PHYSICAL REVIEW D 107, 034010 (2023)

Light double-gluon hybrid states from QCD sum rules
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We study the double-gluon hybrid states with the quark-gluon contents gqgg (¢ = u/d) and 5sgg. We
construct twelve double-gluon hybrid currents with various quantum numbers, five of which are found to be
zero due to some internal symmetries between the two gluon fields. We use the remaining seven currents to
perform QCD sum rule analyses. Especially, the masses of the double-gluon hybrid states with the exotic
quantum number J7¢ = 2%~ are calculated to be M| 54442 -y = 2.26105¢ GeV and M5, 0 - =2.3810,5 GeV.
Their two- and three-meson decay patterns are also investigated.
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I. INTRODUCTION

A hybrid state is composed of one valence quark, one
valence antiquark, and one or more valence gluons. Some
of the hybrid states have the exotic quantum numbers
JPC =0="/0*= /17t /2+= /3= /4*= /... that cannot be
accessed by the conventional gg mesons [1]. These hybrid
states are of particular interest, and have been studied in
various experimental and theoretical investigations in the
past half century [2-13].

Up to now there are four candidates observed in
experiments with the exotic quantum number J7¢ = 17+,
including the ;(1400) [14], =;(1600) [15,16], and
71(2015) [17] of ISJPC=171"" as well as the
7 (1855) [18,19] of 19JPC€ = 0*1~*. Especially, the last
one was recently reported by the BESIII Collaboration in the
nyy invariant mass spectrum of the J/w — ynn' decay
with a statistical significance larger than 19¢ [18,19].
These candidates are possible single-gluon hybrid states,
which are composed of one valence quark-antiquark pair
and one valence gluon. Besides, they may also be explained
as the compact tetraquark states and the hadronic molecular
states [20-28], etc.

The above candidates have been intensively studied
within the hybrid picture using various theoretical
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methods and models, such as the MIT bag model [29-31],
flux-tube model [32-36], constituent gluon model [37-39],
AdS/QCD model [40,41], Dyson-Schwinger equation [42],
lattice QCD [43-53], and QCD sum rules [54-63],
etc. [64]. However, their nature is still elusive due to our
poor understanding of the “valence” gluon:

(1) It is not easy to experimentally identify the hybrid
states unambiguously, and there is currently no
definite experimental evidence of their existence.
This is partly because it is rather difficult to differ-
entiate the hybrid states from the compact tetraquark
states and the hadronic molecular states. This tough
problem needs to be solved by experimentalists and
theorists together in the future.

(i1) It is also not easy to theoretically define the gluon
degree of freedom. There have been some proposals
to construct glueballs and hybrid states using the
constituent gluons [65-70], but a precise definition
of the constituent gluon is still lacking.

In this paper we shall further investigate the double-
gluon hybrid states, which are composed of one valence
quark-antiquark pair and two valence gluons. Some
previous QCD sum rule studies on these states can be
found in Refs. [71,72]. In this paper we shall study the
double-gluon hybrid states with the quark-gluon contents
qq99 (¢ =u/d) and 5sgg. We shall construct twelve
double-gluon hybrid currents with various quantum
numbers, five of which are found to be zero due to some
internal symmetries between the two gluon fields. We
shall use the remaining seven currents to perform
QCD sum rule analyses. Especially, the masses of the
double-gluon hybrid states with the exotic quantum
number JPC€ = 2%~ are calculated to be smaller than
3.0 GeV:
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_ _ +0.20
Mléqyyzl*?‘) - M\éqyg:O‘T‘) =2.267)55 GeV,

M ssgp0-2+-y = 2385075 GeV.

These mass values are accessible in the BESIII, GlueX,
LHC, and PANDA experiments. In this paper we shall also
investigate their possible decay patterns for both the two-
and three-meson final states.

This paper is organized as follows. In Sec. II we
construct twelve double-gluon hybrid currents, five of
which are found to be zero. We use the remaining seven
currents to perform QCD sum rule analyses in Sec. 111, and
then perform numerical analyses in Sec. IV. The obtained
results are summarized and discussed in Sec. V.

II. DOUBLE-GLUON HYBRID CURRENTS

In this section we construct the double-gluon hybrid
currents by using the gluon field strength tensor G}, (x), the
dual gluon field strength tensor G,’jy = G"° X €,,/2, the
light quark field g, (x), and the light antiquark field g, (x).
In these expressions, a =1...3 and n =1...8 are color
indices, and y, v, p, o are Lorentz indices.

Some of the double-gluon hybrid currents have been
constructed in Ref. [71]:

Jor+ = QayS/mebdnpqg%G?Gq,ﬂw (1)
Jo- = f_]aYSAZbef”pqggG’;quw, (2)
Jo+ = GarsAlqd ™2 Gy G, ., (3)
Jo = QursAeq, 712G Gy s (4)

Jtlxi = C_Ia}’sflﬁbCIbdnpquGZ”G[qj»ﬂ - {a g ﬁ}’ <5)
IV = Qs anf "GRG Gy — fa < Y. (6)
I = sk apd™ G Goy — fa < Y. (7)
I = qurskapf PGy G — {a < B}, (8)
Iyl — gy qpd iSRG GE,(9)
J3Pl = gysihq, frraS[RGR GE), - (10)
TR — g st dSIEGEMGER] (1)
TRl = g ysasqufraS[RGE T GERL (12)

where S represents symmetrization and subtracting trace
terms in the two sets {a;a,} and {f,,} simultaneously.

The above double-gluon hybrid currents all contain
the color-octet quark-antiquark field g,7sA%’q, with the

S-wave spin-parity quantum number J” = 07, so these
currents may couple to the lowest-lying double-gluon
hybrid states. Their color structure is

3,® 31? ®8,®8, -8;,,08 ®8, —» 1gqu ® 12!199’

(13)
where 12%9 denotes the symmetric color configuration

d”PqE[alzbququ, and lgqgg denotes the antisymmetric
color configuration f””"qalﬁ”qul,Gq, with d"P9 and f"P4
the totally symmetric and antisymmetric SU(3) structure
constants, respectively.

More double-gluon hybrid currents can be constructed
by combining the color-octet quark-antiquark fields
Quﬂzbyﬂythv Qalzbamzq}?’ (14)

Qa/lzqu Z]uﬂzbyﬂQIﬂ

and the color-octet double-gluon fields

aIGYGY. GGy, (15)
together with some Lorentz matrices I***%7%_ Note that
some of these currents can mix with the above currents
defined in Egs. (1)-(12) when they have the same spin-
parity quantum numbers.

Each of the four currents, Jy:= defined in Egs. (1)—(4),
couples to either the positive- or negative-parity hybrid
state. For example, the current J++ couples to the double-
gluon hybrid state of J*¢ = 0** through

(0o [X;077) = fixor+), (16)

while it does not couple to the state of J7¢ = 0=+,
The other eight currents of spin-J, Jffi, and Jg'ﬁ‘ a2f>
defined in Egs. (5)—(12), have 2 x J Lorentz indices with

certain symmetries, e.g., the spin-2 current ngfi‘ “@P2 has
four Lorentz indices, satisfying

ngﬁlﬂzﬁz _ _ngﬁlwazﬂz _ _ngﬁlsﬂzaz _ ngﬁlsﬂzaz. (17)
Each of these eight currents couples to both the positive-
and negative-parity hybrid states. We briefly explain how to
deal with them as follows.

We use the current J% = ¢6% ¢ as an example, which
can be separated into (@, f =0, 1,2,3 and i, j = 1, 2, 3):

colc, P = +,

Job — Eaaﬁc{ (18)

colic, P = —.

Therefore, it couples to both the positive- and negative-
parity charmonia through

(01J%|h (e, p)) = if} e eup,, (19)
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O /y(e. p)) = if}, (p*e = pPe®),  (20)

with f} and f7, the decay constants. We can further

isolate the £, at the hadron level by investigating the two-
point correlation function containing

(01 |hc) (el (747)F]0)
= ()P e,p, e epy

= -1 —g? P+ (21)

while the correlation function of J/y does not contain this
coefficient. Instead, the J/y can be isolated more easily
through the dual current

I = Prd x ] s, (22)

which couples to the J/y and A, in the opposite ways:
(O Jy(e. p)) = if € e,py, (23)
(017 h (€. p)) = if], (pee = pPes).  (24)

Accordingly, we can use the two currents J% and J% to

separately investigate the two charmonia 4, and J/y.
The above process can be applied to generally inves-

tigate the currents J?’fi and J3!! @2 with the couplings

defined as
OV IX: 155 (e p)) = if e, p,. (25

Bi. .
(O3 X 25 (e, p)) = if g€, P, P,
X S[ealﬂllh”] €azﬁ2ﬂzl/z]. (26)

Here |X;1%F) and |X;2*F) are the double-gluon hybrid
states that have the same parities as the components J 'ijﬁ
and J'Z‘ij;'wz (i, iy, 02 . j1.jo = 1, 2, 3), respectively.
Before performing QCD sum rule analyses, let us further
examine the twelve currents Jb"/l o defined in Egs. (1)-
(12). We find some internal symmetries between the two
gluon fields, which make the five currents J

0= /155 /2
vanish:

(i) The current Jy-- contains two totally antisymmetric
gluon fields (their Lorentz indices are symmetric and
their color coefficient f"P9 is antisymmetric), so it
vanishes due to the Bose-Einstein statistics:

v
_]O__ — ... X fnqul; Gq,;w
_ n v
= Xf QPGZ Gp.;w
_ n I
——-“Xf P[IGP Gq,/w

= —Jo (27)

(i) The current Jy+- vanishes through some similar

deductions:
Sy = X UGG
= ... X fnquZ”(;pw
= —.. X fnqul;”qu
= — ... X fnpqc/;”(;qw
= —Jy+-. (28)

(iii) The current J T_+ contains two totally antisymmetric

gluon fields (their Lorentz indices are antisymmetric
and their color coefficient d"79 is symmetric), so it
vanishes due to the Bose-Einstein statistics:
JP = oxdi(GY G, - GYGe)

= (GG - GG

_ ap ~p p

= — ... X d”pq(Gp”qu” _ Gp”Gg,ﬂ>

=-J7. (29)

(iv) The current JTQ vanishes because

PO /(G2 aarsAdtay)

= d"(G)G] - GG

= I(GRGY + GUGE — GI2GP - GBEY)
4

=—(GyGy’ - GGy + GGy = GGy

= 0. (30)

(v) The current ng/f""Zﬂz contains two totally antisym-
metric gluon fields (their Lorentz indices are sym-
metric and their color coefficient f"P9 is
antisymmetric), so it vanishes due to the Bose-
Einstein statistics:

Jabvabs o prpaSIGRP GO
= ... X fnqu[qulnﬂl ngﬁz]
= — ... X fanS[G?)ZﬂZGZlﬂI}
- — ... X f"””S[G‘;'ﬁ'GZZﬁZ}
= _ngé" ab (31)

arfr.ap;
s

Interestingly, the current J, does not vanish, e.g.,

01,02 __ n >
Jylt = x f pqg[Ggngz]
= ... X fnpq(G(’JlngZ 4 G(,),ngl)
fﬂpq
2

= ... X

(-GY'G}? + GRGP)
# 0. (32)
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III. QCD SUM RULE ANALYSES

In this section we use the seven currents Jb"i+ J1E 2 e
to perform QCD sum rule analyses. We use the current J++
defined in Eq. (1) as an example. Based on Eq. (16),

we study its two-point correlation function

N(g?) = i / d*xei (0 T[Ty (x)J5,. (0)]]0),  (33)

at both the hadron and quark-gluon levels.
At the hadron level, Eq. (33) can be expressed by the
dispersion relation as

M(q?) = / w%d& (34)

where s_. = 4m(2] is the physical threshold. The spectral
density p(s)=ImIl(s)/z is parametrized as one
pole dominance for the possibly existing ground state
X = |X;0"") together with a continuum contribution

Poben(s) = > _8(s = M) (0o [n) (n].J3..|0)
= f%5(s — M%) + continuum. (35)

At the quark-gluon level, Eq. (33) can be calculated by
the method of operator product expansion (OPE), from
which we can extract the OPE spectral density popg(s). We
perform the Borel transformation at both the hadron and
quark-gluon levels, and approximate the continuum using
pope () above the threshold value s, from which we obtain
the sum rule equation

2 2 S
M(so, M3) = fe ™ x/Mi = / "M pops(s)ds. (36)
S<
It can be used to further derive
Ji0 e Mispopg (s)ds

S0 e Mipopg (s)ds

M3 (50, Mp) = (37)

In this paper we have calculated the Feynman diagrams
depicted in Fig. 1. Since the gluon field strength tensor Gy,
is defined as

Gy, = 0,A) —0,A; + g, f""IA, LA L (38)
it is naturally separated into two parts: the former two terms
are represented by the single-gluon line, and the third term
is represented by the double-gluon-line with a red vertex;
e.g., see the diagram depicted in Fig. 1(c-3).

We have calculated popg(s) up to the dimension eight
condensates, including the perturbative term, the quark
condensates, the quark-gluon mixed condensates, the

(b-1)

(b-2)

(b-3) (b—4)

(c-1) (c2) (c-3) (c—4)

(d-1) (d-2) (d-3)

(d-4) (d-5) (d-06)

(e-1)

(e-2) (e-3)

FIG. 1. Feynman diagrams for the double-gluon hybrid state:
(@) and (b—i; i=1---4) are proportional to aZ x ¢%; (c—i;
i=1---4) and (d-i; i = 1---6) are proportional to a2 x g!;
(e—i; i = 1---3) are proportional to a2 x g2.

two-/three-gluon condensates, and their combinations.
We have considered all the diagrams proportional to
aZ x ¢° and a? x g}, while we have only considered three
diagrams proportional to a? x g2, as depicted in Fig. 1(e—i).
We have included the strange quark mass, while we have
neglected the up and down quark masses.

All the obtained spectral densities are given in the
Appendix. Especially, the one extracted from the current
Jo+ with the quark-gluon content gggg (¢ = u/d) is

als® 502 (g?GG)s?

999 ( o\ _
P )= 30 T 691
L (03439 _5a(fG)
27 4873
80a;(qq)(9,q0Gq) 5(9;GG)?
+(_ : >9< - <2887r2> s (39)

and the one with the quark-gluon content §sgg is

034010-4
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them in Fig. 2 as functions of s. The two spectral densities

P59 (s) = as’  amist ( 5a3(g;GG)  Sagm(5s) n S5a2m e 8003 (55)°  Say(giG) | 10a5m(g,56Gs)
o 43207 1447* 69127 277 367 27 487 9’
B 20a§mz<§s> 2 (- 8002 (55)(g,56Gs) B 5<g§GC2;>2 +40a§m%{§s>2 N S5a,m3 <2 3G N (40)
9 9 2887 9 87
Note that the double-gluon hybrid states in the same isospin a,(0?) = 4r
multiplet have the same extracted hadron mass within our 11 1n(Q2 / AQCD) ’
QCD sum rule framework, since we do not differentiate the I
up and down quarks in the OPE series. ms =935 MeV,
(gq) = —(0.240 £ 0.010) GeV?,
IV. NUMERICAL ANALYSES (ss) = (08 £0.1)x (49).
8+0.2 q 2
In this section we use the spectral densities listed in (9:40Gq) = (0.8 £02) x {7g)GeV~,
Egs. (39) and (40) as well as those given in the Appendix to (9,50Gs) = (0.8 £0.2) x (5s),
perform numerical analyses. To begin with, we show (a,GG) = (6.35 +0.35) x 1072 GeV*,
%)=

pl4%(s) and pi*% (s) (black curves) are both negative when
0 <s <14 GeV?. This suggests that they are both
nonphysical in this energy region, and the masses
extracted from them should be significantly larger than

v 14 GeV =~ 4 GeV. However, the two spectral densities

pl1%(s) and p3%(s) (red curves) are both positive

definite, and the masses extracted from them can be much
smaller. i

We use the spectral density pgi?’(s) listed in Eq. (39) as
an example. It is extracted from the current Jy++ with the
quark-gluon content gggg (¢ = u/d), so we denote its
corresponding state as

X =|X;0"") = |gq9g;0"). (41)

The following values will be used for various QCD
parameters at the renormalization scale 2 GeV and the
QCD scale Agep = 300 MeV [1,73-80]:

500
g pl

400 _pgggg J— pg?gg

p(lagzb pgqgg

300

J— p?igg

200

P[GeV'?]

100

-100 s ‘ ‘ s
0 5 10 15 20 25
s [GeV?]

FIG. 2. The spectral densities pi,’?ﬁg

(3G (a,GG) GeV?.  (42)

Equation (37) indicates that the mass My depends on
two free parameters: the threshold value s, and the Borel
mass Mp. We use three criteria to determine their proper
working regions: (a) the convergence of OPE is sufficiently
good, (b) the pole contribution is sufficiently large, and
(c) the mass dependence on these two parameters is
sufficiently weak.

In order to ensure the good convergence of OPE, we
require that the a2 x g7 terms are less than 5%, the D = 8
terms are less than 10%, and the D = 6 terms are less

(824 1.0) x

than 20%:
119 (00, M3
cve=|T Myl sq, (43)
I1(co, M%)
HD:S M2
CVG'= Lﬂ < 10%, (44)
(o0, M%)

500
1400
1300

1200
1100

s ‘ ‘ s -100
5 10 15 20 25
s [GeV?]

(s) and pi';gcg (s) as functions of s.
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60% K \ 160%

= S0% )\ ~ 150% =
2 \ 1 ] =
g 4% N  GEEE— 40% -3
o i 1
S 30% A 30% =2
) \ i | g
2 20% - N N s 20% O
S N N 2
O 10% Sao DS - 10% ©

oo llmmmmmmmenenlp T

4.0 5.0 6.12  6.92 8.0 9.0
Borel Mass? [GeV?]
FIG. 3. CVG [short-dashed curve, defined in Eq. (43)], CVG’

[middle-dashed curve, defined in Eq. (44)], CVG” [long-dashed
curve, defined in Eq. (45)], and PC [solid curve, defined in
Eq. (46)] as functions of the Borel mass Mp, when setting
5o = 38.0 GeV?2. These curves are obtained using the spectral
density pgﬂg (s) extracted from the current J,++ with the quark-

gluon content gqgg (¢ = u/d).

TP (o0, M3)

(oo 00 | < 20%. (45)

CVGQ'= '

As depicted in Fig. 3 using three dashed curves, we
determine the minimum Borel mass to be M% >
6.12 GeV>.

Then we require the pole contribution (PC) to be
sufficiently large, that is larger than 40%:

I(so. M%)

m > 40%. (46)
» Mg

PCE‘

As depicted in Fig. 3 using the solid curve, we determine
the maximum Borel mass to be M% < 6.92 GeV?, when
setting s, = 38.0 GeV?.

Altogether we determine the Borel window to be
6.12 GeV? < M% < 6.92 GeV? for sy = 38.0 GeV2. We
redo the same procedures by changing s,, and find that

8.0 : 8.0
7.0 7.0
> |
& s
= 6.0 6.0
g 1
= s
5.0 | 5.0
400 i 14.0
20.0 30.0 38.0 46.0 56.0
so [GeV?]

there are nonvanishing Borel windows as long as
50 > sIin = 34.9 GeV2. We choose s, to be slightly larger,
and determine the working regions to be 30.0 GeV? < s, <
46.0GeV? and 6.12 GeV? < M3 < 6.92GeV?, where we
calculate the mass of the double-gluon hybrid state
13999:07) to be

M gg050++) = 5.612037 GeV. (47)
Its uncertainty is due to the threshold value s, the Borel
mass Mp, and the QCD parameters listed in Eq. (42).

We show the mass M|z,,..0++ in Fig. 4 as a function
of the threshold value s, and the Borel mass M. From the
left panel, we find a mass minimum around s, ~ 28 GeV?,
and the s, dependence is acceptable inside the region
30.0 GeV? < 5y < 46.0GeV?. From the right panel, we
find that the mass curves are sufficiently stable inside the
region 6.12 GeV? < M% < 6.92 GeV2.

Similarly, we perform numerical analyses using the rest
of the double-gluon hybrid currents with the quark-gluon
content gqgg (¢ = u/d). The obtained results are summa-
rized in Table I. Besides, we also perform numerical
analyses using these currents with the quark-gluon content
5sgg. The obtained results are also summarized in Table I.
Especially, the mass of the double-gluon hybrid state
|55gg; 0T ") is calculated to be

Missgp0-+y = 572103 GeV. (48)
For completeness, we show it in Fig. 5 as a function of the
threshold value s, and the Borel mass M.

V. SUMMARY AND DISCUSSIONS

In this paper we study the double-gluon hybrid states
with the quark-gluon contents gqgg (¢ = u/d) and 5sgg.
We systematically construct twelve double-gluon hybrid
currents using the color-octet quark-antiquark field

180

B 7.0

>

Q

8

600 NSt eo e 6.0

g -

s b
5.0 5.0
40" 5 . 140

40 50 612 692 80 90

Borel Mass? [GeV?]

FIG. 4. Mass of the double-gluon hybrid state |gggg; 0T ") as a function of the threshold value s (left) and the Borel mass M p (right).
In the left panel the dotted/solid/dashed curves are obtained by setting M% = 6.12/6.52/6.92 GeV?2, respectively. In the right panel the
dotted/solid/dashed curves are obtained by setting s, = 30.0/38.0/46.0 GeV?, respectively. These curves are obtained using the

qq99

spectral density p?%’(s) extracted from the current Jo++ with the quark-gluon content gqgg (¢ = u/d).
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TABLE L.

Joer J1E 2+ jo+e

results are not given.

QCD sum rule results of the double-gluon hybrid states |gggg; J*¢) and |ssgg; J¥€), extracted from the seven currents
with the quark-gluon contents gggg (¢ = u/d) and 5sgg, respectively. The five currents J e i vanish, so their

Working Regions

State [JFC] Current sTin[Ge V2] M%[GeV?] 50[GeV?] Pole [%] Mass [GeV]
12499:07") Jo++ 34.9 6.12-6.92 38+£8.0 40-50 5.61102
laag9;0™") Jo-+ 24.4 5.34-5.78 27+5.0 40-48 4255035
|g999;177) Jo 32.1 5.51-6.31 35+7.0 40-50 546102
laagg:17") T 20.0 4.60-4.91 22+£4.0 40-47 3747030
17q99:2*") Japral: 20.0 5.39-5.76 22+ 4.0 4046 374707
17999:2+7) Jg bk 6.4 1.61-1.78 7+2.0 40-48 2.261020
17999:27%) Jorab 16.8 4.39-4.81 19+ 4.0 40-49 3.51402
[5599;07") Jor+ 35.3 6.22-7.61 41+8.0 40-57 57202
[5599;07") Jos 24.5 5.36-5.95 28+ 6.0 40-50 4341036
[5599:177) T 32.5 5.60-6.79 37£8.0 40-55 552102
[5599:177) JP 20.2 4.62-5.07 23450 40-50 3.8410%
55995 277) Jshaal: 20.4 5.45-6.11 24450 40-51 3.914032
[5599:2"7) Joprah 7.1 1.79-2.01 8+2.0 40-50 2.38+0.19
|5599;27") Jabab, 17.1 4.44-5.00 20+ 4.0 40-51 3.611028

Qa¥shy q,
and the color-octet double-gluon fields

GG, rraGPGr.
Since the field g,ysA%q, has the S-wave spin-parity
quantum number J© = 07, these currents may couple to
the lowest-lying double-gluon hybrid states.

We apply the method of QCD sum rules to study these
currents, and the obtained results are summarized in
Table I. Note that the five currents Joi* 1 o vanish
due to some internal symmetries between the two gluon

8.0 ; ; : 8.0
7.0 7.0
= {
O
&} .
= 60
z
=
5.0
4.0 | | i 4.0
23.0 33.0 41.0 49.0 59.0

so [GeV?]

FIG. 5.

In the left panel the dotted/solid/dashed curves are obtained by setting M

fields, but this does not indicate that the double-gluon
hybrid states with these quantum numbers do not exist,
since more currents can be constructed by combining the
color-octet quark-antiquark fields

Qaﬂzqu Qaﬂzbyqu Qa/wlbyy}/quv éalgbg;wqb?
and the above color-octet double-gluon fields. We shall
systematically investigate them in the near future.

As shown in Table I, only the masses of the double-gluon
hybrid states |gggg; 2*~) and |5sgg; 27~) are calculated to

be smaller than 3.0 GeV:
8.0m:
7.0

6.0

Mass [GeV]

5.0

40- e — 140
40 50 6.22 7.61 9.0 100

Borel Mass? [GeV?]

Mass of the double-gluon hybrid state |Ssgg; 07+) as a function of the threshold value s (left) and the Borel mass M (right).

=6.22/6.91/7.61 GeV?, respectively. In the right panel the

dotted/solid/dashed curves are obtained by setting s, = 33.0/41.0/49.0 GeV?2, respectively. These curves are obtained using the
spectral density p'*/(s) extracted from the current Jo-+ with the quark-gluon content 3sgg.
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M,

Hybrid Hybrid 3§

M,

FIG. 6. Two- and three-meson decay processes of the double-
gluon hybrid state.

M z4990+) = 2'26J—r8f222 GeV,
M ssg2t-) = 2.382073 GeV.

These two states are coupled by the current Jg‘fi‘ ©P2 with
the quark-gluon contents gqgg (¢ = u/d) and 5sgg. They
are quite interesting because they both have the exotic
quantum number JP¢ = 2+~ that cannot be reached by the
conventional gg mesons. Since we do not differentiate the
up and down quarks within the QCD sum rule framework,
the masses of the double-gluon hybrid states in the same
1sospin multiplet are calculated to be the same:

_ _ +0.20
M\éqg.q;l*?‘) - Mléqyy:O‘Z*‘> = 226755 GeV,

M 55502+ = 2.38%059 GeV.

The double-gluon hybrid states |gggg; 1727~) and
|gqgg;0727~) have been studied in Ref. [71], and their
possible decay patterns have also been partly derived there.
In this paper we further study the decay patterns of its
partner state |Ssgg; 072%7). As shown in Fig. 6, a double-
gluon hybrid state can decay after exciting two gq/5s pairs
from two gluons, followed by reorganizing three color-
octet gg/5s pairs into two or three color-singlet mesons.
The amplitudes of these two decay processes are both at the

TABLE 1I.

O(ay) order, so the three-meson decay patterns are not
suppressed severely compared to the two-meson decay
patterns.

We list in Table II some possible two- and three-
meson decay patterns for the double-gluon hybrid
states |gqgg; 17277), 1gqgg;07277), and |5sgg;07277).
Accordingly, we propose to search for |gggg; 1727 7) in the
two-meson decay channels pf,(980)/wn/K*K and the
three-meson decay channels fwn/pzr, etc.; we propose to
search for |gggg; 072%) in the two-meson decay channels
pay(980)/pzx/K*K and the three-meson decay channels
fipr/wrr, etc.; we propose to search for |55gg; 07217) in
the two-meson decay channels ¢n/K*K and the three-
meson decay channel pKK, etc.
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APPENDIX: SPECTRAL DENSITIES

In this appendix we list the spectral densities extracted
from the double-gluon hybrid currents J;,", J1E- ok o with
the quark-gluon contents gggg (¢ = u/d) and ssgg. The
five currents Jb"i_ J1E 2 vanish, so their results are not
given.

Possible two- and three-meson decay patterns of the double-gluon hybrid states |gqgg; 1727), |gqgg;0727"), and

|55gg;0727). The results of the former two are partly taken from Ref. [71]. We have used the notations: h; = h;(1170),
hll = h|(1415), f] :f](1285), f/] :f|(1420), ag = ao(980), .fo :f0(980), a, = a1(1260), b] = b|(1235), a, = a2(1320),

Kj = K3(700), Ky = K,(1270)/K,(1400), and K} = K3(1430).

Two-Meson 13999;172"7) 17999;072"7) |5599,072"7)

S-wave K 31?3

P-wave hyz,a\m, ay;, byn, by, pfo, ay byz, hin, hin', pag, ofy Ry, hinf
K\K, K \K*, K;K, K*K;,

D-wave prp~, wm, pn, pif pr, on, on ¢n. opn'

K'K.K*K* KK}

Three-Meson 13q99;11277) 1gq99;072%) 5599;072%7)

S-wave fion, apr fipz, aion e

P-wave prr, onw, oy’ T, pnn wnr, pnr, pn' T, wnn ¢nn

aK*K,pKK,wKK, pKK, zK*K*, pK*K, oK*K, nK*K
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