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We study the heavy quark symmetrywith the homogeneous bagmodel (HBM) and light-front quarkmodel
(LFQM) based on the decays ofΛ0

b → Λþ
c l−ν̄lðl ¼ e; μ; τÞ. In particular, we calculate various parameters in

the heavy quark expansions, including the Isgur-Wise functions and their first order corrections. The
parameters in the HBM are fitted from the mass spectra, while the ones in the LFQM are tightly constrained
by the heavy quark symmetry, granting the predictive power of our results. We explicitly obtain that
BðΛ0

b → Λþ
c e−ν̄eÞ ¼ ð5.69� 0.58; 5.35� 0.50Þ, BðΛ0

b → Λþ
c μ

−ν̄μÞ ¼ ð5.67� 0.58; 5.33� 0.49Þ, and

ΓðΛ0
b → Λþ

c τ
−ν̄τÞ=ΓðΛ0

b → Λþ
c μ

−ν̄μÞ ¼ ð0.3243� 0.0126; 0.3506� 0.0046Þ for the numerical values of
(HBM, LFQM). Our results of the branching fractions in both models agree well with the experimental data
and lattice QCD calculations. In addition, we find that the hard gluon corrections decrease the branching
fractions around 10%.

DOI: 10.1103/PhysRevD.107.033004

I. INTRODUCTIONS

Testing the lepton universality via beauty quark decays
has raised great interest in both theories and experiments
[1–12]. Recently, the LHCb collaboration has reported the
ratio of RΛc

¼ BðΛ0
b → Λþ

c τ
−ν̄τÞ=BðΛ0

b → Λþ
c μ

−ν̄μÞ, given
by [13,14]

RΛc
¼ 0.242� 0.026� 0.040� 0.059; ð1Þ

where the first and second uncertainties are systematic and
statistical in BðΛ0

b → Λþ
c τ

−ν̄τÞ, and the third one comes
from BðΛ0

b → Λþ
c μ

−ν̄μÞ, respectively. On the other hand,
the lattice quantum chromodynamics (LQCD) gives a
slightly larger ratio [15,16]. The results along with the
meson versions are summarized in Fig. 1 with RDð�Þ ¼
ΓðB → Dð�Þτ−ν̄τÞ=ΓðB → Dð�Þe−ν̄eÞ [17,18]. Notice that
the experimental values of RDð�Þ are larger than the
theoretical ones in contrast to RΛc

.
On the theoretical side, the form factors of Λ0

b → Λþ
c

provide ideal playgrounds for quark models. The main

reason is that at the massless limit of ðu; dÞ, there are only
two energy scales in ΛQ with Q ¼ ðb; cÞ, given by

Λ̄ ¼ lim
mQ→∞

ðMQ −mQÞ; εQ ¼ Λ̄=2mQ ≪ 1; ð2Þ

whereMQ and mQ are the heavy baryon and quark masses,
respectively. As εQ are tiny, the physical quantities are
Taylor expanded regarding εQ, namely the heavy quark
expansion (HQE).
We take the Isgur-Wise function as an illustration, given as

ξ̄ðωÞ ¼ ξðωÞ þ ðεb þ εcÞξkeðωÞ þOðε2cÞ; ð3Þ

where ξðωÞ is the Isgur-Wise function, ξkeðωÞ is the first
order correction, and ω¼vb ·vc with vQ the four-velocities
of ΛQ. As we will see in the next section, ξ̄ðωÞ governs the
recoil effects of the form factors. Although the experiments
can probe ξ̄ðωÞ only, Eq. (3) allows us to compare ξðωÞ and
ξkeðωÞ separately among the quark models, without the
dependence of the quark masses.
In this work, we take the homogeneous bag model

(HBM) and LFQM to illustrate the heavy quark symmetry.
These models are unimpressive but interesting in different
aspects. On the one hand, the HBM is a relativistic quark
model, in which u and d quarks can be safely taken as
massless, and the parameters are fitted from the mass
spectra. It is reliable at the zero recoil point (ω ¼ 1),
but unequal time commutators are needed for a boosted
state, causing several uncertainties as ω goes up. On the
other hand, the LFQM describes the bound state in a
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frame-independent way, in which only the relative motions
between the constituents are required [19–29]. The Lorentz

boosts in the front form are generated by the kinematical
operators, which leave the xþ ¼ 0 plane invariant [30,31],
so the unequal time commutation relations are not needed.
However, the LFQM suffers the uncertainties from the
parameters input. In addition, the Z-graph contributions
forbid us from computing the form factors in the timelike
region [32–38]. We will show that these aforementioned
difficulties are resolved by the heavy quark symmetry.
This paper is organized as follows. We present the

formalism of the HBM and LFQM in Sec. II. The
numerical results are given in Sec. III. Section IV is the
conclusion.

II. FORMALISM

We briefly review some of the results of the HQE, where
the details can be found in Ref. [16]. In the heavy quark
system, there are two popular parametrizations for the form
factors, given as

hΛþ
c jc̄γμð1 − γ5ÞbjΛ0

bi ¼ ūc½ðFV
1 ðωÞγμ þ FV

2 ðωÞvμb þ FV
3 ðωÞvμcÞ − ðFA

1 ðωÞγμ þ FA
2 ðωÞvμb þ FA

3 ðωÞvμcÞγ5�ub
× ūc

��
f1ðq2Þγμ − f2ðq2Þ

iσμνqν
Mb

þ f3ðq2Þ
qμ

Mb

�

−
�
g1ðq2Þγμ − g2ðq2Þ

iσμνqν
Mb

þ g3ðq2Þ
qμ

Mb

�
γ5

�
ub; ð4Þ

where q ¼ pb − pc, and pb and pc are the four momenta of
Λ0
b and Λþ

c , respectively. From pQ ¼ mQvQ, it is straight-
forward to show that q2 ¼ M2

b þM2
c − 2MbMcω. Two sets

of parametrizations are related as

f1¼FV
1 þ

Mþ
2Mb

FV
2 þ

Mþ
2Mc

FV
3 ; f2;3¼∓1

2
FV
2 −

Mb

2Mc
FV
3 ;

g1¼FA
1 −

M−

2Mb
FA
2 −

M−

2Mc
FA
3 ; g2;3¼∓1

2
FA
2 −

Mb

2Mc
FA
3 ; ð5Þ

with M� ≡Mb �Mc.
At the zero-recoil point of ω ¼ 1, the form factors are

simply written as [39]

FV
1 ð1Þ ¼ 1þ εb þ εc þ ε2cðb1 − b2Þ; FA

1 ¼ 1þ ε2cb1;

FV
2 ð1Þ ¼ FA

2 ð1Þ ¼ −εc þ b2ε2c; FV;A
3 ð1Þ ¼ ∓εb; ð6Þ

to the precision of OðεbεcÞ, providing that hard gluon
corrections are absent. A great advantage in the heavy
quark system is that the recoil effects are taken into account
by a single function of ξ̄ðωÞ i.e.,

FV;A
1;2;3ðωÞ ¼ ξ̄ðωÞFV;A

1;2;3ð1Þ: ð7Þ

After including the hard gluon corrections shown in
Fig. 2, the form factors receive several corrections, given by

FV
1 ðωÞ
ξ̄ðωÞ ¼ 1þ α̂sCV1

þ εc þ εb þ α̂s½CV1
þ 2ðω − 1ÞC0

V1
�ðεc þ εbÞ þ ε2cðb1 − b2Þ;

FV
2 ðωÞ
ξ̄ðωÞ ¼ α̂sCV2

−
2εc

ωþ 1
þ α̂s

�
CV2

3ω − 1

ωþ 1
εb − ½2CV1

− ðω − 1ÞCV2
þ 2CV3

� εc
ωþ 1

þ 2ðω − 1ÞC0
V2
ðεc þ εbÞ

�
þ ε2cb2;

FIG. 1. The ratios of RD; RD� , and RΛc
in the experiments and

LQCD.
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FV
3 ðωÞ
ξ̄ðωÞ ¼ α̂sCV3

−
2εb

ωþ 1
þ α̂s

�
CV3

3ω − 1

ωþ 1
εc − ½2CV1

þ 2CV2
− ðω − 1ÞCV3

� εb
ωþ 1

þ 2ðω − 1ÞC0
V3
ðεc þ εbÞ

�
;

FA
1 ðωÞ
ξ̄ðωÞ ¼ 1þ α̂sCA1

þ ðεc þ εbÞ
ω − 1

ωþ 1
þ α̂s

�
CA1

ω − 1

ωþ 1
þ 2ðω − 1ÞC0

A1

�
ðεc þ εbÞ þ ε2cb1;

FA
2 ðωÞ
ξ̄ðωÞ ¼ α̂sCA2

−
2εc

wþ 1
þ α̂s

�
CA2

3wþ 1

wþ 1
εb − ½2CA1

− ðwþ 1ÞCA2
þ 2CA3

� εc
wþ 1

þ 2ðw − 1ÞC0
A2
ðεc þ εbÞ

�
þ ε2cb2;

FA
3 ðωÞ
ξ̄ðωÞ ¼ α̂sCA3

þ 2εb
wþ 1

þ α̂s

�
CA3

3wþ 1

wþ 1
εc þ ½2CA1

− 2CA2
þ ðwþ 1ÞCA3

� εb
wþ 1

þ 2ðw − 1ÞC0
A3
ðεc þ εbÞ

�
; ð8Þ

where α̂s is the strong coupling constant, and the definitions

ofCð0Þ
A;V1;2;3

can be found in Ref. [16]. To include both soft and
hard gluon corrections, we extract the relevant parameters of
ξ̄ðωÞ, Λ̄, andb1;2 from thequarkmodels,where the soft gluon
(non-perturbative) effects are taken account by the wave
functions. After that, we plug the computed parameters into
Eq. (8) to contain the hard gluon corrections.
We note that the heavy baryonmasses can be expanded as

MQ ¼ mQ þ Λ̄þ λ1
2mQ

þOðε2QÞ: ð9Þ

It is convenient to rewrite the binding energy as Λ̄ ¼ CEdi,
where Edi stands for the energy of the diquark system, and
C describes the correction of it in the presence of the heavy
quark with an infinite mass.

A. Homogeneous bag model

We begin our study with the MIT bag model, of which
the quark wave functions of the baryons are confined in a
finite region, given as [40]

ϕq↕ðx⃗Þ ¼
� j0ðpqrÞχ↕
i pq

Ek
qþpq

j1ðpqrÞr̂ · σ⃗χ↕

�
; for r ≤ R;

ϕq↕ðx⃗Þ ¼ 0; for r > R; ð10Þ

with r ¼ jx⃗j and R the bag radius. Here, j0;1 are the

spherical Bessel functions, Ek
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
q þm2

q

q
with mq and

pq the quark mass and three-momentum, and χ↑ ¼ ð1; 0ÞT
and χ↓ ¼ ð0; 1ÞT represent a spin-up and a spin-down
quarks, respectively. From the boundary condition, pq must
satisfy [40]

tanðpqRÞ ¼
pqR

1 −mqRþ Ek
qR

: ð11Þ

In particular, we have

lim
mu;d→0

pu;d ¼ 2.043=R; ð12Þ

and

FIG. 2. The hard gluon corrections of the current operators.
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pQ ¼ π

R

�
1 −

1

2mQR

�
; Ek

Q ¼ mQ þ π2

2mQR2
; ð13Þ

to the precision ofOð1=m2
QR

2Þ. It is interesting to point out
that the zeroth order corrections are absent in Ek

Q, and the
first order corrections correspond to the kinematic energies
of the heavy quarks in the nonrelativistic limit. Plugging
Eq. (13) into the bag wave functions, we are led to

ϕQðx⃗Þ ¼
� ðj0ðπr=RÞ − πr

2R2mQ
j1ðπr=RÞÞχ

i π
2mQR

j1ðπr=RÞr̂ · σ⃗χ

�
: ð14Þ

On the other hand, the masses of the baryons are given as

MQ ¼ Z0=Rþ 4π

3
R3B4

0 þ EI þ
X
q

Ek
q; ð15Þ

where Z0 and B0 are associated with the zero-point and bag
volume energies, respectively, EI is the interaction ener-
gies, and R minimalizes the baryon masses, given by

∂MQ

∂R
¼ 0: ð16Þ

In calculating the Isgur-Wise function, we do not include
the interaction corrections, so we set EI ¼ 0 for consis-
tency, which is the major source of errors.
Combining Eqs. (12) and (13), we arrive at

∂MQ

∂R
¼ 4πR2B4

0 − ðZ0 þ 4.086Þ=R2 ¼ 0: ð17Þ

There are two sets of bag parameters in Ref. [40], given as

ðZ0;B0Þ¼ ð1.84;0.145GeVÞ; ð1.95;0.125GeVÞ; ð18Þ

resulting in that

ðΛ̄;R−1Þ¼ ð0.665;0.223Þ; ð0.554;0.195ÞGeV; ð19Þ

respectively.
The twist is that although the MIT bag model success-

fully explains most of the low-lying baryon masses, it is
difficult to be applied in decays, especially in taking
account the recoil effects (ω dependencies). The problem
can be traced back to the fact that bag states are localized.
According to the Heisenberg uncertainty principle, it
cannot be an eigenstate of three-momenta, which is referred
to as the center-of-mass motion (CMM) problem. The
difficulties were tackled a few years ago in Ref. [41], where
localized bags are replaced by linear superpositions of
infinite ones, distributed homogeneously all over the space.
It has been shown that after the CMM is removed, the

axial form factor in the neutron beta decay increases to

gA ¼ 1.31 by 20% [42]. Comparing to the experimental
value of gA ¼ 1.275, it is clear that the numerical estima-
tion is improved. On the other hand, in the heavy flavor
conserving decays, the CMM was identified to be the
reason of the underestimation of the four-quark operator
matrix elements [43].
In the HBM, the baryon states at rest are given as

jΛQ;↑i ¼
Z

1ffiffiffi
6

p ϵαβγd†aαðx⃗dÞu†bβðx⃗uÞQ†
cγðx⃗QÞ

×Ψabc
A↑ðduQÞðx⃗d; x⃗u; x⃗QÞ½d3x⃗�j0i; ð20Þ

where the Greek (Latin) letters represent the color (Dirac
spinor) indices, ϵ stands for the totally antisymmetric
tensor, ½d3x⃗� ¼ d3x⃗dd3x⃗ud3x⃗Q, q† is the creation operator
of the quark, satisfying

fq†aαðx⃗Þ; qbβðx⃗0Þg ¼ δabδαβδ
3ðx⃗ − x⃗0Þ; ð21Þ

with q ∈ fu; d;Qg, and the spatial distributions are
described by

Ψabc
A↑ðduQÞðx⃗d; x⃗u; x⃗QÞ ¼

N Qffiffiffi
2

p
Z

½ϕa
d↑ðx⃗d − x⃗ΔÞϕb

u↓ðx⃗u − x⃗ΔÞ

− ϕa
d↓ðx⃗d − x⃗ΔÞϕb

u↑ðx⃗u − x⃗ΔÞ�
× ϕc

Q↑ðx⃗Q − x⃗ΔÞd3x⃗Δ; ð22Þ

where N Q are the normalization constants. If not stated
otherwise, q†ðx⃗Þ is evaluated at t ¼ 0 in this work.
In Eq. (22), ϕq↕ðx⃗q − x⃗ΔÞ represents the quark state in

the static bag centering at x⃗Δ. By carrying out the integral of
d3x⃗Δ, it is straightforward to see that the baryons are
distributed uniformly all over the three-dimensional space.
Therefore, the unwanted CMM is removed. We note that
the formulas are reduced to the ones of the MIT bag model
when the integral of d3x⃗Δ is eliminated.
To get a baryon state with a nonzero momentum, we

apply the Lorentz boost to Eq. (20). The transformation rule
of the creation operators reads

Uvq
†
αaðxμÞU−1

v ¼ ðSvÞabq†αbððΛ−1
v ÞμνxνÞ; ð23Þ

where Uv, Sv, and Λv are the Lorentz boost operators of
states, Dirac spinors, and coordinates, respectively. Without
lost of generality, we take the Lorentz boost toward the ẑ
direction, resulting in
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S�v ¼
�

aþ �a−σ3
�a−σ3 aþ

�
;

S2�v ¼
�

γ �γvσ3
�γvσ3 γ

�
; ð24Þ

where a� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðγ � 1Þ=2p
and γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
.

From Eq. (23), we see that even if we start with t ¼ 0,
the t dependencies of quark states are nevertheless still
required. It is due to note that the t ¼ 0 plane is not
invariant under Lorentz boosts. Thus, for the state having a
Lorentz boost, we have to evaluate the anticommutation
relations with unequal times, which cannot be treated
perturbatively. To overcome the problem, we utilize that
the quark states are energy eigenstates in the bag model and
make the substitution in Eq. (22)

q†aαðx⃗Þ ¼ e−iEqtq†aαðt; x⃗Þ; ð25Þ

where Eq are the energies of the quarks. It is clear that we
do not consider the interaction energies here, as the quark
energies are independent to each other. The reasonable
range of Eq is

1

3
MN < Eq < Ek

q þ
1

3
ðE0 þ EvÞ; ð26Þ

where MN is the neutron mass, and E0 and Ev are the
zero-point and vacuum energies arisen from the bag,
respectively, which are allocated evenly among the quarks.
In the HBM, Eq. (26) serves as the major source of the
uncertainties.
After some algebra, we arrive at [42]

Ψabcðx⃗1; x⃗2; x⃗3Þv⃗ðSvÞaa0 ðSvÞbb0 ðSvÞcc0Ψa0b0c0 ðx⃗v1; x⃗v2; x⃗v3Þ;
ð27Þ

where x⃗v ¼ ðx; y; γzÞ. From the normalization condition

hΛQ; p⃗0jΛQp⃗i ¼ u†uð2πÞ3δ3ðp⃗ − p⃗0Þ; ð28Þ

we derive that

ūu
N 2

¼
Z

d3x⃗Δ
Y
q

Z
ϕ†
qðx⃗þq Þϕqðx⃗−q Þd3x⃗q; ð29Þ

where x⃗�q ¼ x⃗q � x⃗Δ=2, and
P

q Eq ¼ MQ has been used.
We adopt the Breit frame so that Λ0

b and Λþ
c have

opposite velocities. Collecting Eqs. (20), (21), and (27), we
find that

hΛþ
c ðv⃗Þjc†Γbð0ÞjΛ0

bð−v⃗Þi

¼ N cN b

Z
d3x⃗ΔΓcbðx⃗ΔÞ

Y
l

Dv
l ðx⃗ΔÞ; ð30Þ

along with

Γcbðx⃗ΔÞ ¼
Z

d3x⃗ϕ†
c

�
x⃗þ 1

2
x⃗Δ

�

× SvΓS−vϕb

�
x⃗ −

1

2
x⃗Δ

�
e2iEdiv⃗·x⃗;

Dv
l ðx⃗ΔÞ ¼

1

γ

Z
d3x⃗ϕ†

l

�
x⃗þ 1

2
x⃗Δ

�
ϕl

�
x⃗ −

1

2
x⃗Δ

�
e−2iElv⃗·x⃗;

l ¼ u; d; ð31Þ

where Γ is an arbitrary Dirac matrix, Edi ¼ Eu þ Ed, and
ω ¼ γ2ð1þ v2Þ. In general, Γcb and Dv

l would be some
complicated functions of the quark masses and bag radius.
To examine the model, we take v⃗ → 0 and Taylor expand
the formulas regarding to MQ, leading to1

1

N 2
∞
¼ 16π2

Z
ðD0

l ðrΔÞÞ2r2ΔdrΔ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

R2−r2Δ=4
p

0

dρρ

×
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

R2−r2Δ=4
p

−rΔ=2

0

dzjþ0 j
−
0 ; ð32Þ

with the abbreviationsof j�0;1¼j0;1ðπr�=RÞ, r�¼jx⃗� x⃗Δ=2j,
and rΔ ¼ jx⃗Δj. In addition, with mu;d → 0, we are led to

D0
l ðrΔÞ ¼ 4π

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−r2Δ=4

p

0

dρρ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

R2−r2Δ=4
p

−rΔ=2

0

dz

× ½lþ0 l−0 þ ðr2 − r2Δ=4Þlþ1 l−1 �; ð33Þ

where l�0;1 ¼ j0;1ð2.043r�=RÞ. From Eq. (31), the integrals
are suppressed by the oscillations of the exponential func-
tions, which depend heavily onEq. In the case ofΛ0

b → Λ0γ,
the ambiguity in Eq. (26) causes the calculated branching
fraction tovary from3.5 × 10−6 to1.0 × 10−5 [42].However,
Eq is always followed by v⃗, so its uncertainty does not affect
the results at v⃗ ¼ 0. In this case, b1;2 are uncontaminated by
the uncertainties of Eq as they are evaluated at v⃗ ¼ 0.
The form factors of FV

1 and FA
1 are extracted by

FV
1 ð1Þ ¼ lim

v→0

1

v
hΛþ

c ðv⃗Þjðc̄γ1bÞð0ÞjΛ0
bð−v⃗Þi;

FA
1 ð1Þ ¼ lim

v→0
hΛþ

c ðv⃗Þjðc̄γ1γ5bÞð0ÞjΛ0
bð−v⃗Þi; ð34Þ

resulting in that

1In the calculation of the form factors, we have taken the
normalization of ūQuQ ¼ 1.
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FV
1 ð1Þ ¼ 1þ

�
1

2mc
þ 1

2mc

�
EdiN 2

∞4π

×
Z

r2ΔdrΔCðrΔÞðD0
l ðrΔÞÞ2;

FA
1 ð1Þ ¼ 1; ð35Þ

where

CðrΔÞ ¼
4π2

3R

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−r2Δ=4

p

0

dρρ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

R2−r2Δ=4
p

−rΔ=2

0

dz

×

��
jþ0 j

−
1

1

r−
þ jþ1 j

−
0

1

rþ

�
r2

þ
�
j−0 j

þ
1

rΔz
2rþ

− j−1 j
þ
0

rΔz
2r−

��
; ð36Þ

to the precision of Oð1=m2
cR2Þ. By matching it with

Eq. (6), we find that the first order correction of FA
1 indeed

vanishes, and

C ¼ N 2
∞4π

Z
r2ΔdrΔCðrΔÞðD0

l ðrΔÞÞ2 ¼ 1; ð37Þ

which holds exactly by an actual calculation. It is a sensible
result, since the zeroth order corrections of Ek

Q are absent as
shown in Eq. (13), and the interactions among quarks are
omitted. We conclude that the diquark energies are unaf-
fected by the presence of the heavy quark at the zeroth
order, namely C ¼ 1. However, Eq. (37) itself is a non-
trivial result, and it indicates that our treatments for the
CMM are self-consistent.
We emphasize that Eq. (37) is a parameter-independent

result, which can be shown explicitly by changing the
variables

ðρ; z; x⃗ΔÞ →
�
ρ

R
;
z
R
;
x⃗Δ
R

�
; ð38Þ

in Eqs. (36) and (37). To take account the recoil effects, we
use the following trick:

ξðωÞ ¼
X

i¼1;2;3
FV
i ðωÞjεQ¼0

;

ξkeðωÞ ¼
∂

∂εc

�X
i¼1;2;3

FV
i ðωÞ

�				
εQ¼0

; ð39Þ

where
P

i F
V
i is evaluated by taking Γ ¼ 1 in Eq. (31).

Consequently, we get

ξðωÞ ¼ N 2
∞

Z
d3x⃗Δd3x⃗ðjþ0 j−0 Þe2iEdiv⃗·x⃗ðD0

l ðx⃗ΔÞÞ2;

ξkeðωÞ ¼ Aðv⃗ÞΛ̄ − Að0ÞΛ̄;

Aðv⃗Þ≡ πN 2
∞

R2

Z
d3x⃗Δd3x⃗ðr−jþ0 j−1 þ rþjþ1 j

−
0 Þ

× e2iEdiv⃗·x⃗ðD0
l ðx⃗ΔÞÞ2: ð40Þ

By taking v⃗ ¼ 0, we get that ξð1Þ ¼ 1 and ξkeð1Þ ¼ 0 as
demanded by the Luke’s theorem.
Similarly, the first order corrections of b2 and b2 are

obtained, given by

∂
2FV

1 ð1Þ
∂ε2c

				
εQ¼0

¼ ðb1 − b2Þ;

∂
2FA

1 ð1Þ
∂ε2c

				
εQ¼0

¼ b1;
∂
2FV;A

2 ð1Þ
∂ε2c

				
εQ¼0

¼ b2: ð41Þ

The operations can be easily done by a computer program.
However, their expressions are much more complicated and
lengthy as well, so we do not list them out here. As a cross-
check, we compute

∂
2

∂ε2c
ðFV

1 ðωÞ − FA
1 ðωÞ þ FV;A

2 ðωÞÞj
εQ¼0

; ð42Þ

which is indeed found to be zero, consistent with Eq. (6).
We note that ξ, ξke, and b1;2 depend only on EdiR, which

is the only dimensionless parameter. To be specific, they
are invariant under the transformation of ðR;EdiÞ →
ða−1R; aEdiÞ, where a is an arbitrary constant. For a
practical purpose, we can fix R and vary Edi solely to
cover the model uncertainties on Λ̄, ξ, ξke, and b1;2.

B. Light-front quark model

In the LFQM, the baryon states are expressed as

jΛQ;↑i ¼
Z

1ffiffiffi
6

p ϵαβγu†αðp̃u; λuÞd†βðp̃d; λdÞQ†
γðp̃Q; λQÞ

× Ψ½λ�
Q ðp̃u; p̃d; p̃QÞ½d3p̃�j0i; ð43Þ

where Ψ½λ�
Q ðp̃u; p̃d; p̃QÞ represent the vertex functions

between the ΛQ and udQ, [λ] and ½d3p̃� stand for the
light-front helicities ðλu; λd; λQÞ and light-front three-
momentum integrals d3p̃ud3p̃dd3p̃Q, respectively, and

pq¼ðp−
q ;p̃qÞ¼ðp−

q ;pþ
q ;pq⊥Þ; d3p̃q≡dpþ

q d2pq⊥
2ð2πÞ3 ; ð44Þ

with p�
q ¼ p0

i � p3
q and pq⊥ ¼ ðp1

q; p2
qÞ. At the equal

light-front time (xþ ¼ 0), the commutation relationships
for q†αðp̃q; λqÞ are
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fq†αðp̃; λÞ; qβðp̃0; λ0Þg ¼ δλλ0δαβδ
3ðp̃ − p̃0Þ: ð45Þ

Notice that the wave functions are made of position
eigenstates in the HBM shown in Eq. (20), whereas they
are built out of momentum eigenstates here in contrast.
The vertex functions are further decomposed as

Ψ½λ�
Q ¼ 2ð2πÞ3 1ffiffiffiffiffiffi

Pþp δ3ðP̃ − p̃u − p̃d − p̃QÞ

×Φðp̃u; p̃d; p̃QÞΞ1=2;↑ðλu; λd; λQÞ; ð46Þ

where Φ are the momentum distribution functions of the
quarks, Ξ1=2;↑ stands for the helicity wave function

Ξ1=2;↑ðλu;λd;λQÞ¼
X

su;sd;sQ

Y
q

hλqjR†
qjsqih

1

2
su;

1

2
sd;

1

2
sQjSSzi;

ð47Þ

and Rq is the Melosh matrix, which brings the quark from
its spin state at rest to a light-front helicity state with
momentum p̃q [31].
In this work, we consider the two-particle forces between

the quarks, which are effectively described by the harmonic
oscillator potentials

V ¼ β4r2=ð2MÞ; ð48Þ

where r are the distances of the quarks, andM and β are the
reduced masses and shape parameters, respectively, to be
specified later. We take the quarks of u and d to form a
diquark cluster denoted as ½ud�, as they are (iso)spin singlet.
By integrating out the delta functions δðP̃ − p̃u − p̃d − p̃QÞ,
Eqs. (43) and (46) can be rewritten as

½d3p̃� → d3q⃗d3Q⃗; Φðp̃u; p̃d; p̃QÞ → Φðq⃗; Q⃗Þ; ð49Þ

where

Φðq⃗; Q⃗Þ ¼ ϕudϕQ½ud�

¼ ðπβudβQ½ud�Þ−3=2 exp
�
−

q⃗2

2β2ud
−

Q⃗2

2β2Q½ud�

�
; ð50Þ

ϕud andϕQ½ud� are thewave functions of ðu; dÞ and ðQ; ½ud�Þ,
and the shape parameters of βud and βQ½ud� are the typical
relative three-momenta, respectively. Note that we have
projected the light-front three-momenta to the instant forms
by defining

xQ ≡ pþ
Q

Pþ ¼ EQ −Qz

Eud þ EQ
;

Q⊥ ¼ xQðpu⊥ þ pd⊥Þ − ð1 − xQÞpQ⊥;

y≡ pþ
u

pþ
u þ pþ

d
¼ Ed − qz

Eu þ Ed
;

q⊥ ¼ ypu⊥ − ð1 − yÞpd⊥; ð51Þ

where Eu;d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

p
, EQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q⃗2 þm2

Q

q
, Eud ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q⃗2 þ ðEu þ EdÞ2
q

, and m stands for the constituent quark
masses of u and d in the LFQM.
By utilizing that the potentials are independent of quark

masses, we find

β4Q½ud�M
−1
Q½ud� ¼ β4d½ud�M

−1
d½ud� ¼ β4udðm=2Þ−1; ð52Þ

where Mq½ud� is the reduced effective mass of q and ½ud�,
given as

M−1
q½ud� ¼ m−1

q þ E−1
di : ð53Þ

The second equality in Eq. (52) comes from the Isgur-Karl
model for the equal mass scenario [44]. By considering the
well-measured ratio of gA=gV ¼ −1.275 from the neutron
beta decay, we get

βd½ud� ¼ 0.952 m: ð54Þ

To the precision of Oðm−2
Q Þ, we have

βQ½ud� ¼
�
1 −

Edi

4mQ
þO

�
1

m2
Q

��
β∞;

β∞ ¼ ð1þ Edi=mÞ1=4βd½ud�: ð55Þ

The existence of the heavy quark limit for β∞ has already
been discussed and put by hand in Refs. [21,22]. Here, we
provide a clear theoretical background to justify their
assumptions.
Now, we are ready to compute Λ̄; b1;2; ξðωÞ, and ξkeðωÞ.

We choose the frame of qþ ¼ 0 to avoid the Z-graph
contribution [36]. We set mb ¼ mc=x ¼ mQ. At q2 ¼ 0, ω
corresponds to

ωðxÞ ¼ M2
Q þM2

Qx

2MQMQx
; ð56Þ

with

MQðxÞ ¼ ðxÞmQ þ Λ̄þ λ1
ðxÞ2mQ

; ð57Þ
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from Eq. (9), leading to2

ξðωðxÞÞ ¼ f1ðq2 ¼ 0; x; εQ → 0Þ;�
1

x
þ 1

�
ξkeðωðxÞÞ ¼

∂

∂εQ
f1ðq2 ¼ 0; x; εQ → 0Þ: ð58Þ

In reality, we have that x ≈ 3 and λ1 ¼ −0.5 GeV2,
corresponding to ω ¼ 1.43. Since q2 ¼ qþq− − q2⊥, the
region of q2 > 0 is polluted by the Z-graph contribution.
Nevertheless, we utilize the fact that ξðωÞ and ξkeðωÞ are
independent of mb;c for a fix ω. In practice, we can obtain
the ω dependencies of ξðωÞ and ξkeðωÞ by varying x.
For Λ̄ and b1;2, we again use the trick that they are

independent of mb;c. We compute them with x ¼ 1.
Accordingly, g1 and f2 are expanded as

g1 ¼ 1þ gð2Þ1

m2
Q
þOð1=m3

QÞ;

f2 ¼
fð1Þ2

mQ
þ fð2Þ2

m2
Q
þOð1=m3

QÞ; ð59Þ

where

gð2Þ1 ¼ −
β2∞
2
; fð1Þ2 ¼

Z
d3q⃗d3Q⃗jΦ∞j2

Eud

2
;

fð2Þ2 ¼
Z

d3q⃗d3Q⃗jΦ∞j2
Eud

8β2∞
½7Ediβ

2
∞ − 4Eudβ

2
∞ − 2EdiQ2�;

ð60Þ

and Φ∞ is the momentum wave function under the heavy
quark limit, given as

Φ∞ðq⃗; Q⃗Þ ¼ ðπβudβ∞Þ−3=2 exp
�
−

q⃗2

2β2ud
−

Q⃗2

2β2∞

�
: ð61Þ

Note that the zeroth order of g1 is consistent with the heavy
quark symmetry, which is a nontrivial result.
To match Eqs. (5) and (6) to Eqs. (59) and (60) with

x ¼ 1, there would be extra crossing terms at the order of
εcεb in Eq. (6), which introduce two additional free
parameters. To eliminate them, we assume that FV;A

1 ðωÞ
are factorized as

FVðAÞ
1 ðεb; εc;ωÞ ¼ fVðAÞðεc;ωÞfVðAÞðεb;ωÞ; ð62Þ

with fV;AðεQ;ωÞ to be determined. Now we have

Λ̄¼2fð1Þ2 ; b̄1¼2gð2Þ1 ; b̄2¼2ðfð1Þ2 Þ2−4fð2Þ2 þ2gð2Þ1 ; ð63Þ

where b̄1;2 ≡ b1;2Λ̄2.
From Eqs. (52), (60), and (61), we see that fð1Þ2 depends

only on Edi and m. We arrive at

fð1Þ2 ðEdi; mÞ ¼ EdiF ðEdi; mÞ ¼ EdiF
�
Edi

m

�
; ð64Þ

where F is a function to be determined, and the second
equality comes from that F can only depends on the
dimensionless quantities, i.e., Edi=m in this case. By
demanding the heavy quark limit of Λ̄ ¼ Edi or equiv-
alently F ¼ 1=2, we find

Edi ¼ 3.293 m: ð65Þ

Collecting Eqs. (52), (60), (61), and (65), we see that only
m remains unfixed.
In the LFQM, the HQE parameters depend onm, Edi, β∞

hðm;Edi; β∞Þ ¼ hðm; 3.293 m; 0.952 mÞ ¼ hðmÞ; ð66Þ

where h ∈ fξðωÞ; ξkeðωÞ; b1; b2g, and we have used
Eqs. (54) and (65).
From the dimensional analysis, we find that

hðmÞ ¼
X∞
n¼−∞

h0nmn; ð67Þ

where h0n has −n mass dimension. However, there is no
other parameter with mass dimension, so we must have
h0n ¼ 0 for n ≠ 0. Consequently, h do not depend on m and
are parameter-independent results in our approach. From
Eqs. (60) and (63), we have

b1 ¼ −0.173; b2 ¼ 0.518; ð68Þ

while ξ and ξke are shown in Fig. 3. By a similar argument,
we find Λ̄ ∝ m.

III. NUMERICAL RESULTS

In both of the models, mb;c are taken as the pole quark
masses with mb;c ¼ ð4.78; 1.655Þ GeV, and the adopted
value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element is jVcbj ¼ ð42.2� 0.7Þ × 10−3 from the inclusive
semileptonic B decays [45]. The formalism of the decay
widths can be found in Ref. [46].
For the HBM, we fix R ¼ 4.8 GeV−1 without lost of

generality as explained in the end of Sec. II A. From
Eq. (26), the reasonable range of Edi is then given as

0.585 GeV < Edi < 0.686 GeV; ð69Þ
2The form factors in the qþ ¼ 0 frame are extracted as Eq. (24)

in Ref. [22].

ZHANG, JIN, LIU, and GENG PHYS. REV. D 107, 033004 (2023)

033004-8



which is consistent with Eq. (19). For the LFQM, we
take m ¼ 0.30� 0.08 GeV, which is consistent with the
experiments of the nucleon magnetic moments and BðΛ0

b→
Λ0γÞ¼ð7.1�1.7Þ×10−6 [45,47]. To be conservative, we
allow m to vary in a wide range, which shall cover all the
reasonable values.
The HQE parameters are computed with the formula

given in Sec. II. The Isgur-Wise function and its first order
correction of the HBM are given in Fig. 4. Notice that the
region of ω > 1.43 is equivalent to q2 < 0, and thus, it is
irrelevant to Λ0

b → Λþ
c l−ν̄l. Nevertheless, we have plotted

them in the figures to see the dependencies in the high ω
region, as they are physical in the scattering processes.
To compare the results with those in the literature, we

expand the Isgur-Wise function regarding to ω to the fourth
order, given as

ξ̄ðωÞ ¼ 1þ ξ̄ð1Þðω − 1Þ þ 1

2
ξ̄ð2Þðω − 1Þ2 þ 1

3!
ξ̄ð3Þðω − 1Þ3

þ 1

4!
ξ̄ð4Þðω − 1Þ4: ð70Þ

The numerical results along with those in the literature are
collected in Table I. In the literature, Ref. [16] fits the HQE
parameters from the experimental data [14] and LQCD
calculations [15], Ref. [48] adopts the relativistic quark

model (RQM), Refs. [49,50] employ the light-cone sum
rule (LCSR), and Ref. [51] utilizes the QCD sum rule
(QCDSR).
We note that the authors of Ref. [52] have also

considered the LFQM but with a different theoretical setup.
On the one hand, their baryon wave functions are fitted
from the mass spectroscopy with 13 free parameters,
whereas ours are based on the simple harmonic potential
and HQE with one free parameter only. On the other hand,
their form factors and Isgur-Wise function in the timelike
region are obtained by the analytical continuation, where
the dipole behavior is assumed. In our approach, we have
mapped the dependency of ω to x ¼ mc=mb so that the
Isgur-Wise function is directly evaluated in the entire phase
space without further ad-hoc assumptions. To sum up, we
have shown that after considering the HQE, not only the
parameter space of the LFQM is tightly constraint but also
the ad hoc assumption of the analytical continuation is no
longer needed.
Surprisingly, the results in the HBM and LFQM agree

well with each other, even though they are two very
different quark models. Our values of ξ̄ð1Þ also agree well
with those from the LHCb and LQCD, but significantly
larger than the results from the RQM and QCDSR. Note
that in Ref. [16], ξ̄ð3Þ and ξ̄ð4Þ have been omitted. On the
contrary, we find that they are sizable. In particular, ξ̄ð3Þ is

FIG. 4. The Isgure-Wise function and its first order correction from the HBM.

FIG. 3. The Isgure-Wise function and its first order correction from the LFQM.
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opposite in sign and twice larger in comparison to ξ̄ð2Þ.
Although our results of ξ̄ð2Þ are larger than the values from
the LHCb and LQCD, those of ξðω ¼ 1.43Þ are consistent
with them due to the presences of ξ̄ð3Þ.
Note that our values of b̄1;2 from the LFQM are

contaminated by the uncertainties of Λ̄, but their signs
are not. Explicitly, both models give b̄1 < 0 and b̄2 > 0.
The predicted sign of b̄2 is opposite to the one of
LHCbþ LQCD. As the HBM and LFQM show well
consistence in all the HQE parameters, we are confident
on these results.
To see the hard gluon effects, we adopt two different

schemes for the form factors. In the first one, we calculate
them directly from the quark models. In the second one, we
plug the values of Λ̄, b1, b2, and ξ̄ðωÞ from Table I into
Eq. (8). The branching fractions along with those in the
literature are collected in Table II, where the lower and
upper columns in the HBM and LFQM for each lepton pair
are the values with and without the hard gluon corrections,

respectively, which decrease the branching fractions about
10%. The branching fractions in Table II are consistent with
the experimental data and those in literature, where the
uncertainties of our results are smaller than those of other
approaches with uncertainties provided.
Beside the integrated branching fractions, the differential

decay distributions and other angular observables also
provide additional ways to probe the form factors. They
are well discussed in Ref. [12]. For the sake of simplicity,
the values of the angular observables have not been given in
this work. We point out that it is possible to fully
reconstruct the form factors from the angular observables
in the experiments, which is demonstrated explicitly
in Ref. [54].
To further test the lepton universality, we compute the

ratio of RΛc
, given in Table III and Fig. 5, where

RΛc
ðLQCDÞ come from two different works, in which

the upper column is purely from the LQCD calculations
[15], while the lower column corresponds to the one in

TABLE I. The HQE parameters with Λ̄ and b̄1;2 in units of GeV and GeV2, respectively.

HBM LFQM LHCb [14,16] LQCDþ LHCb [16] RQM [48] QCDSR [51] LFQM [52]

ξ̄ð1Þ −1.94ð26Þ −2.35ð10Þ −2.17ð26Þ −2.04ð8Þ −1.51 −1.35ð13Þ 1.67(11)
1.85(11)

ξ̄ð2Þ 4.78(93) 5.75(55) 4.10(105) 3.16(38) 4.06 2.45(63)
3.25(61)

ξ̄ð3Þ −10.8ð25Þ −10.5ð21Þ
ξ̄ð4Þ 13.1(32) 10.1(38)
ξ̄ð1.43Þ 0.470(43) 0.392(15) 0.446(4) 0.415(1)
Λ̄ 0.681(55) 0.988(263) 0.81(5)a 0.81(5)a 0.764
b̄1 −0.141ð1Þ −0.181ð90Þ 0.24(192) −0.46ð15Þ
b̄2 0.351(35) 0.541(270) 0.45(188) −0.39ð39Þ

aExtracted from MΛQ
, where 0.81(5) means 0.81� 0.05.

TABLE III. Comparisons of RΛc
in different approaches.

HBM LFQM LQCD [15,16] LHCb [14] LFQM [52] LCSR [50]

0.3154(109) 0.3457(70) 0.3328(102) 0.242(76) 0.30(9) 0.292
0.3243(126) 0.3506(46) 0.3237(36)

TABLE II. The branching fractions of Λ0
b → Λþ

c → l−ν̄l in units of%, where the lower and upper columns in the
HBM and LFQM for each lepton pair correspond to the values with and without the hard gluon corrections,
respectively.

Lepton pair HBM LFQM Exp [45] RQM [53] LFQM [52] LCSR [49] LCSR [50]

e−ν̄ 6.23(58) 5.53(77) 6.2þ1.4
−1.3 6.48 6.47(96) 5.81 5.71(98)

5.69(58) 5.35(50)
μ−ν̄ 6.21(57) 5.52(77) 6.2þ1.4

−1.3 6.46 6.45(95) 5.78 5.69(98)
5.67(58) 5.33(49)

τ−ν̄ 1.95(11) 1.91(23) 1.5(4) 2.03 1.97(29) 1.55 1.66(26)
1.83(12) 1.87(15)
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which the heavy quark symmetry is imposed to lower the
uncertainties [16]. The predictions of the HBM fit well with
the experimental data, but the ones of the LFQM disagree
with the LHCb results in contrast.

IV. CONCLUSION

We have examined the heavy quark symmetry in the
HBM and LFQM. The inputs of the HBM are fixed from
the mass spectra, while the parameters in the LFQM are
tightly constrained by the heavy quark symmetry. We have

demonstrated that the two models all respect the heavy
quark symmetry.
The HQE parameters of Λ̄; b1;2, ξðωÞ, and ξkeðωÞ have

been computed. Our results of Λ̄, ξ̄ðωÞ, and b1 are
compatible with those in the literature, but the sign of
b2 is opposite comparing to the LHCbþ LQCD results.
Explicitly, we have shown that ðb1; b2Þ ¼ ð−0.173; 0.518Þ
from the LFQM, and ðb̄1; b̄2Þ ¼ ð−0.141� 0.001; 0.351�
0.035Þ from the HBM in units of GeV2.
We have also calculated BðΛ0

b → Λþ
c l−ν̄lÞ and RΛc

with and without the hard gluon corrections. We have
found that the hard gluon corrections decrease the branch-
ing fractions about 10%. Explicitly, we have obtained
that BðΛ0

b → Λþ
c e−ν̄eÞ ¼ ð5.69 � 0.58; 5.35 � 0.50Þ,

BðΛ0
b→Λþ

c μ
−ν̄μÞ¼ð5.67�0.58;5.33�0.49Þ, and RΛc

¼
ð0.3243� 0.0126; 0.3506� 0.0046Þ, for the results of
(HBM, LFQM), respectively. Our predicted values of the
branching fractions show good consistencies with the
experimental data of results BðΛ0

b → Λþ
c e−ν̄e; τ−ν̄τÞ ¼

ð6.2þ1.4
−1.3 ; 1.5� 0.4Þ%.
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