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We present a novel lepton-nucleus event generator: ACHILLES, A CHIcago Land Lepton Event
Simulator. The generator factorizes the primary interaction from the propagation of hadrons in the nucleus,
which allows for a great deal of modularity, facilitating further improvements and interfaces with existing
codes. We validate our generator against high-quality electron-carbon scattering data in the quasielastic
regime, including the recent CLAS/e4v reanalysis of existing data. We find promising agreement in both
inclusive and exclusive distributions. By varying the assumptions on the propagation of knocked-out
nucleons throughout the nucleus, we estimate a component of theoretical uncertainties. We also propose
novel observables that will allow for further testing of lepton-nucleus scattering models. ACHILLES is
readily extendable to generate neutrino-nucleus scattering events.
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I. INTRODUCTION

Interactions between leptons with nuclei at beam
energies in the 10-MeV–10-GeV range are key to
properly interpret a multitude of experiments, e.g. those
that probe neutrino oscillations [1–4], electron-nucleus
scattering [5–10], dark matter and dark sectors, or even
muon-specific new gauge forces [11–16]. Nevertheless,
modeling these interactions with the percent-level precision
required by experimental analyses [3] is a formidable
challenge. These difficulties are primarily due to nonper-
turbative nuclear dynamics, which play an important role in
both the hard interaction vertex and in the propagation of the
struck nucleons before they exit the nucleus [17–49].
Accurately modeling the hard-scattering cross section

between a lepton and a nuclear constituent presents
nontrivial difficulties. The individual couplings between
leptons and nucleons are parametrized in terms of single-
nucleon form factors, which depend on the momentum
transfer associated with the process and involve nonper-
turbative QCD dynamics. These form factors can be either

calculated from first principles using lattice QCD or fitted
to experimental data (see e.g. Refs. [50–54] and references
therein). Whichever method is used, care must be taken in
properly estimating uncertainties, especially in the axial
sector where experimental data are scarce. In addition,
scattering does not occur on a collection of free nucleons
(which could be described trivially within a Fermi-gas
model). Instead, the real-world target nucleus is a correlated
quantum many-body system; hence, a percent-level theo-
retical description of scattering off of a bound nucleon must
capture many-body correlation effects within a well-
defined factorization scheme like the impulse approxima-
tion and its generalizations (see e.g. Refs. [49,55–59]).
While unfactorized approaches based on a realistic descrip-
tion of nuclear dynamics exist, these tend to be fully
inclusive and nonrelativistic [60–62], preventing their
application in experimental simulation pipelines.
The final-state interactions (FSIs) that the struck nucleons

undergo before exiting the nucleus are also extremely
complex phenomena [17–20], subject to nonperturbative
single andmany-nucleon effects. Examples of the former are
nucleon excitations into a Δ isobar, which quickly decays
into a pion-nucleon state. The latter include correlations
induced by realistic two- and three-nucleon forces. A fully
quantum-mechanical description of these processes presents
an exponentially hard computational problem. Sophisticated
nuclear many-body methods leverage leadership-class
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computing resources to tackle this real-time nuclear dynam-
ics problem but are limited to inclusive processes and to
the nonrelativistic regime [61,62]. Exploratory calculations
on quantum devices show promise [63,64] for treating fully
exclusive processes. However, the inclusion of relativistic
effects poses nontrivial challenges, and their application to
realistic systems seems to remain a distant goal.
Over the years, a number of complementarymethods have

been developed to capture the leading effects of FSIs. The
most sophisticated ones start from the Kadanoff-Baym
integrodifferential equations for the evolution of the entire
nuclear system. In practice, state-of-the-art transport codes
solve truncated versions of these equations, which in turn
make a proper estimation of theory uncertainties much
harder [25,26,28,37,43,65]. On the other hand, intranuclear
cascade (INC) approaches approximately solve the transport
equation by evaluating the collision term stochastically. The
main approximation of INC models is that of classical
propagation between consecutive quantum-mechanical scat-
terings. Hence, they are applicable in the regime in which the
de Broglie wavelength of the nucleons is much smaller than
the range of the interaction, which is in turn smaller than the
average distance between nucleons [66]. Hence, the appli-
cability of INCs is in principle restricted to nucleons with
kinetic energies above ∼200 MeV, although many observ-
ables in heavy-ion reactions at less than 100 MeV are
reproduced well in practice [40,67,68].
Besides the aforementioned intrinsic limitations, INCs

involve a number of additional model-specific prescrip-
tions. For instance, the kinematic variables of a struck
nucleon are drawn from a model of the nuclear ground
state, typically the (local or global) Fermi gas or realistic
spectral functions. In addition, some assumptions for the
propagation in the nuclear medium are made. Examples of
the latter are the use of mean-free path estimates obtained
from the nuclear density or propagating nucleons as if they
were “hard spheres” with a radius that is proportional to the
square root of the total nucleon-nucleon cross section.
Finally, corrections due to the nuclear environment are also
typically included by means of average nuclear potentials
and imposing Pauli blocking in nucleon-nucleon collisions.
In our previous work [45], nucleons were assumed to
propagate freely between two consecutive collisions. With
the current work we went beyond this approximations by
introducing a mean-field nuclear potential to determine the
nucleons’ classical propagation. We considered a non-
relativistic potential defined by fitting the single-particle
energy of infinite nuclear matter [69], and the relativistic
global proton-nucleus optical potentials of Ref. [70].
To assess the reliability of such effective descriptions, INCs

should be systematically and extensively validated against
available experimental data. Electron-nuclei scattering
experiments offer large, high-quality data samples including
a broad range of experimental observables,which can be used
both to benchmark different INC models and to gauge the

reliability of their assumptions. Due to the interplay of all
these effects, modeling lepton-nucleus interactions consti-
tutes a remarkable challenge. Nevertheless, state-of-the-art
neutrino event generators have only recently started compar-
ing their predictions to electron scattering data [45,46,71–76].
The results of these initial comparisons reveal that existing
event generators do not describe electron-nucleus scattering
data, and consequently neutrino-nucleus scattering data, to
the precision level required by next-generation experiments,
such as DUNE [77,78]. This motivates further work to
improve the description of lepton-nucleus interactions, as
well as the development of novel generator frameworks itself
to facilitate these improvements.
In this paper we take a first step towards a full-

fledged lepton-nucleus event generator: ACHILLES,
A CHIcagoLand Lepton Event Simulator. Three aspects
of ACHILLES’ design are worth highlighting explicitly.
First, as neutrino physics enters the precision era, we expect
that event generators will need to incorporate many
technical improvements and new physical insights. The
need for robust, quickly extensible codebases is therefore
acute, presenting a challenge not only in scientific comput-
ing but also in software engineering. To help solve this
inherent difficulty, one of the core design principles of our
code is modularity. We have endeavored to divide the code
clearly into individual pieces that describe the different
physics processes within lepton-nucleus scattering.
Examples of the constituent parts include the description
of the initial state of the nucleus; the hard scattering
between the lepton and constituents of the nucleus; the
intranuclear cascade process; and the nuclear potential. The
advantage of modularity is obvious: an improvement on a
specific part of the code requires minimal effort, since all
parts are independent. Well-implemented modular design
thus facilitates future improvements and keeping abreast
with new advances in the description of lepton-nucleus
scattering. We have also tried to provide a user-friendly
interface to available tools for physics beyond the Standard
Model (BSM), such as the recent lepton-tensor interface
developed by some of the current authors [79]. The ultimate
goal is to enable ACHILLES users to proceed seamlessly
from writing down a BSM Lagrangian to generating events.
Second, the physical structure of the scattering problem

also imposes important constraints. Neutrino-nucleus scat-
tering involves both vector- and axial form factors (asso-
ciated with one- and two-body nuclear electroweak current
operators), while electron-nucleus scattering is dominated
by vector form factors from photon exchange. Thus, any
neutrino event generator should be able to describe elec-
tron-nucleus scattering data as a special case of the more
general problem. Therefore, the benchmarking foundation
for any lepton-nucleus event generator must be extensive
validation against inclusive and semi-inclusive electron-
nucleus scattering data. The present paper is an attempt to
begin laying this foundation for ACHILLES.
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Third, to leverage the existing analysis tools developed
and maintained by the high-energy event generators at
the LHC, we adopt the HepMC3 output format [80]. This
format allows easy interface with analysis tools such as
RIVET [81,82] and eventually NUISANCE [83], saving valu-
able research time for users to focusmore on physics and less
on coding. The HepMC3 output format permits arbitrary
parameters to be added to an event, allowing additional event
information required by neutrino experiments to be included
in a simple and straightforward manner.
This paper constitutes the first step towards the full

development of ACHILLES. We perform a comparison
between our model of electron-nuclei interactions, includ-
ing the INC model developed in Ref. [45], against the
recent reanalysis of electron-carbon scattering data by the
CLAS/e4v Collaboration [76]. Compared to our previous
work, and to obtain more realistic results for exclusive
observables, we implement a nuclear potential and simulate
the propagation of nucleons within this potential. We focus
on the inclusive quasielastic (QE) cross section, which is
better understood than other cross-section channels at the
energies of interest [84,85]. We also consider the angular-
dependent proton yield, as well as a few other kinematical
observables in the QE regime.
The comparisons performed here test the modeling of the

cross section; the impact of initial-state nuclear configura-
tions, particularly those obtained via quantum Monte Carlo
methods [86] and the roles of the spectral function, in-
medium modifications, and Pauli-blocking effects. Taken
together, these comparisons provide valuable insight to the
physics of intranuclear cascades. Besides these compar-
isons, we also propose new observables that may help in
further testing models of electron-nuclei and neutrino-
nuclei interactions. All proposed observables can be readily
extracted from existing CLAS data.
The paper is organized as follows. Section II lays out

general considerations for lepton-nucleus scattering.
Section III compares the results of ACHILLES to exper-
imental data on inclusive electron-nucleus scattering.
Section IVA describes in-medium effects from the nuclear
potential. Section V provides comparisons to exclusive data.
Section VI proposes novel observables to further test the
interaction modeling, following by conclusions in Sec. VII.

II. GENERAL LEPTON-NUCLEUS SCATTERING

The general expression of the differential cross section
for a scattering process involving a target nucleus A and a
lepton l leading to a given final state reads

dσ ¼
�

1

jvA − vlj
1

4Ein
AE

in
l

�
jMj2

×
Y
f

d3pf

ð2πÞ3 ð2πÞ
4δ4

�
kA þ kl −

X
f

pf

�
: ð1Þ

We denote the initial- and final-state momenta by

kμl ¼ ðEin
l ;kÞ incomingl; ð2Þ

kμA ¼ ðEin
A ;kAÞ incomingA; ð3Þ

pμ
f ¼ ðEf;pfÞ outgoing particle f; ð4Þ

where the index f refers to all the possible hadronic and
leptonic final-state particles. The first term in parenthesis is
the flux of incoming particles, with vl;A being the veloc-
ities, the second encodes the matrix element, and the last
line is the phase space for the outgoing particles. In the
one-boson exchange approximation, the squared amplitude
reads

jMj2 ¼ LμνWμν 1

P2
; ð5Þ

where P is a generic vector boson propagator, while L and
W denote the leptonic and hadronic tensors, respectively.
The leptonic tensor is completely determined by the
leptonic process (e.g. neutrino charged-current inter-
actions). The hadronic tensor on the other hand contains
all information on nuclear dynamics and it is expressed as

Wμν ¼ hΨ0jJ†μðqÞjΨfihΨfjJνðqÞjΨ0i; ð6Þ

where Ψ0 and Ψf denotes the hadronic initial and final
states, respectively.
Carrying out the full calculation of the many-body wave

function and its real-time evolution is an exponentially hard
computational problem. To handle it, the reaction process is
modeled by separating the primary interaction vertex from
the propagation of the struck particles out of the nucleus.
Schematically, this division can be expressed by consid-
ering the full matrix element squared as:

jMðfkg → fpgÞj2 ¼
���X
Z

p0
Vðfkg → fp0gÞ

× Pðfp0g → fpgÞ
���2; ð7Þ

where the fkgðfpgÞ is the set of all initial(final)-state
particle momenta, V represents the primary interaction
vertex producing intermediate particles with momenta
fp0g, and P denotes the time evolution of the intermediate
states to the final states outside the nucleus. Calculating
this equation exactly requires retaining full quantum-
mechanical interference between the primary interaction
vertex and the subsequent reinteractions. Traditionally,
due to the complexity of solving Eq. (7) exactly, the
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calculation factorizes the two-step process as an incoherent
product:

jMðfkg → fpgÞj2 ≃
XZ

p0
jVðfkg → fp0gÞj2

× jPðfp0g → fpgÞj2: ð8Þ

This treatment is similar to the approach taken by the
collider community when dressing hard-scattering cross
sections with parton showers (see e.g. Ref. [87] for a
pedagogical discussion). By construction, this approxima-
tion neglects interference between primary interaction
vertices that give rise to identical final states while leaving
inclusive observables unaffected. It is expected that these
interference effects are subdominant, and a detailed inves-
tigation is left to a future work. In ACHILLES, the
subsequent evolution probability jPj2 is handled semi-
classically using the algorithm developed in Ref. [45].
Equations (7) and (8) retain full generality for lepton-

nucleus scattering, but implementing them in a concrete
calculation requires several choices about the relevant
degrees of freedom. First, one must specify the initial-state
nuclear constituents fkg which participate in the vertex V.
This question is closely related to the choice of a factori-
zation scheme, to which the following section is dedicated.
Second, one must specify the intermediate-state particles
which can appear, either from production at the primary
interaction vertex V or in the system’s subsequent evolution
P. Briefly stated, the present work restricts to processes in
which protons and neutrons are the only active degrees of
freedom. This choice explicitly neglects, e.g. pion produc-
tion at the primary interaction vertex. This reaction mech-
anisms can be described within the spectral function
approach; in Ref. [84] the factorization ansatz has been
generalized to include pion production elementary ampli-
tudes derived within the extremely sophisticated Dynamic
Couple Channel approach which includes meson baryon
channels and nucleon resonances up to an invariant mass of
2 GeV [88]. We plan to incorporate these degrees of
freedom in the treatment of the interaction vertex and in
the INC in a future work. Under this ansatz, the electroweak
current of Eq. (6) is expanded as a sum of one- and two-
nucleon operators

JμðqÞ ¼
X
i

jμi ðqÞ þ
X
i<j

jμijðqÞ: ð9Þ

Three- and higher-body terms have been found to be
small [89] and are thus neglected here. Generalizing
these expressions to other mediators, such as scalars, is
straightforward.

A. Factorization scheme

As mentioned above, this work focuses on a lepton
scattering on a nucleus in the quasielastic regime, in which

the dominant reaction mechanism is assumed to be single-
nucleon knockout: lþ A → l0 þ X where l and l0 denote
the initial and final lepton states, A is the target nucleus, X
is the hadronic final state, which for example can be
composed of a single emitted nucleon and the remnant
nucleus. We can rewrite the cross section of Eq. (1) for a
2 → 2 scattering process in a background as

dσ ¼ d3pl

ð2πÞ3
1

2El

d3pX

ð2πÞ3
1

2EX
LμνWμν 1

P2;
ð10Þ

where againp refers to final-statemomenta,withX denoting
the hadronic final state, and the factor 1=jvA − vlj ¼ 1 in
the lab frame (neglecting the lepton mass). Note that for
convenience, we absorbed the factors 1=2Ein

AðlÞ in the

hadronic (leptonic) tensor, and we are also embedding the
delta function in the hadronic tensor. Formomentum transfer
jqj≳ 400 MeV, the space resolution of the virtual boson
given by ∼1=jqj is such that individual nucleons can be
resolved and the scattering off a nuclear target reduces to the
incoherent sumof elementary scattering processes involving
individual bound nucleons. Hence, the hadronic final state
can be approximated by the factorized expression

jΨfi ¼ jpi ⊗ jΨA−1
f i; ð11Þ

where jpi is a plane wave describing the propagation of the
final-state nucleon with momentum jpj, while jΨfiA−1
denotes the (A − 1)-body spectator system, which can be
either in a bound or unbound state. In addition, since we are
focusing on the primary interaction vertex, we have dropped
the prime in the intermediate variables.
Retaining the one-body current contribution only in

Eq. (9), the incoherent contribution to the hadronic tensor
is given by

Wμνðq;ωÞ ¼
X

h∈fp;ng

Z
d3kh
ð2πÞ3

1

2Ein
h

dE0Shðkh; E0Þ

× hkjjμ1b†jpihpjjν1bjkið2πÞ4δ3ðkh þ q − phÞ
× δðω − E0 þmN − EhÞ: ð12Þ

In the previous equation, q ¼ ph − kh is the momentum
transfer, kh ¼ ðEin

h ;khÞ and ph ¼ ðEh;phÞ denote the
energy and momentum of the initial and final nucleons,
respectively. Note that, for brevity, we have suppressed the
subscript h in the bras and kets. The spectral function yields
the probability distribution of removing a “hole” nucleon
h ∈ fp; ng with momentum kh from the target nucleus,
leaving the residual (A − 1) system with an excitation
energy E0, and it is defined as [90]
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Shðkh; E0Þ
¼

X
fA−1

jhΨ0jjki ⊗ jΨA−1
f ij2δðE0 þ EA

0 − EA−1
f Þ; ð13Þ

where the sum runs through the possible final states of the
A − 1 spectator nucleons, which can either be bound or in
the continuum.
The spectral function of finite nuclei is generally

expressed as a sum of a mean-field (contribution) and a
correlation contribution. The first one describes the low-
momentum and removal-energy region, and is associated
with the residual A − 1 system being in a bound state. The
correlation contribution includes unbound A − 1 states for
the spectator system, in which at least one of the spectator
nucleons is in the continuum, and it provides strength in
the high-momentum and -energy region. The nuclear
spectral function has been evaluated within different
semiphenomenological [91,92] and ab initio many-body
methods [93,94], including quantum Monte Carlo [95].
The one employed in this work has been obtained within

the correlated basis function theory of Ref. [91].1 The low-
momentum and -energy contribution is determined by
adjusting mean-field calculations to reproduce (e, e0p)
scattering measurements. The correlation part is derived
within the local-density approximation by convoluting the
correlation component of the spectral function obtained
within the correlated basis function theory for isospin-
symmetric nuclear matter for a given value of the density.
Additional details regarding the spectral function and, in
particular, corrections to the impulse approximation stem-
ming from final-state interactions appear in Sec. III B.
The spectral function is normalized as

Z
d3kh
ð2πÞ3 dE

0Shðkh; E0Þ ¼
�
Z; h ¼ p;

A − Z; h ¼ n;
ð14Þ

where Z denotes the number of protons in the nucleus.
After applying the factorization ansatz to the hadronic final
state, the phase-space factor of Eq. (10) can be rewritten as

d3pf

ð2πÞ3
1

2Ef
→

d3ph

ð2πÞ3
1

2Eh

X
fA−1

; ð15Þ

where the discrete sum over the states of the remnant
nucleus is embedded in the spectral function as shown
in Eq. (13).
A complete estimate of the theoretical uncertainty

associated with the cross-section calculation would require
assessing the error in the many-body calculation of the
spectral function, the inputs used to describe the interaction
vertex (i.e. couplings, form factors), and the factorization of
the hadronic final state. Achieving this goal is highly

nontrivial and has not been included in this work but
future developments are discussed in Sec. VII.

III. INCLUSIVE ELECTRON-NUCLEUS
SCATTERING

A. Theoretical preliminaries

Nowweproceed to the concrete calculation of the electron-
nucleus cross section, which will be the basis of all compar-
isons between ACHILLES and electron-carbon scattering
data. We focus first on comparisons between our theoretical
predictions and experimental data for the quasielastic inclu-
sive electron-12C cross section using the aforementioned
factorization scheme and spectral function formalism. For
those kinematics in which FSIs are expected to be negligible,
the inclusive cross section provides a benchmarking test for
the model of the primary interaction [jVj2 in Eq. (8)], since
this observable is unaffected by the semiclassical propagation
in the nuclear medium, and hence by the INC.
The inclusive double-differential cross section for the

scattering of an electron on an at-rest nucleus via one-photon
exchange is written as [see Eqs. (2)–(4) for notation]

�
d2σ

dEedΩe

�
¼ α2

Q4
E2
eLμνWμν; ð16Þ

where α ≃ 1=137 is the fine-structure constant, andΩe is the
scattering solid angle in the direction specified by pe. The
energy and the momentum transfer are denoted by ω and q,
respectively,withQ2 ¼ −q2 ¼ q2 − ω2. The lepton tensor is
fully determined by the lepton kinematic variables and,
neglecting the electron mass, it is given by

Lμν ¼ 1

Ein
e Ee

ðkμepν
e þ pμ

ekνe − gμνke · peÞ: ð17Þ

The one-body electromagnetic current operator entering
Eq. (12) is written as

jμ1b ¼ F 1γ
μ þ iσμνqν

F 2

2mN
; ð18Þ

where the isoscalar (S) and isovector (V) form factors, F 1

and F 2, are given by combination of the Dirac and Pauli
ones, F1 and F2, as

F 1;2 ¼
1

2
½FS

1;2 þ FV
1;2τz�; ð19Þ

where τz is the isospin operator, and

FS
1;2 ¼ Fp

1;2 þ Fn
1;2; FV

1;2 ¼ Fp
1;2 − Fn

1;2: ð20Þ

TheDirac and Pauli form factors can be expressed in terms of
the electric and magnetic form factors of the proton and
neutron as1Details about the spectral function can be found inAppendixA.
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Fp;n
1 ¼ Gp;n

E þ τGp;n
M

1þ τ
; Fp;n

2 ¼ Gp;n
M −Gp;n

E

1þ τ
; ð21Þ

with τ ¼ Q2=4m2
N . Therefore, the electromagnetic current

can be schematically written as jμ1b;EM ¼ jμγ;S þ jμγ;z where
the first is the isoscar term and the second is the isovector
multiplied by the isospin operators τz. The above set of
equations can be readily extended to the electroweak case
and highermultiplicity processes; an automation for arbitrary
leptonic tensors was developed in [79].
The use of a realistic spectral function combined with a

factorization scheme has proven to reproduce a large
fraction of the available electron scattering data (see
Ref. [96] and references therein). Over the past few years,
the factorization scheme has been extended to account for
two-nucleon currents and pion-production mechanisms
[59,88,97–100]. The focus of the present work is the
quasielastic region, and we leave the implementation of
additional channels to a future work.

B. Comparison to data

The first comparison between ACHILLES and data can
be found in Fig. 1 (for technical details of ACHILLES, see
Appendix B). We present the ACHILLES inclusive e-C
quasielastic cross section (red histogram) against data
as a function of the energy transfer ω. Data are taken
from several experiments at different incoming electron
energy and outgoing electron angle, from top left to bottom
right: 730 MeV and 37° [101]; 961 MeV and 37.5° [102];
1300MeVand 37.5° [102]; and 2500MeVand 15° [103]. In
all four cases, the quasielastic prediction of ACHILLES
matches the data well or is slightly below it. Although other
cross-section components are not included in ACHILLES
and could contribute to the first peak, we find this level of
agreement quite promising. Note that meson-exchange
currents provide additional strength in thedip regionbetween
the quasielastic and the resonance peak [84]. The second
peak has large contributions from resonance production, a
mechanism which has not yet been implemented in

FIG. 1. Comparison of the ACHILLES event generator to electron-carbon scattering data. Top left: scattering with an incoming energy
of 730 MeVat an angle of 37°; data are from [101]. Top right: scattering with an incoming energy of 961 MeVat an angle of 37.5°, data
are from [102]. Bottom left: scattering with an incoming energy of 1300 MeV at an angle of 37.5°, data are from [102]. Bottom right:
scattering with an incoming energy of 2500 MeV at an angle of 15°, data are from [103].
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ACHILLES, and therefore it is not expected to be reproduced
by the present version of the code.
Given the large Q2 values of the data displayed in Fig. 1,

FSIs between the struck nucleon and the remnant nucleus are
expected to be small and have been neglected in the initial
hard interaction. For kinematics in which the factorization
scheme is not expected to hold, different approaches have
been developed to account for quantum-mechanical effects
in FSIs in the quasielastic region. To correct the factorization
scheme and spectral function results, the real part of an
optical nuclear potential [70] is added to the free-energy
spectrum of the outgoing nucleon and the cross section is
convolutedwith a folding function to account for rescattering
effects [55,104]. In the relativistic mean-field approach, FSIs
between the outgoing nucleon and the residual nucleus are
accounted for by solving the associated Dirac equation using
the same mean field as used for the bound nucleon [105].
Recently, this approach has been employed to correct for
quantum-mechanical FSIs in semi-inclusive neutrino-
nucleus scattering [106]. Including these corrections modi-
fies the inclusive cross section, shifting the quasielastic peak
to lower-energy transfers and redistributing the cross-section
strength to the high-energy-transfer tail [107].
However, the aforementioned approaches donot allow for a

fully accurate treatment of exclusive processes. In this regard,
INCs are a common tool [31–33,35,38,41,42,45,46,68] for
modeling the total hadronic state that escapes the nucleus
after the hard interaction vertex, as described by Eq. (8),
and that could be observed in the detector. INCs use
probabilities to determine if an additional scattering occurs.
This probabilistic treatment, at least in current algorithms,
neglects interference effects. Therefore, by definition INCs
leave inclusive observables, such as the differential cross
section displayed in Fig. 1, unchanged.
It is important to note that the FSI modeled by folding

functions and the FSI modeled by INCs arise from the same
physics. The major differences between the two approaches
are the approximations used to include the imaginary part
of the nuclear potential. Folding functions account for the
effects of FSI including interference effects at the cost of
integrating out information on the final-state nucleons. On
the other hand, INCs capture the exclusive final-state
nucleons at the cost of neglecting the interference effects.
Therefore, combining the two calculations into a single
code results in effectively double counting the imaginary
part of the nuclear potential. Implementing interference
effects into INCs is beyond the scope of this work.
Having established that our interaction model of qua-

sielastic interactions [i.e. V in Eq. (8)] reproduces the
experimental data, we next move to comparisons with
exclusive observables.

IV. INTRANUCLEAR CASCADE

Simulating the propagation of the nucleon involved in the
hard scattering out of the nucleus is a vital component of a

neutrino event generator. Intranuclear cascade models are a
class of algorithms used to reproduce the imaginary part of
the nuclear potential using stochastic Monte Carlo methods.
Traditional techniques relying on a semiclassical approxi-
mation, in which particles propagate classically until they
interact based on quantum-mechanically computed cross
sections, do not capture the quantum-mechanical compo-
nents involved in this process. Recently, a new technique for
intranuclear cascades has been proposed and validated
against hadron scattering data in Ref. [45] to begin capturing
these effects. Figure 2 shows the programmatic flow of our
cascade model.
In this algorithm, the spatial distribution of neutron and

protons are sampled from nuclear configurations obtained
from Quantum Monte-Carlo calculations fully retaining
correlation effects. Their initial momentum is generated
according to a local Fermi-gas model. Once the target and
the projectile are initialized, the particles are propagated
using relativistic kinematics. Currently, the correlation
between nucleons is neglected when initializing the cas-
cade. Including these effects is left to a future work, when
including the meson-exchange current into the hard inter-
action. In the simplest approximation, these particles follow
straight-lines trajectories, but an option to bend these
trajectories using nuclear potentials is discussed in the
next section. We follow a timelike approach for the
propagation; at each step of the propagation δt we check
if an interaction occurred according to the nucleon-nucleon
scattering cross section using either a Gaussian or cylin-
drical probability model depending on the impact param-
eter. Originally, the only in-medium effect was taken to be
the Pauli principle, and below we discuss updates using
the nuclear potential. We keep two separate lists of
“propagating” and “spectator” particles. At the beginning
of the event, the projectile is the only propagating particle.
Afterwards, each particle that has collided with a spectator
is promoted to a propagating one, while all the others are
still labeled as spectators. The particles are propagated until
they reach the surface of the nucleus where the nucleon is
either recaptured or escapes, based on its energy.

A. Nuclear potential

In electron-nucleus and neutrino-nucleus scatterings,
inclusive quantities may be well described without detailed
modeling of what happens when nucleons are propagating
out of the nucleus. The description of exclusive quantities is
more demanding. While nucleon-nucleon interactions are
possibly the most important effects to include in an INC
model, the presence of a mean-field nuclear potential may
trap struck nucleons or deflect their trajectory, effectively
changing the number, momentum and direction of outgoing
particles. To account for this effect, we have implemented
two different options as a background potential, which
depends on both the position r and momentum p of the
propagating nucleon. Note that in our approaches, only the
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real part of the potential is included, since the imaginary
part is captured by the hard scattering in the intranuclear
cascade. A similar approach of including the potential into
cascades was studied in Ref. [108]. The first potential
considered is a nonrelativistic potential defined by a three-
parameter fit to single-particle energy of infinite nuclear
matter [69], which is consistent with the variational ground-
state calculations of Wiringa, Fiks, and Fabrocini (WFF)
[109]. Its functional form is given as

Uðp0; rÞ ¼ α½ρðrÞ� þ β½ρðrÞ�
1þ ðp0=Λ½ρðrÞ�Þ2 ; ð22Þ

where p0 is the modulus of the three-momentum of
the propagating nucleon, while α, β, and Λ are fit to
reproduce the single-particle energy of nuclear matter as
obtained from the Urbana v14 + TNI Hamiltonian, and ρðrÞ
is the local nuclear density at radius r. The values of the
aforementioned variables are

αðρÞ ¼ 15.52ðρ=ρ0Þ þ 24.93ðρ=ρ0Þ2 MeV; ð23Þ

βðρÞ ¼ −116ðρ=ρ0Þ MeV; ð24Þ

ΛðρÞ ¼ 3.29 − 0.373ðρ=ρ0Þ fm−1; ð25Þ

where ρ0 ¼ 0.16 fm−3 is the saturation density of nuclear
matter. The other potential we adopted is based on the work
of Ref. [70] where proton-nucleus elastic and reaction
cross-section data are fitted to determine global proton-
nucleus optical potentials for energies between 20 and
1040 MeV for several nuclear targets, including carbon.
The fitting can be done with potentials in a Dirac equation
or Schrödinger equation. For the former case, the Dirac
equation was used in the formö

fα · p0 þ β½mþ Usðr; E0Þ� þ U0ðr; E0Þ þ VcðrÞ�gψðrÞ
¼ E0ψðrÞ;

FIG. 2. The proposed algorithm for the INC model. This figure is reproduced from Ref. [45].
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where VcðrÞ denotes the Coulomb potential at a given
nuclear radius r, which is either computed from Woods-
Saxon–like charge distribution [110] or taken from data
when they are available, and E0 is the energy of the
propagating nucleon. The quantities determined by the
fitting procedure are Usðr; E0Þ and U0ðr; E0Þ, the scalar and
vector optical potentials, respectively; they include a real
and an imaginary part. To obtain an effective optical
potential for the Schrödinger equation, it is helpful to write
down a standard reduction of the Dirac equation to second-
order form. The equation for the upper two components is

fp02 þ 2E0ðUeffðr; E0Þ þUSOðr; E0ÞL · SÞgψuðrÞ
¼ ½ðE0 − VcðrÞÞ2 −m2�ψuðrÞ; ð26Þ

where S and L are the total spin and angular momentum
of the nucleus, respectively. We can identify Ueff and USO
as effective Schrödinger-equation central and spin-orbit
potentials that can be constructed from Usðr; E0Þ and
U0ðr; E0Þ. Note that the Schrödinger-equation central
potential also includes the Darwin term accounting for
relativistic corrections, and its effect is more pronounced in
the nuclear interior [111]. The spin-orbit term is signifi-
cantly smaller than the central one, and for this reason it has
been neglected in the present work. In the remainder of this
paper, we will denote the potential obtained from Ref. [70]
retaining only the central contribution as the Schrödinger
potential.
There are two ways that the potential plays a role within

the cascade algorithm. Firstly, the potential modifies the
hard interactions that occur between nucleons, often
referred to as in-medium modifications in the literature.
In this work, we only consider the nonrelativistic in-
medium corrections as implemented in Ref. [112]. To
account for in-medium corrections due to the nuclear
potential, we modify the differential cross section using

dσ0

dΩ
¼ jp0

1 − p0
2j

m

���� p0
1

m�ðp0
1; ρÞ

−
p0
2

m�ðp0
2; ρÞ

����
−1

×
m�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp02

3 þ p02
4 Þ=2

p
; ρ
�

m
dσ
dΩ

; ð27Þ

where p0
1; p

0
2 are the momenta of the incoming propagating

nucleons, and p0
3; p

0
4 are the momenta of the outgoing

propagating nucleons. The effective nucleon mass m� is
given as

m�ðp0; ρÞ ¼ p0
�
p0

m
þ dUðp0; ρÞ

dp0

�
−1
: ð28Þ

This in-medium correction approximates the in-medium
matrix element to be the same as the free matrix element,
and that Uðp0

1; ρÞ þ Uðp0
2; ρÞ ≈Uð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp02

1 þ p02
2 Þ=2

p
; ρÞ. We

leave the expansion to the relativistic case to a future work.

Note that we assume the potential to remain the same
regardless of INC dynamics. While this is certainly an
approximation that will fail when the nucleus suffers a
“hard” breakdown, it should be reasonable when the
number of exiting nucleons is much lower than the number
of nucleons in the nucleus.
We also consider the long-distance effect of a back-

ground potential on the nucleon as it propagates through
the nucleus. We simulate a particle propagating by classical
Hamiltonian evolution of the system. The equations of
motion can be written as

dp
dt

¼ −
∂H
∂q

¼
� ðUs þmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ ðUs þmÞ2
p ∂Us

∂jqj þ
∂U0

∂jqj
�
q̂;

dq
dt

¼ ∂H
∂p

¼
�ðUs þmÞ ∂Us

∂jpj þ jpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðUs þmÞ2

p þ ∂U0

∂jpj
�
p̂: ð29Þ

The equations above are clearly a set of coupled differential
equations. In order to maintain conservation of energy, a
symplectic integrator is used for the evolution. Since these
differential equations are coupled, traditional symplectic
integrators will not work. It was shown in Ref. [113] that it
is possible to use symplectic integrators by working with an
augmented Hamiltonian in an extended phase space.
Appendix C provides technical details.

V. COMPARISON WITH EXCLUSIVE
OBSERVABLES

We now proceed to the analysis of exclusive observables
in electron-carbon scattering. Exclusive quantities are
particularly relevant for neutrino experiments, especially
those that are capable of tracking and identification of
individual particles with good precision, for example liquid
argon time-projection chambers, like the SBN [114] and
DUNE [3] detectors, and other detector technologies like
the gas argon time-projection chambers [115] or 3D
scintillation trackers [116]. This capability allows these
detectors to reject backgrounds and optimize searches
more efficiently. If we take as an example the recent
MicroBooNE search for single photons [117] as an
explanation of the MiniBooNE low-energy excess [118],
we can appreciate the importance of exclusive quantities:
the one-photon–zero-proton sample has a background rate
7 times higher than the one-photon–one-proton sample, and
this can largely be attributed to the inability to reconstruct
theΔ → Nγ invariant mass in the absence of a proton track.
Several other examples can be made, but the point is that
describing correctly exclusive observables will be crucial in
current and future neutrino experiments.
The CLAS and e4v Collaborations have recently

reported a study of energy reconstruction in electron-
nucleus scattering data, using methods employed in
neutrino experiments [76]. The collaborations analyzed
electron scattering data taken with CLAS at JLab for three
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different beam energies: 1.159, 2.257, and 4.453 GeV. The
detection thresholds for hadrons were similar to thresholds
at current and future neutrino experiments. The analysis
focused on the reconstruction of several exclusive and
differential quantities, such as incoming electron energy
reconstruction for 0π events, calorimetric reconstructed
energies for 1p0π events, transverse variables, proton
multiplicity, and so on.
In what follows, we describe the comparison between

our generator and CLAS data, for all available observables,
focusing on quasielastic electron-carbon scattering. The
CLAS/e4v collaborations have reweighted their data by a
factor Q4=GeV4, where Q2 ¼ −q2 is the four-momentum
transfer which can be obtained with final and initial
electron kinematics. This was done to have a better
comparison with neutrino events: at these energies, while
electron-nucleus scattering is dominated by photon
exchange, neutrino-nucleus scattering can be very well
approximated by a four-fermion interaction. Here, we do
the same in an event-by-event basis.
We adopt the same CLAS acceptances and mimic the

energy resolution as described in Ref. [76], after correc-
tions for undetected particles. The electron and proton
energies are smeared by 1.5(0.5) and 3(1)% for the 1.159
(2.257 and 4.453)-GeV beams, respectively. Protons were
detected with momentum pp > 300 MeV and angle with
respect to the beam direction 12° < θp. Electrons were
detected with energy Ee > 0.4, 0.55, and 1.1 GeV for
Ebeam ¼ 1.159, 2.257, and 4.453 GeV, as well as angles
with respect to the beam direction

θie > θi0 þ
θi1

pe½GeV�
; ð30Þ

where pe is the electron momentum, i ¼ 1, 2, 3 refers to the
three beam energies in increasing order, θi0 ¼ 17°; 16°; 13.5°
and θi1 ¼ 7°; 10.5°; 15°. Sincewe do not simulate production
and propagation of pions, we do not list their accep-
tances here.
We start with the double-differential cross section

d2σ=dΩedEe, where Ωe is the solid angle and Ee is the
outgoing electron energy, as a function of the energy
transfer ω≡ Ein

e − Ee, for fixed outgoing electron angle
of 37.5° with respect to the beam axis and beam energy
Ein
e ¼ 1.159 GeV; see Fig. 3. Note that the beam energy

used in this figure differs from those used in any panels of
Fig. 1. Hereafter we present ACHILLES results for several
different variations on the implementation of the INC,
namely, the nucleon-nucleon interaction model (Cylinder
vs Gaussian; see Ref. [45]) and the real part of the nuclear
potential (WFF, Schrödinger or none). Here, “none” is used
as a baseline prediction for the model described in
Ref. [45]. Different treatments will be color coded and
indicated by an inset in all figures. The spread among
the lines can be interpreted as one of the theoretical

uncertainties on the lepton-nucleus interaction modeling.
A comprehensive analysis of theoretical uncertainties is
left for future work. Inclusive observables, such as those
displayed in Fig. 3 are not affected by the semiclassical
intranuclear cascades. Therefore, the different lines lie on
top of each other.
At low-energy transfer, quasielastic scattering domi-

nates the cross section. In this region, particularly for
0.1 < ω < 0.4 GeV, ACHILLES presents a promising
description of the data, except for the small-energy region
where the theory underestimates the data. The agreement
with data would be improved by the one- and two-body
current-interference effects neglected in intranuclear
cascades (as discussed at the end of Sec. III B), yielding
an enhancement of the strength at low ω. However, a naive
combination of our intranuclear cascade and a folding
function would result in a double counting for exclusive
observables, as discussed above. For this reason it has not
been included in our calculation.
The missing strength in the quasielastic region and

towards higher-energy transfers is largely ascribed to
meson exchange, resonance production and deep inelastic
scattering contributions currently neglected in our analy-
sis [84]. As one goes beyond this region towards higher-
energy transfers, the quasielastic contribution shrinks and
one expects other components of the cross section to be
more relevant, which explains the discrepancy between the
data and our generator. Overall, this level of agreement is an
encouraging result.
Another comparison we make is on the lepton energy

reconstruction assuming quasielastic scattering. The qua-
sielastic energy reconstruction is done based off the
methodology used by water Cherenkov detectors, such
as MiniBooNE and T2K. In this case, only charged leptons
and pions are measured. Assuming that the neutrino
scatters quasielastically from a stationary nucleon within
a nucleus, its incoming energy can be reconstructed as

FIG. 3. Comparison of the inclusive cross section for an
electron beam of 1159 MeV with outgoing angle of 37.5°. Data
are taken from Ref. [76].
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EQE ¼ 2mNϵþ 2mNEl −m2
l

2ðmN − El þ pl cos θlÞ
; ð31Þ

where mN is the mass of the nucleon, ϵ is the average
nucleon separation energy (we use 21 MeV for carbon),
ElðplÞ is the energy (momentum) of the outgoing lepton,
and θl is the angle of the outgoing lepton with respect to
the beam axis. The different scheme choices discussed in
this paper are compared to the measured EQE distribution
for a 1.159-GeV electron beam on carbon from the CLAS
data [76] in Fig. 4.
Here the peak around the beam energy is dominated by

the quasielastic contribution, while the tail towards lower
values of EQE is dominated by meson-exchange currents
and resonance production. Therefore, we only expect our
results to approximately reproduce the peak, which is what
is shown. The agreement with the data for larger values of
EQE is likely to be improved by the interference effects
neglected by intranuclear cascades. However, a more
detailed analysis of the discrepancy will be carried out
in the future when meson-exchange currents are included in
ACHILLES. Analogously to Fig. 3, this distribution has no
information about the outgoing protons contained within it.
Therefore, we expect that the prediction should be insen-
sitive to the cascade parameters, as can be seen in the small
spread of the colored lines.
In liquid argon time-projection chamber experiments,

such as MicroBooNE and DUNE, the ionization energy is
currently the primary means to reconstruct the incoming
neutrino energy. In this case, the calorimetric energy is
defined as

Ecal ¼
X
i

ðEi þ ϵiÞ; ð32Þ

where Ei is the energy of the lepton or pions or the kinetic
energy of the protons, and ϵ is the average nucleon

separation energy. In the CLAS data, Ecal was calculated
for events that contained exactly one detected proton and
zero detected pions [76]. The comparison between the
different schemes and the data is shown in Fig. 5, with
beam energies of 1159 MeV in the top panel, 2257 MeV in
the middle panel, and 4453 MeV in the bottom panel. Since
neutrons do not contribute to the calorimetric energy, we
expect this observable to be sensitive to the modeling of the
intranuclear cascade. The peak of these distributions corre-
spond to the beam energy and is dominated by the
quasielastic contribution. The tail towards lower energies

FIG. 4. Comparison of the quasielastic energy reconstructed for
an electron beam of 1159 MeV. Data are taken from Ref. [76].
The definition of EQE can be found in Eq. (31). The red dashed
vertical line marks the true beam energy.

FIG. 5. Comparison of the calorimetric energy reconstructed
for an electron beam of 1159 MeV (top), 2257 MeV (middle),
and 4453 MeV (bottom). Data are taken from Ref. [76]. The
definition of Ecal can be found in Eq. (32).
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is due to the intranuclear cascade, a result of the proton
interacting with other nucleons as it escapes the nucleus, as
well as nonquasielastic interactions, which are not currently
implemented in ACHILLES. The missing strength in the
higher Ecal region may arise from nonunitary contributions
from the FSI. These are currently neglected in ACHILLES
and will be investigated in a future work. Around the peak,
the largest difference in peak height due to distinct imple-
mentations of the INC is about 7%. To be conservative, we
will quote the INC theory uncertainty as the largest differ-
ence among all INC implementations. Note that the Ecal
distributions obtained with ACHILLES are slightly more
peaked around the beam energy than the data.
It is worth to mention that at present, we do not separate

the mean field from the correlation component of the
spectral function when simulating lepton-nucleus scatter-
ing. While this procedure is accurate to reproduce inclusive
observables, it is likely to overcount single-nucleon emis-
sion events. Work is in progress to separate the two
components of the spectral function in ACHILLES and
start the INC cascade consistent with the multiplicity of the
primary vertex. These changes should improve the agree-
ment with the peak of the data displayed in Fig. 5.
To further study the accuracy of event simulation, the

CLAS and e4v collaborations studied three different trans-
verse-momentum-related observables. The first observable
is the transverse momentum defined as

pT ¼ pT
e þ pT

p; ð33Þ

where pT
e;p is the transverse vector momentum with

respect to the beam axis for the electron and proton,
respectively. Note that a lepton scattering off protons at
rest would only lead to pT ≡ jpT j ¼ 0. Fermi motion of
nucleons in the nucleus will lead to a distribution of pT

around 100–200 MeV,2 while the intranuclear cascade can
introduce a long tail towards large values of pT . This
observable is compared in Fig. 6 to the e4v data. The
cascade tends to broaden the spectrum in the quasielastic
region, increasing the maximum value observed. Near the
quasielastic peak, we see that ACHILLES overshoots the
data by 10–20%, while the spread due to different INC
implementations is about 6%. The pT > 0.2-GeV region
has significant contributions from nonquasielastic proc-
esses (in particular from meson-exchange currents and
resonance production) and nonunitary contributions from
FSIs. The same applies to disagreements in the following
comparisons in this section.
To isolate contributions from different nuclear processes,

a cut is applied in the pT variable before constructing the
Ecal distributions. The results are shown in Fig. 7 for a cut
of pT <200MeV (top panel), 200 MeV < pT < 400MeV

(middle panel), and pT > 400 MeV (bottom panel). Again,
intranuclear cascades affect the low-Ecal tail significantly,
together with nonquasielastic interactions. This is most
evident in the pT > 400-MeV plot, in which both effects
are expected to have large impact. We find a theory
uncertainty associated with the INC implementation of
5 to 6% near the peak of all distributions.
The other two observables we use are [119]3

δαT ¼ arccos
−pT

e · pT

pT
epT ; ð34Þ

δϕT ¼ arccos
−pT

e · pT
p

pT
epT

p
: ð35Þ

While it is hard to fully validate ACHILLES with those
observables, since we only have quasielastic scattering
implemented, we believe that showing these distributions is
still meaningful—overshooting the data in any region only
including the quasielastic prediction would necessarily
indicate an issue with either the interaction model or the
INC. Note that pT ¼ −qT , so δαT is the angle between the
transverse momentum transfer and the outgoing electron
transverse momentum. Our results for δαT are shown in
Fig. 8. In the limit of no final-state interactions, pT is
simply the initial proton transverse momentum. Since the
initial proton momentum is isotropic, δαT should also be
isotropic in this limit. The increase in the high-angle region
of the δαT distribution can be attributed to intranuclear
cascades and nonquasielastic interactions as discussed in
Refs. [119–121]. We find an INC theory uncertainty in δαT
of about 10%.
On the other hand, δϕT measures the opening angle

between the proton and the transverse momentum transfer.

FIG. 6. Comparison of the perpendicular momentum for an
electron beam of 2257 MeV. Data are taken from Ref. [76]. The
definition of pT can be found in Eq. (33). The vertical dashed red
lines denote the location of the cuts on pT at 200 and 400 MeV.

2Only the Fermi momentum component transverse to the beam
axis contributes to pT .

3Note there are missing minus signs in Eqs. (7) and (8) of
Ref. [76].
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We present the comparison to data in Fig. 9. In the absence
of both final-state interactions and initial proton momen-
tum, we have pT

p ¼ −pT
e and thus δϕT is a delta function at

zero. In the presence of Fermi momentum, the struck
proton has a nonzero momentum, kp ≠ 0, which smears the
δϕT distribution around zero by OðkTp=pT

e Þ. Final-state
interactions help to smear out the distribution to larger
opening angles, partially explaining the high-δϕT tails in
Fig. 9. The INC uncertainty is found to be about 5%.
Finally, notice that observables for which final-state

interactions play an important role offer the greatest

sensitivity to the implementation of the INC model. This
sensitivity is visible in the spread in the color histograms
and is particularly evident, for example, in the Ecal
distribution for higher pT (see the bottom panel of
Fig. 7) and in the high-angle region of the αT distribution
(see top and middle panels in Fig. 8).

VI. OTHER OBSERVABLES

In this section we propose additional key observables
that could be measured in current and future electron-
nucleus scattering experiments, such as CLAS12 [10] or
LDMX [122]. The goal is to encourage the experimental

FIG. 7. Comparison of the calorimetric energy reconstructed
for an electron beam of 2257 MeV, with a cut on the
perpendicular momentum of pT < 200 MeV (top), 200 MeV <
pT < 400MeV (middle), and pT > 400 MeV (bottom). Data are
taken from Ref. [76].

FIG. 8. Comparison of δαT for an electron beam of 1159 MeV
(top), 2257 MeV (middle), 4453 MeV (bottom). Data are taken
from Ref. [76]. The definition of δαT can be found in Eq. (34).
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collaborations to present such observables that will ulti-
mately serve to validate lepton-nucleus interaction models.
Let us start with an exclusive differential observable that

is highly sensitive to final-state interactions: the proton
multiplicity energy spectrum. As we currently do not have
pions propagating in our intranuclear cascade modeling in
ACHILLES, we focus on np0π events. Taking the 2.257-
GeV electron beam as an example, for every event, we
count the number of protons that pass experimental cuts
(see Sec. V). Then we take all leading-energy protons in
events with at least one proton and build their energy
spectrum. We repeat the procedure for all second- and

third-leading protons, in events with at least two or three
protons, respectively.
The results of this procedure are the proton energy

spectra shown in Fig. 10, from the leading proton in the
upper panel to the third-leading proton in the lower panel.
We would expect this distribution to be highly sensitive to
the intranuclear cascade model. INCs may raise the proton
multiplicity, contributing to the spectra of second and
third protons, and tend to distribute the energy among

FIG. 9. Comparison of δϕT for an electron beam of 1159 MeV
(top), 2257 MeV (middle), 4453 MeV (bottom). Data are taken
from Ref. [76]. The definition of δϕT can be found in Eq. (35).

FIG. 10. Energy spectra of the nth most energetic proton, from
the most (upper panel) to the third-most energetic protons (lower
panel) for a beam energy of 2.257 GeV.
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all outgoing protons, shifting the leading-proton spectrum
towards lower energies. This is indeed observed when
comparing the INC uncertainties in peak regions in the
three panels of Fig. 10, which are approximately 3, 12, and
15%, from top to bottom. We also expect that other cross-
section channels will significantly contribute to this observ-
able in a nontrivial way. For example, while DIS occurs for
higher-momentum transfer, hadronization followed by
final-state interactions may lead to a large multiplicity of
low-energy protons. The proton multiplicity energy spectra
for all interaction channels will be a subject of a future
publication.
In the same vein, we also propose the proton multiplicity

angular spectra. We take again the 2.257-GeV electron
beam as an example. We plot the angle of the leading,
second, and third protons with respect to the beam axis in
Fig. 11, from the leading proton in the upper panel to the
third-leading proton in the lower panel. Note that we have
decided to order the protons according to their energies.
Our main motivation lies in the fact that higher-energy
protons are more relevant to the reconstruction of neutrino
energies, and therefore a correct description of the leading
protons is more relevant than the subleading ones. Again,
we expect intranuclear cascade models to play a crucial role
here, as well as the other interactions channels, which will
be studied in a future publication.
Another interesting observable is the angle between the

sum of the momenta of all visible outgoing particles with
respect to the beam axis. The only particle we take to be
invisible here are neutrons. We apply the 1p0π selection
cuts from the CLAS/e4v analysis; see Sec. V. This angle
would be zero in the case of an electron scattering on a free
proton at rest. This observable is motivated by the physics
of atmospheric neutrinos. In this sample, the incoming
neutrino direction needs to be reconstructed in order to
estimate the neutrino path through the Earth and in the
oscillation probabilities. A measurement of atmospheric
neutrinos in the 0.1–1-GeV scale at the DUNE experiment
could provide nontrivial information on the CP violation
phase [123], and could also be used to perform a tomog-
raphy study of the Earth, contributing to our understanding
of the chemical composition of its core [124].
To be more precise, we define the reconstructed beam

angle in electron-nucleus scattering as

cos θrec ≡ k̂e · pout

jpoutj
; ð36Þ

where pout is the sum of all momenta of visible outgoing
particles and k̂e is a unit vector in the beam direction. The
reconstructed angle θrec can deviate from zero for several
reasons: Fermi motion, as it adds momentum to the
incoming proton that is not accounted for in Eq. (36);
intranuclear cascade, as a proton may scatter off a neutron
which in turn may be invisible to most detectors of interest;

and nuclear potential, which may deflect the outgoing
proton. Our results are found in Fig. 12. The spread around
θrec ¼ 0 can be attributed to Fermi motion and is of order
Δθrec ∼ pF=ke, where pF is the Fermi momentum. The
tail at large angles is due to final-state interactions, as
protons may scatter off neutrons and deflect significantly.
Nonquasielastic interactions should further populate the
high-θrec region.

FIG. 11. Angular spectra with respect to the beam axis of the
nth-most energetic proton, from the most (upper panel) to the
third-most energetic protons (lower panel) for a beam energy of
2.257 GeV.
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VII. CONCLUSIONS

We have presented a newly developed lepton-nucleus
event generator, ACHILLES. Our generator factorizes the
primary interaction vertex from the propagation of hadrons
throughout the nucleus, allowing for a great deal of
modularity, which is one of the pillars of ACHILLES.
Due to this modularity, ACHILLES can be used for gen-
erating either electron-nucleus or neutrino-nucleus scatter-
ing events, and the implementation of numerous scenarios
for physics beyond the Standard Model is straightforward.
We have validated quasielastic scattering against high-

quality, inclusive and exclusive, electron-carbon data,
including the recent CLAS/e4v reanalysis of existing data.
We find good agreement between data and simulation. A
complete estimate of the theoretical uncertainty associated
with the nuclear model and the current operator adopted in
the description of the primary interaction vertex is highly
nontrivial and has not been included in this work. A
promising avenue to quantify model dependence involves
testing different nuclear many-body methods, possibly
including different nuclear currents, form factors, and
Hamiltonians as inputs. A study along these lines has been
carried out in Ref. [95], where the inclusive differential
cross sections for electron scattering on 3He and 3H have
been evaluated using different many-body approaches
based on the same description of nuclear dynamics.
Inputs from lattice quantum chromodynamics (LQCD)
calculations, such as nucleon form factors and elementary
nucleon matrix elements, will be incorporated as they
become available. After evaluating the theoretical uncer-
tainties, investigations into theory-based parameter tuning
will be considered.
By varying model assumptions of the intranuclear

cascade (namely, different nucleon-nucleon interactions
models and nuclear potentials), we have estimated one
component of the overall theory uncertainty budget in
electron-nucleus scattering. For observables that are

sensitive to final-state interactions, the theoretical model
dependence associated with different intranuclear cascade
models is typically a 5–10% effect. However, to fully
quantify the error, a dedicated analysis of how ACHILLES
predictions depends upon the specific spectral function and
form factors of choice, as well as the factorization scheme
itself, is required to quantify the error. Moreover, the
dominant source of uncertainty is likely to be different
for different observables. We plan to carry out a systematic
uncertainty quantification of our results in the near future as
theory uncertainty estimates will be crucial for a precision
neutrino physics program, in particular for the SBN [114]
program as well as the DUNE [77] and Hyper-Kamiokande
[125] experiments.
We have also proposed novel observables that will allow

for further validation of lepton-nucleus scattering models.
Although we have only analyzed electron-carbon scattering
data in the quasielastic region, our code is readily extend-
able to generate neutrino-nucleus scattering events.
Comparison against neutrino scattering data, as well as
the inclusion of other primary interaction modes, such as
resonant scattering, meson-exchange current and deep
inelastic scattering, will be subjects of future publications.
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APPENDIX A: SPECTRAL FUNCTION

Here the spectral function from Ref. [91] used in this
comparison is reproduced marginalizing over the removal
energy (Fig. 13) and over the single-nucleon momentum
(Fig. 14). It is important to note that due to the modular
nature of ACHILLES that implementing different spectral
functions is a straightforward process.

FIG. 12. Reconstructed angle of incoming electron with respect
to the beam axis.
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APPENDIX B: ACHILLES TECHNICAL DETAILS

The calculation of the primary interaction within the
ACHILLES generator is separated into a leptonic and a
hadronic current as described in [79]. The use of currents
reduces the bookkeeping required to properly handle the
interference between different gauge bosons contributing in
the primary interaction. This is important when dealing
with BSM scenarios in which the dominant contribution to
the total cross section may arise from the interference with
the Standard Model. The setup of initial- and final-state
particles, along with the configuration files of all other
options within the generator is controlled with a set of
YAML files. Almost all parameters can be controlled

through the YAML input card without the need to recompile
the code.
While the core of ACHILLES is written in modern C++

for high performance, a general purpose FORTRAN90 wrap-
per is provided to interface ACHILLES to available nuclear
models. The wrapper consists of three components. Firstly,
the ACHILLES code provides an interface to the physical
constants and other useful common utilities, such as the
handling of particle information (particle id, mass, four-
momentum, position, status code, etc.). This helps to ensure
consistency of physical constants and particles throughout
the calculation. Secondly, the ACHILLES code expects the
nuclear model to define two functions that define the
interface between the C++ and FORTRAN90. The first
function handles the initialization of the nuclear model,
which gets passed as an argument, a filename and length to
be handled by the FORTRAN90 code. The second function is
expected to perform the calculation of the nuclear current,
as discussed in the previous paragraph. This function is
passed as input information about the four-momentum of
all the nucleons and the gauge boson for a given event, and
expects to be returned to the nuclear current. Finally, the
nuclear model needs to be registered with the ACHILLES
code to provide a means to enable simulations of the model
via the input card. This wrapper was used to include the
original, extensively validated spectral function codes
written in FORTRAN90 to be used for the nuclear initial
state into the ACHILLES generator.
The sampling of the phase space is performed with

the efficient multichannel [126] and recursive phase
space [127] discussed in [79] with importance sampling
handled by the VEGAS algorithm [128,129]. This makes the
code readily extendable to other reaction mechanisms and
higher-dimensional phase spaces. Based on the experience
of the LHC community, we do not expect any dramatic
decrease in computational speed as the multiplicity of the
final state increases beyond the extra time involved in
evaluating the matrix element and generating the additional
momentum. Finally, the major benefit in using these
sampling techniques is in the increased unweighting
efficiency during the event generation process.
Further details on the input card and application pro-

gramming interface (API) details on the interface will be
expanded upon in a manual to be released in the future.

APPENDIX C: SYMPLECTIC INTEGRATOR

As detailed in Ref. [113], in order to develop an explicit
symplectic integrator for nonseparable Hamilitonians can
be achieved by using an augmented Hamiltonian defined as
follows:

H̄ðq; p; x; yÞ≡HAðq; yÞ þHBðx; pÞ
þ ωHCðq; p; x; yÞ; ðC1Þ

FIG. 13. Single-nucleon momentum distribution obtained by
marginalizing the spectral function in Ref. [91] over removal
energy. The mean-field (red) and correlation (blue) contributions
are shown separately.

FIG. 14. Removal energy distribution obtained by marginal-
izing the spectral function in Ref. [91] over single-nucleon
momentum. The mean-field (red) and correlation (blue) contri-
butions are shown separately.
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where HAðq; yÞ and HBðx; pÞ are copies of the original
Hamiltonian, HCðq;p;x;yÞ¼jq−xj2=2þjp−yj2=2 acts as
a harmonic oscillator keeping the two solutions close in
phase space, and ω is a tunable parameter to control
the strength of the coupling. Explicit flows can then be
defined as

ϕδ
HA
∶

2
6664
q

p

x

y

3
7775 →

2
6664

q

p − δ∂qHðq; yÞ
xþ δ∂yHðq; yÞ

y

3
7775; ðC2Þ

ϕδ
HB
∶

2
6664
q

p

x

y

3
7775 →

2
6664
qþ δ∂pHðx; pÞ

p

x

y − δ∂xHðx; pÞ

3
7775; ðC3Þ

ϕδ
HC
∶

2
6664
q

p

x

y

3
7775 →

1

2

2
6664

�
qþ x

pþ y

�
þ RðδÞ

�
q − x

p − y

�

�
qþ x

pþ y

�
− RðδÞ

�
q − x

p − y

�
3
7775; ðC4Þ

where δ is the time step for the evolution, and

RðδÞ≡
	

cosð2ωδÞ sinð2ωδÞ
− sinð2ωδÞ cosð2ωδÞ



: ðC5Þ

A second-order method can be created from these three
Hamiltonians through the use of the symmetric Strang
splitting method [130]. This leads to a single evolution step
over a time step δ as

ϕδ
2 ¼ ϕδ=2

HA
∘ ϕδ=2

HB
∘ ϕδ

ωHC
∘ ϕδ=2

HB
∘ ϕδ=2

HA
: ðC6Þ

An lth-order integration method can be obtained through
the triple-jump method [131,132]:

ϕδ
l ¼ ϕγlδ

l−2 ∘ ϕðl−2Þγlδ
l−2 ∘ ϕγδ

l−2;

where γl ¼
1

2 − 21=ðlþ1Þ ; ðC7Þ

which will also be symplectic if ϕl−2 is symplectic. In this
work, we tune the values of ω and δ such that the results are
stable as a second-order integrator.
Figure 15 demonstrates the stability of the symplectic

integrator for a nucleon with a momentum of 250 MeV
perpendicular to the radius starting at a radius of r ¼ 1 fm
in the nonrelativisitc Wiringa potential (blue) and the
relativistic Cooper potential (red). The simulation is
run for 100,000 time steps, and the maximum-energy
deviation is of the order of 10−4. The deviation is periodic
in nature, which is a common feature for symplectic
integrators.

FIG. 15. Demonstration of the stability of the symplectic integrator. The left panel shows the trajectory of a nucleon with a momentum
of 250 MeV perpendicular to the radius starting at a radius of r ¼ 1 fm in the Wiringa potential (blue) and the Cooper potential (red)
over 100,000 time steps. The right panel shows the deviation from the starting energy as a function of the time step.
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