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In this work we study the doubly charmed baryon decays Ξþþ
cc → Ξð0Þþ

c πþ within the framework of the
nonrelativistic quark model (NRQM). Factorizable amplitudes are expressed in terms of transition form
factors, while nonfactorizable amplitudes arising from the inner W emission are evaluated using current
algebra and the pole model and expressed in terms of baryonic matrix elements and axial-vector form
factors. Nonperturbative parameters are then calculated using the NRQM. They can be expressed in terms
of the momentum integrals of baryon wave functions, which are in turn expressed in terms of the harmonic
oscillator parameters αρ and αλ for ρ- and λ-mode excitation. The measured ratio R of the branching fraction
of Ξþþ

cc → Ξ0þ
c πþ relative to Ξþþ

cc → Ξþ
c π

þ can be accommodated in the NRQM with αρ1 and αρ2 being in

the vicinity of 0.51 and 0.19, respectively, where αρ1 is the αρ parameter for Ξþþ
cc and αρ2 for Ξ

ð0Þþ
c . Decay

asymmetries are predicted to be −0.78 and −0.89 for Ξþ
c π

þ and Ξ0þ
c πþ modes, respectively, which can be

tested in the near future. We compare our results with other works and point out that although some other
models can accommodate the ratio R, they tend to lead to a branching fraction of Ξþþ

cc → Ξþ
c π

þ too large
compared to that inferred from the LHCb measurement of its rate relative to Ξþþ

cc → Λþ
c K−πþπþ.

DOI: 10.1103/PhysRevD.107.034009

I. INTRODUCTION

Hadronic decays of the doubly charmed baryon Ξþþ
cc have

been measured through the decays Ξþþ
cc → Λþ

c K−πþπþ [1]
and Ξþþ

cc → Ξþ
c π

þ [2]. Recently, the decay Ξþþ
cc → Ξ0þ

c πþ
was first observed by LHCb [3] and its branching fraction
relative to that of Ξþþ

cc → Ξþ
c π

þ was also reported

R≡ BðΞþþ
cc → Ξ0þ

c πþÞ
BðΞþþ

cc → Ξþ
c π

þÞ ¼ 1.41� 0.17� 0.10; ð1:1Þ

while the branching fraction of Ξþþ
cc → Ξþ

c π
þ relative to

Ξþþ
cc → Λþ

c K−πþπþ was measured to be [2]

BðΞþþ
cc → Ξþ

c π
þÞ × BðΞþ

c → pK−πþÞ
BðΞþþ

cc → Λþ
c K−πþπþÞ × BðΛþ

c → pK−πþÞ
¼ 0.035� 0.009ðstatÞ � 0.003ðsystÞ: ð1:2Þ

Both two-body decay modes Ξþ
c π

þ and Ξ0þ
c πþ proceed

through the topological diagrams, external W-emission T
and inner W-emission C0 (see Fig. 1).1 Many early studies
focused only on the factorizable contribution from T [4–7].
It turns out that light-front quark model [4,6] and QCD sum
rules [7] lead to a rate of Ξþþ

cc → Ξþ
c π

þ larger than that of
Ξþþ
cc → Ξ0þ

c πþ. This implies that factorizable contributions
alone will yield R < 1. Nonfactorizable inner W-emission
C0 has been considered in Refs. [8–11] and partially in
Ref. [12]. In Ref. [11], nonfactorizable effects were
estimated based on the final-state rescattering. The inter-
ference between T and C0 in Ξþþ

cc → Ξþ
c π

þ was found to
be destructive in Refs. [8–10] but constructive in Ref. [11].
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On the contrary, a large constructive interference in the
P-wave amplitude was obtained in Ref. [12], while non-
factorizable corrections to the S-wave one were not
considered (see Table III below).
We have mentioned that factorizable contributions alone

will usually lead to R < 1. A possibility of accounting for
the observation of R > 1 is to consider the Ξþ

c − Ξ0þ
c

mixing

jΞþ
c i ¼ cos θjΞ3̄

ci þ sin θjΞ6
ci;

jΞ0þ
c i ¼ − sin θjΞ3̄

ci þ cos θjΞ6
ci; ð1:3Þ

where Ξc and Ξ0
c are physical states, and Ξ

3̄ð6Þ
c are antitriplet

(sextet) charmed baryons. As pointed out in Ref. [13], the
ratio R ¼ 0.56 predicted in Ref. [6] can be enhanced to
1.41 when the mixing angle θ is either 16.27° or 85.54°.
However, we have to keep in mind that the effect of inner
W emission needs to be taken into account eventually.
Recently, the effect of Ξc − Ξ0

c mixing was studied in
Ref. [14] in an attempt of resolving the tension between the
experimental measurements and theoretical expectations
in Ξ0

c → Ξ−
c eþνe. The mixing angle was found to be

θ ¼ �0.137ð5Þπ ¼ �ð24.7� 0.9Þ°.
Most of the studies in the literature aim at the accom-

modation of the ratio R. Although the absolute branching
fractions have not been directly measured, we nevertheless
can get some information on BðΞþþ

cc → Ξþ
c π

þÞ. Using the
measurements BðΛþ

c → pK−πþÞ ¼ ð6.28� 0.32Þ% and
BðΞþ

c → pK−πþÞ ¼ ð0.62� 0.30Þ% [15], it follows from
Eq. (1.2) that

BðΞþþ
cc → Ξþ

c π
þÞ

BðΞþþ
cc → Λþ

c K−πþπþÞ ¼ 0.35� 0.20: ð1:4Þ

As pointed out in Ref. [9], it is plausible to assume
that BðΞþþ

cc → Λþ
c K−πþπþÞ≈ 2

3
BðΞþþ

cc → Σþþ
c K̄�0Þ.

Since Ξþþ
cc → Σþþ

c K̄�0 is a purely factorizable process,
its rate can be reliably estimated once the relevant
form factors are determined. Taking the latest prediction

BðΞþþ
cc → Σþþ

c K̄�0Þ ¼ 5.61% from [16] as an example,
we obtain2

BðΞþþ
cc → Ξþ

c π
þÞexpt ≈ ð1.33� 0.74Þ%: ð1:5Þ

Therefore, there exist two constraints: the ratio R and
the absolute branching fraction of Ξþþ

cc → Ξþ
c π

þ inferred
from the LHCb measurement of its rate relative to
Ξþþ
cc → Λþ

c K−πþπþ.
In Ref. [9] we have considered the two-body decays

of doubly charmed baryonswithin the framework of theMIT
bag model. The branching fractions of Ξþþ

cc → Ξþ
c π

þ and
Ξþþ
cc → Ξ0þ

c πþ were found to be 3.60% and 4.65%, respec-
tively. At this level, R ¼ 1.29. Because of a large destructive
interference between T and C0 occurred in the former mode,
its branching fraction is reduced from 3.60% to 0.69%,
whereas the latter mode is almost not affected by the internal
W emission owing to the Pati-Woo theorem [18]. Although
the final branching fraction of Ξþþ

cc → Ξþ
c π

þ is consistent
with Eq. (1.5), the ratio R is enhanced from 1.29 to 6.74,
which is evidently too large compared to the experiment.
Since the interference is destructive in Ξþ

c π
þ and negligible

inΞ0þ
c πþ, thismeans that in order to account for themeasured

value of R, one should have R < 1 before the inner W
emission is turned on.
Very recently, it was pointed out in Ref. [19] that the

difficulty with the bag model calculation can be overcome
by considering the Ξþ

c − Ξ0þ
c mixing. At θ ¼ −24.7°, one

will have branching fractions 2.24% and 3.25%, respec-
tively, for Ξþþ

cc → Ξþ
c π

þ and Ξþþ
cc → Ξ0þ

c πþ. Hence R ¼
1.45 is accommodated nicely and the rate of Ξþ

c π
þ is

consistent with Eq. (1.5).
To explore the possibility of accounting for both the ratio

R and the absolute branching fraction of Ξþþ
cc → Ξþ

c π
þ

inferred from Eq. (1.2) within a phenomenological model,
in this work we shall focus on the nonrelativistic quark
model (NRQM) to see if we can achieve both aforemen-
tioned goals. This paper is organized as follows. In Sec. II
we follow Ref. [9] to express the factorizable and non-
factorizable amplitudes of Ξþþ

cc → Ξð0Þþ
c πþ decays in terms

of the form factors and baryonic matrix elements that in
turn are evaluated using the NRQM. Numerical results are
presented in Sec. III. We summarize our results in Sec. IV.
Appendix A recapitulates the essences of the NRQM.
Derivations of the nonperturbative parameters in the quark
model are shown in Appendix B.

II. FORMALISM

The amplitude of the two-body baryonic weak decay
Bi → BfP is given by

MðBi → BfPÞ ¼ iūfðA − Bγ5Þui; ð2:1Þ

FIG. 1. Topological diagrams contributing to Ξþþ
cc → Ξð0Þþ

c πþ
decays: external W-emission T and inner W-emission C0.

2Our previous number ð1.83� 1.01Þ% given in Ref. [9]
is modified as the world average of the branching fraction of
Ξþ
c → pK−πþ has been updated due to a new measurement from

LHCb [17].
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where BiðBfÞ is the initial (final) baryon and P is a
pseudoscalar meson. The decay width and up-down decay
symmetry have the expressions

Γ ¼ pc

8π

�ðmi þmfÞ2 −m2
P

m2
i

jAj2 þ ðmi −mfÞ2 −m2
P

m2
i

jBj2
�
;

α ¼ 2κReðA�BÞ
jAj2 þ κ2jBj2 ; ð2:2Þ

with κ ¼ pc=ðEf þmfÞ, where pc is the c.m. momentum
in the rest frame of the mother baryon. The S- and P-wave
amplitudes of the two-body decay generally receive both
factorizable and nonfactorizable contributions

A ¼ Afac þ Anf ; B ¼ Bfac þ Bnf : ð2:3Þ

For doubly charmed baryon decays Ξþþ
cc → Ξð0Þþ

c πþ, the
relevant effective Hamiltonian reads

Heff ¼
GFffiffiffi
2

p V�
udVcsðc1O1 þ c2O2Þ þ H:c:;

O1 ¼ ðs̄cÞðūdÞ; O2 ¼ ðūcÞðs̄dÞ;
ðq̄1q2Þ≡ q̄1γμð1 − γ5Þq2: ð2:4Þ

Factorizable amplitudes read

Afac ¼ GFffiffiffi
2

p a1;2V�
udVcsfPðmBcc

−mBc
Þf1ðq2Þ;

Bfac ¼ −
GFffiffiffi
2

p a1;2V�
udVcsfPðmBcc

þmBc
Þg1ðq2Þ; ð2:5Þ

where f1 and g1 are the form factors defined by

hBcðp2Þjc̄γμð1 − γ5ÞujBccðp1Þi
¼ ū2½f1ðq2Þγμ − g1ðq2Þγμγ5 þ � � ��u1: ð2:6Þ

For nonfactorizable contributions we follow Ref. [9] to
evaluate them using current algebra and the pole model.
The expressions are

AnfðΞþþ
cc → Ξþ

c π
þÞ ¼ 1

fπ
ð−aΞþ

c Ξþ
cc
Þ;

AnfðΞþþ
cc → Ξ0þ

c πþÞ ¼ 1

fπ
ð−aΞ0þ

c Ξþ
cc
Þ;

BnfðΞþþ
cc → Ξþ

c π
þÞ ¼ 1

fπ

�
aΞþ

c Ξþ
cc

mΞþþ
cc

þmΞþ
cc

mΞþ
c
−mΞþ

cc

gAðπ
þÞ

Ξþ
ccΞþþ

cc

�
;

BnfðΞþþ
cc → Ξ0þ

c πþÞ ¼ 1

fπ

�
aΞ0þ

c Ξþ
cc

mΞþþ
cc

þmΞþ
cc

mΞ0þ
c
−mΞþ

cc

gAðπ
þÞ

Ξþ
ccΞþþ

cc

�
;

ð2:7Þ

where aBfBi
≡ hBfjHPC

eff jBii are baryonic matrix elements

with HPC
eff being the parity-conserving part of the effective

Hamiltonian and gAðPÞB0B are axial-vector form factors. The
matrix element can be recast to the form

aBfBi
¼ GF

2
ffiffiffi
2

p V�
udVcsc−hBfjOPC

− jBii; ð2:8Þ

where c� ¼ c1 � c2 and O� ¼ ðs̄cÞðūdÞ � ðs̄dÞðūcÞ.
In the NRQM, the nonperturbative parameters f1, g1,

gAðPÞB0B , and hBfjO−jBii can be expressed in terms of the
momentum integrals of baryon wave functions X, Y, and Z
given in Eq. (B11) (see Appendix B for details)

f1 ¼ hBf↑jb†ubcjBi↑iX;
g1 ¼ hBf↑jb†ubcσzjBi↑iX;

gAðPÞB0B ¼ hBf↑jb†dbuσzjBi↑iY;
hBfjðq̄1q2Þðq̄3q4ÞjBii ¼ hBf↑jðb†q1bq2Þ1ðb†q3bq4Þ2

× ð1 − σ1 · σ2ÞjBi↑iZ; ð2:9Þ

where the subscripts 1 and 2 appearing in the last line
indicate that the quark operator acts only on the first and
second quarks, respectively, in the baryon wave function.
The coefficients hBf↑j � � � jBi↑i depend on the spin-flavor
functions of baryons and they are displayed in Table I. The
momentum integrals can be expressed in terms of the
harmonic oscillator parameters αρ and αλ for ρ- and λ-mode
excitation, respectively. We shall use αρ1, αλ1 for Ξþþ

cc , αρ2,
αλ2 for both Ξþ

c and Ξ0þ
c , and αρ3, αλ3 for Ξþ

cc. Explicitly (see
Appendix B),

X ¼
�
16ðms þmuÞ2αλ1αλ2αρ1αρ2

D1 þD2

�
3=2

;

Y ¼ 8

�
αλ1αλ3αρ1αρ3

ðα2λ1 þ α2λ3Þðα2ρ1 þ α2ρ3Þ
�

3=2
;

Z ¼ 128
ffiffiffi
2

p
π3=2

�
αλ2αλ3αρ2αρ3

4α2λ2 þ α2λ3 þ 4α2ρ3

�
3=2

; ð2:10Þ

TABLE I. Nonperturbative parameters relevant for Ξþþ
cc →

Ξð0Þþ
c πþ decays in the NRQM.

Ξþþ
cc → Ξþ

c π
þ Ξþþ

cc → Ξ0þ
c πþ

f1
ffiffi
6

p
2
X

ffiffi
2

p
2
X

g1 1ffiffi
6

p X 5
ffiffi
2

p
6
X

gAðπ
þÞ

Ξþ
ccΞþþ

cc
− 1

3
Y − 1

3
Y

hBfjO−jBii 4
ffiffiffi
6

p
Z 0
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where

D1 ¼ ðms þmuÞ2½4α2ρ1α2ρ2 þ α2λ1ðα2ρ1 þ 4α2ρ2Þ�;
D2 ¼ α2λ2½ð2ms þmuÞ2α2λ1 þ 4ðm2

uα
2
ρ1 þ ½ms þmu�2α2ρ2Þ�;

ð2:11Þ

and

αλ1 ¼
�

16mu

3ð2mc þmuÞ
�1

4

αρ1; αλ3 ¼
�

16md

3ð2mc þmdÞ
�1

4

αρ3;

αλ2 ¼
�

4mcðms þmuÞ2
3msmuðms þmu þmcÞ

�1
4

αρ2: ð2:12Þ

Thus only αρ1, αρ2, and αρ3 are independent.

III. NUMERICAL RESULTS

In the NRQM we shall take the parameters as follows:
ms ¼ 0.45 GeV, mu ¼ md ¼ 0.33 GeV for light quark
masses [20] and mc ¼ 1.6 GeV for the charm quark mass.
The parameter αρ1 is a harmonic oscillator parameter in the
spatial wave function of the ρ-mode excitation between the
two charm quarks. It has been taken to be αρ1 ¼ 0.47 GeV
as in the charmonium system [21].3 The parameter αρ2 was
determined to be 0.25 GeV in Ref. [22]. Notice that for Λþ

c ,
αρ ranges from 0.26 to 0.32 GeV [20,23,24]. For αρ3, we
shall take αρ3 ¼ αρ1 as it should be the same as αρ1 in the
isospin limit.

Form factors f1 and g1, the axial-vector form factor gAðπÞB0B ,
and baryonic matrix elements hBfjO−jBii are calculated in
the NRQMusingEq. (2.9) and Table I. The numerical results
are exhibited in Table II with several specified harmonic
oscillator parameters ðαρ1; αρ2Þ to be discussed below. We
also show the bag model results obtained in Ref. [9] for
comparison. Notice that the matrix element for Ξþþ

cc → Ξ0þ
c

transition receives contributions only from the small com-
ponent of the quark wave function in the bag model and
hence it vanishes in the NRQM. In the bag model the matrix
element for Ξþþ

cc → Ξ0þ
c transition is nonzero, but it is quite

suppressed relative to the matrix element aΞþ
c Ξþþ

cc
.

We plot in Fig. 2 the allowed regions for the harmonic
oscillator parameters αρ1 and αρ2 constrained by the ratio of
branching fractions R [see Eq. (1.1)] and the absolute
branching fraction of Ξþþ

cc → Ξþ
c π

þ inferred from Eq. (1.5).
It is clear that the allowed range of 0.505–0.545 GeV for
αρ1 is compatible with the value of 0.47 GeV inferred from
the charmonium system. However, the preferred range of
αρ2, (0.145–0.195) GeV, is somewhat smaller than the naive

TABLE II. Form factors f1, g1, the axial-vector form factor gAðπÞB0B and baryonic matrix elements hBfjO−jBii calculated in the NRQM
with the specified harmonic oscillator parameters ðαρ1; αρ2Þ in units of GeV. The results of Ref. [9] obtained from the bag model are also
shown here for comparison.

ðαρ1; αρ2Þ f1ðm2
PÞ g1ðm2

PÞ gAðπÞB0B hBfjO−jBii
Ξþþ
cc → Ξþ

c π
þ

Case 1 (0.50, 0.21) 0.709 0.236 −0.333 0.0310
Case 2 (0.51, 0.19) 0.574 0.191 −0.333 0.0247
Case 3 (0.53, 0.17) 0.425 0.141 −0.333 0.0191
Cheng et al. [9] 0.577 0.222 −0.217 0.0214

Ξþþ
cc → Ξ0þ

c πþ
Case 1 (0.50, 0.21) 0.397 0.662 −0.333 0
Case 2 (0.51, 0.19) 0.323 0.538 −0.333 0
Case 3 (0.53, 0.17) 0.240 0.400 −0.333 0
Cheng et al. [9] 0.386 0.703 −0.217 8.4 × 10−5

FIG. 2. Allowed regions for the harmonic oscillator parameters
αρ1 and αρ2 constrained by the ratio R and the absolute branching
fraction of Ξþþ

cc → Ξþ
c π

þ inferred from Eq. (1.5).

3It should be stressed that a set of the Jacobi coordinate
defined in Eq. (A16) has been adopted in Ref. [21] so that the
harmonic oscillator parameters α̃ρ and α̃λ respect the relation
α̃λ ¼ ½3mq=ð2mQ þmqÞ�1=4α̃ρ. The tilde and untilde harmonic
oscillator parameters are related through Eq. (A18). We have
translated the result of α̃ρ1 ¼ 0.66 GeV in Ref. [21] into
αρ1 ¼ 0.47 GeV.
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expectation of 0.25 GeV. Accordingly, in Table II we
choose three sets of harmonic oscillator parameters denoted
by cases 1, 2, and 3 with ðαρ1; αρ2Þ being in the vicinity of
0.51 and 0.19 GeV, respectively.
With the input for various parameters from Table II we

are ready to compute the factorizable and nonfactorizable
amplitudes for both S and P waves using Eqs. (2.5) and
(2.7). The numerical results of individual S- and P-wave

amplitudes, branching fractions of Ξþþ
cc → Ξð0Þþ

c πþ decays
and their decay asymmetries are shown in Table III for three
different sets of the harmonic oscillator parameters αρ1 and

αρ2 given in Table II. Evidently, the interference between
the factorizable diagram T and the nonfactorizable C0 is
destructive in Ξþþ

cc → Ξþ
c π

þ. On the contrary, the decay
Ξþþ
cc → Ξ0þ

c πþ does not receive nonfactorizable contribu-
tions. This is consistent with the so-called Pati-Woo
theorem [18], which results from the facts that the ðV −
AÞ × ðV − AÞ structure of weak interactions is invariant
under the Fierz transformation and that the baryon wave
function is color antisymmetric. As a consequence of this
theorem, the quark pair in a baryon produced by weak
interactions be antisymmetric in flavor. Since the sextet Ξ0

c

TABLE III. Comparison of the predicted S- and P-wave amplitudes (in units of 10−2GF GeV2) of Ξþþ
cc → Ξð0Þþ

c πþ decays, their
branching fractions (in units of 10−2) and the decay asymmetry parameter α in various approaches with only the central values being
cited. For the predictions of Sharma and Dhir [12], we quote only the flavor-independent pole amplitudes for both NRQM and heavy
quark effective theory (HQET). Two bag models are considered in the work of Liu and Geng [19]: the static bag (SB) and homogeneous
bag (HB) models.

Afac Anf Atot Bfac Bnf Btot B α R

Ξþþ
cc → Ξþ

c π
þ

This work
Case 1 9.1 −15.6 −6.5 −16.0 27.4 11.4 3.01 −0.78
Case 2 7.4 −12.4 −5.0 −13.0 21.8 8.8 1.83 −0.78
Case 3 5.5 −9.6 −4.1 −9.6 16.8 7.2 1.20 −0.78

Cheng et al. [9] 7.4 −10.8 −3.4 −15.1 18.9 3.8 0.69 −0.41
Gutsche et al. [8] −8.1 11.5 3.4 13.0 −18.5 −5.6 0.71 −0.57
Sharma and Dhir [12]

NRQM 7.38 0 7.38 −16.77 −24.95 −41.72 6.64 −0.99
HQET 9.52 0 9.52 −19.45 −24.95 −44.40 9.19 −0.99

Shi et al. [10]
LCSRþ HQET (light cone sum rules) 9.52 −16.67 −7.18 −19.45 −20.47 −39.92 6.22 þ0.99

Ke and Li [13]
θ ¼ 16.27° 2.14 −0.09
θ ¼ 85.54° 2.14 −0.95

Liu and Geng [19]a

SB (θ ¼ −24.7°) 4.83 −9.99 −5.16 5.16 13.6 18.8 2.24 −0.93
HB (θ ¼ 24.7°) 7.08 −20.3 −13.2 −22.1 33.0 10.9 10.3 −0.30

Ξþþ
cc → Ξ0þ

c πþ
This work

Case 1 4.6 0 4.6 −45.6 0 −45.6 4.32 −0.89 1.44
Case 2 3.7 0 3.7 −37.1 0 −31.0 2.86 −0.89 1.56
Case 3 2.8 0 2.8 −27.6 0 −27.6 2.16 −0.89 1.32

Cheng et al. [9] 4.5 −0.04 4.5 −48.5 −0.06 −48.4 4.65 −0.84 6.74
Gutsche et al. [8] −4.3 −0.1 −4.4 37.6 1.4 39.0 3.39 −0.93 4.33
Sharma and Dhir [12]

NRQM 4.29 0 4.29 −53.65 0 −53.65 5.39 −0.78 0.81
HQET 5.10 0 5.10 −62.37 0 −62.37 7.34 −0.79 0.80

Shi et al. [10]
LCSRþ HQET 5.10 −0.83 4.27 −62.37 −8.86 −71.23 8.85 −0.64 1.42

Ke and Li [13]
θ ¼ 16.27° 3.02 −0.99 1.41
θ ¼ 85.54° 3.02 −0.51 1.41

Liu and Geng [19]
SB (θ ¼ −24.7°) 7.38 −4.82 2.56 −51.0 7.26 −43.7 3.25 −0.63 1.45
HB (θ ¼ 24.7°) 0.61 9.65 10.3 −28.1 −17.4 −45.5 8.91 −0.96 0.87

LHCb [3] 1.41� 0.20
aWe wish to thank C.W. Liu and C. Q. Geng for providing us the numerical values of the S- and P-wave amplitudes in their work.
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is symmetric in light quark flavor, it cannot contribute toC0.
Because the form factor g1 in the Ξþþ

cc → Ξ0þ
c πþ mode is

larger than that in Ξþ
c π

þ (see Table II), the P-wave
amplitude of the former is much higher than that of the
latter. Consequently, the branching fraction of the Ξ0þ

c πþ
mode is larger than the Ξþ

c π
þ one. Taking case 2 as an

example, we have the results

BðΞþþ
cc → Ξþ

c π
þÞ ¼ 1.83%; αðΞþ

c π
þÞ ¼ −0.78;

BðΞþþ
cc → Ξ0þ

c πþÞ ¼ 2.86%; αðΞ0þ
c πþÞ ¼ −0.89;

ð3:1Þ

and hence R ¼ 1.56.
In Table III we also compare our results with other

approaches. The nonfactorizable effects have been evalu-
ated in two entirely different approaches: current algebra
and the pole model in Ref. [9] and the covariant confined
quark model in Ref. [8]. It is interesting to notice that
both approaches yielded a large destructive interference in
Ξþþ
cc → Ξþ

c π
þ and obtained similar branching fractions of

order 0.70%. Although this is consistent with the exper-
imental value of Eq. (1.5) to the lower end, the predicted
ratios 6.74 in Ref. [9] and 4.33 in Ref. [8] are too large
compared to the LHCb value of 1.41� 0.20 [3]. In the
work of Sharma and Dhir [12], a large constructive
interference in the P-wave amplitude was found, while
nonfactorizable corrections to the S-wave one were not
considered. From Table III we see that the P-wave
amplitude in this model is much larger than other works.
BðΞþþ

cc → Ξþ
c π

þÞ of order ð7–9Þ% [ð13–16Þ%] for flavor-
independent (flavor-dependent) pole amplitudes was
obtained in this work, which is obviously too large
compared to Eq. (1.5).
In the recent work of Shi et al. [10], nonfactorizable

internal W-emission contributions to Ξþþ
cc → Ξð0Þþ

c πþ
decays were evaluated using light-cone sum rules, see
Anf and Bnf terms shown in Table III. Factorizable con-
tributions were then taken from the work of Sharma and
Dhir [12] under “HQET.” The sizable nonfactorizable
contribution to the P wave of Ξþþ

cc → Ξ0þ
c πþ seems to

be an issue in view of the Pati-Woo theorem. From Table III
we see that the S-wave amplitude denoted by Atot for
Ξþþ
cc → Ξþ

c π
þ is modified from 9.52 to −7.18 owing to the

presence of a destructive nonfactorizable contribution.4

Consequently, S- and P-wave amplitudes are of the same
sign in this model and yield a positive decay asymmetry
α ¼ 0.99, which is in sharp contrast to the other works
where the decay asymmetry is always predicted to be
negative. Hence, even a sign measurement of αðΞþ

c π
þÞ will

allow to discriminate the model of Shi et al. from others.

As discussed in the Introduction, the external
W-emission diagram T alone usually leads to R < 1.
It was first pointed out by Ke and Li [13] that the
observation of R > 1 can be accommodated by considering
the Ξþ

c − Ξ0þ
c mixing. Two mixing angles were found,

θ ¼ 16.27° or 85.54° (see Table III). However, when the
nonfactorizable effect due to internal W emission is turned
on, the mixing angle will be affected. As noticed in passing,
when the Ξþ

c − Ξ0þ
c mixing effect is applied to the static bag

model calculation performed in Ref. [9], Liu ad Geng [19]
have shown that at the mixing angle θ ¼ −0.137π, the ratio
R is well accommodated and the branching fraction of
Ξþþ
cc → Ξþ

c π
þ is consistent with the constraint derived

from Eq. (1.5).
However, there is one issue with the static bag model,

namely, a static bag is not invariant under space translation
and it is impossible for a static bag to be at rest. The
unwanted c.m. motion of the bag model is an issue and it
should be removed for a consistent treatment [25]. For
example, the bag model calculation for the heavy-flavor-
conserving decays are improved by removing c.m. motion
corrections. The predictions for Ξ0

c → Λþ
c π

− and Ξ−
b →

Λ0
bπ

− are both in good agreement with experiment [26]. It is
clear from Table III that nonfactorizable S- and P-wave
amplitudes of Ξþþ

cc → Ξ0þ
c πþ are no longer subject to the

constraint from the Pati-Woo theorem because of the con-
tribution from Ξþþ

cc → ðΞ3̄
cÞþπþ. Unfortunately, the same

bag model without c.m. motion will lead to an even smaller
ratio,R ¼ 0.19 [19]. When the Ξþ

c − Ξ0þ
c mixing is included,

R is increased to 0.90 at θ ¼ 24.7°, but the branching
fraction of Ξþþ

cc → Ξ0þ
c πþ becomes 10.3%, which is too

large compared to the constraint inferred from Eq. (1.5).

IV. CONCLUSIONS

In this work we have studied the doubly charmed baryon

decays Ξþþ
cc → Ξð0Þþ

c πþ within the framework of the
NRQM. Factorizable amplitudes are expressed in terms
of transition form factors, while nonfactorizable amplitudes
arising form the inner W emission are evaluated using
current algebra and the pole model and expressed in terms
of baryonic matrix elements and axial-vector form factors.
We draw some conclusions from our analysis:
(1) Nonperturbative parameters are calculated in the

NRQM. They can be expressed in terms of the
momentum integrals of baryon wave functions,
which are in turns expressed in terms of the
harmonic oscillator parameters αρ and αλ for ρ-
and λ-mode excitation, respectively.

(2) Denoting the harmonic oscillator parameters αρ1, αλ1
for Ξþþ

cc and Ξþ
cc, αρ2, αλ2 for Ξþ

c and Ξ0þ
c , we found

that the measured ratio R of the branching fraction
of Ξþþ

cc → Ξ0þ
c πþ relative to Ξþþ

cc → Ξþ
c π

þ can be
accommodated in the NRQMwith αρ1 and αρ2 being
in the vicinity of 0.51 and 0.19 GeV, respectively.

4Recall that the relative sign convention between S and P
waves is defined in Eq. (2.1).
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(3) We have compared our results with other ap-
proaches. While the ratio R has been accommodated
in some other models, the predicted branching
fraction of Ξþþ

cc → Ξþ
c π

þ is often too large compared
to that inferred from the LHCb measurement of its
rate relative to Ξþþ

cc → Λþ
c K−πþπþ.

(4) Decay asymmetries are predicted to be −0.78 and
−0.89 for Ξþ

c π
þ and Ξ0þ

c πþ modes, respectively,
which can be tested in the near future.

(5) Although the static bag model fails to account for
the ratio R, it is interesting to notice that, when the
Ξþ
c − Ξ0þ

c mixing effect is taken into account in the
bag model calculations, data can be nicely accom-
modated with the mixing angle θ ¼ −24.7°.
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APPENDIX A: CONVENTION AND EXPRESSION
OF THE WAVE FUNCTION

The quark and antiquark fields are expanded in the
convention adopted in [24]

qðxÞ ¼
Z

dp

ð2πÞ32
�
m
p0

�1
2X

s

½usðpÞbsðpÞeip·x

þ vsðpÞd†sðpÞe−ip·x�;

q̄ðxÞ ¼
Z

dp

ð2πÞ32
�
m
p0

�1
2
X
s

½ūsðpÞb†sðpÞe−ip·x

þ v̄sðpÞdsðpÞeip·x�; ðA1Þ

associated with anticommutation relations between the
creation and annihilation operators

fbsðpÞ; b†s0 ðp0Þg ¼ fdsðpÞ; d†s0 ðp0Þg ¼ δss0δ
3ðp − p0Þ; ðA2Þ

and the normalization relations of spinor

u†sðpÞus0 ðpÞ ¼ v†sðpÞvs0 ðpÞ ¼
�
p0

m

�
δss0 : ðA3Þ

Then the baryon state in momentum space can be expressed
in terms of mock states,

jBðPcÞJ;Mi ¼
X

Sz;ML;ci

hL;ML; S; SzjJ;Mi
Z

dp1dp2dp3δ3ðp1 þ p2 þ p3 − PcÞΨN;L;ML
ðp1; p2; p3Þ

× χS;Szs1;s2;s3

ϵc1c2c3ffiffiffi
6

p ϕi1;i2;i3b
†
c1;i1;s1;p1

b†c2;i2;s2;p2b
†
c3;i3;s3;p3

j0i; ðA4Þ

which is normalized by

hBðP0
cÞJ;MjBðPcÞJ;Mi ¼ δ3ðP0

c − PcÞ: ðA5Þ

In particular, with the quantum numbers defined as

N ¼ 2ðnρ þ nλÞ þ lρ þ lλ; L ¼ lρ þ lλ; ðA6Þ

the baryon spatial wave function in Eq. (A4) is

ΨLMLnρlρnλlλðP; pρ; pλÞ ¼ δ3ðP − PcÞ
X
m

hLMLjlρm; lλML −miψnρlρmðpρÞψnλlλðML−mÞðpλÞ; ðA7Þ

associated with quark wave function in momentum space

ψnLmðpÞ ¼ ðiÞlð−1Þn
�

2n!
ðnþ Lþ 1

2
Þ!
�1

2 1

αLþ3
2

e−
p2

2α2L
Lþ1

2
n

�
p2

α2

�
YLmðpÞ: ðA8Þ

To describe baryon state, the Jacobi coordinate has been introduced in NRQM. In general, the Jacobi coordinates xj for the
N-body system are defined as
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xj ¼
1

m0j

Xj
k¼1

mkrk − rjþ1; fj ¼ 1; 2…N − 1g;

xk ¼
1

m0N

XN
k¼1

mkrk; ðA9Þ

where m0j ¼
Pj

k¼1mk. For the baryon system we have
j ¼ 2 and the coordinates can be chosen as

Rc ¼
m1r1 þm2r2 þm3r3

m1 þm2 þm3

;

ρ ¼ r1 − r2;

λ ¼ m1r1 þm2r2
m1 þm2

− r3: ðA10Þ

By introducing masses of ρ- and λ-mode excitation mρ ¼
m1m2

m1þm2
and mλ ¼ ðm1þm2Þm3

ðm1þm2þm3Þ, together with baryon mass

M ¼ m1 þm2 þm3, the corresponding momentums are

p ¼ M _Rc ¼ p1 þ p2 þ p3;

pρ ¼ mρ _ρ ¼ m2

m1 þm2

p1 −
m1

m1 þm2

p2;

pλ ¼ mλ
_λ ¼ m3ðp1 þ p2Þ − ðm1 þm2Þp3

ðm1 þm2 þm3Þ
: ðA11Þ

Then the Hamiltonian to describe a particle interacting in
the harmonic oscillator potential, given by

H ¼
X3
i¼1

p2
i

2mi
þ 1

2
K
X
i<j

ðri − rjÞ2; ðA12Þ

with K being a spring constant, becomes the form in terms
of Jacobi coordinate

H ¼ p2

2M
þ p2

ρ

2mρ
þ p2

λ

2mλ
þ 1

2
mρω

2
ρρ2 þ

1

2
mλω

2
λλ

2: ðA13Þ

The harmonic oscillator strengths of the two modes can be
further defined as

α2ρ ¼ mρωρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Km1m2

2ðm1 þm2Þ

s
;

α2λ ¼ mλωλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Km3ðm1 þm2Þ
m1 þm2 þm3

s
ðA14Þ

for the purpose of convenience. Hence a useful connection
between the two strengths,

αλ ¼
�

4m3ðm1 þm2Þ2
3m1m2ðm1 þm2 þm3Þ

�1
4

αρ; ðA15Þ

can be found evidently. Notice we have an unity Jacobi
determinant between the Jacobi coordinate and the ordinary
one in current convention.
In literature, there is another set of conventions for the

Jacobi coordinate giving

R̃c ¼
m1r1 þm2r2 þm3r3

m1 þm2 þm3

; p̃ ¼ M _̃Rc ¼ p1 þ p2 þ p3;

ρ̃ ¼ 1ffiffiffi
2

p ðr1 − r2Þ; p̃ρ ¼ m̃ρ
_̃ρ ¼

ffiffiffi
2

p �
m2

m1 þm2

p1 −
m1

m1 þm2

p2

�
;

λ̃ ¼
ffiffiffi
2

3

r �
m1r1 þm2r2
m1 þm2

− r3

�
; p̃λ ¼ m̃λ

_̃λ ¼
ffiffiffi
3

2

r �
m3ðp1 þ p2Þ − ðm1 þm2Þp3

ðm1 þm2 þm3Þ
�
; ðA16Þ

with ρ- and λ-type masses m̃ρ ¼ 2m1m2

m1þm2
and m̃λ ¼

3ðm1þm2Þm3

2ðm1þm2þm3Þ. Then one can derive the harmonic oscillator

strengths

α̃2ρ ¼ m̃ρω̃ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Km1m2

ðm1 þm2Þ

s
;

α̃2λ ¼ m̃λω̃λ ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Km3ðm1 þm2Þ
2ðm1 þm2 þm3Þ

s
: ðA17Þ

in the tilde convention. The relations of α parameters
between the two conventions,

αρ ¼
1ffiffiffi
2

p α̃ρ; αλ ¼
ffiffiffi
2

3

r
α̃λ; ðA18Þ

is helpful in the analysis.
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APPENDIX B: MATRIX ELEMENTS OF
QUARK OPERATORS

In the pole model calculation of doubly charmed baryon
decays, nonperturbative quantities such as form factors and
four-quark operator matrix elements play an essential role.
Here the derivations of these nonperturbative parameters in
the NRQM are shown in detail in this section.

1. Form factors

The form factors are defined to parametrize the
baryon matrix element of the bilinear quark operator

q01γμð1 − γ5Þq02 have been given in Eq. (2.6). For a further
calculation of form factors, we follow the treatment in
Ref. [27] and obtain

f1ðq2Þ ¼ hBfðPfÞjq̄01γ0q02jBiðPiÞi;
g1ðq2Þ ¼ hBfðPfÞjq̄01γ3γ5q02jBiðPiÞi; ðB1Þ

in which the Breit frame is adopted. Now by employing
the baryon wave functions in NRQM given by Eq. (A4),
we have

f1ðq2Þ ¼ ð−1Þ ×
Z

dp1dp2dp3dp4dp5dp6dp01dp
0
2δ

3ðp1 þ p2 þ p3 − PiÞδ3ðp4 þ p5 þ p6 − PfÞ

×Ψ�
fðp4; p5; p6ÞΨiðp1; p2; p3Þδ3ðp01 − p02ÞhBf↑jb†q0

1
bq0

2
jBi↑ih0jb6b5b4b0†1b02b†1b†2b†3j0i;

¼
Z

dp1dp2dp3dp4dp5dp6dp01dp
0
2δ

3ðp1 þ p2 þ p3 − PiÞδ3ðp4 þ p5 þ p6 − PfÞ

× δ3ðp1 − p02Þδ3ðp4 − p01Þδ3ðp2 − p6Þδ3ðp3 − p5Þδ3ðp01 − p02Þ
×Ψ�

fðp4; p5; p6ÞΨiðp1; p2; p3ÞhBf↑jb†q0
1
bq0

2
jBi↑i; ðB2Þ

where the baryon wave function defined in Eq. (A7) are
denoted as Ψi;f concisely. Some details are presented in
above two equations. In the first equation, the two matrix
elements are calculated in spin-flavor space and momentum
space, respectively, while the factor −1 results from a
product of two color wave functions. Four-momentum
δ functions have been produced after considering the

anticommutation relations, corresponding to explicit initial
and final state baryons, in the second equation. A more
compact form of f1 hence can be expressed as

f1ðq2Þ ¼ hBf↑jb†q0
1
bq0

2
jBi↑iX; ðB3Þ

with

X ¼
Z

dp1dp2dp3dp4dp5dp6dp01dp
0
2δ

3ðp1 þ p2 þ p3 − PiÞδ3ðp4 þ p5 þ p6 − PfÞ

× δ3ðp1 − p02Þδ3ðp4 − p01Þδ3ðp2 − p6Þδ3ðp3 − p5Þδ3ðp01 − p02ÞΨ�
fðp4; p5; p6ÞΨiðp1; p2; p3Þ: ðB4Þ

To be specific, the convention for matrix element in Eq. (B3) in spin-flavor space keeps the same as our previous work [9].
A similar derivation leads to

g1ðq2Þ ¼ hBf↑jb†q0
1
bq0

2
σzjBi↑iX; ðB5Þ

in which a common spatial wave function integral X has been shared with the form factor f1ðq2Þ. As for the axial-vector
form factor gAðPÞB0B , it differs g1 from its spatial wave function integral Y, giving

gAðPÞB0B ðq2Þ ¼ hBi↑jb†q0
1
bq0

2
σzjBf↑iY; ðB6Þ

with

Y ¼
Z

dp1dp2dp3dp4dp5dp6dp01dp
0
2δ

3ðp1 þ p2 þ p3 − PiÞδ3ðp4 þ p5 þ p6 − PfÞ

× δ3ðp3 − p02Þδ3ðp6 − p01Þδ3ðp1 − p4Þδ3ðp2 − p5Þδ3ðp01 − p02ÞΨ�
fðp4; p5; p6ÞΨiðp1; p2; p3Þ: ðB7Þ
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Though the two integrals X and Y formally share the same structure, their difference exists in the wave functions of two
baryons and hence brings a further difference in δ functions. In fact, f1 and g1 depict the transition between the initial and

final state baryons while gAðPÞB0B is devoted to the one between initial and intermediate (or intermediate and final) baryons.
Therefore such a difference between X and Y is a consequence of the pole model.

2. Matrix elements of four-quark operators

We continue working in the NRQM to calculate the matrix element of four-quark operator ðq01q02Þðq03q04Þ. With the help
of baryon wave function Eq. (A4), it can be expanded as

hBfðPfÞjðq01q02Þðq03q04ÞjBiðPiÞi ¼
Z

dp1dp2dp3dp4dp5dp6dp01dp
0
2dp

0
3dp

0
4δ

3ðp1 þ p2 þ p3 − PiÞδ3ðp4 þ p5 þ p6 − PfÞ

×Ψ�
fðp4; p5; p6ÞΨiðp1; p2; p3Þδ3ðp01 þ p03 − p02 − p04Þ

× hBf↑jðb†q0
1
bq0

2
Þ1ðb†q0

3
bq0

4
Þ2ð1 − σ1 · σ2ÞjBi↑ih0jb6b5b4b0†1b02b0†3b04b†1b†2b†3j0i;

¼
Z

dp1dp2dp3dp4dp5dp6dp01dp
0
2dp

0
3dp

0
4δ

3ðp1 þ p2 þ p3 − PiÞδ3ðp4 þ p5 þ p6 − PfÞ

×Ψ�
fðp4; p5; p6ÞΨiðp1; p2; p3Þδ3ðp01 þ p03 − p02 − p04Þδ3ðp02 − p1Þδ3ðp04 − p3Þδ3ðp4 − p01Þ

× δ3ðp5 − p03Þδ3ðp6 − p2ÞhBf↑jðb†q0
1
bq0

2
Þ1ðb†q0

3
bq0

4
Þ2ð1 − σ1 · σ2ÞjBi↑i: ðB8Þ

Two equations are presented with the similar treatment to the form factor in Eq. (B3), then a compact form can be
achieved as

hBfðPfÞjðq01q02Þðq03q04ÞjBiðPiÞi ¼ hBf↑jðb†q0
1
bq0

2
Þ1ðb†q0

3
bq0

4
Þ2ð1 − σ1 · σ2ÞjBi↑iZ ðB9Þ

with

Z ¼
Z

dp1dp2dp3dp4dp5dp6dp01dp
0
2dp

0
3dp

0
4δ

3ðp1 þ p2 þ p3 − PiÞδ3ðp4 þ p5 þ p6 − PfÞδ3ðp02 − p1Þδ3ðp04 − p3Þ

× δ3ðp4 − p01Þδ3ðp5 − p03Þδ3ðp6 − p2Þδ3ðp01 þ p03 − p02 − p04ÞΨ�
fðp4; p5; p6ÞΨiðp1; p2; p3Þ: ðB10Þ

Here the spatial integral Z is taken between initial (final) and intermediate baryons with four quark fields involved, which
brings in one more δ function compared with the case in integral Y.

3. Momentum integrals of baryon wave functions

After integrating all the δ functions in Eqs. (B3), (B7), and (B8), keeping the momentum conservation, we have concise
expressions of X, Y, Z in terms of momentum integrals of baryon wave functions,

X ¼ δ3ðPi − PfÞ
Z

dp2dp3Ψ�
fððPi − p2 − p3Þ; p3; p2ÞΨiððPi − p2 − p3Þ; p2; p3Þ;

Y ¼ δ3ðPi − PfÞ
Z

dp2dp3Ψ�
fððPi − p2 − p3Þ; p2; p3ÞΨiððPi − p2 − p3Þ; p2; p3Þ;

Z ¼ δ3ðPi − PfÞ
Z

dp1dp2dp4Ψ�
fðp4; ðPi − p2 − p4Þ; p2ÞΨiðp1; p2; ðPi − p1 − p2ÞÞ: ðB11Þ

The integrals X and Y are similar except the interchange of p2 and p3 in the wave functionΨf. Then the remaining task is to
evaluate them. Before proceeding to a detailed calculation, it is useful to firstly deal with the product of two wave functions
as it is the common part in all the three integrals. Taking the one in X as an example, a direct calculation leads to

Ψ�
fðp4; p5; p6ÞΨiðp1; p2; p3Þ ¼

1

π3
ðαρ1αλ1αρ2αλ2Þ−3

2e
−1
2

�
p2
ρi

α2
ρ1

þp2
λi

α2
λ1

þ
p2
ρf

α2
ρ2

þ
p2
λf

α2
λ2

�
; ðB12Þ
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which is based on the relations between two coordinates

pρi ¼
m2

m1 þm2

p1 −
m1

m1 þm2

p2; pρf ¼
m5

m4 þm5

p4 −
m4

m4 þm5

p5;

pλi ¼
m3ðp1 þ p2Þ − ðm1 þm2Þp3

ðm1 þm2 þm3Þ
; pλf ¼

m6ðp4 þ p5Þ − ðm4 þm5Þp6
ðm4 þm5 þm6Þ

: ðB13Þ

A replacement of the index 2 → 3 in Eq. (B12) gives the one in Y while 1 → 3 provides the corresponding one to Z. Taking
a static limit of initial baryon Pi ¼ 0, a further calculation for X yields

X ¼ 1

π3
ðαρ1αλ1αρ2αλ2Þ−3

2

 
4π2

aXbX − c2X
4

!
3=2

¼ dXðαρ1αλ1αρ2αλ2Þ−3
2; ðB14Þ

associated with the auxiliary parameters, giving

dX ¼ 8

�
aXbX −

c2X
4

�−3=2
; ðB15Þ

with

aX ¼ 1

α2ρ1
þ 1

α2λ2
þ m2

u

ðms þmuÞ2α2ρ2
; bX ¼ 1

α2ρ2
þ 1

α2λ1
þ 1

4α2ρ1
; cX ¼ 1

α2ρ1
þ 2mu

ðms þmuÞα2ρ2
:

Likewise, Y and Z can be derived as

Y ¼ dYðαρ1αλ1αρ3αλ3Þ−3
2; Z ¼ dZðαρ3αλ3αρ2αλ2Þ−3

2; ðB16Þ

together with

dY ¼ 8

�
aYbY −

c2Y
4

�−3=2
; dZ ¼ 8ð2πα2ρ2Þ3=2

�
aZbZ −

c2Z
4

�−3=2
;

aY ¼ 1

α2ρ1
þ 1

α2ρ3
; aZ ¼ 1

4α2ρ3
þ 1

α2λ3
;

bY ¼ 1

α2λ3
þ 1

α2λ1
þ 1

4α2ρ1
þ 1

4α2ρ3
; bZ ¼ 1

4α2ρ3
þ 1

α2λ3
þ 1

α2λ2
;

cY ¼ 1

α2ρ1
þ 1

α2ρ3
; cZ ¼ −2

�
1

4α2ρ3
−

1

α2λ3

�
: ðB17Þ

Equations (B14) and (B16) give the final expressions of the momentum integrals.
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