
Molecular states of D�D�K̄� nature

N. Ikeno ,1,* M. Bayar,2,3,† and E. Oset3,‡
1Department of Agricultural, Life and Environmental Sciences, Tottori University,

Tottori 680-8551, Japan
2Department of Physics, Kocaeli University, 41380 Izmit, Turkey

3Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC Institutos de
Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain

(Received 11 August 2022; revised 3 October 2022; accepted 13 January 2023; published 3 February 2023)

We study the interaction of two D� and a K̄� by using the fixed center approximation to the Faddeev
equations to search for bound states of the three-body system. Since the D�D� interaction is attractive and
gives a bound state, and so is the case of the D�K̄� interaction, where the JP ¼ 0þ bound state is identified
with the X0ð2900Þ, the D�D�K̄� system leads to manifestly exotic bound states with ccs open quarks. We
obtain bound states of isospin I ¼ 1=2, negative parity and total spin J ¼ 0, 1, 2. For J ¼ 0 we obtain one
state, and for J ¼ 1, 2 we obtain two states in each case. The binding energies range from 56 to 152 MeV
and the widths from 80 to 100 MeV.
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I. INTRODUCTION

While the study of general few body systems has a long
tradition, the study of few body systems made of mesons
has only a recent history. A review of such systems has
been done in Ref. [1]. The study of the meson-meson
interaction with chiral Lagrangians [2] and the realization
that this interaction, properly unitarized, led to meson-
meson bound states that could be associated to
known mesonic resonances [3–7] (see recent reviews
in Refs. [8–11]). The same formalism allowed one to
address three-body systems made with mesons, some of
which could be associated to known mesonic states [1].
With a few exceptions [12], most of the states found in

the past from the meson-meson interaction correspond to
states which are not manifestly exotic, in the sense that they
could also be formed in principle from a conventional qq̄.
Yet, the recent experimental findings of the X0ð2900Þ,
X1ð2900Þ [13,14] in the DK̄ invariant mass, and the Tcc
state [15,16] in the DDπ spectrum, revealed clear exotic
mesonic structures, since one has cs quarks in the first case
and cc quarks in the second one. These findings open the
door to the formation of few body systems with several

open quarks, having three of more quarks with flavors like
ccs, ccc, css, etc., after eliminating the qq̄ structures with
no flavor as uū, dd̄, ss̄, cc̄, etc. Since flavor is conserved in
strong interactions, these systems can be relatively stable
because they cannot decay into lighter systems with a
smaller number of mesons. In the present paper we report
on calculations for the D�D�K̄� system, which has open
ccs quarks. The reason to choose this system is because we
can establish a connection with the experimental findings
of Refs. [13–16]. Indeed, the X0ð2900Þ was soon identified
as a likely D�K̄� molecular state [17–26]. Other works
favor compact tetraquarks [27–29], yet, the relativized
quark model of Ref. [30] disfavors the compact tetraquark
structure and favors the molecular one.
Valuable information concerning the D�K̄� system

comes from the work of Ref. [12], where 10 years prior
to the observation of the X0ð2900Þ, a D�K̄� molecule had
been predicted with the same quantum numbers as the
X0ð2900Þ and a mass and width remarkably close to those
of the observed ones. Indeed, the mass predicted in [12]
for the D�K̄� system with I ¼ 0, JP ¼ 0þ was 2848 MeV
and the width between 23–59 MeV. Experimentally the
X0ð2900Þ was found with these quantum numbers, mass
M ¼ 2866� 7 MeV, and width Γ ¼ 57.2� 12.9 MeV.
A fine-tuning of the parameters to obtain the exact
experimental values is done in [22].
The other part of the interaction is for the D�D�

subsystem. Here we rely upon the recent observation of
the Tcc state [15,16]. Once again the D�D nature of the Tcc
state has been advocated from the beginning [16] and
supported by many theoretical papers [9,31–46]. A map-
ping of the D�D interaction to the D�D� system has been
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done in Ref. [47] using an extrapolation of the local hidden
gauge approach [48–51] to the charm sector, which was
already used in Ref. [12] to study the same D�D� exotic
system. A similar approach using the boson exchange
model is done in Ref. [52]. It was found in Ref. [12] that
the D�D� system was bound in I ¼ 0 and JP ¼ 1þ. In
Ref. [47], the model was refined including decay channels
and using the same cutoff to regularize the loops that was
used in Ref. [32] to describe the Tcc state.
Three-body systems of molecular nature containing two

charmed quarks (or antiquarks) and a strange quark have
been recently studied. In Table 1 of Ref. [1] one finds the
DDK molecule studied in Refs. [53–55], DD̄�K studied in
Ref. [56], and DD�K studied in Ref. [57]. More recently
the DD̄�K hexaquark state is also studied in [58] via QCD
sum rules. In these systems one has, however, ccs̄ or cc̄s̄
quarks, but not the ccs combination that we have in the
system that we study, which makes it super exotic. These
works are done using different technical approaches.
However, for the purpose of justifying the fixed center
approximation (FCA) to the Faddeev equations that we
follow, we find it interesting to mention two recent works
on the study of the DD̄K system. In Ref. [59] it is studied
using the Gaussian expansion method, minimizing the
energy of the system. The same system is studied in
Ref. [60] using the fixed center approximation (FCA)
and the results obtained are very similar. The coincidence
of two very different methods in a similar system to the one
we study gives us confidence in the FCA method that we
use in the present approach to study the molecularD�D�K̄�
system. The fact that we use input tuned to the Tcc state of
D�D nature in Ref. [32] and the X0ð2900Þ state of D�K̄�
nature in Ref. [22] gives us further confidence, not only on
the existence of the bound states that we find, but also on
the values of the masses and widths that we predict.

II. FORMALISM

Wewill use the FCA to study theD�D�K̄� system. In this
picture, there is a cluster of two bound particles and the
third one collides with the components of this cluster
without modifying its wave function. Certainly, if the third
particle is lighter than the constituents of the cluster, the
approximation is better, which suggests to consider the
D�D� system as the cluster. This latter system has been
shown to be bound in Refs. [47,61,62]. In Ref. [47] the

local hidden gauge approach extrapolated to the charm
sector has been used, and the loops are regularized with
the cutoff demanded to fit the binding of the Tcc state as a
D�D molecule in Ref. [32]. A state with isospin I ¼ 0 and
JP ¼ 1þ was found. The predicted binding should be
realistic and we take the results of Ref. [47] as input for
the D�D� cluster.
We follow the formalism of Ref. [63]. There, the

amplitude for K̄� collision with the D�D� cluster is given
by the sum of the partition functions T1, T2, where T1 sums
all diagrams in Fig. 1 where the K̄� collides first with
particle 1 of the cluster, while T2 sums all diagrams where
the K̄� collides first with particle 2 of the cluster. We have
for the total amplitude T

T ≡ T1 þ T2

and T1, T2 are coupled through

T1 ¼ t1 þ t1G0T2;

T2 ¼ t2 þ t2G0T1;

where t1 is the scattering amplitude forD�ð1ÞK̄�, and t2 the
corresponding amplitude for D�ð2ÞK̄� scattering, and G0 is
the K̄� propagator folded with the cluster wave function.
However, we should take into account the isospin and
spin of theD�ðiÞK̄� amplitudes, where i refers to anyD� of
the cluster.

A. Isospin considerations

With the isospin doublet ðDþ;−D0Þ, the I ¼ 0 D�D�
state is given by

jD�D�; I ¼ 0i ¼ −
1ffiffiffi
2

p ðD�þD�0 −D�0D�þÞ ð1Þ

and one should also bear in mind that this is accompanied
by J ¼ 1 in each of the two components, which we will
address below.
When evaluating t1 of the scattering amplitude for

D�ð1ÞK̄�, we have the following matrix element using
the notation jI3ðD�ð1ÞÞ; I3ðD�ð2ÞÞijI3ðK̄�Þi, where we
have chosen K̄� to have the I3 ¼ 1

2
component:

1ffiffiffi
2

p 1ffiffiffi
2

p
��

D�D�;
1

2
;−

1

2

���� −
�
D�D�;−

1

2
;
1

2

����
��

K̄�;
1

2

����jt1j
�����D�D�;

1

2
;−

1

2

�
−
����D�D�;−

1

2
;
1

2

������K̄�;
1

2

�
: ð2Þ

To make a connection with the D�K̄� isospin amplitudes of Refs. [12,22], we combine the third component of D�ð1Þ with
the one of K̄� to give states of D�K̄� isospin. Hence, we have with the notation jIðD�ð1ÞK̄�Þ; I3ðD�ð1ÞK̄�ÞijI3ðD�ð2ÞÞi,
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1

2

��
h1; 1j

�
−
1

2

���� − 1ffiffiffi
2

p ðh1; 0j − h0; 0jÞ
�
1

2

����
�
jt1j

�
j1; 1i

���� − 1

2

�
−

1ffiffiffi
2

p ðj10i − j00iÞ
���� 12
��	

¼ 1

2

�
tI¼1 þ 1

2
tI¼1 þ 1

2
tI¼0

�
¼ 3

4
tI¼1 þ 1

4
tI¼0; ð3Þ

where the final result stems since t1 only affects D�ð1ÞK̄�,
considering thatD�ð2Þ is a spectator and has to be the same
in the bra and the ket of the matrix element. The amplitude
t2, for D�ð2ÞK̄� scattering, is obviously equal to t1.

B. Spin considerations

We start with D�D� with J ¼ 1 and K̄� has also J ¼ 1.
Hence, we can have three total spins forD�D�K̄�, J ¼ 0, 1,
2. Let us see each one of the cases.

1. Total J = 0

With the notation jj3ðD�D�Þ; j3ðK̄�Þi, we have

jD�D�K̄�; J ¼ 0i ¼ 1ffiffiffi
3

p ðj1;−1i − j0; 0i þ j − 1; 1iÞ

and now we write the state jjðD�D�Þ ¼ 1; j3ðD�D�Þi in
terms of jj3ðD�ð1ÞÞj3ðD�ð2ÞÞi and we have

1ffiffiffi
3

p



1ffiffiffi
2

p ðj1; 0i − j0; 1iÞj − 1i − 1ffiffiffi
2

p ðj1;−1i − j − 1; 1iÞj0i þ 1ffiffiffi
2

p ðj0;−1i − j − 1; 0iÞj1i
�
:

Now we write jj3ðD�ð1ÞÞj3ðK̄�Þi in terms of jjðD�K̄�Þj3ðD�K̄�Þi, and with the notation jjðD�ð1ÞK̄�Þ;
j3ðD�ð1ÞK̄�Þijj3ðD�ð2ÞÞi, we have

FIG. 1. Diagrams involved in the FCA for the collision of the K̄� with the cluster of D�D�.

MOLECULAR STATES OF D�D�K̄� … PHYS. REV. D 107, 034006 (2023)

034006-3



1ffiffiffi
3

p 1ffiffiffi
2

p

�

1ffiffiffi
6

p j2; 0i þ 1ffiffiffi
2

p j1; 0i þ 1ffiffiffi
3

p j0; 0i
�
j0i −

�
1ffiffiffi
2

p j2;−1i þ 1ffiffiffi
2

p j1;−1i
�
j1i −

�
1ffiffiffi
2

p j2; 1i þ 1ffiffiffi
2

p j1; 1i
�
j − 1i

þ 1ffiffiffi
2

p ðj2;−1i − j1;−1iÞj1i þ 1ffiffiffi
2

p ðj2; 1i − j1; 1iÞj − 1i −
�

1ffiffiffi
6

p j2; 0i − 1ffiffiffi
2

p j1; 0i þ 1ffiffiffi
3

p j0; 0i
�
j0i

�

¼ 1ffiffiffi
3

p fj1; 0ij0i − j1;−1ij1i − j1; 1ij − 1ig

and the matrix element of t1 sandwiched between this state, considering that the D�ð2Þ state is a spectator, becomes

t1 ¼
1

3
ðtj¼1 þ tj¼1 þ tj¼1Þ ¼ tj¼1:

The result is expected since if we have jðD�ð1ÞK̄�ÞD�ð2Þiwith jðD�ð2ÞÞ ¼ 1, the spin ofD�ð1ÞK̄� must necessarily be 1 to
match total spin zero for the ðD�ð1ÞK̄�ÞD�ð2Þ system.

2. Total J = 1, J3 = 1

The result cannot depend on the third component and we choose it to be J3 ¼ 1 for simplicity. Once again, with the
jj3ðD�D�Þ; j3ðK̄�Þi representation we have the state

1ffiffiffi
2

p fj1; 0i − j0; 1ig

which in the jj3ðD�ð1ÞÞj3ðD�ð2ÞÞijj3ðK̄�Þi representation reads

1ffiffiffi
2

p

�

1ffiffiffi
2

p j1; 0i − 1ffiffiffi
2

p j0; 1i
�
j0i −

�
1ffiffiffi
2

p j1;−1i − 1ffiffiffi
2

p j − 1; 1i
�
j1i

�

and written in terms of jjðD�ð1ÞK̄�Þj3ðD�ð1ÞK̄�Þijj3ðD�ð2ÞÞi is

1

2


�
1ffiffiffi
2

p j2; 1i þ 1ffiffiffi
2

p j1; 1i
�
j0i þ

�
−

ffiffiffi
2

3

r
j2; 0i þ 1ffiffiffi

3
p j0; 0i

�
j1i − j2; 2ij − 1i þ

�
1ffiffiffi
6

p j2; 0i − 1ffiffiffi
2

p j1; 0i þ 1ffiffiffi
3

p j0; 0i
�
j1i

�

¼ 1

2


�
1ffiffiffi
2

p j2; 1i þ 1ffiffiffi
2

p j1; 1i
�
j0i − 1ffiffiffi

6
p j2; 0ij1i þ 2ffiffiffi

3
p j0; 0ij1i − j2; 2ij − 1i − 1ffiffiffi

2
p j1; 0ij1i

�
:

The t1 matrix sandwiched between this state gives the
combination

t1 ¼
1

4

�
5

3
tj¼2 þ tj¼1 þ 4

3
tj¼0

�
:

3. Total J = 2, J3 = 2

Once again the result does not depend on the third
component, which we choose to be J3 ¼ 2. In the
jj3ðD�D�Þ; j3ðK̄�Þi representation the state is

j1; 1i:

Then with the jj3ðD�ð1ÞÞj3ðD�ð2ÞÞijj3ðK̄�Þi notation
we have

�
1ffiffiffi
2

p j1; 0i − 1ffiffiffi
2

p j0; 1i
�
j1i

which in the jjðD�ð1ÞK̄�Þj3ðD�ð1ÞK̄�Þijj3ðD�ð2ÞÞi repre-
sentation reads

1ffiffiffi
2

p j2; 2ij0i − 1ffiffiffi
2

p
�

1ffiffiffi
2

p j2; 1i − 1ffiffiffi
2

p j1; 1i
�
j1i:

The t1 matrix sandwiched between this state is then

t1 ¼
3

4
tj¼2 þ 1

4
tj¼1:
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4. Combined spin and isospin amplitude

Combining the isospin and the spin decomposition of the amplitudes in Secs. II A and II B, we find the final
contributions:

t1 ¼
3

4
tI¼1;j¼1 þ 1

4
tI¼0;j¼1; for J ¼ 0

t1 ¼
1

16
f5tI¼1;j¼2 þ 3tI¼1;j¼1 þ 4tI¼1;j¼0 þ 5

3
tI¼0;j¼2 þ tI¼0;j¼1 þ 4

3
tI¼0;j¼0g; for J ¼ 1

t1 ¼
1

16
f9tI¼1;j¼2 þ 3tI¼1;j¼1 þ 3tI¼0;j¼2 þ tI¼0;j¼1g; for J ¼ 2: ð4Þ

C. Normalization of the amplitudes

By looking at the papers [64,65] and the diagram of double scattering in Fig. 1, we find for the S matrix

Sð2Þ ¼ −ið2πÞ4δ4ðpfin −pinÞ
1

V2

1ffiffiffiffiffiffiffiffiffiffi
2ωK̄�

p 1ffiffiffiffiffiffiffiffiffiffi
2ωK̄�

p 1ffiffiffiffiffiffiffiffiffiffi
2ωD�

p 1ffiffiffiffiffiffiffiffiffiffi
2ωD�

p 1ffiffiffiffiffiffiffiffiffiffi
2ωD�

p 1ffiffiffiffiffiffiffiffiffiffi
2ωD�

p t1t2

Z
d3q
ð2πÞ3Fðq⃗Þ

1

q0
2 − q⃗2 −m2

K̄� þ iϵ
; ð5Þ

where V is the volume of the normalization box, pfin and pin the final and initial momenta of the three particle system, q is
the momentum of the exchanged K̄�, ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ q⃗2i
p

and Fðq⃗Þ the form factor of the cluster. If we look at the process from
the macroscopic perspective of having ðD�ð1ÞD�ð2ÞÞCK̄�, with ðD�ð1ÞD�ð2ÞÞC meaning the D�D� cluster, the S matrix
reads

Sð2Þ ¼ −ið2πÞ4δ4ðpfin − pinÞ
1

V2

1ffiffiffiffiffiffiffiffiffiffi
2ωK̄�

p 1ffiffiffiffiffiffiffiffiffiffi
2ωK̄�

p 1ffiffiffiffiffiffiffiffiffi
2ωC

p 1ffiffiffiffiffiffiffiffiffi
2ωC

p Tð2Þ: ð6Þ

Hence,

Tð2Þ ¼ 2ωCt1t2
1

2ωD�

1

2ωD�

Z
d3q
ð2πÞ3 Fðq⃗Þ

1

q0
2 − q⃗2 −m2

K̄� þ iϵ

¼ 2ωC

2ωD�

2ωC

2ωD�

1

2ωC
t1t2

Z
d3q
ð2πÞ3 Fðq⃗Þ

1

q0
2 − q⃗2 −m2

K̄� þ iϵ
: ð7Þ

It is thus convenient to write the partition functions suited to
the macroscopic formalism as

T̃1 ¼ t̃1 þ t̃1 G̃0 T̃2; T̃2 ¼ t̃2 þ t̃2 G̃0 T̃1; ð8Þ

where approximating ωD� ¼ mD� , ωC ¼ mC

t̃1 ¼
2mC

2mD�
t1; t̃2 ¼

2mC

2mD�
t2;

and

G̃0 ¼
1

2mC

Z
d3q
ð2πÞ3 Fðq⃗Þ

1

q02 − q⃗2 −m2
K̄� þ iϵ

: ð9Þ

The wave function of the cluster enters through G̃0 via
the form factor Fðq⃗Þ. The function G̃0 corresponds to the
propagator of K� between two scatterings in Fig. 1, folded
with the wave function of the cluster.

The form factor is FðqÞ ¼ R
d3reiq⃗·r⃗jΨðr⃗Þj2, but we find

it convenient to write it in terms of the wave function
written in momentum space. For this purpose let us recall
that the unitary approach that we use to obtain the D�D�
bound states can be easily visualized as coming from the
use of a separable potential of the type

Vðq⃗; q⃗0Þ ¼ Vθðqmax − jq⃗jÞθðqmax − jq⃗0jÞ ð10Þ

from where one can easily deduce the wave function in
momentum space as [66]

Ψðp⃗Þ ¼ gR
θðqmax − jp⃗jÞ

E − ω1ðp⃗Þ − ω2ðp⃗Þ
; ð11Þ

where gR is the coupling of the state to the two components
of the state and ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p⃗2
p

. Then, using the Fourier
transform of Ψðq⃗Þ to go to Ψðr⃗Þ, one immediately finds the
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form factor Fðq⃗Þ, normalized as Fðq⃗ ¼ 0Þ ¼ 1, written in
terms of Ψðp⃗Þ as [63,64]

FðqÞ ¼ 1

N

Z
jp⃗−q⃗j<qmax

p<qmax d3p
1

mC −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ p⃗2
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ p⃗2
p

×
1

mC −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ ðp⃗− q⃗Þ2p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ ðp⃗− q⃗Þ2p ;

ð12Þ

with the normalization constant N :

N ¼
Z
p<qmax

d3p

�
1

mC −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ p⃗2
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ p⃗2
p

�
2

:

With the potential of Eq. (10) the t matrix is also
separable:

Tðq⃗; q⃗0Þ ¼ θðqmax − jq⃗jÞθðqmax − jq⃗0jÞt ð13Þ

with

t ¼ V þ VGD�D�t; ð14Þ

and GD�D� , the D�D� loop function, is given by

GD�D� ðMinvÞ ¼
Z
jqj<qmax

d3q
ð2πÞ3

ω1ðqÞ þ ω2ðqÞ
2ω1ðqÞω2ðqÞ

×
1

M2
inv − ðω1ðqÞ þ ω2ðqÞÞ2 þ iϵ

: ð15Þ

For the value of qmax we use qmax ¼ 420 MeV, which was
used in Ref. [47]. This value is the one needed to get the Tcc
state in Ref. [32]. With this representation of the wave
function, Fðq⃗Þ vanishes for jq⃗j > 2qmax.
Following Refs. [63,64] we take q0 in the rest frame of

the cluster, which in the present case is

q0 ¼ s −m2
K̄� −m2

C

2mC

with s the square of the total rest energy of the ðD�D�ÞCK̄�
system. We also need the argument of the t1 matrix of the
D�K̄� subsystem. This is evaluated taking

s0 ¼
�
pK̄� þ 1

2
PC

�
2

¼ m2
K̄� þ 1

4
m2

C þ q0mC

¼ 1

2
ðs −m2

K̄� −m2
CÞ þ

1

4
m2

C þm2
K̄�

≃
1

2
ðs −m2

K̄� −m2
CÞ þm2

D� þm2
K̄� ;

the last result corresponding to the formula used in
Refs. [63,64].
We should note that, since t1 ¼ t2, then T1 ¼ T2 and,

thus, Eq. (8) leads to

T̃1¼ t̃1þ t̃1 G̃0 T̃1; T̃1¼
1

t̃1−1− G̃0

; T̃¼ T̃1þ T̃2¼2T̃1

ð16Þ

and we shall plot jT̃j2 for real values of s, looking for the
peaks, from where we deduce the mass and width of the
states that we find.

D. Elementary amplitudes

We need theD�K̄� amplitudes for the different I, j states,
as shown in Eq. (4). They are obtained in [12,22]. The t
matrices are obtained by means of the Bethe-Salpeter
equations, and the potentials VI;j for all the cases that
we have in Eq. (4) are given in Tables XI and XII of
Ref. [12]. To these potentials we add an imaginary part to
account for the decay into DK̄ for I ¼ 0; jðD�K̄�Þ ¼ 0, 2
and intoD�K̄ for I ¼ 0; jðD�K̄�Þ ¼ 1, 2. For the decay into
D�K̄ we find [22]

i ImVðD�K̄Þ ¼ −iAj
1

8π
ðG0gmD� Þ2q5

�
1

ðωKðqÞ − p0
2Þ2 − q⃗2 −m2

π

�
2 1ffiffiffi

s
p F04ðqÞ; ð17Þ

where we have used q ¼ λ1=2ðs0;m2
D� ;m2

K̄
Þ

2
ffiffiffi
s0

p , p0
2 ¼

s0þm2
K̄�−m

2
D�

2
ffiffiffi
s0

p ,

F0ðqÞ ¼ eððωkðqÞ−p0
2
Þ2−q⃗2Þ=Λ2

, G0 ¼ 3g02
4π2f ; g

0 ¼ − GVmρffiffi
2

p
f2
, GV ≃

55 MeV, f ¼ 93 MeV. As in [22] we take Aj ¼ 3=2 for
j ¼ 1 and Aj ¼ 9=10 for j ¼ 2. The couplingG0 in Eq. (17)
is the one appearing in the anomalous Lagrangian for the
vector-vector-pseudoscalar vertex,

LVVP ¼ G0ffiffiffi
2

p ϵμναβh∂μVν∂αVβPi; ð18Þ

where V, P are the qq̄ matrices written in terms of vectors
and pseudoscalars, respectively (see Appendix A). The
expressions for G0 used above come from Ref. [67], and
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GV , f are couplings appearing in chiral Lagrangians.
The function F0ðqÞ is a form factor used in the box
diagrams from which ImV is obtained, which we take
from Ref. [68].
The decay into DK̄ is studied in [12] and a long formula

is obtained for the box diagrams containing the DK̄
intermediate state. The imaginary part alone is easier to
evaluate and we sketch its derivation in Appendix A. We
consider the imaginary part only for the I ¼ 0,D�K̄� states.

The reason is that only the I ¼ 0 states of D�K̄� are bound.
The D�K̄� interaction in I ¼ 1 is repulsive. The amplitudes
of I ¼ 1 are then small compared to those of I ¼ 0 which
develop poles in the bound region, and then, neglecting
a small imaginary part of the I ¼ 1 amplitudes has a
negligible effect on the final results concerning the three-
body bound states.
The result for I ¼ 0 of the imaginary part for decay into

DK̄ is given by

i Im VðDK̄Þ ¼ −iFjg4
9

15

1

2π

1ffiffiffiffi
s0

p q5
�

1

ðωKðqÞ − p0
2Þ2 − q⃗2 −m2

π

�
2

F04ðqÞFHQ; ð19Þ

where q¼ λ1=2ðs0;m2
D;m

2
K̄
Þ

2
ffiffiffi
s0

p , FHQ ¼ ðmD�
mK̄�

Þ2 and Fj ¼ 5 for j ¼ 0

and Fj ¼ 2 for j ¼ 2. Then the t1 matrix is obtained as

t1 ¼
1

V−1 −GD�K̄�
; ð20Þ

and to get the same results as in [22], GD�K̄� is regularized
with dimensional regularization with the same input as in
[22]. In the GD�K̄� function we also perform a convolution
to account for the width of the K̄� as done in [12,22].

III. RESULTS

In Fig. 2 we show the results for jT̃j2 as a function of the
energy of the D�D�K̄� system for J ¼ 0. We find a clear
peak around 4845 MeV, about 61 MeV below the D�D�K̄�
threshold. To understand this binding we can recall that the
D�D� state is bound by about 4–6 MeV, while the D�K̄�
state, corresponding to the X0ð2866Þ [X0ð2900Þ officially],
is bound by about 30 MeV. The interaction of K̄� with two
D� would give rise to a binding about twice as big as the
one of D�K̄�, and this accounts for the 60 MeV binding of

the D�D�K̄� state. The width considering the convolution
for the K̄� width is about 80 MeV, while without the
convolution it is about 77 MeV. We see that the consid-
eration of the K̄� width by means of a convolution of the
GD�K̄� function reduces the strength of jT̃j2 and increases a
bit the width, but barely changes the mass. As we have seen
in Eq. (4), in this case we have only jD�K̄� ¼ 1 and the
width comes from the imaginary part of tI¼0;j¼1, which
has its source in the decay to D�K̄ (leaving apart the K̄�
width effect).
In Fig. 3 we show the same picture for total spin J ¼ 1.

Interestingly, we see now two peaks, indicating two states.
In this case it is easy to trace the origin of the peaks. As we
can see in Eq. (4), for J ¼ 1 we have now contributions
from j ¼ 0, 1, 2. We can see in Table 5 of [22] that the 1þ
and 0þ states have about the same mass, 2861 and
2866 MeV respectively, but the 2þ state is more bound,
with a mass of 2775 MeV. It is then clear that the first peak
(higher energy), which we call state I, is due to tI¼0;j¼0;1

while the second peak, which we call state II, is due to
tI¼0;j¼2. The effect of the convolution due to theK� width is
small, as in the case of J ¼ 0. In Fig. 4 we see a similar
pattern for the case of total J ¼ 2. From Eq. (4), one can

FIG. 2. Modulus squared of the D�D�K̄� scattering amplitude
with total spin J ¼ 0. The dashed curve ignores the K̄� width and
the solid one accounts for it via a convolution of the GD�K̄�

function. The dotted vertical line indicates theD�D�K̄� threshold.
FIG. 3. Modulus squared of the D�D�K̄� scattering amplitude
with total spin J ¼ 1 (same meaning of the lines as Fig. 2).
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also see that now one has a j ¼ 1, 2 contribution. The first
peak (showing as a shoulder in the figure) comes from the
tI¼0;j¼1 amplitude while the second peak is due to tI¼0;j¼2.
Thus, in total we find five states which we summarize in
Table I. There we also show the main decay channel
expected, based on the source of the imaginary part of the t1
amplitudes involved in the peak. The binding energies
range from 56 to 152 MeV and the widths range from
80 to 100 MeV.
It is interesting to note that the strength of the peak of the

two states for J ¼ 1 is similar, while for J ¼ 2 the strength
of the second state is bigger than that of the first one. We
can see the reason in Eq. (4). As we mentioned, the reason
that the state II is more bound than the state I is due to the
contribution of the I ¼ 0, j ¼ 2 amplitude of D�K̄�. This
reflects the fact that the D�K̄� state of I ¼ 0, j ¼ 2 is more
bound than those of I ¼ 0; j ¼ 0, 1. In Eq. (4) we see that
the weight of tI¼0;j¼2 for J ¼ 2 is 3=16 while for J ¼ 1 it is
5=48, 1.8 times smaller. On the other hand, the weight of
tI¼0;j¼1 is the same for J ¼ 1 and J ¼ 2, and in the case of
J ¼ 1 there is also contribution of tI¼0;j¼0 which is absent
in J ¼ 2.
We address here a different point. By looking at Table I

we can see that the states I for J ¼ 0, 1, 2, have similar
energies, and so is the case for the two states II with J ¼ 1

or J ¼ 2. It would be good to determine the spin exper-
imentally, a task always difficult but addressed successfully
in recent experimental analyses. Partial wave analysis in
meson or photon nucleon experiments is performed by
different groups and spin and parity of resonances is
determined [69–71]. Concerning states in the charm sector,
LHCb, BelleII and BESIII use also different methods of
partial wave analysis to determine spin and parity of the
states [72–74]. One method that also proved efficient for
determining the spin of particles is the use of the moments
of angular distributions, where cross sections (not the
unknown amplitudes) are projected with spherical harmon-
ics and useful relationships are obtained that help in the
determination of the spin [46,75–78].
Another issue we would like to address here is the shape

of the wave function that we obtained. We do that for the
J ¼ 0 state. As we have discussed along the paper, we have
a K̄� orbiting around the cluster of D�D�. The K̄� will orbit
around one D� and sometimes around the other D�. In this
picture we can have the K̄� distribution given by

jΨðr03Þj2 ¼
Z

d3r1d3r2ðjϕðr⃗31Þj2 þ jϕðr⃗32Þj2Þjϕ0ðr⃗12Þj2

× δ3ðmD� r⃗1 þmD� r⃗2 þmK̄� r⃗3Þ; ð21Þ

where r⃗1, r⃗2, r⃗3 are the coordinates of the two D� and K̄�

respectively and we refer r⃗03 for the K̄
� with respect to the

center of mass of the three-body system. The wave
functions ϕ stand for the D�K̄� systems and ϕ0 for the
D�D� one, and the arguments are given by r⃗31 ¼ r⃗3 − r⃗1,
r⃗32 ¼ r⃗3 − r⃗2, r⃗12 ¼ r⃗1 − r⃗2. The wave functions are taken
as Eq. (11) in momentum space and by means of a Fourier
transformation the wave functions in coordinate space are
obtained (see Appendix B).
In Fig. 5 we show the distribution of the K̄� wave

function by means of r023jΨðr03Þj2 with r03 the K̄� coordinate
with respect to the center of mass of the three-body system.

FIG. 4. Modulus squared of the D�D�K̄� scattering amplitude
with total spin J ¼ 2 (same meaning of the lines as Fig. 2).

TABLE I. Calculated mass (M), binding (B), width (Γ) (in-
cluding the effects of the K̄� width) of the molecular D�D�K̄�
states obtained. The binding energy B is measured with respect to
the threshold energy 2mD� þmK�. We also show the main decay
mode expected for each one of the states.

J M [MeV] B [MeV] Γ [MeV] Main decay mode

0 (State I) 4845 61 80 D�D�K̄
1 (State I) 4850 56 94 D�DK̄, D�D�K̄
1 (State II) 4754 152 100 D�DK̄, D�D�K̄
2 (State I) 4840 66 85 D�D�K̄
2 (State II) 4755 151 100 D�DK̄, D�D�K̄

FIG. 5. The distribution of r023jΨðr03Þj2 for the K̄� in the
D�D�K̄� system at rest. Arbitrary units in the y axis [we take
gR ¼ 1 in Eq. (11)].
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The r03 distribution is plotted without normalization to show
the spatial distribution.
As we see, the r03 distribution peaks around 0.7 fm. One

can evaluate the mean square radius from there and one
obtains hr2i ≃ 1 fm which is bigger than the mean square
radius of the proton, 0.84 fm, and smaller than the one of
the deuteron, 2.1 fm, which is lightly bound and governed
by the range of the one pion exchange, while here the range
of the interaction is shorter (vector exchange) and the
molecule is much more bound.

IV. CONCLUSIONS

We have conducted a search for possible bound states of
the three-body system D�D�K̄�. For this we have relied
upon the FCA to the Faddeev equations which has proved
reliable in the study of related systems compared to the
other methods, like the variational one using the Gaussian
expansion method. For the study of this system we have
chosen as the cluster the D�D�, which appears bound in
I ¼ 0 and JP ¼ 1þ, and the K̄� collides with it repeatedly.
The FCA method has the virtue of allowing one to trace the
structures obtained to the scattering amplitudes of D�K̄�.
This latter system has bound states in j ¼ 0, 1, 2, with the
j ¼ 0, 1 states very close in energy and the j ¼ 2 state more
bound. In the D�D�K̄� system we can have total spin
J ¼ 0, 1, 2, and in each of these spins the D�K̄� amplitude
appears with different combinations of isospin and spin.
As a consequence, we obtain two peaks in the three-body
partition functions which are tied to the j ¼ 0, 1 and j ¼ 2

of D�K̄�, with the exception of J ¼ 0, where the D�K̄�
system can only be in j ¼ 1, and here we only get one peak.

In total we obtained five three-body states, one for J ¼ 0,
two for J ¼ 1 and two for J ¼ 2, and we evaluate the mass
and width of these states. The states obtained, stemming
from the cluster of D�D� with I ¼ 0 and JP ¼ 1þ, have
total isospin I ¼ 1=2, negative parity and spin J ¼ 0, 1, 2.
The widths range from 80 to 100 MeV and the bindings
range from 56 to 152 MeV. We have also shown which is
the main decay channel of each particular state to facilitate
its experimental search. We hope the present work stim-
ulates future searches for these super exotic states contain-
ing ccs quarks. As mentioned in Ref. [79], since the flavor
is conserved in the strong interactions, we can expect
new states made of many mesons, relatively stable, which
cannot decay to mesons with smaller meson number. This
would make them similar to nuclei where the baryon
number conservation is responsible for the elements of
the periodic table, giving rise to a new periodic table of
mesons. In coincidence with the point made in Ref. [79] we
think that we are just at the beginning of this new era.

ACKNOWLEDGMENTS

The work of N. I. was partly supported by JSPS
KAKENHI Grant No. JP19K14709. This work is partly
supported by the Spanish Ministerio de Economía y
Competitividad (MINECO) and European FEDER funds
under Contract No. PID2020–112777 GB-I00, and by
Generalitat Valenciana under Contract No. PROMETEO/
2020/023. This project has received funding from the
European Union Horizon 2020 research and innovation
program under the program H2020-INFRAIA-2018-1,
Grant Agreement No. 824093 of the STRONG-2020 project.

APPENDIX A

With the D�, K̄� doublets ðD�þ;−D�0Þ ðK̄�0;−K�−Þ, the I ¼ 0 wave function is given by

−
1ffiffiffi
2

p ðD�þK�− −D�0K̄�0Þ

and the box diagrams that account for DK̄ decay are given in Fig. 6.
The dynamics comes from the vector → pseudoscalar-pseudoscalar vertex, VPP given by the Lagrangian

L ¼ −igh½P; ∂μP�Vμi; g ¼ MV

2f
ðMV ¼ 800 MeV; f ¼ 93 MeVÞ;

where P, V are qq̄ matrices written in terms of pseudoscalar and vector mesons:

P ¼

0
BBBBBB@

1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ 1ffiffi
6

p η0 πþ Kþ D̄0

π− − 1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ 1ffiffi
6

p η0 K0 D−

K− K̄0 − 1ffiffi
3

p ηþ
ffiffi
2
3

q
η0 D−

s

D0 Dþ Dþ
s ηc

1
CCCCCCA
; ðA1Þ
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V ¼

0
BBBBB@

1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω ρþ K�þ D̄�0

ρ− − 1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω K�0 D�−

K�− K̄�0 ϕ D�−
s

D�0 D�þ D�þ
s J=ψ

1
CCCCCA
:

ðA2Þ

To simplify the calculation we evaluate the diagrams at the
threshold of D�K̄�. The external three momenta are zero
and q⃗ is the running variable in the loop. In this limit the ϵ0

component of the external vectors is zero and all the
vertices are of the type of ϵ⃗ · q⃗. Since one is concerned
about the imaginary part, one realizes that the pions will be
off shell becauseD� → Dπ is possible but then K̄�þπ→ K̄
does not go. The loop function is then given by

i
Z

d4q
ð2πÞ4

�
1

q02 − q⃗2 −m2
π

�
2 1

ðp1 − qÞ2 −m2
D þ iϵ

1

ðp2 þ qÞ2 −m2
K þ iϵ

;

and we can perform the q0 integration analytically using
Cauchy’s integration. Since we are concerned only about the
imaginary part coming from the DK̄ placed on shell, we
consider only the poles of theD and K̄ propagators andobtain

Z
d3q
ð2πÞ3

�
1

ðωK − p2
0Þ2 − q⃗2 −m2

π

�
2 1

2ωK

1

2ωD

×
1

p1
0 þ p2

0 − ωK − ωD þ iϵ
:

We have integrals of type

ϵlϵmϵrϵs
Z

d3q
ð2πÞ3 fðq⃗

2Þqlqmqrqs

¼ 1

15

Z
d3q
ð2πÞ3 fðq⃗

2Þq⃗4ðδlmδrs þ δlrδms þ δlsδmrÞϵlϵmϵrϵs;

and considering the VV spin projectors in j ¼ 0, 1, 2 [80],

Pð0Þ ¼ 1

3
ϵlϵlϵrϵr

Pð1Þ ¼ 1

2
ðϵlϵmϵlϵm − ϵlϵmϵmϵlÞ

Pð2Þ ¼ 1

2
ðϵlϵmϵlϵm þ ϵlϵmϵmϵlÞ − 1

3
ϵlϵlϵmϵm;

and the appropriate factors in the vertices, we obtain from the
sum of all the diagrams

i ImVðDK̄Þ ¼ −iFjg4
9

15

1

2π

1ffiffiffiffi
s0

p q5

×

�
1

ðωKðqÞ − p0
2Þ2 − q⃗2 −m2

π

�
2

F04ðqÞFHQ;

ðA3Þ

where we have also included a factor demanded by heavy
quark symmetry FHQ to get the coupling VPP in the case of

heavy vectors [81] and used q ¼ λ1=2ðs0;m2
D;m

2
K̄
Þ

2
ffiffiffi
s0

p ,FHQ ¼ ðmD�
mK̄� Þ2,

p0
2 ¼

s0þm2
K̄�−m

2
D�

2
ffiffiffi
s0

p , F0ðqÞ ¼ eððωkðqÞ−p0
2
Þ2−q⃗2Þ=Λ2

.

Further details can be seen in the evaluation of
the width of the analogous B̄�K̄� state in Sec. D
of Ref. [82].

APPENDIX B: WAVE FUNCTION
OF THE D�D�K̄� MOLECULE

We have the situation as in Fig. 7. The wave functions
for the K̄� relative to the center of mass of the D�D�K̄�
system is given by Eq. (21). We need the wave functions
ϕðr⃗31Þ, ϕðr⃗32Þ, ϕ0ðr⃗12Þ. The wave functions are given in

FIG. 6. Box diagrams accounting for the decay of D�K̄� in I ¼ 0 into DK̄.
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momentum space by Eq. (11) hq⃗jϕi≡ ϕðq⃗Þ. To obtain the
wave function in coordinate space we write

ϕðr⃗Þ≡ hr⃗jϕi ¼
Z

d3q

ð2πÞ3=2 e
iq⃗·r⃗ϕðq⃗Þ ðB1Þ

eiq⃗·r⃗ ¼ 4π
X
l

iljlðqrÞ
X
m

Y�
lmðq̂ÞYlmðr̂Þ: ðB2Þ

Performing the dΩðr̂Þ integration we obtain

ϕðr⃗Þ ¼
Z

q2dq

ð2πÞ3=2 4π
ffiffiffiffiffiffi
4π

p
j0ðqrÞY00ðx̂Þϕðq⃗Þ

¼ 2π

ð2πÞ3=2 gR
2

r

Z
qmax

0

qdq
sinðqrÞ

E − ω1ðqÞ − ω2ðqÞ
: ðB3Þ

Using the δ3ðÞ function in Eq. (21) we can eliminate r⃗2
and have only the integral over r⃗1, which requires two
integrals, one over the modulus of r⃗1 and the other one over
the angle between r⃗1 and r⃗3. Altogether we need three
integrals to evaluate jΨðr03Þj2 of Eq. (21).

As mentioned before, to obtain the binding of the Tcc,
the value qmax ¼ 420 MeVwas used, and the same value is
used to construct the wave function of theD�D� cluster. On
the other hand, in Ref. [22] the loops were regularized with
dimensional regularization. Since here we need the equiv-
alent qmax, we have seen which value is needed to obtain
the same binding of theD�K̄� molecule, which is found for
qmax ¼ 1050 MeV (see also Ref. [82]) that we use here to
construct the D�K̄� wave function.
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