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One possible interpretation of two narrow Ω0
c states reported by the LHCb Collaboration at CERN in

2017 is that they are pentaquarks belonging to a 15 exotic SU(3) representation, as predicted by the chiral
quark-soliton model. If so, there must exist a number of other exotic states since the model predicts
three different 15 multiplets of heavy baryons. We show that, depending on the soliton spin J, these states
are either very narrow or very broad. This explains why they might have escaped experimental
observation. Furthermore, we show that the lightest members of these multiplets are stable against two
body strong decays.
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I. INTRODUCTION

Heavy baryon spectroscopy has recently attracted atten-
tion triggered by the discoveries of new states including
hidden charm pentaquarks and tetraquarks. Present situation
in the charm sector has been recently reviewed in Ref. [1].
Here, in this paper, we will concentrate on heavy baryons
with one charm quark. These states can be conveniently
classified according to the SU(3) structure of the light
quarks, which can form an antitriplet of spin 0 or a sextet of
spin 1. Adding a charm quark results in an antitriplet of spin
1=2 and two hyperfine split sextets of spin 1=2 and 3=2.
This structure is fully confirmed by experiment [2].
It was pointed out in Refs. [3–6] that exactly the same

SU(3) structure follows from the chiral quark-soliton model
(χQSM) as a result of the quantization of the soliton
rotations. At the same time, higher rotational excitations
have been shown to correspond to the exotic baryons—
pentaquarks [7,8]. In the present context, the lowest lying
exotic SU(3) representation is 15 [4].
In the quark model, one of the possible excitations

consists in adding angular momentum, which in the heavy
quark rest frame may be interpreted as the angular momen-
tum of the light quarks. Such a configuration has negative
parity. An immediate consequence of this picture is the
emergence of two hyperfine split antitriplets of spin 1=2−

and 3=2− that are indeed observed experimentally both in

charm and (partially) bottom sectors. In the sextet case, the
total angular momentum of the light subsystem can be 0, 1,
or 2. Therefore, one predicts five excited sextets of negative
parity: two with total spin 1=2, two with total spin 3=2, and
one with total spin 5=2. Again, the same structure is
predicted by the χQSM [6].
In 2017, the LHCb Collaboration announced five new

excited Ω0
c states, two of them of a very small width [9],

which were confirmed by the Belle Collaboration [10] in
2018. Further analysis of the decay modes and possible
spin assignment of these states has been published recently
in Ref. [11].
The LHCb resonances could be the first experimentally

observed particles from the negative parity excited sextet.
Such an assignment has been advocated in Refs. [12–16] in
different versions of the quark model, within the QCD sum
rules [17] and lattice QCD [18].
Unfortunately, when it comes to a more detailed analysis

of the LHCb data, basically all the models have problems to
accommodate all five LHCb resonances within the above
scenario with acceptable accuracy. Therefore, alternative
assignments of some of the LHCb resonances have been
proposed. The comprehensive summary of different assign-
ments can be found in Sec. II.3 of the recent review by
Cheng [19].
In Ref. [4], two narrow LHCb Ω0

c states, namely
Ω0

cð3050Þ and Ω0
cð3119Þ, have been interpreted as the

hyperfine split members of the exotic 15. This assignment
has been motivated by the fact1 that their hyperfine
splitting is equal to the one of the ground state sextet
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1Note that the ground state sextet and exotic 15 belong to the
same rotational band and therefore, should have approximately
the same value of the hyperfine splitting.
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and has been further reinforced by the calculation of their
widths [5]. Alternative pentaquark interpretations can be
found in Refs. [20–23].
Introducing new exotic multiplets, in itself very attractive,

is nevertheless a phenomenological challenge. In fact, we
have two exotic 15 light SU(3) multiplets. One, carrying
angular momentum J ¼ 1, leads to two hyperfine split
heavy baryon multiplets, and the second one with J ¼ 0
corresponds to yet another heavier multiplet, whose proper-
ties so far have not been discussed in detail [4]; see however
model calculations of Ref. [24]. So we have introduced 45
new particles (or perhaps it is better to say: 18 isospin
submultiplets), out of which only twoΩ0

c states (members of
two isospin multiplets) have been used in phenomenology.
Where are the remaining states?
To answer this question, we compute in the framework of

the χQSM masses and strong decay widths of all these
supernumerary states. We find that the members of the
multiplets based on (15, J ¼ 1) soliton are very narrow
(some hint of this behavior has been already discussed in
Ref. [5]), and—on the contrary—states associated with (15,
J ¼ 0) multiplet are wide. Both extremes explain why these
states have not been seen experimentally: it is easy to
overlook a very narrow or very broad resonant signal. We
also find that the nucleonlike isospin doublet of J ¼ 1 and
also J ¼ 0 soliton seems to be stable against two body
strong decays.
In order to compute masses and decay widths, one has to

fix model parameters. In Refs. [3–5], these parameters have
been fixed from the phenomenology of the light baryons,
with a modification based on the Nc counting. In Ref. [24],
they have been computed in a specific model. Here, we
follow a different strategy, namely we fix mass parameters
from the heavy baryon sector alone. Predicted masses are in
agreement with Ref. [4]. For decays, we use parameter
values from Ref. [5].
The paper is organized as follows. In Sec. II, we briefly

review the main features of the χQSM. In Sec. III, we first
derive analytical formulae for the baryon masses and then
fix splitting parameters as functions of the strange moment
of inertia 1=I2. After constraining 1=I2, we compute all
pentaquark masses. Next, in Sec. IV, we discuss and
compute decays widths, and finally, we conclude in Sec. V.

II. CHIRAL QUARK-SOLITON MODEL

In this section, we briefly recapitulate the main features of
the χQSM that can be found in the original paper by
Diakonov et al. [25] and in the reviews of Refs. [26–28]
(and references therein). The χQSM is based on the largeNc
argument by Witten [29,30], which says that for Nc → ∞,
Nc relativistic valence quarks generate chiral mean fields
represented by a distortion of the Dirac sea. This distortion
in turn interacts with the valence quarks, which in turn
modify the sea until a stable configuration is reached. Such a

configuration is called chiral soliton. It is a solution of the
Dirac equation for the constituent quarks (with gluons
integrated out) in the mean-field approximation.
The soliton does not carry any quantum numbers except

for the baryon number resulting from the valence quarks.
Spin and isospin appear when the soliton rotations in space
and flavor are quantized [31]. This procedure results in a
collective Hamiltonian analogous to the one of a quantum
mechanical symmetric top, however, due to the Wess-
Zumino-Witten term [30,32], the allowed Hilbert space is
truncated to the representations that contain states of
hypercharge Y 0 ¼ Nval=3. For Nval ¼ 3, these are an octet
and decuplet of ground state baryons [33–35].
In order describe heavy baryons, we have to remove one

quark from the valence level and replace it by a heavy quark
Q. Formally, this corresponds to a replacement of Nc light
valence quarks by Nc − 1 quarks. In the limit Nc → ∞,
such a replacement does not parametrically change the
mean fields; however, for Nc ¼ 3, we should expect that
the numerics of the model will be modified. Moreover, the
isospin T 0 of the states with a hypercharge equal to Y 0 is
equal to the soliton angular momentum [33–35], which in
the following will be denoted by J.
In this picture, the allowed SU(3) representations have to

contain states of Y 0 ¼ 2=3, and these are 3̄, 6, and exotic 15
shown in Fig. 1. They correspond to the rotational
excitations of the meson mean field, which is essentially
the same as for light baryons. The corresponding wave
function of the light sector is given in terms of the Wigner
rotational DðAÞ matrices [8],

ψ ðR;BÞ
ðR̄;−Y 0JJ3ÞðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðRÞ

p
ð−ÞJ3−Y 0=2

×DðRÞ�
ðY;T;T3ÞðY 0;J;−J3ÞðAÞ; ð1Þ

where R denotes the SU(3) representation of the light
sector, B ¼ ðY; T; T3Þ stands for the SU(3) quantum
numbers of a baryon in question, and the second index

FIG. 1. Rotational band of a soliton with one valence quark
stripped off. Soliton spin corresponds to the isospin T 0 of states
on the quantization line Y 0 ¼ 2=3 (green thick line). We show
three lowest allowed representations: antitriplet of spin 0, sextet
of spin 1, and the lowest exotic representation 15 of spin 1 or 0.
On the right-hand side, we display particle names used in the
present paper.
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of the D function, ðY 0; J;−J3Þ, corresponds to the soliton
spin. AðtÞ denotes relative configuration space—SU(3)
group space rotation matrix.
The total wave function of a heavy baryon of spin s is

constructed by coupling (1) to a heavy quark spinor χ1=2M
with a pertinent SU(2) Clebsch-Gordan coefficient,

ΨðRÞ
BJsm ¼

X
M;MJ

χ1=2M ⊗ ψ ðR;BÞ
ðR̄;−Y 0JMJÞ

 
J 1=2

MJ M

���� s

m

!
: ð2Þ

The rotational Hamiltonian takes the following form [36]
in the chiral limit:

MR ¼ Msol þ
1

2I2

�
C2ðRÞ − T 0ðT 0 þ 1Þ − 3

4
Y 02
�

þ 1

2I1
T 0ðT 0 þ 1Þ; ð3Þ

where C2ðRÞ stands for the SU(3) Casimir operator.
Msol ∼ Nc denotes the classical soliton mass; I1;2 ∼ Nc

are moments of inertia. All these parameters can, in
principle, be calculated in some specific model. Here, we
shall follow a so-called model-independent approach intro-
duced in the context of the Skyrmemodel in Ref. [37], where
all parameters are extracted from the experimental data [4].
The symmetry breaking Hamiltonian takes the following

form [38]:

Hsb ¼ αDð8Þ
88 þ βŶ þ γffiffiffi

3
p
X3
i¼1

Dð8Þ
8i Ĵi; ð4Þ

where α, β, and γ are proportional to the strange quark mass
and are given in terms of the moments of inertia and the
pion-nucleon sigma term. Their explicit form is not of
interest to us, as we shall treat them as free parameters. It is
however worth mentioning that α and β are negative by
construction, while γ being phenomenologically negative is
in fact given as a difference of two terms of the same order
[see Eq. (4) in Ref. [3] ]. Furthermore, α scales as Nc, and β
and γ scale as N0

c.
The soliton of J ¼ 1 can couple with the heavy quark

to baryon spin s ¼ 1=2 or s ¼ 3=2. These states will be
hyperfine split, and in order to take this into account,
following [3], we supplement Hamiltonians (3) and (4)
with the chromomagnetic interaction [3] expressed as

HSQ ¼ 2

3

ϰ

mQ
Ĵ · ŜQ; ð5Þ

where ϰ denotes the anomalous chromomagnetic moment
that is flavor independent. The operators Ĵ and ŜQ represent
the spin operators for the soliton and the heavy quark,
respectively.

III. MASSES OF HEAVY BARYONS

A. General formulas

As we can see from Fig. 1, the soliton in 15 ¼
ðp ¼ 1; q ¼ 2Þ can be quantized both as spin J ¼ 0 and
1 (remember that the isospin of the states on Y 0 ¼ 2=3 line
corresponds to spin2). Next, possible exotic representation
is 150 ¼ ðp ¼ 0; q ¼ 4Þwith spin J ¼ 1, which however, is
heavier than 15.
In order to estimate the masses of states in 15, we shall

use the general formula (3) for the rotational energy of the
soliton. For the exotic representations in question, we have

M15;J¼0
¼ Msol þ

5

2

1

I2
;

M15;J¼1
¼ Msol þ

3

2

1

I2
þ 1

I1
: ð6Þ

Interestingly, the mass difference,

Δ15 ¼ M15;J¼0
−M15;J¼1

¼ 1

I2
−

1

I1
ð7Þ

is expected to be positive, since—from the estimates of
the light sector [4,8]—I1 ∼ ð2.5 ÷ 3Þ × I2, which means
that spin 1 soliton is lighter than the one of spin 0. One
of the goals of the present analysis is to constrain these two
parameters from the heavy sector alone. Indeed, solitons
considered here are constructed from Nc − 1 valence
quarks, what may finally result in a change of the numerical
values of I1;2 as compared to the values extracted from the
light sector [4].
The average multiplet masses take the following form:

MQ
3̄;J¼0

¼ mQ þMsol þ
1

2I2
;

MQ
6;J¼1 ¼ MQ

3̄
þ 1

I1
;

MQ
15;J¼1

¼ MQ
6 þ 1

I2
;

MQ
15;J¼0

¼ MQ
6 þ 2

I2
−

1

I1
¼ MQ

15;J¼1
þ Δ15: ð8Þ

Parameters MQ
3̄
and I1 can be extracted from the ground

state nonexotic baryons [3]. In order to have some handle
on I2, and therefore on Δ15, we shall include now flavor
symmetry breaking due to the mass difference between
strange and nonstrange quarks (4).

2From now on, we use numerical values of the quantum
numbers corresponding to Nc ¼ 3, which does not allow for
proper Nc counting.
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Calculating matrix elements of the symmetry breaking operator (4) between the collective wave functions (1), we obtain
the following mass splittings for the ground state and excited baryons:

hHsbi3̄;J¼0 ¼
�
3

8
αþ β

�
YB ¼ δ3̄YB;

hHsbi6;J¼1 ¼
�
3

20
αþ β −

3

10
γ

�
YB ¼ δ6YB;

hHsbi15;J¼1
¼
�
β þ 17

144
ðα − 2γÞ

�
YB − ðα − 2γÞ ×

�
2

27
−

1

24

�
TBðTB þ 1Þ − 1

4
Y2
B

��
;

hHsbi15;J¼0
¼
�
β þ 1

48
α

�
YB þ α

�
2

9
−
1

8

�
TBðTB þ 1Þ − 1

4
Y2
B

��
; ð9Þ

where YB and TB denote the hypercharge and the isospin of
a given baryon, respectively. In the case of sextet and
(15; J ¼ 1), the mass formula must be supplemented by the
spin splitting Hamiltonian (5), leading to the following
equations for baryon masses:

MQ
RJ;B;s

¼ MQ
R;J þ hHsbiR;J

þ δJ;1
ϰ

mQ

(
−2=3 for s ¼ 1=2

þ1=3 for s ¼ 3=2
; ð10Þ

where s denotes the spin of a given baryon, and J is the
soliton spin. It is worth to observe that the hyperfine
splitting parameter ϰ=mQ can estimated from the following
mass differences:

MQ
R1;B;3=2

−MQ
R1;B;1=2

¼ ϰ

mQ
: ð11Þ

It turns out that the mass formulas (9) for 15 admit three
Gell-Mann–Okubo (GMO) [39,40] mass relations,3

2NQ þΩQ ¼ 2ΛQ þ ΣQ;

NQ þ ΞQ
3=2 ¼ 2ΣQ;

2NQ þ 2ΞQ
1=2 ¼ 3ΛQ þ ΣQ; ð12Þ

both in J ¼ 1 and J ¼ 0 multiplets. Although the mass
formulas for both multiplets differ, the GMO mass rela-
tions are identical. It might be at the first sight surprising
that for six isospin multiplets whose masses in the case of
15J¼1 are parametrized by four parameters: MQ

15;J¼1
; α; β,

and γ we have three sum rules rather than two. The reason
is that the splittings depend only on the combination
α − 2γ. Relations (12) are linearly independent but not

orthogonal. Furthermore, the following Guadagnini-type
relation [33] is fulfilled:

½21NQ − 2ΛQ þ 16ΣQ − 16ΞQ
1=2 þ 11ΞQ

3=2 − 30ΩQ�
150

¼ ½30NQ þ 34ΛQ − 14ΣQ þ 14ΞQ
1=2 − 58ΞQ

3=2 − 6ΩQ�
151

:

ð13Þ

Relation (13) has been constructed by demanding ortho-
gonality to relations (12). It connects masses of different
multiplets and therefore goes beyond the SU(3) symmetry.

B. Numerical estimates

Let us first consider masses of the nonexotic heavy
baryons belonging to 3̄ and 6 of SU(3). The average masses
of these multiplets are given by Eqs. (8), in fact both for
Q ¼ c and b,

MQ
3̄
¼ mQ þMsol þ

1

2I2
¼ 2408.2jc; 5736.2jb;

MQ
6 ¼ MQ

3̄
þ 1

I1
¼ 2579.7jc; 5906.5jb; ð14Þ

where the experimental values in MeV from Ref. [3] have
been updated [41]. We can compute I1 from the mass
difference of these two multiplets (in MeV),

1

I1
¼ MQ

6 −MQ
3̄
¼ 171.5jc ¼ 170.4jb: ð15Þ

Similarly, we can compute heavy quark mass difference
either from the mass difference of the bottom or charm
antitriplets or sextets,

mb −mc ¼ Mb
6 −Mc

6 ¼ 3327 MeV;

¼ Mb
3̄
−Mc

3̄
¼ 3328 MeV: ð16Þ

We consider perfect equality of splittings (15), regardless
of Q and the mass difference (16), regardless of the SU(3)

3Whenever this does not cause confusion, we use particle
symbols to denote their masses.
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representation, as a test of our model assumptions.
Equalities (15) and (16) can be traced back to the fact
that in the present model heavy baryon mass is simply a
sum of a heavy quark mass and the rotational excitations
of the soliton, see Eqs. (8), which are flavor-blind in the
present approach. Moreover, the effects of SU(3) symmetry
breaking are simply the same both for charm and bottom
baryons, since they are solely due to the light quarks within
the soliton.
Numerical value of 1=I1 from Eq. (15) should be

compared with 1=I1 extracted from the light sector, which
is equal to ∼155 MeV [42]. This is consistent with the
expectation that moments of inertia should be smaller
in the case of heavy baryons, since the valence quark
contributions to I1;2 scales like Nval. In what follows, we
shall assume 1=I1 ¼ 171 MeV. Unfortunately, we cannot
extract I2 in a model independent way from the masses
of the ground state multiplets. To this end, we have to
use information from the mass splittings within different
multiplets, including exotica.
In Ref. [3], the splitting parameters for 3̄ and 6 have been

extracted from experiment and read

δ3̄ ¼
3

8
αþ β ¼ −180 MeV;

δ6 ¼
3

20
αþ β −

3

10
γ ¼ −121 MeV: ð17Þ

Numerical entries are taken as the average values from
Eqs. (13) and (14) in Ref. [3].
In Ref. [4], two out of five excited Ωc hyperons reported

by the LHCb Collaboration in 2017 [9] have been inter-
preted as exotic states belonging to ð15; J ¼ 1Þ. Adding a
heavy quark to the J ¼ 1 soliton results in two hyperfine
split states (10) of spin 1=2 and 3=2, namely Ωcð3050Þ and
Ωcð3119Þ, respectively. This splitting (11) is equal to
ϰ=mc ¼ 69 MeV [3,4]. Ωc average mass before the spin
splitting is

M̄c
Ω;ð15;J¼1Þ ¼ 3096 MeV: ð18Þ

From Eqs. (6), (8), and (9), we obtain that

M̄c
Ω;ð15;J¼1Þ ¼ Mc

6 þ
1

I2
−
1

6
ðαþ 8β − 2γÞ: ð19Þ

Equating (18) with (19) together with Eqs. (17) gives three
independent equations for four parameters α, β, γ, and 1=I2.
We solve them in function of 1=I2 and constrain parameter
1=I2 to the region where both α and β are negative. The
result is plotted in Fig. 2.
We see from Fig. 2 that the allowed range (i.e., the range

where α, β < 0) for the second moment of inertia is
342 MeV < 1=I2 < 380 MeV. However, all model calcu-
lations and fits to the light sector suggest that also parameter

γ should be negative (see, e.g., Ref. [24]); then the allowed
range for 1=I2 is further constrained to 1=I2 < 363 MeV.
The most probable value of 1=I2 is around 351 MeV, where
all splitting parameters are negative and of the same order.
Indeed, from fits to the light sector, one obtains [3]
α¼−255MeV, β¼−140MeV, γ¼−101MeV. However,
as explained in Ref. [3], the parameter α scales linearly with
the number of valence quarks, Nval, whereas parameters β
and γ are in the first approximation independent of Nval,
because they are equal to the ratios of quantities that scale
like Nval. This means that in the heavy baryon sector,
we expect α → 2=3 × ð−255Þ ¼ −170 MeV. From our fits
for 1=I2 ≃ 351 MeV, we obtain α ≃ −110 MeV, β ≃
−139 MeV and γ ≃ −114 MeV. Here only α is substantially
different from the light sector estimate. This is shown in
more detail in Fig. 2 where model expectations from the
light sector are shown as dashed lines. In what follows, we
shall discuss the sensitivity of heavy pentaquark masses to
the variation of 1=I2 within the limits �5 MeV around
351 MeV. This is shown as a light-orange band in Fig. 2.
Finally, let us observe that assuming 1=I2 ¼ 351 MeV

and taking 1=I1 from Eq. (15), we obtain that ð15; J ¼ 0Þ
multiplet is heavier from ð15; J ¼ 1Þ multiplet on average
by approximately 180 MeV. We have, therefore,

Mc
15;J¼1

≃ 2931 MeV;

Mc
15;J¼0

≃ 3111 MeV: ð20Þ

At this point, we can estimate the average mass of the next
exotic representation ð150 ¼ ðp ¼ 0; q ¼ 4Þ; J ¼ 1Þ to be
approximately 3633 MeV, which is indeed substantially
heavier than 15.
In Fig. 3 and in Table I, we show the results for 15

masses both for J ¼ and J ¼ 0. Our predictions for J ¼ 1
multiplets are in agreement with Ref. [4], where parameters
α, β, and γ have been estimated from the light sector alone.
It is interesting to compare our phenomenological results

with model calculations of Ref. [24]. Using modified chiral

FIG. 2. Parameters α, β, and γ plotted in terms of the inverse
moment of inertia 1=I2. Expectations from the light sector are
shown as dashed lines.
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fields, they obtain 1=I2 ≃ 380 MeV, i.e., above the upper
edge of our allowed window shown in Fig. 2. This is the
reason why their mass predictions are higher than in the
present work. Their parameters α and β are similar to ours,
although α is a bit smaller and β a bit larger. On the other
hand, γ is much larger than in our case, but still negative.
The latter explains why their value of δ6 undershoots
experiment (17) by ∼15%. The values of their parameters
are, however, consistent with the dependence on 1=I2
displayed in Fig. 2. It should be stressed that the calcu-
lations in Ref. [24] have been done for one particular
choice of chiral fields, namely for the pseudoscalars only.
Nevertheless, their results support our initial conjecture that
for Nc ¼ 3, we expect that numerical values of model
parameters differ depending of the number of quarks in the
soliton valence level.

IV. DECAYS

A. General formulas

To calculate the decays of heavy baryons, one has to
sandwich the corresponding decay operator between the
wave functions (2). Following Ref. [8], we use in this paper

the decay operator describing the emission of a p−wave
pseudoscalar meson φ, which has been obtained via the
Goldberger-Treiman relation from the collective weak
current [5],

Oφ ¼ 1

2Fφ

�
−ã1D

ð8Þ
φi − a2dibcD

ð8Þ
φb Ĵc − a3

1ffiffiffi
3

p Dð8Þ
φ8 Ĵi

�
pi:

ð21Þ

Constants a1;2;3 that enter Eq. (21) have been extracted
from the semileptonic decays of the baryon octet in
Ref. [43],

a1 ≃ −3.509; a2 ≃ 3.437; a3 ≃ 0.604: ð22Þ

However, due to the fact that a1 scales as Nval, it has been
shown in Ref. [5] that in the heavy quark sector a1 has to be
replaced by

a1 → ã1 ¼ −2.1596: ð23Þ

With this replacement, all decays of charm and bottom
sextet and of two exotic Ωc’s have been successfully
described by the present model [5]. For the decay con-
stants Fφ, we have adopted the convention in which
Fπ ¼ 93 MeV and FK ¼ Fη ¼ 1.2Fπ ¼ 112 MeV.
We are considering decays B1 → B2 þ φ, where M1;2

denote masses of the initial and final baryons, respectively,
and pi is the c.m. momentum of the outgoing meson of
mass m [5,8],

jp⃗j ¼ p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

1 − ðM2 þmÞ2ÞðM2
1 − ðM2 −mÞ2Þ

p
2M1

: ð24Þ

The decay width is related to the matrix element of Oφ

squared, summed over the final isospin (but not spin), and

averaged over the initial spin and isospin denoted as ½…�2;
see the Appendix of Ref. [8] and Erratum of Ref. [5] for the
details of the corresponding calculations,

ΓB1→B2þφ ¼ 1

2π
hB2jOφjB1i2

M2

M1

p: ð25Þ

Here, factorM2=M1, used already in Ref. [5], is the same as
in heavy baryon chiral perturbation theory (HBChPT); see,
e.g., Ref. [44].
Because operator Oφ does not depend on the heavy

quark spin, it is only the soliton that decays by emitting a
pseudoscalar meson. Heavy quark acts as a spectator of the
decaying soliton. Since the decay occurs in the p−wave,
the final soliton spin has to couple with meson angular
momentum l ¼ 1 to the spin of the initial state soliton.

TABLE I. Mass predictions in MeV for exotic 15. Two Ωc

states are taken as input.

15

J ¼ 1 J ¼ 0

s ¼ 1=2 s ¼ 3=2 s ¼ 1=2

Nc 2644–2692 2713–2761 2819–2884
Λc 2772–2812 2841–2881 2981–3001
Σc 2795–2810 2864–2879 2993–3043
Ξc
1=2 2911–2931 2980–3000 3148–3138

Ξc
3=2 2945–2927 3014–2996 3167–3202

Ωc 3050 3119 3316–3276

FIG. 3. Spectra of exotic charm multiplets 15; J ¼ 1 (left) and
J ¼ 0 (right) in terms of the inverse moment of inertia 1=I2.
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Decays with heavy quark spin flip are suppressed by 1=mQ

and are not considered here. Mesons are in the SU(3) octet
and therefore the following decays are possible:

15J¼1 → 6J¼1; 3̄J¼0;

15J¼0 → 15J¼1; 6J¼1: ð26Þ

Direct decays of 15J¼0 to the ground state antitriplet are
suppressed. In Tables II–V, we list all decays that are
allowed by the quantum numbers. Taking into account
mass estimates from the previous section, we find that some
of these decays are excluded by the energy conservation
(column 3). Furthermore, in Table VI, we list all possible
decays of exotic 15 to the ground state baryons and heavy
mesons (calculation of which is beyond the scope of the
present paper).
Already at this point, we can draw interesting conclu-

sions. For 15J¼1, we have ten allowed decays of the type
(26) and for 15J¼0 twelve. Interestingly, the lightest
members of both multiplets, namely N15 are stable against

two body strong interactions. Except for N15, all members
of J ¼ 0 multiplet have open channels to the decays to
heavy mesons.
After averaging over the initial spin and isospin and

summing over final isospin and over the final spin third

TABLE II. Decays of 15J¼1 to 6J¼1.

15J¼1 6J¼1 Allowed

Ωc Ωc þ π Yes
Ξc þ K̄ Yesa

Ξc
3=2;1=2 Ξc þ π Yes

Σc þ K̄ Yesa

Ξc
1=2 Ωc þ K No

Ξc þ η No

Σc, Λc Ξc þ K No
Σc þ π Yes

Σc Σc þ η No

Nc Σc þ K No
aOnly s ¼ 3=2 → s ¼ 1=2.

TABLE III. Decays of 15J¼1 to 3̄J¼0.

15J¼1 3̄J¼0 Allowed

Ωc Ξc þ K̄ Yes

Ξc
3=2;1=2 Ξc þ π Yes

Ξc
1=2 Ξc þ η Nob

Λc þ K̄ Yes

Σc Ξc þ K No
Λc þ π Yes

Λc Λc þ η Yesa

Ξc þ K No

Nc Λc þ K No
aOnly s ¼ 3=2.
bs ¼ 3=2 at the threshold.

TABLE V. Decays of 15J¼0 to 6J¼1.

15J¼0 6J¼1 Allowed

Ωc Ωc þ π Yes
Ξc þ K̄ Yes

Ξc
3=2;1=2 Ξc þ π Yes

Σc þ K̄ Yes

Ξc
1=2 Ωc þ K No

Ξc þ η Noa

Σc;Λ Ξþ K No
Σc þ π Yes

Σc Σc þ η Yesb

Nc Σc þ K No
aDecay to s ¼ 1=2 at the threshold.
bOnly to s ¼ 1=2.

TABLE IV. Decays of 15J¼0 to 15J¼1.

15J¼0 15J¼1 Allowed

Ωc Ωc þ π Yes
Ωc þ η No

Ξc
3=2;1=2 þ K̄ No

Ξc
3=2;1=2 Ωc þ K No

Ξc
3=2;1=2 þ π Yesa

Σc þ K̄ No

Ξc
1=2 Ξc

1=2 þ η No

Λc þ K̄ No

Ξc
3=2 Ξc

3=2 þ η No

Σc Ξc
3=2;1=2 þ K No
Λc þ π Yes
Σc þ π Yes
Σc þ η No
Nc þ K̄ No

Λc Ξc
1=2 þ K No
Λc þ η No
Σc þ π Yesb

Nc þ K̄ No

Nc Σc þ K No
Λc þ K No
Nc þ π Yesc

Nc þ η No
aΞ1=2 → Ξ3=2ðs ¼ 3=2Þ below the threshold.
bs ¼ 1=2 → s ¼ 3=2 below the threshold.
cOnly s ¼ 3=2 → s ¼ 1=2 allowed.
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component m2, we arrive at the following expressions for
the decay widths:

ΓB1→B2þφ ¼ p3

24πF2
φ

M2

M1

dimR2

dim 15
γJ1→J2ðs1 → s2Þ

×
�X

μ
GðμÞ
15J1→R2

�
8 R2

φ B2

���� 15μB1

��2

: ð27Þ

Here the square bracket stands for the pertinent SU(3)
isoscalar factor coupling meson and baryon in a final state

to the baryon in the initial state and GðμÞ
15J1→R2

is the decay

coupling (see below).4 The sum over μ is relevant only for
R2 ¼ 15 in the final state. Here, we adopt the de Swart
conventions for the SU(3) phase factors [45] and label the
representations as in the numerical code of Ref. [46].
Factors γ take care of the spin dependence for the soliton
angular momenta J ¼ 1 or 0 (see Erratum in Ref. [5]),

γ1→1ð1=2 → 1=2Þ ¼ 2=3; γ1→1ð1=2 → 3=2Þ ¼ 1=3;

γ1→1ð3=2 → 1=2Þ ¼ 1=6; γ1→1ð3=2 → 3=2Þ ¼ 5=6;

γ0→1ð1=2 → 1=2Þ ¼ 1=3; γ0→1ð1=2 → 3=2Þ ¼ 2=3;

γ1→0ð1=2 → 1=2Þ ¼ 1; γ1→0ð3=2 → 1=2Þ ¼ 1: ð28Þ

Note that

X
s2

γJ1→J2ðs1 → s2Þ ¼ 1: ð29Þ

Finally, the decay constants read5

G151→3̄0
¼

ffiffiffi
1

2

r �
−ã1 −

1

2
a2

�
¼ 0.312;

G151→61
¼ −

ffiffiffi
1

3

r �
−ã1 −

1

2
a2 − a3

�
¼ 0.094;

G150→61
¼ 1

2

�
−ã1 −

3

2
a2

�
¼ −1.498;

Gðμ¼1Þ
150→151

¼
ffiffiffiffiffiffiffiffi
1

366

r �
−ã1 þ

41

2
a2

�
¼ 3.796;

Gðμ¼2Þ
150→151

¼ −
ffiffiffiffiffiffiffiffi
81

122

r �
−ã1 þ

1

6
a2

�
¼ −2.226: ð30Þ

To compute the numerical values, we have used Eqs. (22)
and (23). We see from Eqs. (30) that decay constants of
ð15; J ¼ 1Þ are very small; in fact they vanish in the large
Nc limit [47]. On the contrary, decay constants of ð15;
J ¼ 0Þ are almost an order of magnitude larger, so we
expect the corresponding decay widths to be large (fur-
thermore, the phase space factor p3 will be larger than in
the J ¼ 1 case).

B. Numerical estimates

Numerical estimates of the decay widths, assuming
central values for baryon masses from Table I, are listed
in Tables VII and VIII. One should note that these widths
are pure predictions based on the light sector values of the
decay parameters, except for rescaling (23).
Decay widths of theΩc states from 15J¼1, Γ ¼ 0.43 MeV

and 0.98 MeV have been already computed in Ref. [5] and
agree within uncertainties with experimental widths equal to
0.8� 0.2� 0.1 MeV and 1.1� 0.8� 0.4 MeV, respec-
tively [9]. Our present results also agree with initial estimates
of the decay widths of two exotic Ξc

3=2 states given in
Ref. [5] (note that here we have slightly different masses).
We see from Table VII that all states in 15J¼1 have very

small widths, in most cases not exceeding 1 MeV. For
almost all states in 15J¼1, decay channels to light baryons
and heavy mesons are closed (except for Σc and Λc of spin
s ¼ 3=2, which are at the threshold). We therefore conclude
that exotic charm pentaquarks from 15J¼1 can be found
only in dedicated searches in high resolution experiments.
One should also observe that, as already shown in Tables II
and III, that the lightest member of 15J¼1, namely the
nucleonlike pentaquark, is stable with respect to two body
strong decays.

TABLE VI. Decays of 15J¼1;0 to the ground state octet baryons
and D mesons.

15 Final J ¼ 1 J ¼ 0

Ωc ΞþD No Yes

Ξc
3=2 ΣþD No Yes

Ξc
1=2 ΞþDs No No

ΛþD No Yes
ΣþD No Yes

Σc ΣþDs No No
N þD Yesa Yes

Λc ΛþDs No No
N þD Yesa Yes

Nc N þDs No No
aOnly s ¼ 3=2.

4Recall that the soliton in SU(3) 15 can be quantized as spin
J1 ¼ 1 or J1 ¼ 0.

5In the present definition of the decay constants, we have
included a pertinent SU(3) spin isoscalar factor, which has not
been included in definitions of Ref. [5].
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The situation is completely different in the case of 15J¼0

listed in Table VIII. Here, all decay widths are within
30–140MeV range. The only exception is again the lightest
nucleonlike pentaquark, which however, can decay only to
the Nc state in 15J¼1, which is semistable. Furthermore, all
states in 15J¼0 (except for Nc) have at least one open
channel to the decays to light baryons and heavy mesons.
We are not able to compute these widths within the present
approach. However, since the available phase space is

comparable to the decays listed in Table VIII, we may
expect that the total decay widths will double with respect
to the estimates given in Table VIII.
One should also note, that all decays of 15J¼0 lead to

either 6 or 15J¼1, which decay further to 6 and 3̄.
We conclude therefore, that pentaquarks from 15J¼0

multiplet are very wide and may be interpreted as a
background, rather than as a signal. Therefore, they could
have been missed in general purpose experiments.

TABLE VII. Decay widths of exotic pentaquarks in the SU(3) representation 15 and J ¼ 1. Uncertainties correspond to the mass
ranges from Table I (two Ωc states are used as the input; therefore, their masses and decays widths are not subject to such uncertainties).

Decay Γ [MeV]

B1 B2 þ φ s2 ¼ 1
2

s2 ¼ 3
2

Σs2

Ωcð151=21 Þ Ξcð3̄0Þ þ K̄ 0.349 � � � 0.349

Ωcð61Þ þ π 0.062 0.015 0.077
Total 0.425

Ξcð3̄0Þ þ K̄ 0.875 � � � 0.875

Ωcð153=21 Þ Ωcð61Þ þ π 0.027 0.077 0.104

Ξcð61Þ þ K̄ 0.002 � � � 0.002
Total 0.981

Ξc
3=2ð151=21 Þ Ξcð3̄0Þ þ π 1.636–1.830 � � � 1.636–1.830

Ξcð61Þ þ π 0.029–0.035 0.007–0.009 0.036–0.043
Total 1.672–1.874

Ξcð3̄0Þ þ π 2.447–2.687 � � � 2.447–2.687
Ξc
3=2ð153=21 Þ Ξcð61Þ þ π 0.013–0.015 0.037–0.044 0.050–0.058

Σcð61Þ þ K̄ 0.003–0.005 ≈0 0.003–0.005
Total 2.497–2.751
Ξcð30Þ þ π 0.092–0.105 � � � 0.092–0.105

Ξc
1=2ð151=21 Þ Λcð3̄0Þ þ K̄ 0.239–0.299 � � � 0.239–0.299

Ξcð6̄1Þ þ π 0.039–0.048 0.009–0.011 0.048–0.059
Total 0.379–0.463
Ξcð30Þ þ π 0.140–0.156 � � � 0.140–0.156

Ξc
1=2ð153=21 Þ Λcð3̄0Þ þ K̄ 0.468–0.546 � � � 0.468–0.546

Ξcð6̄1Þ þ π 0.018–0.021 0.049–0.060 0.068–0.081
Σcð61Þ þ K̄ ≈0 � � � ≈0
Total 0.676–0.783

Σcð151=21 Þ Λcð3̄0Þ þ π 1.073–1.165 � � � 1.073–1.165
Σcð61Þ þ π 0.027–0.031 0.006–0.008 0.033–0.039
Total 1.107–1.203

Σcð153=21 Þ Λcð3̄0Þ þ π 1.525–1.635 � � � 1.525–1.635
Σcð61Þ þ π 0.012–0.013 0.035–0.040 0.047–0.054
Total 1.572–1.688

Λcð151=21 Þ Σcð61Þ þ π 0.016–0.023 0.004–0.006 0.019–0.030
Total 0.019–0.030

Λcð153=21 Þ Λcð3̄0Þ þ η 0.006–0.108 � � � 0.006–0.108
Σcð61Þ þ π 0.008–0.010 0.021–0.031 0.028–0.041
Total 0.034–0.149
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V. SUMMARY AND CONCLUSIONS

In the present paper, we have studied the consequences
of possible existence of heavy pentaquark SU(3) multiplets.
Charmed pentaquarks have been evoked to explain small
widths of two excited Ωc states [4] announced in 2017 by
the LHCb Collaboration at CERN [9]. Such interpretation
requires, however, the existence of many other exotic and
cryptoexotic charm baryons that have not been observed
experimentally.
For the present study, we have employed the χQSM

estimating its parameters from the heavy baryon spectra.
Therefore strictly speaking, we have not tested the dynam-
ics of the model, but rather the underlying hedgehog SU(3)
symmetry. Such symmetry leads to the sum rules (12)
analogous to the Gell-Mann–Okubo mass relations [39,40]
and to one Guadagnini-type [33] relation (13).
We presented numerical support for the model mass

formulas (8), (9), and (10). Next, we extracted model
parameters from the heavy baryon spectra alone, and from

the positivity of splitting parameters α, β, and γ (4). We
obtained mass ranges of the charm pentaquarks with
uncertainties of the order ∼50 MeV. Of course, this is a
conservative estimate, as the model itself is to large extent
semiquantitave.
Finally, we computed the decay widths. Here, predic-

tions for known experimentally ground state charm baryons
as well as for two exoticΩc states, are very accurate [5]. We
therefore have confidence in our predictions for the
remaining exotic states.
We have found that pentaquarks belonging to the

15J¼1 SU(3) multiplet are very narrow having widths
of the order of ∼1 MeV, while the remaining states from
the 15J¼0 SU(3) multiplet are wide, in most cases of
the order of ∼100 MeV or more. Moreover, all these
decays lead to the unstable resonances; therefore, the
identification of exotica requires dedicated experiments.
Multipurpose searches could easily miss narrow or wide
exotic states.

TABLE VIII. Decay widths of exotic pentaquarks in the SU(3) representation 15 and J ¼ 0. Uncertainties correspond to the mass
ranges from Table I.

Decay Γ [MeV]

B1 B2 þ φ s2 ¼ 1
2

s2 ¼ 3
2

Σs2

Ωcð61Þ þ π 34.18–41.02 47.93–59.38 82.10–100.39

Ωcð150Þ Ξ1=2ð61Þ þ K̄ 7.14–9.53 7.5–11.31 14.63–20.84
Ωcð151Þ þ π 1.49–2.97 0.23–1.48 1.72–4.46
Total 98.46–125.68
Ξcð61Þ þ π 17.52–20.48 25.04–30.06 42.56–50.55

Ξc
3=2ð150Þ Σcð61Þ þ K̄ 15.50–19.7 17.99–24.90 33.49–44.60

Ξc
3=2ð151Þ þ π 22.83–56.04 2.65–31.53 25.48–87.57

Ξc
1=2ð151Þ þ π 2.66–6.11 0.67–4.04 3.33–10.16

Total 104.86–192.89
Ξcð61Þ þ π 23.83–25.01 33.21–35.19 57.04–60.21

Ξc
1=2ð150Þ Σcð61Þ þ K̄ 0.77–0.84 0.81–0.91 1.58–1.75

Ξc
3=2ð151Þ þ π 1.93–3.95 0–0.42 1.93–4.37

Ξc
1=2ð151Þ þ π 0.09–0.17 0–0.05 0.09–0.22

Total 60.64–66.55
Σcð61Þ þ π 13.38–17.08 18.83–25.06 32.21–42.14

Σcð150Þ Σcð61Þ þ η 0–0.95 � � � 0–0.95
Σcð151Þ þ π 7.31–34.90 0–12.55 7.31–47.45
Λcð151Þ þ π 0.95–6.95 0–3.74 0.95–10.68
Total 40.46–101.23

Λcð150Þ Σcð61Þ þ π 9.42–10.46 13.10–14.82 22.53–25.27
Σcð151Þ þ π 1.84–6.21 � � � 1.84–6.21
Total 28.74–31.48

Ncð150Þ Ncð151Þ þ π 0–34.47 0–9.98 0–44.45
Total 0–44.45
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