
; ð15Þ

where C00
12;3 is a constant.

D. Fourier transform in time

The Fourier transforms in the three times can be expressed as the product of the energy-conserving delta function
δðE1 þ E2 − E3Þ, a Fourier transform in t13 with energy E1, and a Fourier transform in t23 with energy E2. We first isolate
the contribution from the Fourier transform in t13 from the region t13 ≫ t23 and then evaluate the Fourier transform in t23.
In the limit t13 ≫ t23, the exponential in Eq. (15), reduces to

exp

�
−i

t12½xt12 þ ðM2=M1Þt13 þ t23�
2M2½t12 þ ðM1=M2Þxt13 þ xt23�

p2

�
⟶ exp

�
−i

p2

2M1

t13

�
exp

�
−i

½1 − 2x − ðM2=M1Þx�p2

2M2½1þ ðM1=M2Þx�
t23

�
; ð16Þ

where the identity t12 ¼ t13 − t23 has been used. The contribution to the Fourier transform in t13 from the region t13 ≫ t23
can be reduced to the integral

Z
∞

0

dt13ðit13ÞðD−Δ13;2−Δ12;3Þ=2 exp
�
iE1t13 − i

p2

2M1

t13

�
¼ −iΓðD=2þ 1 − Δ1Þ

�
p2

2M1

− E1

�Δ1−D=2−1
: ð17Þ

This integral is the propagator for ϕ1 multiplied by a constant. The subsequent Fourier transform in t23 can be reduced to the
integral

POINT PRODUCTION OF A NONRELATIVISTIC UNPARTICLE … PHYS. REV. D 107, 034017 (2023)

034017-5



Z
∞

0

dt23ðit23ÞðD−Δ23;1Þ=2 exp
�
iE2t23 − i

½1 − 2x − ðM2=M1Þx�p2

2M2½1þ ðM1=M2Þx�
t23

�

¼ −iΓð½D − Δ23;1�=2þ 1Þ
�½1 − 2x − ðM2=M1Þx�p2

2M2½1þ ðM1=M2Þx�
− E2

�ðΔ23;1−DÞ=2−1
: ð18Þ

We now specialize to the case of ϕ1ðxÞ being the operator that annihilates a single particle. Its scaling dimension is
Δ1 ¼ D=2, so the integral in Eq. (17) has a simple pole at E1 ¼ p2=ð2M1Þ. The residue of the pole in the Fourier-
transformed three-point function is

GpoleðE2; pÞ ¼ C000
12;3

Z
1

0

dx xΔ12;3=2−1ð1 − xÞΔ13;2=2−1½1þ ðM1=M2Þx�Δ23;1=2−1−D=2

×

�
p2

2M2

− E2 −
ðM3=M2Þx

1þ ðM1=M2Þx
p2

2M12

�ðΔ23;1−DÞ=2−1
; ð19Þ

where M12 ¼ M1M2=M3 is a reduced mass and C000
12;3 is a

constant. The integrand has been expressed as a function of
the energy E2 − p2=ð2M2Þ of the unparticle relative to its
threshold and the total energy p2=ð2M12Þ of the unparticle
at its threshold and the particle.
In the limit E2 → p2=ð2M2Þ with p2 fixed, the

integral over x in Eq. (19) has a divergent term that comes
from the region near the lower endpoint. The divergent
factor is the propagator of the unparticle. The limiting
behavior of the 3-point function in Eq. (19) as E2 →
p2=ð2M2Þ is

GpoleðE2; pÞ → C0000
12;3D2ðE2; pÞ

�
p2

2M12

�−Δ12;3=2

; ð20Þ

where C0000
12;3 is a constant. This is our result for the scaling

behavior of the Fourier-transformed 3-point function at
large momentum p.
The exponent −Δ12;3=2 in Eq. (20) can also be deduced

from the analytic result for an integral whose integrand has
the same dependence on x near the lower endpoint as the
integrand in Eq. (19),

Z
1

0

dx xΔ12;3=2−1ð1 − xÞΔ13;2=2−1
�

p2

2M2

− E2 − xðM3=M2Þ
p2

2M12

�ðΔ23;1−DÞ=2−1

¼ B

�
Δ12;3

2
;
Δ13;2

2

��
p2

2M2

− E2

�ðΔ23;1−DÞ=2−1
2F1

�
Δ12;3

2
;
Dþ 2 − Δ23;1

2
;Δ1;

ðM3=M2Þðp2=2M12Þ
p2=ð2M2Þ − E2

�
; ð21Þ

where Bðx; yÞ is the beta function and 2F1ða; b; c; zÞ is the
ordinary hypergeometric function (cf. Ref. [21]). Using
the transformation formula that changes the argument of
the hypergeometric function from z to 1=z, we find that its
leading divergence as z → ∞ has the factor z−Δ12;3=2

provided D > 2.

III. POINT PRODUCTION RATES

We are now in the position to determine the energy
dependence of the production rate of an unparticle recoiling
against a particle with large relative momentum from the
creation of an unparticle at short distances. We then
determine the exponent of the energy in the production
rate of a loosely bound 2-particle state recoiling against a

particle with large relative momentum. For definiteness, we
focus on the case D ¼ 3.

A. Unparticle recoiling against a particle

We first consider the production rate in the NRCFT of a
particle with massM1 plus the unparticle with massM2 and
scaling dimensionΔ2 from the creation at short distances of
the unparticle with mass M3 ¼ M2 þM1 and scaling
dimensionΔ3. The inclusive production rate is proportional
to the imaginary part of the Green function hϕ3ðx1Þϕ†

3ðx2Þi.
The contribution to the production rate from intermediate
states consisting of a particle and an unparticle can be
obtained from the Fourier transform of the 3-point function
hϕ1ðx1Þϕ2ðx2Þϕ†

3ðx3Þi in the CM frame, which we denote
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as GðE1; E2; pÞ. The Green function GðE1; E2; pÞ with the
particle propagator D1ðE1; pÞ amputated and evaluated on
shell at E1 ¼ p2=ð2MÞ is GpoleðE2; pÞ in Eq. (19). That
amplitude can be represented by the diagram in Fig. 5. By
energy conservation, the total energy is E3 ¼ E1 þ E2.
Using the optical theorem, the differential rate dR as a
function of the total energy E3 can be obtained from
GpoleðE2; pÞ in several steps:

(i) complete the amputation of the final-state propaga-
tors by dividing GpoleðE2; pÞ by the unparticle
propagator D2ðE2; pÞ,

(ii) multiply the amputated amplitude GampðE2; pÞ ¼
GpoleðE2; pÞ=D2ðE2; pÞ by its complex conjugate,

(iii) multiply jGampðE2; pÞj2 by the discontinuities in the
particle propagator D1ðE1; pÞ and in the unparticle
propagator D2ðE2; pÞ, which are given in Eqs. (5)
and (6),

(iv) integrate over the energy E1 of the particle and its
momentum p in the CM frame with the mea-
sure dE1d3p=ð2πÞ4.

The resulting expression for the differential production rate
in the CM frame as a function of E3 is

dR ¼ C
Z

dE1

2π

d3p
ð2πÞ3 jGampðE3 − E1; pÞj22πδ

�
E1 −

p2

2M1

�

×

�
E3 − E1 −

p2

2M2

�Δ2−5=2
θ

�
E3 − E1 −

p2

2M2

�
;

ð22Þ

whereC is a constant. The integral over E1 can be evaluated
using the delta function, which sets E1 ¼ p2=ð2M1Þ.
The discontinuity in D2ðE2; pÞ provides the threshold
E3 > p2=ð2M12Þ, where M12 ¼ M1M2=M3 is a reduced
mass. The differential rate for E3 above the threshold
reduces to

dR ¼ C

�
E3 −

p2

2M12

�Δ2−5=2

× jGampðE3 − p2=ð2M1Þ; pÞj2
d3p
ð2πÞ3 : ð23Þ

We can use Eq. (20) to deduce the rate for energy E3

close to the threshold p2=ð2M12Þ for fixed p. The limiting
behavior as E2 → p2=ð2M2Þ of the amputated 3-point
function is

GampðE2; pÞ → C0000
12;3

�
p2

2M12

�−Δ12;3=2

: ð24Þ

The limiting behavior of the differential rate as E3 →
p2=ð2M12Þ is therefore

dR → C0
�
E3 −

p2

2M12

�Δ2−5=2
�

p2

2M12

�Δ3−Δ2−3=2 d3p
ð2πÞ3 ;

ð25Þ

where C0 ¼ C0000
12;3C and we have used Δ1 ¼ 3=2.

The above results for the point-production rate in
Eq. (25) can be applied to multineutron systems. In this
case, Δ3 and Δ2 are the scaling dimensions of (N þ 1)-
neutron and N-neutron operators, respectively. The con-
tribution to the point production rate of the (N þ 1)-neutron
unparticle from its decay into an N-neutron unparticle
recoiling against a single neutron is given by Eq. (23). In
the region near the threshold for the N-neutron unparticle,
that production rate reduces at large relative momentum to
Eq. (25). The lowest scaling dimensions for 3, 4, and 5
neutrons are 4.27, 5.07, 7.6, respectively. (See [10] for
further discussion and references.)

B. Bound state recoiling against a particle

Next we consider the case where a bound state arises
from a deformation of a nonrelativistic conformal field
theory that produces a large positive scattering length a in
the channel associated with the unparticle with mass M2

and scaling dimension Δ2 ¼ 2. The bound state has
constituents with masses M1 and M2 −M1. Its binding
energy is jεXj ¼ 1=ð2μa2Þ, where μ ¼ M1ðM2 −M1Þ=M2

is the reduced mass of its constituents. The field ϕ†
2ðxÞ

creates a particle of mass M1 and a particle of mass
M2 −M1. The propagator for the field ϕ2ðxÞ is

D2ðE; pÞ ¼ −iC0
2

��
p2

2M2

− E

�
1=2

−
1ffiffiffiffiffiffiffiffiffiffi
2μa2

p
�−1

: ð26Þ

This propagator has a pole at the energy

FIG. 5. Amplitude for the creation of unparticle 3 at a point and
its evolution to unparticle 2 and a single particle with large
relative momentum. The particle is represented by a single line.
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Epole ¼ −
1

2μa2
þ p2

2M2

: ð27Þ

The pole is associated with the bound state, which we will
refer to as X. The discontinuity of the propagator is

D2ðEþ iϵ; pÞ −D2ðE − iϵ; pÞ

¼ 2C0
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − p2=ð2M2Þ

p
E − p2=ð2M2Þ þ jεXj

θ

�
E −

p2

2Mn

�

þ 2π
ffiffiffiffiffiffiffiffi
jεXj

p
δ

�
Eþ jεXj −

p2

2M2

��
: ð28Þ

The differential rate dR for the production of either three
particles or a single particle plus X can be obtained from
the differential rate in Eq. (22) by taking into account
the dependence ofGampðE3 − E1; pÞ on a and replacing the
discontinuity of the propagator D2ðE3 − E1; pÞ by the
discontinuity given in Eq. (28). The amplitude for produc-
ing the bound state X plus a single particle can be
represented by the diagram in Fig. 6. The integrated rate
RX for producing a single particle plus X can be obtained
by using the delta function in Eq. (28) to evaluate the
integral over p in Eq. (23),

RX ¼ CX

ffiffiffiffiffiffiffiffi
jεXj

p
ðE3 þ jεXjÞ1=2

×

����Gamp

�
M1E3 −M2jεXj

M3

; ½2M12ðE3 þ jεXjÞ�1=2
�����

2

;

ð29Þ

where CX ¼ CC0
2ð2M12Þ3=2=π. The amputated 3-point

function depends on a explicitly through εX in its two
arguments and also implicitly through the interactions
between the particles. In the limit E3 ≫ jεXj, its depend-
ence on E3 is given in Eq. (20). The dependence of RX on
E3 in that limit therefore has the power-law behavior

RX → C0
X

ffiffiffiffiffiffiffiffi
jεXj

p
E−Δ12;3þ1=2
3 ; ð30Þ

whereC0
X is a constant. The exponent isΔ3 − Δ2 − Δ1 þ 1

2
¼

Δ3 − 3.
This case can be realized with neutral D and D� mesons

and theXð3872Þ [13]. TheXð3872Þ is a resonance extremely
close to the threshold in the JPC ¼ 1þþ channel of D�0D̄0

andD0D̄�0. The most precise measurements of the mass by
the LHCb Collaboration give an energy relative to the
D�0D̄0 threshold of εX ¼ −0.07� 0.12 MeV [22,23],
which implies jεXj < 0.22 MeV at the 90% confidence
level. This tiny binding energy corresponds to a large
positive scattering length a ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjεXj

p
, where μ is the

D�0D̄0 reduced mass.
The production rate dR=dE of an X and a neutral D or

D� meson near the threshold is determined by the energy
scale εDX ¼ 1=ð2μDXa2DXÞ, where μDX is the reduced mass
of the XD (or XD�) system and aDX is the corresponding
S-wave scattering length. To leading order in the contact
effective field theory for the neutral D and D� mesons, the
scattering lengths for D0X and D�0X are universal and
equal to a multiplied by a large negative coefficient:
aD0X ¼ −9.7a, aD�0X ¼ −16.6a [24]. Thus they show an
additional enhancement beyond the already large D�0D̄0

scattering length a. Inserting explicit values leads to the
tiny energy scales εD0X ¼ 0.82 keV or εD�0X ¼ 0.26 keV.
As shown in Fig. 7, dR=dE increases from zero at the

threshold to a peak near εDX=jεXj ≈ 0.01 forD0X and 0.004
for D�0X, respectively. Then it decreases to a local
minimum at an energy of order jεXj. In this region, the
interior structure of the X is not resolved and the scaling
exponent −1=2 for two structureless particles in the final
state appears [8]. Beyond the minimum, there is a scaling
region where dR=dE increases with a power-law deter-
mined by the three-body scaling dimensions Δ3 ¼ 3.10119

FIG. 6. Amplitude for the creation of unparticle 3 at a point and
its evolution to a loosely bound state of two particles and a single
particle with large relative momentum. The bound state is
represented by a double line.

FIG. 7. Production rates dR=dE for D0X (solid curve) and
D�0X (dashed curve) from the creation of neutral charm mesons
at short distances as functions of the invariant energy E. The
dotted lines show the transition between different scaling regions.
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for D0X and Δ3 ¼ 3.08697 for D�0X. The power-law
behavior of the amplitudes Γ for D0X and D�0X is
predicted as E0.10119 and E0.08697, respectively [13]. It
has been verified by explicit calculations of the point
production rate in a contact effective field theory for the
neutral D and D� mesons. There is a crossover to a more
rapidly-increasing production rate at even higher energies
when nonuniversal effects kick in, which is not shown
in Fig. 7.

IV. CONCLUSION

Nonrelativistic unparticles arise naturally in any system
that can be described by a nonrelativistic field theory close
to a conformally invariant limit. Systems of neutrons
with small invariant energy created by point reactions
are examples of nonrelativistic unparticles in nuclear
physics [8]. Systems of neutral charm mesons with small
invariant energy created by point reactions are examples of
nonrelativistic unparticles in particle physics [13]. The
concept of nonrelativistic unparticles is useful, because it
allows scaling regions to be identified in which reaction
rates have power-law behavior characterized by nontrivial
exponents. It would be interesting to find other physical
realizations of nonrelativistic unparticles in nature. It would
also be interesting to exploit the remarkable control of
interactions that is possible with ultracold atoms to create
new systems with unparticles.
We have used the analytic results for the three-

point function for primary operators in a nonrelativistic

conformal field theory in Refs. [18–20] to derive the
contribution to the point production rate of an unparticle
from its decay into another unparticle recoiling against a
particle. We also used it to derive a scaling law for the
decay into a loosely bound 2-particle state recoiling
against a particle with large momentum. If analytic results
for the 4-point function of primary operators in a
nonrelativistic conformal field theory were available, they
could be applied to the elastic scattering of unparticles or
the elastic scattering of an unparticle with a particle. They
could also be used to derive scaling laws for the
elastic scattering of a loosely bound 2-particle state and
a particle at large momentum transfer. It would be
interesting to compare the analytic exponents with
numerical results for the elastic scattering of D0 and
D�0 with Xð3872Þ [13].
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