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The worm-gear-T function parametrizes the probability of finding a longitudinally polarized quark
inside a transversely polarized hadron. We extract it from data on polarized semi-inclusive deep-inelastic
scattering measured at COMPASS and HERMES. As a theoretical model, we use a Wandzura-Wilczek-
type approximation at next-to-leading order. We find that at present, the data quality is insufficient to
determine the worm-gear-T function faithfully. We also provide predictions for the transverse single-spin
asymmetry associated with the worm-gear-T function, which could be measured in weak-boson production
at STAR.
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I. INTRODUCTION

The complexity of the internal hadron’s structure cannot
be described entirely in terms of one-dimensional collinear
distributions but requires a multidimensional formalism.
The transverse-momentum dependent (TMD) factorization
formalism [1,2] is targeted at the understanding of this
complex structure in terms of the partons’ three-dimensional
momentum distributions (TMD distributions). During the
last years, the importance of internal transverse momentum
has been confirmed in multiple cases, see examples in
Refs. [3–13]. There are eight leading twist TMD distribu-
tions [14] and only a few of them are known to some degree
of certainty. In this contribution, we study the worm-gear-T
function (wgt-function), denoted by g1T, that captures the
distribution of longitudinally polarized partons in trans-
versely polarized hadrons.
Special interest in the wgt-function is caused by the

observation that it gives rise to a cosðφ − ϕSÞ-modulation
in the single-spin asymmetry (SSA) in the p↑ þ p → W=Z
reaction. This asymmetry has the same general structure as
the famous Sivers asymmetry [15], but is caused by the
P-violation of weak-forces, instead of the T-oddness of
the Sivers function [16]. Such SSA can be measured in
the STAR experiment at RHIC [17]. To make a theoretical
prediction for this SSA one needs the wgt-function,

which can be extracted using lower-energy semi-inclusive
deep-inelastic scattering (SIDIS) data. Such an extraction
has been recently done in Ref. [11]. However, the results of
Ref. [11] cannot be applied to high-energy data, since it
does not include TMD evolution. Also, the implementation
of TMD factorization in Ref. [11], is insufficiently accurate
to describe the high-energy data. The corresponding dis-
cussion and phenomenological tests can be found in the
analogous study of the Sivers SSA in Ref. [8]. In the
present work, we use the realization of TMD factorization
based on the ζ-prescription [18]. This approach was used in
many global analyses that successfully described polarized
and unpolarized SIDIS and Drell-Yan-type processes,
at low and high-energy [4–7,19–21]. The ζ-prescription
is a particular solution of TMD evolution equations, which
allows a consistent usage of TMD evolution without
implementation (or with partial implementation) of collin-
ear matching. The latter property is particularly useful for
the studies of polarized data, where the collinear matching
is known only at lower perturbative order in comparison to
the order of evolution. In Refs. [7,20] this approach was
used for a N3LO extraction of the Sivers function using also
data from STAR.
The main aim of this work is to extract the wgt-function

from the available SIDIS data and make a prediction for the
∼ cosðφ − ϕSÞ-SSA in the kinematics of the STAR experi-
ment. Additionally, we would like to test the recent NLO
computation of the wgt-function [22] (in a Wandzura-
Wilczek-type approximation), and estimate the size of the
twist-three contribution. The paper is structured as follows:
In Sec. II we review the theory framework and define the
model for the wgt-function. In Sec. III we analyze the
SIDIS data and determine the free parameters of our ansatz.
Finally, in Sec. IV, we define the cosðφ − ϕSÞ-SSA induced
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by the weak bosons and make a prediction for the
STAR experiment.

II. THEORETICAL FRAMEWORK

In this section, we summarize the TMD factorized
expressions required for the present analysis. The general
setup follows the one used in Refs. [5–7,20,21]. The
required input for polarization-independent elements is
taken from the global extraction [5]. A summary of the
perturbative order used is given in Table I. Our model for
the wgt-function is discussed in Sec. II C.

A. Transverse-longitudinal asymmetry in SIDIS

Semi-inclusive deep-inelastic scattering is the reaction

lðlÞ þHðP; SÞ → lðl0Þ þ hðphÞ þ X; ð1Þ

where l is a lepton, H and h are target and produced
hadron. The momentum of the intermediate photon is

q ¼ l − l0 (Q2 ¼ −q2). The kinematics of SIDIS is
described by the standard variables

x ¼ Q2

2ðqPÞ ; y ¼ ðqPÞ
ðlPÞ ; z ¼ ðphPÞ

ðqPÞ ; γ ¼ 2xM
Q

;

ε ¼ 1 − y − y2γ2

4

1 − yþ y2

2
þ y2γ2

4

; ð2Þ

whereM2 ¼ P2 is the mass of the target hadron. In addition
to these longitudinal variables, one defines the transverse
vector pμ

⊥ ¼ gμν⊥ ph;ν (and similar for s⊥, l⊥, etc.), where

gμν⊥ ¼ gμν −
1

Q2ð1þ γ2Þ ½2x
2PμPν þ 2xðPμqν þ qμPνÞ

− γ2qμqν�; ð3Þ
is the projector to the plane orthogonal to Pμ and qμ.
The SIDIS cross section is parametrized by many

structure functions [14]. The terms relevant in the present
case are

dσ
dxdydψdzdp2⊥

¼ α2em
xyQ2

y2

2ð1 − εÞ
h
FUU;T þ jS⊥jλl

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
cosðϕh − ϕSÞFcosðϕh−ϕSÞ

LT þ � � �
i
; ð4Þ

where λl is the helicity of the incoming lepton, ψ is the
azimuthal angle of the final-state lepton, ϕh and ϕS are
azimuthal angles of detected hadron and target spin relative
to the lepton plane [29]. The arguments of these structure
functions are ðx; z;Q2; p2⊥Þ. The transverse-longitudinal
asymmetry is defined as

Acosðϕh−ϕSÞ
LT ¼ Fcosðϕh−ϕSÞ

LT

FUU;T
: ð5Þ

The theoretical description of SIDIS is performed in the
hadronic frame, where the momenta of target and measured

hadron are antiparallel. In this frame the photon has a
transverse momentum qT (orthogonal to Pμ and pμ

h), which
is related to p⊥ by

q2T ¼ p2⊥
z2

: ð6Þ

In this relation we have neglected corrections ∼γ (see, e.g.,
Ref. [5]). In the limit Q → ∞ and qT ≪ Q the SIDIS cross
section obeys the TMD factorization theorem [2,14].
According to it, the structure functions are

FUU;T ¼ jCVðQ2; μÞj2
X
q

e2q

Z
∞

0

jbjdjbj
2π

J0

�jbjjp⊥j
z

�
f1;q←Hðx; b; μ; ζÞD1;q→hðz; b; μ; ζ̄Þ þO

�
q2T
Q2

�
; ð7Þ

TABLE I. Summary of used orders of the perturbative series of different elements in the factorization formula. The
perturbative order of the highest included term is shown. For the small-b matching the order indicates the
perturbative order of the coefficient function, and PDF/FF indicates the used collinear distribution. This set up
corresponds to N3LL in the nomenclature of Ref. [23].

Evolution Small-b matching

Element CV Γcusp γV Dresum C ⊗ f1 C ⊗ d1 C ⊗ g1
Order a3s a4s a3s a3s a2s a2s a1sðtw2-onlyÞ
PDF=FF NNPDF3.1 [24] DSS [25,26] NNPDF [27]

DSSV [28]
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Fcosðϕh−ϕSÞ
LT ¼ jCVðQ2; μÞj2

X
q

e2qM
Z

∞

0

jbj2djbj
2π

J1

�jbjjp⊥j
z

�
g1T;q←Hðx; b; μ; ζÞD1;q→hðz; b; μ; ζ̄Þ þO

�
q2T
Q2

�
; ð8Þ

where the J are Bessel functions of the first kind and the eq
are the electric quark charges. The function f1 is the
unpolarized TMD PDF. The function D1 is the unpolarized
TMD fragmentation function (FF). The coefficient function
jCV j2 is perturbative, and cancels in the ratio (5). We fix the
factorization scales as μ ¼ Q and ζ ¼ ζ̄ ¼ Q2.
The unpolarized TMD distributions were defined and

extracted in many works. The most recent studies describe
hundreds of data points measured in Drell-Yan and SIDIS
processes [3–5,13,23]. Using these results one can predict
the asymmetry (5) up to the unknown wgt-function. In this
work, we use the unpolarized input and evolution from
SV19 [5,30]. SV19 is based on the global fit of data
measured at Tevatron, LHC, FermiLab (for Drell-Yan),
HERMES and COMPASS (for SIDIS). The SV19 fit for
unpolarized TMD distributions and the Collins-Soper
kernel has been successfully used for subsequent extrac-
tions of other TMD distributions in Refs. [6,7,20,21,31].
The SV19 analysis is made both at N2LO and N3LO.

Here, we use the N3LO version, which has full N3LO TMD
evolution. The unpolarized distributions are matched to
collinear distributions at N2LO. A summary of the pertur-
bative input is given in Table I.

B. Evolution of TMD distributions

The TMD distributions have two scaling parameters μ
and ζ. The corresponding evolution equations are [18,32]

μ2
dFðx; b; μ; ζÞ

dμ2
¼ γFðμ; ζÞFðx; b; μ; ζÞ; ð9Þ

ζ
dFðx; b; μ; ζÞ

dζ
¼ −Dðb; μÞFðx; b; μ; ζÞ; ð10Þ

where F is any TMD distribution of leading twist, γF is the
TMD ultraviolet anomalous dimension and D is the
Collins-Soper kernel. The anomalous dimension γF is used
at N3LO (a4s for cusp contribution, and a3s for the rest) [33].
The Collins-Soper kernel is generally nonperturbative [34],
and is defined below. The solution of Eqs. (9) and (10) is

Fðx; b; μf; ζfÞ

¼ exp

�Z
P

�
γFðμ; ζÞ

dμ
μ

−Dðb; μÞ dζ
ζ

��
Fðx; b; μi; ζiÞ;

ð11Þ

where P is any path connecting the points ðμf; ζfÞ
and ðμi; ζiÞ.

One of the central questions of TMD phenomenology is
the choice for the initial scales ðμi; ζiÞ [we remind that
ðμf; ζfÞ ¼ ðQ;Q2Þ]. We fix these scales in accordance with
the ζ-prescription

ðμi; ζiÞ ¼ ðμ0; ζμ0ðbÞÞ; ð12Þ

where μ0 can be any scale. The function ζμðbÞ is defined by
the equation [6]

γFðμ; ζμðbÞÞ ¼ 2Dðb; μÞ d ln ζμðbÞ
d ln μ2

; ð13Þ

with the boundary condition γFðμ0; ζμ0ðbÞÞ ¼ 0, where μ0
is defined implicitly by Dðμ0; bÞ ¼ 0. This boundary
condition corresponds to the case that the line ðμ; ζμðbÞÞ
passes through the saddle point of the evolution potential
[18]. Equation (13) can be solved as expansion in as for an
arbitrary function D [5,6]. The expansion converges well,
since asðQÞ ≪ 1. We stress that this solution is valid for
any values of b, since all nonperturbative physics is
collected in the Collins-Soper kernel.
A TMD distribution at the scale (12) is called optimal

TMD distribution. By definition (13), the optimal TMD
distribution is independent on μ0. For that reason, it is
usually denoted without scaling parameters

Fðx; b; μ0; ζμ0ðbÞÞ ¼ Fðx; bÞ: ð14Þ

It is convenient to present Eq. (11) in the form

Fðx; b;Q;Q2Þ ¼
�

Q2

ζQðbÞ
�−Dðb;QÞ

Fðx; bÞ: ð15Þ

In this way, the TMD distribution is split into a factor
dependent on D and the optimal TMD distribution that is
independent of D. This allows to theoretically decorrelate
the (nonperturbative) evolution from the nonperturbative
parton dynamics.
The Collins-Soper kernel parametrizes effects of the

inter-quark interaction that is perturbative at small distances
and nonperturbative at large distances. It is given by a
vacuum matrix element of a certain Wilson loop [34].
The SV19 extraction defined the Collins-Soper kernel as
follows

Dðb; μÞ ¼ Dresumðb�; μÞ þ c0jbjb�; ð16Þ

where b� ¼ jbjð1þ jbj2=ð2 GeV−1Þ2Þ−1=2, and Dresum is
the resummed perturbative part of the Collins-Soper
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kernel [35]. The resummation is done at NNLO level.
The necessary perturbative coefficients are taken from
[36–38]. The parameter c0 is determined in SV19 to be
c0 ¼ 0.0422� 0.011.
It is important to emphasize that the ζ-prescription

completely decorrelates TMD distributions from evolution.
Therefore, models for TMD distributions can be build
without reference to the order in which evolution is
treated. It is opposed to other schemes (such as Collins’
scheme [2,32]), where the order of evolution is tied to the
order of the small-b expansion. This decorrelation allows
us to use the best known evolution setup (N3LO) together
with incomplete small-bmatching for the wgt-function (see
next section).

C. Model for the optimal worm-gear T-function

The wgt-function is a nonperturbative function of the
two variables ðx; bÞ for each active flavor. Given the quality
of the present data, it is practically impossible to extract the
wgt-function without imposing strong model assumptions.
To construct a realistic ansatz we use the small-b expansion
that relates the asymptotic behavior of the wgt-function to
helicity distributions and twist-three distributions [39,40].
At small value of b, the optimal wgt-function has

the form

g⊥1T;qðx; bÞ ¼
X
f

x
Z

1

x

dy
y
Ctw2
q←f

�
x
y
; μOPE

�
g1fðy; μOPEÞ

þ
X
f

½Ctw3
q←f ⊗ Tf�ðxÞ þOðb2Þ; ð17Þ

where the first and second term represent the twist-two
and the twist-three contributions, correspondingly. The
summation index f runs over all active flavors.
The twist-two contribution contains the helicity

distribution g1. The NLO coefficient functions (in the
ζ-prescription) read [22]

Ctw2
q←qðx;μÞ ¼ 1þ asðμÞCF

�
Lbð2 lnx− 4 lnð1− xÞ

− 1− 2xÞ− 2ð1− xÞ− 2 lnx−
π2

6

�
þOða2sÞ;

ð18Þ

Ctw2
q←gðx; μÞ ¼ as

�
−Lbðln xþ 2 − 2xÞ þ 1 − xþ 1

2
ln x

�

þOða2sÞ; ð19Þ

whereas¼g2ðμÞ=ð4πÞ2¼αs=ð4πÞ andLb¼lnðμ2b2e2γE=4Þ.
The usage of NLO is important because it gives access to
the leading logarithm, and thus accounts for the LO effects
of the evolution. The perturbative convergence of this

series is good. In particular, the difference between LO and
NLO is only of order 5%, as demonstrated in Fig. 1.
The twist-three term contains twist-three quark-gluon-

quark distributions T and ΔT already at LO. At NLO,
there is also the contribution of three-gluon distributions
G� and Y�, and a singlet quark mixing term. The explicit
expression for ½Ctw3 ⊗ T� is rather long [22], and it is not
important in this context. At present, the twist-three
functions are totally unknown, and thus this part of the
small-b expansion does not provide any useful information.
The expansion (17) serves as the base for our ansatz. As

the first approximation, we neglect the twist-three contri-
bution (Wandzura-Wilczek-type of approximation), and
replace the large-b terms by the unknown function fNP.
The result reads

g⊥1T;qðx; bÞ

¼
X
f

x
Z

1

x

dy
y
Ctw2
q←f

�
x
y
; μOPE

�
g1fðy; μOPEÞfNPðbÞ:

ð20Þ

In general, the function fNP depends also on x and flavor.
In the present study, we neglect these dependences. The
function fNP must vanish at b → ∞ and its Taylor series at
b ¼ 0 should contain only powers of b2. This is a popular
strategy for construction of a fitting ansatz, e.g., it is widely
used for the extraction of unpolarized distributions.
The function fNP is to be determined from the data. We

use the following two-parameter ansatz

fNPðbÞ ¼
λ2

coshðλ1bÞ
: ð21Þ

This ansatz shows Gaussian behavior at b ∼ 0 and expo-
nential decay at b → ∞. Such a shape is supported by
studies of the unpolarized distributions [4–6]. At λ2 ¼ 1

FIG. 1. Comparison of NLO and LO twist-two approximations
for the optimal wgt-function at b ¼ 0.1 GeV−1. The comparison
is shown for DSSV helicity distributions.
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the ansatz (20) reproduces the pure twist-two approxima-
tion. The deviation of the parameter λ2 from unity simulates
the eliminated twist-three part.
The collinear PDF g1 is an essential input. In our model,

it completely dictates the shape of the wgt-function. We
have considered the two latest extractions of this function,
performed by the NNPDF collaboration [27], and by de
Florian et al. [28]. For shortness we refer to these PDFs as
NNPDF and DSSV, correspondingly. For the scale of the
operator product expansion, we use the popular expression

μOPE ¼ 2e−γE

jbj þ 2 GeV: ð22Þ

With this choice the logarithms Lb vanish at b → 0 and
μOPE ≫ ΛQCD. So, the ansatz (20) is regular in the full
range of b.

III. COMPARISON WITH DATA

A. Overview of experimental measurements

There are three available measurements of Acosðϕh−ϕSÞ
LT

asymmetry—by HERMES [41], COMPASS [42,43], and
Jefferson Laboratory [44].
The HERMES collaboration reported a large set of data

for Acosðϕh−ϕSÞ
LT measured in π� and K� production at the

proton target [41]. These data have a 4-dimensional binning
in ðQ; x; z; p⊥Þ. Due to it the selection of the points that
satisfy the TMD factorization is straightforward.

The COMPASS collaboration presented Acosðϕh−ϕSÞ
LT mea-

sured for a proton target with unidentified charged hadrons
h� [42,43]. These data have one-dimension binning (in x, z
or p⊥), and split into three subsets with z ∈ ½0.1; 0.2�,
z ∈ ½0.2; 1� and z ∈ ½0.1; 1�. For our analysis we have
selected the z ∈ ½0.2; 1� subset, because it contains most
points in the TMD factorization region. We consider all
three binning variants. This can lead to some double-
counting of data, but in view of the large experimental
uncertainties we made no effort to correct for it.
Finally, eight points were reported by JLab Hall A [44],

for produced π� and a neutron target. These data points
are measured at very low energy, and thus can be hardy
described by any factorization approach. Therefore, we do
not include them into the fit, but show the extrapolation of
our results in Fig. 3.
To select the points which belong to the kinematic range

of TMD factorization, we use the general strategy of SV19-
fits. We introduce the variable δ ¼ p⊥=ðzQÞ, where we set
the kinematic variables to their mean values. The standard
choice is to use the data with δ < 0.25 and Q2 > 4 GeV2

[4–6,23]. This choice securely guarantees the applicability
of TMD factorization. However, in this case one finds only
23 points, many of which are the only representatives of a
set of points and are located at the boundary of phase space.

In other words, this strict selection criterion cannot be
used for a meaningful analysis. Thus, we had to soften the
demands and require

hQ2i > 2 GeV2; δ < 0.35: ð23Þ

With such a cut one has to expect the contribution from
power corrections to be up to 30%–50% for points with
the lowest Q and the largest δ. However, the statistical
uncertainties of most of the data points are larger, which
allows us to use these data points without extreme tension.
Altogether we then have 70 points: 44 from the HERMES
measurement (11 for each reaction), and 26 from the
COMPASS measurement. The majority of data points
(49 out of 70) have x ∈ ½0.1; 0.2�, and only 5 points have
x > 0.3 (COMPASS).

B. Comparison with data

The quality of agreement between the data and the model
is determined with the χ2-test function. It is defined as

χ2 ¼
X
s∈

datasets

X
i;j∈

data points

ðti − aiÞV−1
s;ijðtj − ajÞ; ð24Þ

where s runs over all independent datasets and i, j over all
points in s. Here, ti and ai are the theory prediction and the
measured value for the point i. The covariance matrix Vs is
defined for each dataset as

Vij ¼ δij
XNuncor

l¼1

ðσðlÞ;uncori Þ2 þ
XNcor

l¼1

σðlÞ;cori σðlÞ;corj ; ð25Þ

where σðlÞ;uncori and σðlÞ;cori are uncorrelated and correlated
uncertainties of the ith measurement. This definition takes
into account the nature of experimental uncertainties, and
gives a faithful estimate of the agreement between the
experimental data and the theory prediction.
The evaluation of the theory prediction for a given set of

model parameters is made by artemide. The code for the
wgt-function and related processes has been added to
artemide and is available at [45]. Evaluation of the χ2

function and processing of data were performed using the
PYTHON interface for artemide, which is (together with all
programs used for the current fit) available at [46]. The
minimization of χ2 is made with the IMINUIT package
(MINUIT2) [47].
The uncertainty of the extraction is estimated using the

bootstrap method. For that we generated an ensemble of
pseudodata replicas (with 1000 replicas) distributed
according to the measured uncertainties [48]. For each
replica in the ensemble we performed the minimization
procedure and obtained an ensemble of parameters λ1;2.
The ensemble has a very asymmetric form, see Fig. 2.
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Therefore, we compute the asymmetric 68% C.I. and
present it as the uncertainty.
The resulting values for the NNPDF helicity PDF are

NNPDF∶λ1 ¼ 0.52þ0.37
−0.42 ; λ2 ¼ 0.41þ0.14

−0.12 ; ð26Þ

For DSSV helicity PDF we have

DSSV∶ λ1 ¼ 0.47þ0.38
−0.43 ; λ2 ¼ 0.37þ0.12

−0.12 : ð27Þ

The values of χ2 at the mean values is χ2=Npt ¼ 0.92 (with
Npt ¼ 70) for both PDF cases. χ2=Npt for the different
reaction channels is given in Table II.
Both helicity PDFs (NNPDF and DSSV) result in fits of

comparable quality and give similar parameters for the wgt-
functions. The distribution of χ2 ’s for the particular
measurements is almost the same (differing only in the
third digit). Clearly, this is due to the poor quality of the
data, which cannot distinguish the 5% − 10% difference in
the input PDF. Therefore, we continue with DSSV PDFs,
assuming that NNPDF gives analogous results.
We have also performed a fit including the uncertainty

of PDFs. For that we fitted λ1;2 with randomly selected
replicas of PDFs. The procedure is described in Ref. [21].

The result is in very good agreement with the central PDF
fit, increasing the final uncertainty band by 3% only. This is
due to the fact that most data are localized in a small range
of x. Therefore, the variation of PDF values is almost
equivalent to the variation of normalization, which, in turn,
is compensated by the variation of the parameter λ2.
In fact, the present data cannot truly constrain the wgt-

function. In Fig. 2, we show lines of equal χ2=Npt with the
outmost line corresponding to χ2=Npt ¼ 1. The area sur-
rounded by these line extends up to λ1 ∼ 100 (however,
in this region, parameter λ1 strongly correlates with λ2).
Such huge values correspond to a definitely unphysical
wgt-function. Also, the present data cannot safely exclude
vanishing wgt-function. In particular, for λ2 ¼ 0 we
obtain χ2=Nnp ¼ 1.06.
The value λ2 ¼ 1 corresponds to the pure twist-two

approximation (Wandzura-Wilczek-type approximation).
For this case, we get λ1 ¼ 1.90þ0.34

−0.43 with χ2=Npt ¼ 0.95.
Such a small difference between χ2’s with and without
correction for twist-three does not allow us to estimate its
size. However, if future better data confirmed the position
of the χ2 minimum, the twist-three correction would be
∼50% of the twist-two part.
A comparison of the theory prediction with the exper-

imental data for all used datasets is shown in Figs. 4–6. It is
evident that the theory uncertainty is much smaller than the
experimental uncertainty. The reason is the proportionality

of Acosðϕh−ϕSÞ
LT to p⊥. Thus, the asymmetry has very small

absolute values for p⊥ ∼ 0.–0.4 GeV, where most data is
localized. In Fig. 3, we show the comparison with JLab
measurements [44], which are done for Q ∼ 1.2–1.6 GeV,
and were not included into the fit. The predicted asymmetry
is generally much smaller than the uncertainty of the
measurement.

C. The fitted worm-gear T-function

The extracted wgt-functions are shown in Fig. 7 at
b ¼ 0.25 GeV−1. Their shape agrees with the one extracted
in Ref. [11], but the size is smaller by about a factor 4.
A direct comparison with Ref. [11] is not possible because

TABLE II. The values of χ2=Npt for individual datasets. The
values are presented for the DSSV case. For the NNPDF case the
values differ by �0.02.

Hermes Compass

πþ π− Kþ K− hþ h−

Npt 11 11 11 11 14 12

χ2=Npt 1.29 0.68 1.52 1.09 0.46 0.59 FIG. 3. The JLab data for Acosðϕh−ϕSÞ
LT . The lines and shaded

areas show the theory predictions.

FIG. 2. Distribution of values λ1;2 in the bootstrapping ensem-
ble. The black dot with bars indicate the mean value and its
uncertainties. The line show the contours of equal χ2=Nnp (for
central values), starting with χ2=Nnp ¼ 0.93 till χ2=Nnp ¼ 1.
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FIG. 4. The Hermes πþ and π− data for Acosðϕh−ϕSÞ
LT for bins in x and z. The lines and shaded areas show the theory prediction and its

uncertainty for points with δ < 0.75. The filled points were included into the fit.
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FIG. 5. The Hermes Kþ and K− data for Acosðϕh−ϕSÞ
LT for bins in x and z. The lines and shaded areas show the theory prediction and its

uncertainty for points with δ < 0.75. The filled points were included into the fit.
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FIG. 6. The COMPASS h� data for Acosðϕh−ϕSÞ
LT in different bins. The lines and shaded areas show the theory prediction and its

uncertainty for points with δ < 0.75. The filled points were included into the fit.
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the extraction in Ref. [11] is made in a different scheme and
in momentum space.
The relative sign of the wgt-functions for u- and d-quark

agrees with the large-Nc estimate g⊥1T;u ≃ −g⊥1T;d [49]. It is a
consequence of the signs of the helicity PDFs. To test the
sensitivity to the flavor-decomposition further, we intro-
duced extra parameters in our ansatz. Namely, we fit λ2
separately for u, d and the rest of the flavors (sea). We obtain

λ1 ¼ 0.33þ0.35
−0.32 ; λu2 ¼ 0.40þ0.13

−0.15 ;

λd2 ¼ 3.1þ2.5
−2.3 ; λsea2 ¼ 6.3þ3.4

−4.1 ; ð28Þ

with χ2=Npt ¼ 0.89. Clearly, the data constraints mainly
the u-quark contribution. The other quarks (including the
d-quark) remain largely unconstrained. The same conclusion
has been reached in Ref. [11].

IV. PREDICTION FOR THE WEAK-BOSON
INDUCED SSA

The Drell-Yan process is the reaction

h1ðp1Þ þ h2ðp2Þ → GðqÞ þ X; ð29Þ

where h’s are colliding hadrons, and G is the intermediate
electroweak gauge boson (detected by decay products).
The hadronic tensor for this process reads

Wμν¼
Z

d4x
ð2πÞ4e

−iðx·qÞX
X

hh1;h2jJ†μðxÞjXihXjJνð0Þjh1;h2i;

ð30Þ

where

JμðxÞ ¼
X
f;f0

q̄fðxÞ½gGRγμð1þ γ5Þ þ gGLγ
μð1 − γ5Þ�ff0qf0 ðxÞ;

ð31Þ

with q̄ and q being quark fields, gGRðLÞ being the coupling

constants for right(left)-handed gauge bosons G, and
indices f, f0 indicating the flavor.
The full structure of the hadronic tensor (30) including

polarization and the resulting cross sections is complicated.
For the electromagnetic current G ¼ γ, it has been derived
in Ref. [50]. For the general current the complete structure
has not yet been derived to the best of our knowledge. So
far it was not needed since there was no possibility to
measure the polarized DY process at energies compatible
with the weak boson masses. However, the STAR experi-
ment at RHIC published recently measurements of the
single-spin asymmetry (SSA) in Z/W-boson production
[17], and plans to update this measurement in the nearest
future. Also, there is a potential possibility to measure such
processes at the fixed-target upgrade of LHCb [51,52].
Therefore, it is interesting to look into the details of the
polarization dependence of Z/W-boson production.
As a prerequisite to this work, we have studied SSAs

induced by weak currents (31) in the TMD factorization
framework. Among many terms contributing to the cross
section we found the following

dσ
dQ2dydφdq2T

¼ α2emðQÞ
9sQ2

fF1
UU þ jsT j sinðφ − ϕSÞF1

TU

þ jsT j cosðφ − ϕSÞΔF1
TU þ � � �g; ð32Þ

where F1
UU is the unpolarized structure function, F1

TU is the
Sivers structure function, and ΔF1

TU is the structure function
induced by parity-violating terms in the weak current. Here,
Q2 ¼ q2, and y and qT are the invariant mass and rapidity of
the gauge boson. The variables φ and qT are the angle and
the absolute value of the transverse component of the gauge
boson momentum measured in the center-of-mass frame.
The spin S is the spin of h1. The ellipsis denotes contribu-
tions containing other DY structure functions.

FIG. 7. The optimal wgt-function at b ¼ 0.25 GeV−1 for u and
d-quarks. The plot is shown for DSSV helicity PDF. The NNPDF
plots are very similar.
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TMD factorization yields the following expressions for SSA structure functions

F1
TU ¼ −MjCVð−Q2; μÞj2

X
f;ch

zchll0z
ch
ff0Δ

ch

Z
∞

0

b2db
2π

J1ðbjqT jÞ½f⊥1T;f←h1
f1;f̄0←h2 þ f⊥

1T;f̄←h1
f1;f0←h2 �; ð33Þ

ΔF1
TU ¼ MjCVð−Q2; μÞj2

X
q;ch

z̄chll0z
ch
ff0Δ

ch

Z
∞

0

b2db
2π

J1ðbjqT jÞ½g1T;f←h1f1;f̄0←h2 − g1T;f̄←h1f1;f0←h2 �; ð34Þ

where l and l0 indicate the measured leptons, and the
arguments of the TMD distributions are ðx1; b; μ; ζÞ and
ðx2; b; μ; ζ̄Þ. The notation f̄ indicates an antiquark distri-
bution with flavor f. The factors z and Δ depend on the
reaction channel. The possible channels are fγγ; γZ; ZZ;
WWg, where γZ is the interference between γ- and Z-boson
production amplitudes. The factors z are defined as

zGG
0

ff0 ¼ 2ðgGRgG0
R þ gGLg

G0
L Þff0 ; ð35Þ

z̄GG
0

ff0 ¼ 2ðgGRgG0
R − gGLg

G0
L Þff0 : ð36Þ

The factors Δ are combinations of propagators of gauge
bosons. The explicit expressions for zff0 and Δff0 can be
found, e.g., in Eqs. (2.26) and (2.27) of Ref. [20]. The
explicit expressions for the factor z̄ are

z̄γγff0 ¼ 0; z̄γZff0 ¼ −δff0
jefj

4sWcW
;

z̄ZZff0 ¼ δff0
4jefjs2W − 1

8s2Wc
2
W

; z̄WW
ff0 ¼ −

jVff0 j2
4s2W

; ð37Þ

where ef is the charge of field f, sW and cW are sine
and cosine of the Weinberg angle, and Vff0 is the
relevant element of the Cabibbo-Kobayashi-Maskawa
matrix.
Despite visual similarities between (33) and (34) the

mechanisms generating the SSAs in ΔF1
TU and F1

TU
are totally different. The Sivers SSA is nonvanishing
due to the T-oddness of the Sivers function, whereas
ΔF1

TU is nonvanishing due to the parity violation of
weak interactions. That leads to the “unusual”
minus sign between quark and antiquark contributions
in (34).
The structure function F1

TU is usually measured compar-
ing the number of events in the left and right hemispheres
(with respect to the polarization vector). The structure
function ΔF1

TU can be measured analogously comparing
the number of events in the upper and lower hemispheres.
Note that these contributions to the cross section are
orthogonal and thus do not contaminate each other.
In Fig. 8 we show the prediction for the asymmetry
ΔF1

TU=FUU for the kinematics of the STAR experiment
at RHIC, using the same binning as the Sivers measurement
[17]. While the predicted asymmetry is only of the order
1%, our knowledge of the wgt-function is so poor that the
effect could be larger by factor 2-3 without introducing any
discrepancy with the present data.

V. CONCLUSION

We extracted the worm-gear-T (wgt-) function from
the SIDIS data measured at COMPASS and HERMES.
The analysis is done with N3LO evolution and NLO
matching (twist-two part only). The unpolarized elements
of the factorization formula are taken from the global
extraction made in Ref. [5] (made at N3LL accuracy). The
consistency of perturbative orders is guarantied by the
ζ-prescription. The results of the extraction as well as
the code for the data analysis are available as a part of the
artemide-library [45].
Our analysis clearly demonstrates that the present data

cannot significantly restrict the wgt-function. There are two
reasons for this. The first reason is that the modern data is
localized in a rather narrow kinematic region. The second
reason is that the theoretical cross section is proportional to
p⊥, and thus has reduced sensitivity to the variations of

FIG. 8. The prediction for ΔF1
UT=FUU made in the STAR

kinematics [17].
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wgt-function. In general, our results are in agreement with
those of Ref. [11].
In addition, we made a prediction for the new SSA in

the weak-boson production in Drell-Yan reactions,
which could be measured at STAR at RHIC. This
new SSA is similar to the Sivers SSA but with a
cosðφ − ϕSÞ-modulation. On the theory side it is pro-
portional to convolutions of the unpolarized and wgt
TMD distributions. The predicted values are small, at
the level of a few percent.
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