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We obtain the energy-momentum tensor (EMT) in the ’t Hooft model of two-dimensional quantum
chromodynamics. The EMT is decomposed into contributions from quark and gluon fields, with all of the
(plus component of) the light front momentum being carried by the quark field. The energy is split between
quark and gluon fields, with the gluon field carrying the self-energy of the dressed quarks. We consider the
pion in the limit of small but nonzero quark masses—which has previously withstood numerical treatment
—as a concrete example. We solve for the pion wave function using a variational method and obtain
numerical results for its energy breakdown into quark and gluon contributions.
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I. INTRODUCTION

Recently there has been an increasing effort to under-
stand the origin of the proton’s mass in terms of QCD; see
for instance Refs. [1–5]. Since the mass plays multiple vital
roles within a quantum field theory—such as a Lorentz
scalar, a rest frame energy, and a central charge of the light
front’s Galilean subgroup—there are consequently many
approaches one can take to understanding the mass [4].
One of the most common approaches is to analyze and

decompose the mass through the trace of the energy
momentum tensor (EMT):

2M2 ¼ hpjTμ
μð0Þjpi; ð1Þ

see for instance Refs. [6–9]. Another common approach,
which provides different physical insights, is to analyze
the mass as the rest-frame energy associated with a
Hamiltonian density, and to decompose the Hamiltonian
into contributions arising from the quark and gluon fields;
see for instance Refs. [1,3–5]. The latter approach depends
on the form of relativistic dynamics used [10], since for
instance the instant form energy density is given by T00ðxÞ
and the light front energy density by Tþ−ðxÞ.
A case of special interest occurs for quantum chromo-

dynamics (QCD) in (1þ 1) dimensions. In this case, the
light front Hamiltonian density and trace of the EMT are
both proportional to Tþ−, meaning that both approaches

will produce the same mass decomposition (as noted for
instance in Ref. [11]). Moreover, (1þ 1)-dimensional QCD
is UV finite, and subtleties about renormalization and
scheme dependence of the decomposition (which are at
the heart of a controversy about the proton mass decom-
position in (3þ 1) dimensions [4]) are avoided. This makes
(1þ 1)-dimensional QCD a promising avenue to explore a
mass decomposition within QCD itself.
Besides the proton, understanding how QCD dynamics

gives rise to a nearly massless pion is a question of
special concern, since the pion plays a special role as
the Nambu-Goldstone boson of chiral symmetry breaking
in (3þ 1)-dimensional QCD [12–16].1 A fully satisfactory
understanding of proton mass decomposition cannot be had
without an understanding of the pion mass decomposition
as well.
The ’t Hooft model [17] is an especially promising

avenue for approaching the mass decomposition of the
pion. This model is defined as QCD in (1þ 1) dimensions
in the limit that Nc → ∞ but g2Nc is held fixed. The ’t
Hooft model was extensively studied during the 1970s and
has had much success in describing qualitative properties of
mesons, such as confinement and Regge trajectories (see
the review [18]).
Moreover, there has been a recent revival of interest

in the ’t Hooft model and other treatments of (1þ 1)-
dimensional QCD [19–22] stemming from the need to
include the effects of nonvanishing quark masses and to
enlarge the number of space-time variables in light-front
holographic QCD to four. In the original treatments of
light-front holography (see the review [23]) the chiral limit
is used and the longitudinal light-front momentum fraction
x is frozen [24], so that effectively the only degrees of
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1The pion is not, however, a true Nambu-Goldstone boson in
the Nc → ∞ limit considered in this work.
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freedom are light-front time and transverse position. The
first effort aimed at including the effects of mass was
contained in Ref. [25]. There has been much numerical
work, but the case of small but nonzero quark masses has
presented numerical challenges to the calculation of wave
functions in (1þ 1)-dimensional QCD [26]. Thus, the case
of small but nonzero quark mass is also of special interest.
In this work, we examine the energy-momentum tensor in

the ’t Hooftmodel in the low-mass domain, obtaining amass
decomposition for the pion into quark and gluon contribu-
tions.Wedefine themodel in Sec. II, and obtain and examine
the EMT operator in Sec. III. In Sec. IV we numerically
consider the pion as a case of interest, solving for the wave
function through a variationalmethod andobtaining numeri-
cal results for the mass decomposition. The results of this
method are found to be valid specifically in the domain of
small quark masses. We conclude in Sec. V.

II. MODEL AND DEFINITIONS

The ’t Hooft model is D ¼ ð1þ 1Þ-dimensional QCD
in the large Nc limit (but specifically with g2Nc held
fixed) [17]. The Lagrangian is the standard QCD
Lagrangian:

L ¼ q̄ðxÞ
�
i
2
=D
↔
−mq

�
qðxÞ − 1

4
Fa
μνðxÞFμν

a ðxÞ; ð2Þ

where qðxÞ is a column vector of quarks of different flavors
and mq is a mass matrix. The covariant derivative (in the
defining rep) is

DμqðxÞ ¼ ∂μqðxÞ − igAa
μðxÞTaqðxÞ; ð3Þ

where Ta is a generator of SUðNc;CÞ. To make calcu-
lations easier, the light cone gauge is used:

Aþ
a ðxÞ ¼ 0: ð4Þ

In this case the only nonzero components of gluon field
strength tensor are given by:

Fþ−
a ðxÞ ¼ −F−þ

a ðxÞ ¼ ∂−A−
a ðxÞ: ð5Þ

An immediate consequence of using light cone gauge is
that the Lagrangian can be written:

L ¼ q̄ðxÞ
�
i
2
=∂
↔
−mq

�
qðxÞ

þ gq̄ðxÞA−
a ðxÞγþTaqðxÞ þ

1

2
ð∂−A−

a ðxÞÞ2: ð6Þ

A. Dynamical degrees of freedom

It is useful to separate the quark field qðxÞ into
independent qþ and dependent q− terms using the
projection operators Π� ≡ 1

2
γ∓γ� and q� ¼ Π�q, with

γ� ¼ 1ffiffi
2

p ðγ0 � γ3Þ. Then the Lagrangian can be rewritten as:

L ¼
ffiffiffi
2

p
q†þi∂−qþ þ

ffiffiffi
2

p
q†−i∂þq−

−
mqffiffiffi
2

p ðq†þγ−q− þ q†−γþqþÞ

þ g
ffiffiffi
2

p
q†þA−

aTaqþ þ 1

2
ð∂−A−

a Þ2; ð7Þ

where dependence on x was suppressed to compactify the
formula. The fields qþ and A−

a are not dynamical fields
because their time derivative does not appear in the
Lagrangian. This means that they can be rewritten in terms
of the independent field operator qþ. The Euler-Lagrange
equation for A−

a is given by

∂
2
−A−

a ðxÞ ¼ gq̄ðxÞγþTaqðxÞ; ð8Þ

the general solution being:

A−
a ðxÞ ¼

g
2

X
q

Z
∞

−∞
dzjx− − zjq̄ðzÞγþTaqðzÞ

þ x−BaðxþÞ þ CaðxþÞ: ð9Þ

The function CaðxþÞ can be removed by making a gauge
transformation. The term BaðxþÞ is set to zero so as to
impose the boundary condition that Aa

−ðxÞ ¼ 0 in the
absence of quark sources.
The Euler-Lagrange equation for the quark field is

ðiγþ∂þ þ iγ−∂− þ gTaA−
a ðxÞγþ −mqÞqðxÞ ¼ 0: ð10Þ

Multiplying Eq. (10) by γþ leads to the results:

q− ¼ mqγ
0ffiffiffi

2
p

i∂þ
qþ ð11Þ

ði∂þ þ gTaA−
a Þqþ ¼ m

γ0ffiffiffi
2

p q− ¼ m2
q

2i∂þ
qþ; ð12Þ

where the inverse operator is defined:

1

∂
þ fðxþ; x−Þ ¼ 1

2

Z
∞

−∞
dz−ϵðx− − z−Þfðxþ; z−Þ: ð13Þ

With these results, the solution for the gluon field is

A−
a ¼

ffiffiffi
2

p
g

1

ð∂þÞ2 q
†
þTaqþ: ð14Þ
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III. ENERGY-MOMENTUM TENSOR

Let us consider components of the energy-momentum
tensor, for which we use the standard symmetric,
Belinfante EMTof QCD [27,28]. In light cone coordinates,
Pþ is a kinematic momentum and P− is the Hamiltonian,
and accordingly Tþþ is a momentum density and Tþ− is a
Hamiltonian (energy) density. It is conventional in much of
the hadron physics literature (see e.g. Refs. [1,4,28]) to
decompose the EMT into gauge-invariant “quark” and
“gluon” contributions:

Tμν ¼ Tμν
q þ Tμν

g ð15aÞ

Tμν
q ¼ i

4
ðq̄ðxÞγμ ∂↔ν

qðxÞ þ q̄ðxÞγν ∂↔μ
qðxÞÞ

þ g
2
ðq̄ðxÞγμAνðxÞqðxÞ þ q̄ðxÞγνAμðxÞqðxÞÞ ð15bÞ

Tμν
g ¼ gρσF

μρ
a ðxÞFσν

a ðxÞ þ gμν

4
ðFρσ

a ðxÞÞ2: ð15cÞ

Notably, interaction terms containing both the quark and
gluon fields are present in the “quark” piece of the EMT.
This is done in order to ensure gauge invariance of the
breakdown.
In light cone gauge, the gluon contribution to the

momentum Pþ is zero, and the quark contribution is

Pþ ¼ Pþ
q ¼

Z
∞

−∞
dx−

ffiffiffi
2

p
q†þi∂þqþ: ð16Þ

The quark and gluon contributions to the energy P− can be
written in terms of the independent qþ fields as:

P−
q ¼

Z
∞

−∞
dx−q†þ

m2
qffiffiffi

2
p

i∂þ
qþ ð17aÞ

P−
g ¼ g2

Z
∞

−∞
dx−

�
1

∂
þ ðq†þTaqþÞ

�
2

: ð17bÞ

Summing over the quark and gluon pieces reproduces
the finding of Ehlers [29]:

P− ¼ P−
q þ P−

g

¼
Z

∞

−∞
dx−

�
q†þ

m2
qffiffiffi

2
p

i∂þ
qþ þ g2

�
1

∂
þ ðq†þTaqþÞ

�
2
�
:

ð18Þ

In addition to the breakdown of the operator P− itself, it is
also worth looking at form factors. At zero momentum
transfer, the separate quark and gluon contributions to the
EMT are parametrized by two quantities each:

hpjTμν
a ð0Þjpi ¼ 2pμpνAað0Þ þ 2gμνM2c̄að0Þ; ð19Þ

where a ¼ q, g and where M is the mass of the hadron.
The quantities satisfy the sum rules:

Aqð0Þ þ Agð0Þ ¼ 1 ð20aÞ

c̄qð0Þ þ c̄gð0Þ ¼ 0: ð20bÞ

Since Tþþ
g ¼ 0 in the ’t Hooft model, we have Aqð0Þ ¼ 1

and Agð0Þ ¼ 0. Moreover, from integrating the þ− com-
ponents, we have:

2pþP−
q ¼ M2ð1þ 2c̄qð0ÞÞ ð21aÞ

2pþP−
g ¼ 2M2c̄gð0Þ ¼ −2M2c̄qð0Þ: ð21bÞ

A. Effective potential and quark dressing

It is reasonable to interpret P−
q as a kinetic energy for the

dynamical field qþ and P−
g as a potential energy, as

remarked by Ehlers [29]. This gluon energy (potential
energy) can be rewritten as a nonlocal operator using the
inverse operator:

P−
g ¼

Z
∞

−∞
dx−

Z
∞

−∞
dy−Vðx−; y−Þ ð22aÞ

Vðx−; y−Þ ¼ −
g2

2
jx− − y−jJaðx−ÞJaðy−Þ ð22bÞ

Jaðx−Þ ¼ q†þðx−ÞTaqþðx−Þ: ð22cÞ

The effective interaction V can further be broken down
into a normal ordered operator that encodes a static quark-
antiquark potential, and a single quark operator that encodes
a quark self-energy (see Fig. 1). This is done by using the
fundamental commutation relation between q†þ and qþ, and
is described in depth by Ehlers [29]. The quark self-energy
term can combined with the quark mass mq to produce
a dressed mass Mq, given in the large Nc limit as [17]:

FIG. 1. Diagrammatic representation of the possible scenarios encoded in the gluon energy operator P−
g . The first diagram is a quark-

self energy which is absorbed into the effective kinetic energy (first term) of Eq. (24). The remaining diagrams are contained in the
normal-ordered effective potential of Eq. (24). In the large Nc limit, all diagrams except the first two are suppressed.
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M2
q ¼ m2

q − g2Nc=π: ð23Þ

When m2
q < g2Nc=π, the dressed mass Mq will be

imaginary.
In terms of the dressed mass and static potential, the

Hamiltonian can be written:

P− ¼
Z

∞

−∞
dx−q†þ

M2
qffiffiffi

2
p

i∂þ
qþ

þ
Z

∞

−∞
dx−

Z
∞

−∞
dy−∶Vðx−; y−Þ∶: ð24Þ

The first term in this expression mixes contributions from
P−
q and P−

g . This occurs because the dressed quark mass
contains contributions from the gluon field, as depicted in
Fig. 1. The breakdown suggested by this expression
presents a reasonable alternative decomposition within
the context of the model: an effective kinetic energy carried
by dressed quarks and an effective static potential between
them. A curious aspect of this is that the effective kinetic
energy can be negative if M2

q < 0.
In this work, we prioritize the breakdown in Eq. (15),

since it attributes energy contributions to the bare quark and
gluon fields in a gauge-invariant way.

B. Application to mesons

A meson state consisting of a quark q1 and antiquark q̄2
with fixed momentum pþ can be written in terms of
creation and annihilation operators as [29]:

jpþi¼
XNc

c¼1

Z
1

0

dx
ϕðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πNcxð1−xÞp b†c;1ðxpþÞd†c;2ðð1−xÞpþÞj0i;

ð25Þ

where x is the fraction of the meson’s momentum carried by
the quark. This meson ket satisfies the normalization rule

hp0þjpþi ¼ 4πpþδðpþ − p0þÞ ð26Þ

provided that:

Z
1

0

dxjϕðxÞj2 ¼ 1: ð27Þ

The function ϕðxÞ is thus interpreted as the meson wave
function over the momentum fraction x. Acting on jpþi
with the Hamiltonian as expressed in Eq. (24) gives the
’t Hooft equation:

M2ϕðxÞ ¼
�
M2

1

x
þ M2

2

1 − x

�
ϕðxÞ

−
g2Nc

π
P
Z

1

0

dy
1

ðx − yÞ2 ϕðyÞ; ð28Þ

where M2 is the eigenvalue of the operator 2pþP−.
The principal value is defined according to [17] as

P
fðx; yÞ
ðx − yÞ2 ≡

1

2

�
fðx; yÞ

ðx − yþ iϵÞ2 þ
fðx; yÞ

ðx − y − iϵÞ2
�
; ð29Þ

where the limit ϵ → 0 is to be taken after integration.
Expanding out the dressed masses in terms of the bare
masses and dressing gives an alternative form of the ’t
Hooft equation:

M2ϕðxÞ ¼
�
m2

1

x
þ m2

2

1 − x

�
ϕðxÞ

þ g2Nc

π
P
Z

1

0

dy
ϕðxÞ − ϕðyÞ
ðx − yÞ2 : ð30Þ

In this form, the first term corresponds to the quark energy
as 2pþP−

q and the second to the gluon energy as 2pþP−
g .

IV. PIONS IN THE LOW-MASS LIMIT

Let us consider the pion in the limit of small but nonzero
quark masses. This case has presented numerical chal-
lenges [26]. Previous work on the massive Schwinger
model (i.e., (1þ 1)-dimensional QED) by Mo and
Perry [30] has been adapted by several authors [31,32]
to the case of (1þ 1)-dimensional QCD. These authors
write the hadron wave function in terms of a truncated basis
function expansion with the ’t Hooft ansatz (given in
Eq. (33) below) as the leading basis function.
For equal current massm quarks, the ’t Hooft equation in

Eq. (30) simplifies to:

μ2ϕðxÞ ¼ γ

xð1 − xÞϕðxÞ þ
Z

1

0

dy
ϕðxÞ − ϕðyÞ
ðx − yÞ2 ; ð31Þ

where μ2 ≡ M2π
g2Nc

and γ ≡ πm2

g2Nc
are unitless quantities to

simplify the formula. As discussed in Sec. III, the first and
second terms on the right-hand side correspond to the quark
energy P−

q and the gluon energy P−
g , respectively. The

equation can also alternatively be written in the more
standard form:

μ2ϕðxÞ ¼ γ − 1

xð1 − xÞϕðxÞ −
Z

1

0

dy
ϕðyÞ

ðx − yÞ2 ; ð32Þ

where the first and second terms now correspond to a
dressed quark effective kinetic energy and a static confining
potential.
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’t Hooft postulated the ansatz:

ϕðxÞ ¼ xβð1 − xÞβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð4β þ 2Þp

Γð2β þ 1Þ ; ð33Þ

to be valid at the endpoints and to cancel the endpoint
singularities appearing in the effective kinetic energy term.
The multiplicative factor ensures that Eq. (27) is obeyed.
Notably, prior works in (1þ 1)-dimensional QED and
QCD with finite fermion mass which use basis function
expansion [30–32] find that the ansatz of Eq. (33) provides
a leading-order description for two-body wave functions,
and moreover that truncation at leading order provides a
good description of mass spectra if β is determined
variationally. The integral over y in Eq. (31) can be
approximated as xβ−1½πβ cot πβ − 1� for very small values
of x, so expanding Eq. (31) for very small values of x
leads to:

πm2

g2Nc
− 1þ πβ cot πβ ¼ 0: ð34Þ

If m ¼ 0 this equation is solved with β ¼ 0, and continuity
ensures that small values of m entail small values of β.
Expanding around β ¼ 0 gives the approximate solution
for small quark masses of:

β ≈

ffiffiffiffiffiffiffiffiffi
3

πNc

s
m
g
: ð35Þ

With this value of β, we can also derive a relationship
between the pion mass and current quark mass, with the
pion defined as the ground state of the quark-antiquark
system. Integrating Eq. (31) over x gives:

μ2 ¼
γ
R
1
0 dx

ϕðxÞ
xð1−xÞR

1
0 dxϕðxÞ

; ð36Þ

and evaluating this with the ansatz of Eq. (33) along with
the found value of β gives:

m2
π ≈ 2g

ffiffiffiffiffiffiffiffiffi
πNc

3

r
mþ 4m2; ð37Þ

reminiscent of the Gell-Mann–Oakes–Renner (GMOR)
relation [14]. It is worth noting that this result was obtained
using the ansatz of Eq. (33) for the wave function at all
values of x, despite the form originally being postulated
only for x near the endpoints. It is therefore important to
verify the validity of the wave function Eq. (33) at all x, at
least as an approximate form, as well as of Eq. (37) within
the ’t Hooft model.
As stated above, Refs. [30–32] find a truncation of their

basis expansion at leading order to provide a good

description of mass spectra if β is determined variationally.
We therefore To proceed, we take a variational approach in
which Eq. (33) is used as a trial wave function, and the
value of β is determined by minimizing the expectation
value of μ2ðβÞ:

μ2ðβÞ ¼ ðγ − 1Þ
Z

1

0

dx
jϕðxÞj2
xð1 − xÞ

−
Z

1

0

dx
Z

1

0

dyϕðxÞ P
ðx − yÞ2 ϕðyÞ: ð38Þ

Using Eq. (33) we find that:

Z
1

0

dx
ϕ2ðxÞ

xð1 − xÞ ¼ 4þ 1

β
: ð39Þ

The double integral appearing in Eq. (38), which corre-
sponds to the effective static potential between dressed
quarks, can be evaluated in closed form by going to the
coordinate-space representation:

VeffðβÞ ¼ −
Z

1

0

dx
Z

1

0

dyϕðxÞ P
ðx − yÞ2 ϕðyÞ

¼ 1

2

Z
∞

−∞
dz̃ϕ�ðz̃Þjz̃jϕ̃ðz̃Þ; ð40Þ

where:

ϕ̃ðz̃Þ ¼
Z

1

0

dyϕðyÞeiyz̃: ð41Þ

Direct evaluation gives:

ϕðz̃Þ ¼ eiz̃=2
ffiffiffi
π

p
21−2ðβþ1ÞΓðβ þ 1Þ0F̃1

�
β þ 3

2
;−

z2

16

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð4β þ 2Þp
Γð2β þ 1Þ ; ð42Þ

where 0F̃1 is a regularized confluent hypergeometric
function [33]. It can be shown that:

Z
∞

−∞
dzjzj0F̃2

1

�
β þ 3

2
;−

z2

16

�
¼ 8

βΓ2ð1=2þ βÞ ; ð43Þ

and using this gives, after simplification:

VeffðβÞ ¼ π22−8β
Γð2þ 4βÞ

βΓ4ð1=2þ βÞ : ð44Þ

The expectation value of the Hamiltonian is thus:

μ2ðβÞ ¼ ðγ − 1Þ
�
4þ 1

β

�
þ π22−8β

Γð2þ 4βÞ
βΓ4ð1=2þ βÞ : ð45Þ
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A minimum exists for this function, since its asymptotic
forms at small and large β are

lim
β→0

μ2ðβÞ ¼ γ

β
ð46aÞ

lim
β→∞

μ2ðβÞ ¼ 2
ffiffiffiffiffiffi
2π

p ffiffiffi
β

p
; ð46bÞ

meaning a minimum (and thus a solution) exists.
The variational method of course does not give an

exact solution, so it is prudent to include an error estimate
along with the variational solution. To estimate the error in
our variational approach, we note that Eq. (34) should give
the exact endpoint behavior (at x ∼ 0 and x ∼ 1). The
variational solution βvar will in general not solve this

equation, whereas some other βend will. We therefore use
Δβ≡ jβvar − βendj to estimate the uncertainty in β, which
propagates into error estimations for all other calculated
quantities.
The minimum of μ2ðβÞ has been determined numeri-

cally for several values of the quark mass m, with results
shown in Fig. 2. The left panel shows that Eq. (35) holds
nearly exactly for quark masses as large as around 0.1 in
units of

ffiffiffiffiffiffiffiffiffiffi
Ncg2

p
, and for these values the variational

solution can be reasonably be considered nearly exact.
For larger quark masses, the ansatz of Eq. (33) becomes
less reliable (as demonstrated by error estimates), but
perhaps useful nonetheless as a rough approximation. The
right panel, interestingly, shows that the GMOR-like
relation of Eq. (37) holds to good precision well past

FIG. 2. Numerical results for β obtained from minimizing the Hamiltonian associated with the ansatz of Eq. (33). Left panel gives the
results for β, comparing to the approximation of Eq. (35). Right panel gives the results form2

π, comparing them to the approximate result
of Eq. (37).

FIG. 3. Breakdown of the pion energy in the variational solution to the ’t Hooft model. The left panel compares the total pion energy
2pþP− ¼ m2

π to the contributions from the quark and gluon fields. The right panel divides out the total energy and plots the fractional
contributions of the quark and gluon fields to the energy.
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m=
ffiffiffiffiffiffiffiffiffiffi
Ncg2

p
∼ 0.1. Notably, the error estimate in m2

π is
sufficiently small as to not be visible in the plot; this is
likely a consequence of the pion mass being dominated by
GMOR-like behavior.
With the variational solution, we can also decompose

m2
π into contributions from the quark and gluon fields.

This decomposition is presented in Fig. 3. The left panel
plots the values of each contribution (in units of g2Nc),
both of which are positive and both of which vanish
in the chiral limit. The right panel divides out m2

π in
order to obtain energy fractions. Although the total
amount of energy contributed by each field goes to
zero in the chiral limit, the energy fractions do not. In
fact, in the chiral limit—where the variational solution is
the most trustworthy—the energy fractions become
P−
g =P− → 0.51 and P−

q =P− → 0.49. For larger quark
masses, the quarks unsurprisingly carry a greater fraction
of the energy.
The energy fraction results also entail c̄q;gð0Þ results

through Eq. (21). Results for these quantities as a function
of quark mass are presented in Fig. 4. It is worth noting that
c̄qð0Þ < 0 and c̄gð0Þ > 0, which is consistent with phe-
nomenological estimates of c̄qð0Þ for (3þ 1)-dimensional
QCD [34,35]. It is also worth noting that c̄q;gð0Þ do not
vanish in the chiral limit, even though the total energy
vanishes.
As a last interesting numerical consideration, let us

consider mπ ¼ 140 MeV and m ¼ 3.4 MeV. Since mπ is
not linear in m (see Eq. (37) for instance), the mπ=m ratio

fixes all the parameters of the model. The model parameters
that reproduce this ratio are given in Table I. It is worth
remarking that for the extremely small γ (and β) in this
parameter set, we are well within the range where the
variational solution using Eq. (33) can be considered close
to numerically exact. This is further corroborated by the
small error estimate in β.
With the model parameters fixed as in Table I, energy

fraction and c̄q;gð0Þ values can be obtained. The results are
given in Table II. The gluon and quark energy fractions are
nearly equal (half the total energy).
It it also interesting (though perhaps of limited instruc-

tional value) to compare the c̄qð0Þ result with (3þ 1)-
dimensional QCD estimates. Since (3þ 1)-dimensional
QCD contains UV divergences that must be renormalized,
c̄qð0Þ in this case can only be defined within a particular
renormalization scheme and at a particular renormalization
scale. Reference [34] gives c̄qðμ2 ¼ ∞Þ ¼ −0.103 for two
quark flavors. The ’t Hooft model c̄q ¼ −0.2947 is larger in
magnitude, but this may be an artifact of the number of
dimensions. However, the order of magnitude and negative
sign are common between D ¼ 1þ 1 and D ¼ 3þ 1.

V. SUMMARY

The energy momentum tensor of the ’t Hooft model is
determined. All the pion’s light front momentum Pþ is
carried by the quarks. Although the gluon field is not
dynamical, it still carries a portion of the pion’s light front
energy P−. The pion energy can thus be decomposed into
quark and gluon contributions, which we have likewise
obtained. Results for a variety of current quark masses can
be seen in Fig. 3, with numerical values for the empirical
pion mass are given in Table II.
The model is solved using a variational method for small

quark masses, a case that has caused previous numerical
difficulty. We observe a GMOR-like relation and find that
empirical values for the pion and light quark masses fall
within the domain where this solution is valid. The quark
and gluon fields each carry about equal amounts of the
pion’s energy.

FIG. 4. Plots of c̄qð0Þ and c̄gð0Þ as functions of quark mass, for
the variational solution using Eq. (33). Note that c̄qð0Þþ c̄gð0Þ¼0

as a consequence of energy conservation.

TABLE I. ’t Hooft model parameters that reproduce a light quark mass of 3.4 MeVand a pion mass of 140 MeV.

m mπ β γ μ2 g2Nc

3.4 MeV 140 MeV 0.00118300(53) 4.6 × 10−6 0.007797 7.897 × 106 MeV2

TABLE II. Energy fractions and form factor c̄q;gð0Þ values
attributed to the quark and gluon fields inside the pion, using the
model parameters in Table I.

c̄qð0Þ c̄gð0Þ P−
q =P− P−

g =P−

−0.2947ð1Þ 0.2947(1) 0.5011(2) 0.4989(2)
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[4] C. Lorcé, A. Metz, B. Pasquini, and S. Rodini, J. High

Energy Phys. 11 (2021) 121.
[5] X. Ji, Y. Liu, and A. Schäfer, Nucl. Phys. B971, 115537

(2021).
[6] R. J. Crewther, Phys. Rev. Lett. 28, 1421 (1972).
[7] M. S. Chanowitz and J. R. Ellis, Phys. Lett. 40B, 397

(1972).
[8] J. C. Collins, A. Duncan, and S. D. Joglekar, Phys. Rev. D

16, 438 (1977).
[9] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Phys.

Lett. 78B, 443 (1978).
[10] P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).
[11] X. Ji, Y. Liu, and I. Zahed, Phys. Rev. D 103, 074002

(2021).
[12] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[13] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).
[14] M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,

2195 (1968).
[15] H. Pagels, Phys. Rev. D 19, 3080 (1979).
[16] L. Chang, I. C. Cloet, J. J. Cobos-Martinez, C. D. Roberts,

S. M. Schmidt, and P. C. Tandy, Phys. Rev. Lett. 110,
132001 (2013).

[17] G. ’t Hooft, Nucl. Phys. B75, 461 (1974).
[18] J. R. Ellis, Acta Phys. Pol. B 8, 1019 (1977).
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