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Based on the covariant color-kinematics duality, we investigate combinatorial and algebraic structures
underlying their Bern-Carrasco-Johansson (BCJ) numerators of tree-level amplitudes in Yang-Mills-scalar
(YMS) theory. The closed formulas for BCJ numerators of YMS amplitudes and the pure-YM ones exhibit
nice quasishuffle Hopf algebra structures, and interestingly they can be viewed as summing over
boundaries of all dimensions of a combinatorial permutohedron. In particular, the numerator with two
scalars and n − 2 gluons contains Fubini number (F n−2) of terms in one-to-one correspondence with
boundaries of a (n − 3)-dimensional permutohedron, and each of them has its own spurious-pole structures
and a gauge-invariant numerator (both depending on reference momenta). From such Hopf algebra or
permutohedron structure, we derive new recursion relations for the numerators and intriguing “factori-
zation” on each spurious pole/facet of the permutohedron. Similar results hold for general YMS numerators
and the pure-YM ones. Finally, with a special choice of reference momenta, our results imply BCJ
numerators in a heavy-mass effective field theory with two massive particles and n − 2 gluons/gravitons:
we observe highly nontrivial cancellations in the heavy-mass limit, leading to new formulas for the
effective numerators that resemble those obtained in recent works.
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I. INTRODUCTION

Despite very different natures, gauge theories and gravity
have deep connections; one of the oldest and the most
prominent example is the double copy structure [1–3].
Originally it was discovered from Kawai-Lewellen-Tye
relations [1] in string theory, and a modern realization of
double copy has relied on the duality between color and
kinematics for gauge theory amplitudes, where the Bern-
Carrasco-Johansson (BCJ) kinematic numerators satisfy
the same Jacobi relations as the color factors. The duality
and double copy have led to tremendous progress in the

study of amplitudes both in gauge theory and gravity (see
[4–6] and references therein). More recently, the authors of
[7] have revealed a so-called covariant color kinematics
(CCK) duality for a large class of theories including Yang-
Mills theory (YM) and its coupling to biadjoint ϕ3 [YM
scalar (YMS)]. As a consequence, the duality implies new,
closed-form expression for BCJ numerators of all tree-level
amplitudes in YMS and YM theories. Previous works on
BCJ numerators and kinematic algebras include [8–22] and
references therein.
On the other hand, recent years have seen progress on

revealing new geometric/combinatorial structures under-
lying scattering amplitudes, e.g., from the (all-loop) ampli-
tuhedron of supersymmetric Yang-Mills [23] to the
associahedron for biadjoint ϕ3 at tree level [24] (with
extensions to string scattering [25]). It is natural to look for
hints of such structures underlying YM and gravity
amplitudes; instead of directly working with tree ampli-
tudes, one may decompose the problem and ask a some-
what strange question as a first step: are there combinatorial
structures underlying BCJ numerators?
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In this note, we take BCJ numerators from CCK duality
[7] as inputs and present preliminary evidence for such
structures: in addition to the more familiar quasishuffle
Hopf algebras [26], we find hidden combinatorial permu-
tohedra [27] for BCJ numerators. Any BCJ numerator can
be written as the sum over all boundaries of a permutohe-
dron (or terms from a quasishuffle product); for a codi-
mension d boundary (length-d term), it contains a product
of dþ 1 factors each with a spurious pole and a gauge-
invariant numerator. We will focus on the case with two
scalars and n − 2 gluons, which corresponds to a (n − 3)-
dimensional permutohedron, and it has Fubini number
F n−2 boundaries with codimensions d ¼ 0; 1;…; n − 3;
each boundary is labeled by dþ 1 subsets, and for each
factor labeled by such a set both the numerator (which is
gauge invariant in the gluons) and the (spurious pole)
denominator are given by Lorentz products of momenta
and polarizations, as well as the reference momenta. Apart
from being the most illustrative BCJ numerators of YMS
cases, we will also see that they give nice BCJ numerators
in the heavy-mass effective theory (HEFT) [28–35] as well
as decoupling limit into pure YM amplitudes. BCJ numer-
ators in HEFT have attracted lots of interest recently for
their roles in the computation of gravitational amplitudes
for black-hole scattering and gravitational waves [36]
(cf. [37–45] for some recent works). We will take the
heavy-mass limit of YMs amplitude, and (as we have
checked up to n ¼ 10) highly nontrivial cancellations lead
to a nice formula for BCJ numerators in HEFT that
correspond to Pn−3 (one dimension lower).
Furthermore, our results imply new recursion relations

and surprisingly, “factorization” properties of BCJ numer-
ators on facets of permutohedra; all these can be extended
to BCJ numerators of general YMS amplitudes, which in
turn combine into a formula for the YM case as well. For
the latter, we can then turn the logic around: since the BCJ
numerators are manifestly gauge invariant in n − 1 gluons,
by showing that all spurious poles indeed cancel in the
amplitude based on such “factorizations,” it follows from
the uniqueness theorem of [46] that they must give correct
YM and gravity amplitude (after double copy) even without
knowing the CCK duality.
Let us consider color-ordered YMS amplitude

Að1ϕ; 2;…; n − 1; nϕÞ with scalars 1ϕ; nϕ. Its expansion
onto the Kleiss-Kuij basis [47] of biadjoint ϕ3 amplitudes
has BCJ master numerators as coefficients reads

Að1ϕ; 2;…; n − 1; nϕÞ ¼
X
β∈Sn−2

Kð1; β; nÞAϕ3ð1; β; nÞ; ð1Þ

where the sum is over ðn − 2Þ! permutations of gluons and
Aϕ3ð1; β; nÞ≡mð1; 2;…; nj1; β; nÞ denotes biadjoint ϕ3

amplitudes with the first ordering fixed to be
ð1; 2;…; nÞ. Remarkably, the BCJ numerators from CCK
duality Kð1; β; nÞ respect the Bose symmetry of all the

n − 2 gluons [7]: we only need a single numerator with the
ordering chosen to be β ¼ ð2;…; n − 1Þ, and all others can
be obtained by relabeling; they are also gauge invariant for
the gluons, which becomes manifest since the dependence
on polarizations is through Lorentz products of linearized
field strengths Fμν

i ≡ pμ
i ε

ν
i − pν

i ε
μ
i

½Fσ�μν ¼ ½Fσ1 · Fσ2 � � � · Fσjσj �μν ð2Þ

for an ordered subset σ. The price to pay for these desirable
properties is the presence of 2n−2 − 1 spurious poles, one
for each nonempty subset I ⊂ f2;…; n − 1g:

DI ≔ pI · qI; with pI ≔
X
i∈I

pi; ð3Þ

which depends on a reference momentum qI . These
numerators can be simplified with some choices of qI ,
and the final amplitude is independent of them.

II. THE PERMUTOHEDRON AND ALGEBRA
UNDERLYING BCJ NUMERATORS

In this section, we show that all the terms in a BCJ master
numerator obtained from CCK duality for YMS amplitudes
are in one-to-one correspondence with all boundaries of
permutohedron Pn−2, or equivalently terms from a qua-
sishuffle product.

A. The (combinatorial) permutohedra
and quasishuffle products

Following [7], we organize Kð1; 2;…; nÞ according to
the spurious pole structure, which is isomorphic to the
boundary structure of the permutohedron Pn−2.
The permutohedron Pn−2 is an (n − 3)-dimensional

polytope [27], whose codimension d boundary Γd can
be labeled by dþ 1 consecutive subsets

Γd ≔ fI0; I1;…; Idg; ð4Þ

where Id ≠ ∅ and Id ⊂ Id−1 ⊂… ⊂ I0 ¼ f2;3;…; n− 1g;
the interior of Pn−2 can be viewed as its codimension
0 boundary, Γ0 ≔ I0. Pn−2 and its boundaries have
appeared in the context of cubic tree graphs from the
worldsheet [48,49]. Here each term of the BCJ numerator
Kð1; 2;…; nÞ with dþ 1 spurious poles corresponds to
such a codimension d boundary, thus the numerator can be
expanded in terms of boundaries of Pn−2

Kð1; 2;…; nÞ ¼
Xn−3
d¼0

X
Γd∈∂dPn−2

KΓd
ð1; 2;…; nÞ; ð5Þ

where we sum over all boundaries Γd ∈ ∂
dPn−2 with

codimension d ¼ 0;…; n − 3, and the contribution from
Γd, KΓd

ð1; 2;…; nÞ≡ KΓd
reads
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KΓd
¼

Yd
k¼0

p1ΔðIk;Ikþ1Þ · Fτk · qIk
DIk

: ð6Þ

It has dþ 1 factors each with a denominator DIk of (3)
and a numerator of the form p1ΔðIk;Ikþ1Þ · Fτk · qIk for
k ¼ 0;…; d. To specify the ordered subset τk of the
Lorentz product as in (2), we introduce an alternative form
of (4) using ordered sets:

Γd ¼ fτ0 ∪ τ1 ∪… ∪ τd; τ1 ∪… ∪ τd;…; τd−1 ∪ τd; τdg
∼ fτ0; τ1;…; τdg; ð7Þ

where the first line is equivalent to (4) but we use ordered
sets τk ¼ IdðIk=Ikþ1Þ with Idþ1 ≡∅. IdðIÞ means sorting
the subset I in numerical ordering [50]. Perhaps the most
subtle point is that we also define ΔðIk; Ikþ1Þ ≔ ðĪkÞ<τk;1 ,
which refers to the elements in the set Īk ¼ f2; 3;…; n −
1g=Ik that are numerically smaller than the first element τk;1
of the ordered set τk.
For example, at n ¼ 5, we have a boundary Γ2 ¼ fI0 ¼

f2; 3; 4g; I1 ¼ f2; 4g; I2 ¼ f4gg; equivalently, we have
τ0 ¼ f3g; τ1 ¼ f2g; τ2 ¼ f4g, thus we have a term

K234;24;4 ¼
p1 · F3 · q234p1 · F2 · q24p123 · F4 · q4

D234D24D4

; ð8Þ

where we have used ΔðI2;∅Þ ¼ ðĪ2Þj<4 ¼ f2; 3g. A more
nontrivial example for the latter is for n ¼ 9,
Δðf4; 5; 7; 8g; f4; 8gÞ ¼ f2; 3; 6gj<5 ¼ f2; 3g.
On the other hand, the boundaries of Pn−2 have a nice

quasishuffle product interpretation. The quasishuffle prod-
uct ⋆ can be defined between two arbitrary generators
ðσ0; σ1;…; σrÞ and ðρ0; ρ1;…; ρsÞ, where σi and ρj are sets
with arbitrary lengths and can also be prompted to
the quasishuffle Hopf algebra [26,34,35,51]. We sum-
marize the definitions in Appendix A and here we just
use the following result of the quasishuffle product
K̂ð2;…; n − 1Þ≡ ð2Þ⋆ð3Þ⋆…⋆ðn − 1Þ

K̂ð2;…; n − 1Þ

¼
Xn−3
d¼0

X
τ∈partðdþ1Þð2;…;n−1Þ

ð−1Þnþd−1ðτ0; τ1;…; τdÞ; ð9Þ

where partðdþ1Þð2;…; n − 1Þ denotes all the ordered par-
titions of f2; 3;…; n − 1g into dþ 1 nonempty subsets
ðτ0; τ1;…; τdÞ (each τi is sorted according to β). Terms on
the rhs of (9) are in one-to-one correspondence with
boundaries of Pn−2 as in (7), thus we can rewrite (5) in
terms of the quasishuffle product

Kð1; 2;…; nÞ ¼ hK̂ð2;…n − 1Þi; ð10Þ

where we have defined a linear map h·i from (6) for any
partition ðτ0; τ1;…; τdÞ

hðτ0; τ1;…; τdÞi ¼ ð−1Þnþd−1
Yd
k¼0

p1ΔðIk;Ikþ1Þ · Fτk · qIk
DIk

:

ð11Þ

B. The counting and some examples

By definition, the permutohedron Pm contains m!

vertices and 2m − 2 codimension one facets. More gen-
erally, the number of codimension d boundaries of this
polytope is ðdþ 1Þ!Sðm; dþ 1Þ, where Sðm; dÞ is the
second kind of Stirling number [52]. Algebraically,
Sðm; dþ 1Þ also counts the number of ways to partition
a set of m labeled objects into dþ 1 nonempty unlabeled
subsets fτ0; τ1;…; τdg [52], so after considering the order-
ing between these sets, there are ðdþ 1Þ!Sðm; dþ 1Þ terms
in the summation for any d. The total number is the Fubini
number Fm, where Fm ¼ P

m
d¼1 d!Sðm; dÞ [53], thus the

n-point BCJ numerator has F n−2 terms. The explicit
counting up to six-point is given in Table I.
Let us illustrate (5) and (6) with some examples. The

most trivial case is n ¼ 3, where the BCJ numerator
corresponds to the zero-dimensional permutohedron P1,
which is just a point. It contains one term with
Γ0 ¼ fI0g ¼ f2g, thus Kð1; 2; 3Þ ¼ K2ð1; 2; 3Þ ¼ p1·F2·q2

D2
,

where we have used ΔðI0; I1Þ ¼ ∅, this is generally true
since Ī0 ¼ ∅.
For n ¼ 4, the permutohedron P2 is a line segment,

where the interior (d ¼ 0) is labeled by I0 ¼ f23g, and the
two vertices (d ¼ 1) are labeled by f23; 2g and f23; 3g; we
show these three terms in Fig. 1.
Equivalently, in (9) the partition partð1Þ of f2; 3g has

ðfτ0 ¼ f2; 3gÞ and partð2Þ has ðτ0 ¼ f2g; τ1 ¼ f3gÞ and
ðτ0 ¼ f3g; τ1 ¼ f2gÞ: they are nothing but the interior and
the two vertices, according to (7).
Thus the BCJ numerator Kð1; 2; 3; 4Þ has three terms,

K23, K23;2, and K23;3, which read

TABLE I. Counting codimension-d boundaries of Pn−2.

d

n 0 1 2 3 Total

3 1 1
4 1 2 3
5 1 6 6 13
6 1 14 36 24 75
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p1 · F23 · q23
D23

þ p1 · F3 · q23p1 · F2 · q2
D23D2

þ p1 · F2 · q23p12 · F3 · q3
D23D3

: ð12Þ

Notice that the last term in the above equation is from the
boundary f23; 3g, so the second factor in the numerator is
p
1ðf3gÞ<3 · F3 · q3 ¼ p12 · F3 · q3. Meanwhile (12) shows

that the four-point numerator Kð1; 2; 3; 4Þ has an overall
pole DI0 ¼ D23. This can be easily seen from (4) since the
first set of any codimension d boundary Γd is always
labeled by I0 ¼ f2; 3;…; n − 1g.
Notice that (6) means each term in the BCJ numerator

contains spurious poles, and the codimension d contribu-
tion will have dþ 1 spurious poles where DI0 is an overall
pole for every boundary. Except for the overall one, the
simple poles can be written as DI where I is a nonempty
proper subset of I0 ¼ f2; 3;…; n − 1g and two simple
poles DI and DJ are compatible if and only if I ⊂ J or
J ⊂ I. For example, at five-point, except for the overall
D234, the simple poles are D2, D3, D4, D23, D24, D34,
which correspond to the six codimension one boundaries of
P3, and the compatible double poles are

fD23D2; D24D2; D23D3; D34D3; D24D4; D34D4g; ð13Þ

which correspond to six vertices of the hexagon P3. We
show the boundary contribution formally in Fig. 1. These
13 terms form a two-dimensional polytope P3. These
boundaries can also be realized in a quasishuffle product
K̂ð2; 3; 4Þ, which will be discussed in Appendix B. To be
precise, we give some explicit examples of different
codimension here

K234 ¼
p1 · F234 · q234

D234

;

K234;23 ¼
p1 · F4 · q234p1 · F23 · q23

D234D23

;

K234;2 ¼
p1 · F34 · q234p1 · F2 · q2

D234D2

;

K234;23;2 ¼
p1 · F4 · q234p1 · F3 · q23p1 · F2 · q2

D234D23D2

: ð14Þ

The complete result for the BCJ numerator Kð1; 2; 3; 4; 5Þ
is shown in the Appendix B.
Moreover, we emphasize that all the spurious poles are

canceled in the final amplitude, and the amplitude does not
depend on the reference momenta. The proof will be put
into the following paper [54].
For n ¼ 6, P4 is a three-dimensional truncated octahe-

dron shown in Fig. 2. As we have counted, it contains 14
codimension one boundaries (six squares and eight hex-
agons), 36 edges and 4! ¼ 24 vertices, thus 75 boundaries
in total. Some terms with codimension d ¼ 0, 1, 2, 3 are

K2345 ¼
p1 · F2345 · q2345

D2345

;

K2345;234 ¼
p1 · F5 · q2345p1 · F234 · q234

D2345D234

;

K2345;234;23 ¼
p1 · F5 · q2345p1 · F4 · q234p1 · F23 · q23

D2345D234D23

;

K2345;234;23;2 ¼
p1 · F5 · q2345p1 · F4 · q234p1 · F3 · q23p1 · F2 · q2

D2345D234D23D2

: ð15Þ

FIG. 2. The permutohedron P4 for Kð1;…; 6Þ.FIG. 1. Permutohedra P2 for Kð1; 2; 3; 4Þ (top) and P3 for
Kð1; 2; 3; 4; 5Þ (bottom).
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III. NUMERATORS FOR GENERAL YMS AND
PURE YM AMPLITUDES

More generally, the CCK duality has provided closed
formulas for BCJ numerators of n-point YMS amplitude
with r ≥ 2 scalars [7]. It turns out that any such numerator
corresponds to a permutohedron Pn−r (with dimension
n − r − 1): everything we have discussed above for r ¼ 2
case still applies if we replace f2; 3;…; n − 1g by the set of
n − r gluons. For example, in the other extreme with r ¼ n
we can formally define P0 ≔ P∅ and the n-scalar numer-
ator (of bi-adjoint ϕ3 amplitude) is 1 or 0. For r ¼ n − 1,
we have the zero-dimensional P1 and the numerator with a
single gluon i reads

K1−gluonð1; β; nÞ ¼ p1→i · Fi · qi
Di

; ð16Þ

where 1 → i denotes all the scalars preceding i in ð1βnÞ.
We shall not repeat this for general cases but leave detailed
discussions to a separate paper [54].
Moreover, since the pure YM amplitude can be

expanded as a linear combination of these YMS ones
[12,14,55–57], we obtain its BCJ numerators for free; the
resulting numerator naively contains 2F n−2 terms as
derived in [7]. However, we can still organize the terms
according to pole structures and immediately combine
them in pairs as F n−2 terms: the resulting numerator has
the same form as the two-scalar case and corresponds to
boundaries of permutohedron Pn−2. By expanding
AYMð1; 2;…; nÞ in exactly the same way as (1), each
master BCJ numerator, e.g., KYMð1; 2;…; nÞ is given by
a sum over boundaries of Pn−2 as in (5):

KYMð1; 2;…; nÞ ¼
Xn−3
d¼0

X
Γd∈∂dPn−2

KYM
Γd

ð1; 2;…; nÞ;

where the contribution from each boundary is identical to
(6) except for the k ¼ 0 factor, which becomes

εn · F1τ0 · qI0 þ ε1 · Fτ0 · ðεnp1n · qI0 − qI0p1 · εnÞ
DI0

: ð17Þ

Of course, similar to the YMS case, all spurious poles
cancel in the final amplitude, which does not depend on qI .
Therefore we are free to choose them to simplify the
expression (17). One such choice is qI0 ¼ εn, and the k ¼ 0

factor (17) takes a simpler form

εn · F1τ0 · εn
εn · p23…n−1

¼ −
εn · F1τ0 · εn

εn · p1

: ð18Þ

It is easy to see that the BCJ numerators become manifestly
gauge invariant in particles 1; 2;…; n − 1. For example, the
BCJ numerator KYMð1; 2; 3; 4Þ reads

−
ε4 · F123 · ε4

p1 · ε4
−
ε4 · F13 · ε4p1 · F2 · q2

p1 · ε4D2

−
ε4 · F12 · ε4p12 · F3 · q3

p1 · ε4D3

:

Furthermore, similar to the discussion in Sec. II A, BCJ
numerators of YM amplitudes can also be interpreted in
terms of quasishuffle products, and the only change is that
in the linear map (11) the k ¼ 0 factor is modified to (17).
Before ending the section, we mention the obvious

double copy from YM to GR

MGR
n ¼

X
α;β

KYMð1; α; nÞmð1; α; nj1; β; nÞKYMð1; β; nÞ;

ð19Þ

where we sum over a pair of permutations α, β of
f2; 3;…; n − 1g, with m denoting biadjoint ϕ3 amplitudes;
if we replace YM by YMS with 1; n being scalars, it gives
the amplitude with n − 2 gravitons and two scalars.

IV. RECURSIONS AND FACTORIZATIONS

In this section, we propose recursion relations and
factorization properties (on spurious poles DI) for the
BCJ numerators, which are implied by the combinatorial
and algebraic structure. The argument can be equally
applied to both two-scalar YMS and pure YM numerators.

A. Recursion relations

First, in quasishuffle product (9), one can collect the
terms with the same τd and then apply the linear map (11) to
obtain the following recursion relation,

Kð1; 2;…; nÞ ¼
X

I⊂f2;…;n−1g

p1ΔðI;∅Þ · FI · qI
DI

K̃Ið1; Ī; nÞ;

ð20Þ

where the summation is over all the nonempty subsets of
f2; 3;…; n − 1g. The definition of K̃Ið1; Ī; nÞ is slightly
different from (6) in the denominator: it is given by the sum
over boundaries of the permutohedron P Ī with vertices
labeled by all permutations of set Ī, and for each boundary
Γd ¼ fJ0 ¼ Ī; J1;…; Jdg where Jd ⊂ Jd−1… ⊂ J0, we
have a contribution

K̃I
Γd

¼
Yd
k¼0

p1ΔðJk;Jkþ1Þ · Fτk · qIJk
DIJk

; ð21Þ

where DIJk ¼ pIJk · qIJk , τk ¼ IdðJk=Jkþ1Þ with Jdþ1 ≡∅
and the complement of the set Jk appears in ΔðJk; Jkþ1Þ is
defined as Ī=Jk. For jIj ¼ n − 2 (Ī ¼ ∅), we define
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K̃Ið1; nÞ ¼ 1. Formally, this numerator corresponds to the
permutohedron P0.
For example, the recursion relation of Kð2; 3; 4Þ≡

Kð1; 2; 3; 4; 5Þ [58] reads

Kð2; 3; 4Þ ¼ p1 · F234 · q234
D234

þ p1 · F23 · q23
D23

K̃23ð4Þ

þ p1 · F24 · q24
D24

K̃24ð3Þ þ p12 · F34 · q34
D34

K̃34ð2Þ

þ p1 · F2 · q2
D2

K̃2ð3; 4Þ þ p12 · F3 · q3
D3

K̃3ð2; 4Þ

þ p123 · F4 · q4
D4

K̃4ð2; 3Þ: ð22Þ

Geometrically, the recursion relation (20) tells us how
the codimension one boundaries of permutohedron are
glued together. In the above five-point example, the term
with jIj ¼ 3 in the first line has only one pole and
corresponds to the interior (codimension 0 boundary) of
P3, depicted in Fig. 3. For the three terms with jIj ¼ 2 in
the second line, each factor K̃Ið1; Ī; nÞ corresponds to a
zero-dimensional permutohedron; on the other hand, each
term is mapped to a codimension one boundary of P3

without vertices. For the remaining three terms with jIj ¼ 1

in the last line, each K̃Ið1; Ī; nÞ corresponds to a one-
dimensional permutohedron and it is mapped to a codi-
mension one boundary with two vertices.

B. Factorization properties on spurious poles

Next, we move to certain intriguing factorization proper-
ties of the BCJ numerator on spurious poles. Combi-
natorially, any codimension one boundary of the permu-
tohedron Pn−2 is the product of two lower-dimensional
permutohedra PI × P Ī . Remarkably, we find that on any
pole DI ¼ 0, the residue of the BCJ numerator factorizes
into the product of a ðjIj þ 2Þ-point numerator and a
ðn − jIjÞ-point numerator. Unlike the usual factorization
on the physical poles of the amplitude, these factorizations
on the spurious poles stem from the combinatorial picture
without any known physical origin. Explicitly

ResjDI¼0Kð1; 2;…; nÞ ¼ DIKð1; IdðIÞ; PÞK̃Ið1; IdðĪÞ; nÞ;
ð23Þ

where P≡ Īn denotes an effective scalar. For the definition
of ΔðIk; Ikþ1Þ in Kð1; IdðIÞ; PÞ, the complement of the set

Ik is still defined as Īk ¼ f2; 3;…; n − 1g=Ik while for
ΔðJk; Jkþ1Þ in K̃Ið1; IdðĪÞ; nÞ the complement of Jk is
defined as Ī=Jk. The factor DIKð1; IdðIÞ; PÞ in (23) means
that the overall pole DI of Kð1; IdðIÞ; PÞ is excluded. The
factorization properties (23) can be proved directly by
plugging in the definitions on both sides.
For instance, at six points as shown in Fig. 2, there are 14

codimension one boundaries DI ¼ 0 including eight poles
with jIj ¼ 1 or 3 corresponding to hexagons and six poles
with jIj ¼ 2 corresponding to squares. On any of the
hexagon boundary, i.e., when DI ¼ 0 with jIj ¼ 1 or 3,
the residue factorizes into F 3 ¼ 13 terms (times F 1 ¼ 1
term). Similarly when DI ¼ 0 with jIj ¼ 2, the residue
factorizes differently, e.g., as D23Kð1; 2; 3; 456Þ ×
K̃23ð1; 4; 5; 6Þ when D23 ¼ 0 (the square is the product
of two line segments Pf23g × Pf45g).
Algebraically, the quasishuffle algebra can be prompted

to a bialgebra by introducing the coproduct map [26], and
one can show the factorization properties from the cop-
roduct. Similar to [34,35], we can also define the antipode
map to make the bialgebra a quasishuffle Hopf algebra.
Acting on the BCJ numerators, the antipode map does
nothing but changes its overall sign. The detail is given in
the Appendix A.
We expect the factorization properties of BCJ numer-

ators to be the key for showing the cancellation of spurious
poles in the amplitude. Such properties also suggest certain
positive geometries (rather than just combinatorics) under-
lying these BCJ numerators, and we leave further inves-
tigations to future works.

V. HEAVY-MASS EFFECTIVE FIELD THEORY

In this section, we study YMS amplitudes and their
BCJ numerators in the HEFT, which are obtained by taking
the heavy-mass limit for a pair of massive scalars with
momenta [33–35]

pμ
1 ¼ mvμ; pμ

n ¼ −mvμ − kμ; ð24Þ

where v2 ¼ 1 and we are interested in the limit m → ∞; in
other words, we will study the expansion in 1=m of the BCJ
numerators which we denote as KHð1; 2;…; nÞ, as well as
that of ϕ3 amplitudes, which combine to give the resulting
HEFT amplitude AHð1; 2;…; nÞ at the leading order in
1=m. Here kμ is at the same order as gluon momenta, which
stay finite at Oðm0Þ as m → ∞.

A. Heavy limit of YMS amplitudes

We will make a particular choice of the reference
momenta: qI ¼ v for all I, which dramatically simplifies
formulas for BCJ numerators and give rise to poles similar
to HEFT numerators in [34]. In fact, for n ¼ 4 such a
choice reduces the BCJ numerator to one term, since
v · Fa · v vanishes for a single particle a

FIG. 3. Recursion relation at n ¼ 5.
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KHð1; 2; 3; 4Þ ¼
p1 · F23 · v
p23 · v

¼ −
2m2

k2
v · F23 · v; ð25Þ

where in the second equality we have used v · k ¼
−k2=ð2mÞ, which is implied by the on-shell condition
p2
n ¼ m2. Notice that KHð1; 3; 2; 4Þ ¼ KHð1; 2; 3; 4Þ, thus

the amplitude AHð1; 2; 3; 4Þ becomes

�
1

s12
þ 1

s23

�
KHð1; 2; 3; 4Þ −

1

s23
KHð1; 3; 2; 4Þ

¼ −
m
k2

v · F23 · v
v · p2

: ð26Þ

Physically, the final HEFT amplitude has the leading order
OðmÞ [33]. In the above example, we can see that the
numerators are at Oðm2Þ, and the sum of the leading
contribution of ϕ3 amplitudes atOðm0Þ, say 1=s23 times the
corresponding numerators vanishes. Therefore, the sum of
the contribution of ϕ3 amplitudes at the next order, i.e.,
1=s12 from Aϕ3ð1; 2; 3; 4Þ times the numerator produces the
HEFTamplitude as the first nonvanishing order. This is also
the case for n ¼ 5. However, for higher n, the numerator
contains some additional terms with higher power of m. To
obtain the leading order contribution of HEFT final
amplitude, we expand the numerators and the ϕ3 ampli-
tudes in m−1. Note the overall pole D23…n−1 ¼ v · k for
BCJ numerators is proportional to m−1, we first collect the
numerator according to its superficial order of m−1, i.e.,
terms with (i − 1) p1 s in the numerator,

KHð1; 2;…; nÞ ¼
Xbn=2c
i¼2

KðiÞ
H ð1; 2;…; nÞ; ð27Þ

where the upper bound of the summation is bn=2c since
p1 · Fa · v ¼ 0 implies that the numerator should contain as
many p1 · Fab · v as possible to have the highest power of

p1. In the above expansion,K
ðiÞ
H ≡ KðiÞ

H ð1; 2;…; nÞ refers to
terms with the superficial order OðmiÞ. For example, at six

points we have the following terms for Kð2Þ
H and Kð3Þ

H ,
respectively:

p1 · F23 · vp23 · F5 · vp23 · F4 · v
v · kv · p45v · p4

;

p1 · F25 · vp1 · F34 · v
v · kv · p34

:

In fact, as explained in Appendix C, the actual order of KðiÞ
H

is Oðm2Þ for i ¼ 2 and Oðmi−1Þ otherwise.
In the HEFT amplitude, we sum over all cubic graphs

relevant at leading order, and for each graph with its
propagator structure, its numerator is given by the corre-

sponding commutator of KðiÞ
H [59]. Nicely we observe that

certain commutators of KðiÞ
H actually vanish, and the end

result is that only Kð2Þ
H contributes to the amplitude at the

leading order. We have checked such vanishing results up
to n ¼ 10, but we do not have an all-n proof at the moment.
In fact, such vanishing results are better than what we

need here, i.e., only Kð2Þ
H contributes to gauge-theory

amplitudes at leading order. We have checked up to
n ¼ 10 that the stronger vanishing results actually ensure

that only Kð2Þ
H contributes to gravity amplitude, which is at

order Oðm2Þ, as obtained by double copy in HEFT. We
leave more details in the Appendix C with a proof of the
simplest case. As a result of this conjecture, the amplitude
is given by

AHð1; 2…; nÞ ¼
X
Θ1

Kð2Þ
H ð1;Θ1; nÞ

dΘ1

; ð28Þ

where the summation is over nested commutators of depth
n − 4 (“codepth” 1) of the ordered set ð2; 3;…; n − 1Þ. For
instance, at five points, we sum over Θ1 ¼ ð½2; 3�; 4Þ;
ð2; ½3; 4�Þ; dΘ1 denotes the propagator denominator corre-
sponding to the cubic tree associated with Θ1 [two subtrees
on the scalar line ð1nÞ]:

Moreover, it is easy to show (see Appendix C for details)

that the effective BCJ numerator Kð2Þ
H ð1; 2;…; nÞ contains

F n−3 terms, and its pole structure corresponds to the
permutohedron Pf34…n−1g, which means that

Kð2Þ
H ð1; 2;…; nÞ ¼

Xn−2
d¼0

X
Γd∈∂dPn−3

Kð2Þ
H;Γd

ð1; 2;…; nÞ: ð29Þ

For the boundary Γd ¼ fI0; I1;…; Idg ∈ ∂
dPf34…n−1g,

where Id ⊂ Id−1 ⊂ … ⊂ I0 ¼ f3; 4;…; n − 1g and Id ≠ ∅,
the contribution is

Kð2Þ
H;Γd

¼ mv · Fτ0 · v

p23…n−1 · v

Yd
k¼1

pΔðIk;Ikþ1Þ · Fτd · v

v · pIk

;

¼ −
2m2v · Fτ0 · v

k2
Yd
k¼1

pΔðIk;Ikþ1Þ · Fτd · v

v · pIk

; ð30Þ

where in the calculation of ΔðIk; Ikþ1Þ, the complement set
of Ik is still taken to be f2; 3;…; n − 1g=Ik. For n ¼ 4,
there is no commutator in Θ1 and the result is (26). For
n ¼ 5, the amplitude becomes
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AHð1; 2; 3; 4; 5Þ ¼ 1

s12

Kð2Þ
H ð1; 2; ½3; 4�; 5Þ

s34

þ 1

s123

Kð2Þ
H ð1; ½2; 3�; 4; 5Þ

s23
; ð31Þ

where Kð2Þ
H ð1; 2; 3; 4; 5Þ is given by

−
2m2

k2

�
v · F234 · vþ

v · F24 · vp2 · F3 · v
v · p3

þ v · F23 · vp23 · F4 · v
v · p4

�
:

Let us give a final example for n ¼ 6 amplitude

1

s12

�
Kð2Þ

H ð1;2; ½½3;4�;5�;6Þ
s34s345

þKð2Þ
H ð1;2; ½3; ½4;5��;6Þ

s45s345

�

þ 1

s123

Kð2Þ
H ð1; ½2;3�; ½4;5�;6Þ

s23s45

þ 1

s1234

�
Kð2Þ

H ð1; ½½2;3�;4�;5;6Þ
s23s234

þKð2Þ
H ð1; ½2; ½3;4��;5;6Þ

s34s234

�
:

ð32Þ

It is interesting to notice the numerators we present here
only differ from those in [34] denoted by Nð1; 2;…; nÞ by
an overall prefactor

Kð2Þ
H ð1; 2;…; nÞ ¼ ð−1Þnðn − 2Þ 2m

k2
v · p2Nð1; 2;…; nÞ:

ð33Þ

It is highly nontrivial, however, that these two sets of
effective BCJ numerators give the same HEFT amplitude.
In [34], the expression involves the sum of cubic graphs
corresponding to nested commutators of depth n − 3 of the
ordered set ð2; 3;…; n − 1Þ, thus the propagator denomi-
nator contains an overall factor s23…n−1, which in our case
is replaced by different s1σ for different terms. In addition,
the numerator of [34] for each cubic graph is given by a
nested commutator of Nð1; 2;…; nÞ, thus the number of
terms in it is twice as ours. Nevertheless, we have
analytically checked up to n ¼ 10 that the amplitude
(28) agrees with [34]. Moreover, we have checked that
although they look very different, the HEFT gravity
amplitude via double copy also agrees with that in [34],
and we expect both agreements to hold for all n.

B. Decoupling into pure YM

Given the explicit result of the n-point heavy mass BCJ
numerators, the (n − 1)-point pure YM BCJ numerators, as
well as the amplitudes, can be easily obtained via the
decoupling limit:mv → εn, p2

23…n−1 → 0 to obtain the BCJ

numerator K0YMð2; 3;…; nÞ [33,34]. Under this kinemat-
ics, the overall factor k2 vanishes, which we ignore in the
decoupling limit. For instance, the three-point BCJ numer-
ator is given by K0YMð2; 3; 4Þ ¼ −2ε4 · F23 · ε4. Therefore,
the three-point amplitude is

AYMð2; 3; 4Þ ¼ −
ε4 · F23 · ε4
ε4 · p2

;

¼ ε4 · ε2p2 · ε3 − ε2 · ε3p2 · ε4 − ε4 · ε3p3 · ε2:

ð34Þ

For the four-point YM amplitude, the numerator
K0YMð2; 3; 4; 5Þ reads

− 2

�
ε5 · F234 · ε5 þ

ε5 · F24 · ε5p2 · F3 · ε5
p3 · ε5

þ ε5 · F23 · ε5p23 · F4 · ε5
p4 · ε5

�
:

Note that K0YMð2; 3;…; nÞ also manifests the gauge invari-
ance of particles 2; 3;…; n − 1. Moreover, it is related to
the BCJ numerator given in Sec. III via

K0YMð2; 3;…; nÞ ¼ 2εn · p2KYMð2; 3;…; nÞjqI→εn
:

These numerators, accompanied by different ϕ3 ampli-
tudes, produce the same YM amplitude.

VI. CONCLUSIONS AND OUTLOOK

In this note, we established a correspondence between
BCJ numerators from covariant color-kinematics duality
and the combinatorial permutohedra, which are closely
related to the quasishuffle Hopf algebra. This apply to all
YMS amplitudes, but the most interesting case is that, with
two scalars whose numerators share the same combinatorial
structure as the pure YM ones, each term is mapped to a
boundary of Pn−2; the contribution from each boundary is
almost identical in these two cases, except that we need to
modify one factor to take into account the remaining two
gluons. We also found nice recursion relations and fac-
torization properties implied by this picture. Finally, based
on highly nontrivial cancellations which are needed for
both YMS and gravity amplitudes (via double copy) in
HEFT, we conjectured a compact formula for their effective
numerators; they become closely related to permutohedra
Pn−3, which, while producing the same amplitude, differ by
an overall factor from the numerators in [34,35].
There are numerous open questions for further inves-

tigations. First, as we will present in [54], it is interesting to
see how lower-dimensional permutohedra for general YMS
numerators combine into Pn−2, which corresponds to the
pure YM ones; we also find interesting combinatorial
structures underlying BCJ numerators of amplitudes in
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nonlinear sigma model etc. Moreover, the somewhat
miraculous cancellations that simplify these numerators
in HEFT still remain to be proven, which would also be
important to establish the correct double copy in HEFT.
Since the final amplitudes are independent of reference
momenta, all the spurious poles must cancel, which still
calls for a direct understanding (without relying on the
CCK duality); such an understanding could connect this
combinatorial picture (especially the factorizations) to the
uniqueness theorem for YM amplitude [46,60] and YMS
ones via the universal expansion [57]. Last but not least, it
is tempting to ask this: Could we combine the permutohe-
dra for BCJ numerators with the associahedra for biadjoint
ϕ3 amplitudes and obtain a unified geometric understand-
ing of gluon and graviton scattering?
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APPENDIX A: REVIEW OF THE
PERMUTOHEDRA AND HOPF ALGEBRAS

1. The permutohedra

The permutohedron Pm refers to an (m − 1)-dimensional
polytope, whose vertices are labeled by the m! permuta-
tions of ð1; 2; 3;…; mÞ. Two permutations are connected
by an edge if and only if they differ in only two places,
and the numbers on these places are neighbors [52]. For
example, the P1 is just a point, and the P2 is just a
line whose vertices can be labeled as f12g and f21g.

For m ¼ 3, the permutohedron is a hexagon and P4 is a
truncated octahedron, as shown in Fig. 4.
It is also easy to translate the traditional label of vertices

of permutohedron to our convention. In our problem, the
vertices of Pn−2 should correspond to the permutations
of f2; 3;…; n − 1g denoted by p ¼ p1p2…pn−2. For
any vertex p, we put it into a set fIdðp1; p2;…; pn−2Þ;
Idðp1; p2;…pn−3Þ;…; p1g. Then each codimension n − 2
boundary is labeled by the intersection of two vertices. For
example, for the P2 as shown in the left side of Fig. 5, the
two vertices are now labeled by f23; 2g and f23; 3g, and
the codimension 0 line is just f23; 2g ∩ f23; 3g ¼ f23g.
More generally, the codimension d boundary can be labeled
by the intersection of two codimension dþ 1 boundaries,
which is labeled by dþ 1 sets. The slightly nontrivial
example P3 is also shown in Fig. 5.
In this new notation, the codimension 0 boundary is

always labeled by I0 ≡ f2; 3;…; n − 1g and the codimen-
sion one boundaries are labeled as fI0; I1g, where I1 is a
nonempty proper subset of I0, so there are 2n−2 − 2
codimension one boundaries in total. For example, for
the permutohedron P4, the codimension one boundaries
include eight hexagons (with jI1j ¼ 1 or 3) and six squares
(with jI1j ¼ 2). Two codimension one boundaries fI0; I1g
and fI0; I01g are adjacent if and only if the I1 ⊂ I01 or
I1 ⊃ I01, As a codimension two boundary, the intersection
of the above two boundaries is just fI0; I1; I01=I1g if I1 ⊂ I01
and similar if I1 ⊃ I01. It is easy to notice that the boundary
structure of Pn−2 is just the same as the pole structure in our
n-point BCJ numerator.
Combinatorially, each codimension one boundary of the

permutohedron Pn−2, say fI0; I1g is the product of two
permutohedra PI1 × P Ī1 , which we refer to as “combina-
torial factorization.” For example, on a codimension one
boundary of P4, say f2345; 2g, the permutohedron factor-
izes into Pf2g × Pf345g, which is just a hexagon; on another

FIG. 4. Permutohedra P2, P3, and P4.
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codimension one boundary f2345; 23g, it factorizes into
Pf23g × Pf45g, i.e., the product of two line segments, which
is a square. Let us also list all the codimension one
boundaries of P5. Denoted as f23456; I1g, when jI1j ¼
1 or 4, the boundary is just the truncated octahedron P4;
when jI1j ¼ 2 or 3, the boundary becomes a line segment
times a hexagon which is a hexagonal prism. More
generally, we can see that boundaries corresponding to
jI1j ¼ a and jI1j ¼ n − 2 − a have the same shape.

2. Hopf algebras

The quasishuffle algebra consists of a vector space V of
generators, which are denoted as ðσ0; σ1;…; σrÞ. To begin,
we introduce some standard nomenclature for generators:
we will refer to generators with a single subset (σ0) as
“letters,” those with multiple subsets σ ≡ ðσ0; σ1;…; σrÞ as
“words.” The quasishuffle product between two generators
can be defined recursively as

ðσ0; σ1;…; σrÞ⋆ðρ0; ρ1;…; ρsÞ
¼ σ0½ðσ1;…; σrÞ⋆ðρ0; ρ1;…; ρsÞ�
þ ρ0½ðσ0; σ1;…; σrÞ⋆ðρ1;…; ρsÞ�
− ðσ0ρ0Þ½ðσ1;…; σrÞ⋆ðρ1;…; ρsÞ�; ðA1Þ

where we also defined an identity element I for the
quasishuffle product

Iðσ0Þ � � � ðσrÞ ¼ ðσ0Þ � � � ðσrÞI ¼ ðσ0Þ � � � ðσrÞ;
I⋆ðσ0Þ � � � ðσrÞ ¼ ðσ0Þ � � � ðσrÞ⋆I ¼ ðσ0Þ � � � ðσrÞ: ðA2Þ

For example, the quasishuffle product between two
letters is

ð2Þ⋆ð3Þ ¼ ð2; 3Þ þ ð3; 2Þ − ð23Þ; ðA3Þ

and the product between a letter with a word is

ð2; 3Þ⋆ð4Þ ¼ ð2Þ½ð3Þ⋆ð4Þ� þ ð4; 23Þ − ð24; 3Þ;
¼ ð2; 3; 4Þ þ ð2; 4; 3Þ − ð2; 34Þ
þ ð4; 23Þ − ð24; 3Þ: ðA4Þ

From (A1), the quasishuffle product between two gen-
erators can also be written out explicitly

ðσ0; σ1;…; σrÞ⋆ðρ0; ρ1;…; ρsÞ
¼

X
τjfσg¼ðσ0 ;σ1 ;…;σrÞ
τjfρg¼ðρ0 ;ρ1 ;…;ρsÞ

ð−1Þd−r−sðτ0; τ1;…; τdÞ; ðA5Þ

where the σi or ρi are now any subsets of f2; 3;…; n − 1g.
The notation τjfσg means that we restrict the partition τ onto
the subset fσg ¼ ∪r

i¼0σi, for example ð234;56;78Þjf2;4;6g ¼
ð24;6Þ.
Here, we give the n ¼ 4 example for the BCJ numerators

from the linear map of the quasishuffle product (10). The
BCJ numerators Kð1; 2; 3; 4Þ ¼ hK̂ð2; 3Þi can be mapped
from the quasishuffle product (A3) via the rule (11), which
is the same as the result shown in (12).
As we mentioned in the main text, the quasishuffle

product ð2Þ⋆ð3Þ⋆…⋆ðn − 1Þ gives the sum over all the
ordered partitions of f2; 3;…; n − 1g into dþ 1 nonempty
subsets with d ¼ 0; 1;…; n − 3 [see Eq. (9)]. When
d ¼ n − 3, the ordered partition gives the ðn − 2Þ! permu-
tations of f2; 3;…; n − 1g; when d ¼ 1, it gives has 2n−2 −
2 terms. Generally, the unordered partition of n − 2 labels
f2; 3;…; n − 1g into dþ 1 nonempty subsets is given by
the second kind of Stirling number Sðn − 2; dþ 1Þ [52].
For example, Sðn − 2; n − 2Þ ¼ 1 and Sðn − 2; 2Þ ¼
2n−3 − 1. After considering the ordering between these
sets, there are ðdþ 1Þ!Sðn − 2; dþ 1Þ ordered partitions
with length dþ 1. Since the partitions are related to the
boundaries of permutohedron via (7), ðdþ 1Þ!Sðn − 2;
dþ 1Þ also counts the codimension d boundaries of
permutohedron Pn−2. Thus, the total number of partitions
with length 1; 2;…; n − 2 is the Fubini number F n−2 ¼P

n−2
d¼1 d!Sðn − 2; dÞ [53], which is also the total number of

all codimension boundaries of Pn−2.
To make the quasishuffle algebra a bialgebra, we can

also define the coproduct δ∶V → V ⊗ V as a linear map,
which satisfies [26,34,35]

δððσ0ÞÞ ¼ I ⊗ ðσ0Þ þ ðσ0Þ ⊗ I;

δððσ0; σ1;…; σsÞ⋆ðρ0; ρ1;…; ρtÞÞ
¼ δððσ0; σ1;…; σsÞÞ⋆δððρ0; ρ1;…; ρtÞÞ: ðA6Þ

The definition of the coproduct can also be extended to be
consistent with the tensor product as ðA ⊗ BÞ⋆ðC ⊗ DÞ ¼
ðA⋆CÞ ⊗ ðB⋆DÞ. Additionally, the unit element of coal-
gebra ϵ can be defined as

ϵðIÞ ¼ I; ϵðσÞ ¼ 0: ðA7Þ

To illustrate, we give an example of the coproduct:

FIG. 5. P2 and P3 in our convention.
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δð2⋆3Þ ¼ I ⊗ ½ð2; 3Þ þ ð3; 2Þ − ð23Þ�
þ ð2Þ ⊗ ð3Þ þ ð3Þ ⊗ ð2Þ
þ ½ð2; 3Þ þ ð3; 2Þ − ð23Þ� ⊗ I: ðA8Þ

From this example, we can see that the coproduct of the
specific quasishuffle ð2⋆3⋆…⋆n − 1Þ, which is defined as
K̂ð2; 3;…; n − 1Þ and can be written in terms of the tensor
product of lower-point ones. Generally, we have

δðK̂ð2; 3;…; n − 1ÞÞ ¼
X

I⊂f2;3;…;n−1g
K̂ðIÞ ⊗ K̂ðĪÞ; ðA9Þ

where the summation runs over all subsets of
f2; 3;…; n − 1g, which is allowed to be the empty set,
and we define δð∅Þ ¼ I.
Notice that each term in the coproduct of the BCJ

numerator factorizes into the product of two lower-point
numerators in the sense of (23), so it motivates us to define
a replacement rule C for tensor products as

CðK̂ðIÞ ⊗ K̂ðĪÞÞ ¼ Kð1; IdðIÞ; PÞK̃Ið1; IdðĪÞ; nÞ; ðA10Þ

where σ and ρ are words. Then the factorization property
(23) can be written in the language of coproduct

ResjDI¼0Kð1; 2;…; nÞ ¼ ResjDI¼0CδðK̂ð2; 3;…; n − 1Þ:
ðA11Þ

We can also promote the bialgebra to be a Hopf algebra
by defining the antipode map S∶V → V [26,34,35], which
satisfies ⋆ðI ⊗ SÞδððσÞÞ ¼ ⋆ðS ⊗ IÞδððσÞÞ ¼ ϵðσÞI, where
⋆ðσ0 ⊗ σ1Þ≡ σ0⋆σ1. To be explicit, it can be defined
recursively

SðIÞ ≔ I;

Sððσ1; σ2;…; σrÞÞ ≔ −
Xr−1
i¼0

Sððσ1; σ2;…; σiÞÞ

⋆Sððσiþ1; σiþ2;…; σrÞÞ: ðA12Þ

When acting on the K̂ð2; 3;…; n − 1Þ, it trivially gives

SK̂ð2; 3;…; n − 1Þ ¼ ð−1ÞnK̂ð2; 3;…; n − 1Þ: ðA13Þ

Thus the antipode only changes the numerator
K̂ð2; 3;…; n − 1Þ by an overall sign. So there is no useful
interpretation of the antipode map.

APPENDIX B: EXPLICIT BCJ NUMERATORS
FOR FIVE POINTS

For completeness, we provide another explicit example
for the five-point BCJ numerator of YMS amplitude, which
corresponds to all boundaries of P3

Kð1; 2; 3; 4; 5Þ

¼ 1

D234

�
p1 · F234 · q234 þ

p1 · F34 · q234p1 · F2 · q2
D2

þ p1 · F24 · q234p12 · F3 · q3
D3

þ p1 · F23 · q234p123 · F4 · q4
D4

þ p1 · F4 · q234p1 · F23 · q23
D23

þ p1 · F3 · q234p1 · F24 · q24
D24

þ p1 · F2 · q234p12 · F34 · q34
D34

þ p1 · F4 · q234p1 · F3 · q23p1 · F2 · q2
D23D2

þ p1 · F4 · q234p1 · F2 · q23p12 · F3 · q3
D23D3

þ p1 · F3 · q234p13 · F4 · q24p1 · F2 · q2
D24D2

þ p1 · F3 · q234p1 · F2 · q24p123 · F4 · q4
D24D4

þp1 · F2 · q234p12 · F4 · q34p12 · F3 · q3
D34D3

þ p1 · F2 · q234p12 · F3 · q34p123 · F4 · q4
D34D4

�
: ðB1Þ

It contains 13 terms, or the Fubini number F 3. These
13 terms can also be realized by quasishuffle product
2⋆3⋆4 evaluated as (9) acted by the linear map (11):
in the same order as the above equation, the partitions
are ðf234gÞ, ðf34g; f2gÞ, ðf24g; f3gÞ, ðf23g; f4gÞ,
ðf4g; f23gÞ, ðf3g; f24gÞ, ðf2g; f34gÞ, ðf4g; f3g; f2gÞ,

ðf4g; f2g; f3gÞ, ðf3g; f4g; f2gÞ, ðf3g;f2g;f4gÞ, ðf2g;
f4g;f3gÞ, ðf2g;f3g;f4gÞ.
The five-point YM numeratorKYMð1; 2; 3; 4; 5Þ is almost

the same as (B1) except that with our special choice, in each
term the factor p1 · Fτ0 · q234 is changed to ε5 · Fτ0 · ε5 and
the overall pole D234 is changed to ε5 · p234 ¼ −ε5 · p1.
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APPENDIX C: DETAILS OF THE EFFECTIVE
NUMERATORS IN HEAVY LIMIT AND DOUBLE

COPY

1. Effective BCJ numerators for HEFT

Recall in (27) that we expand KH into KðiÞ
H by counting

the power of p1; therefore we have a good control of the
maximal power of the heavy mass m. For n ¼ 4, 5, the
expansion is trivial since we have one and three terms all

contribute to Kð2Þ
H ð1; 2; 3; 4Þ and Kð2Þ

H ð1; 2; 3; 4; 5Þ, respec-
tively, as given in Sec. V. For n ¼ 6, the following term

with explicit factor m2 will contribute to Kð2Þ
H ð1; 2;…; 6Þ:

−
2m2

k2
v · F23 · vp23 · F5 · vp23 · F4 · v

v · p45v · p4

: ðC1Þ

Meanwhile Kð3Þ
H ð1; 2;…; 6Þ is given by

−
2m3

k2

�
v · F25 · vv · F34 · v

v · p34

þ v · F25 · vv · F34 · v
v · p25

þ v · F24 · vv · F35 · v
v · p24

þ v · F24 · vv · F35 · v
v · p35

þ v · F23 · vv · F45 · v
v · p23

þ v · F23 · vv · F45 · v
v · p45

�
: ðC2Þ

Importantly, the actual power of m for KðiÞ
H is 2 for i ¼ 2 and i − 1 for 2 < i ≤ bn=2c since for the latter cases

the expressions are proportional to an addition v · k ∝ m−1 after collecting terms carefully. For instance, (C2) can be
rewritten as

−
2m3

k2
v · k

�
v · F25 · vv · F34 · v

v · p34v · p25

þ v · F24 · vv · F35 · v
v · p24v · p35

þ v · F23 · vv · F45 · v
v · p23v · p45

�
ðC3Þ

On the other hand, we also expand ϕ3 amplitudes
according to the order of m−1,

Aϕ3ð1; β; nÞ ¼
Xn−3
j¼0

Aϕ3;ðjÞð1; β; nÞ; ðC4Þ

where Aϕ3;ðjÞð1; β; nÞ denoted terms with the orderOðm−jÞ.
For instance, at n ¼ 6 and j ¼ 2, 3 we have

Aϕ3;ð2Þð1;2;…;6Þ ¼ 1

s12s34s1234
þ 1

s23s123s1234
þ 1

s12s45s123
;

Aϕ3;ð3Þð1;2;…;6Þ ¼ 1

s12s123s1234
: ðC5Þ

Therefore the amplitudes are expressed by

AHð1; 2;…; nÞ ¼
X
β∈Sn−2

Aϕ3ð1; β; nÞKHð1; β; nÞ;

¼
Xn−3
j¼0

X
Θj

Xbn=2c
i¼2

KðiÞ
H ð1;Θj; nÞ

dΘj
: ðC6Þ

Here, each term in the summation is at order Oðmi−jÞ for
i ¼ 2 and Oðmi−1−jÞ otherwise. We define a nested
commutator of depth r of an ordered set to be r mutually
compatible commutators acting on the ordered set; and
we use Θj for j ¼ 0; 1;…; n − 3 to represent nested
commutator of depth n − 3; n − 4;…; 0 of the ordered
set ð2; 3;…; n − 1Þ. For examples, for n ¼ 5 with j ¼ 0,
1, 2 we sum over Θ0 ¼ ð½½2; 3�; 4�Þ; ð½2; ½3; 4��ÞΘ1 ¼
ð½2; 3�; 4Þ; ð2; ½3; 4�Þ and Θ2 ¼ ð2; 3; 4Þ. Moreover, dΘj is
the propagator denominator corresponding to the cubic
graph associated with Θj:

For n ¼ 5, dΘj s involved in the summation are given by

QU CAO, JIN DONG, SONG HE, and YAO-QI ZHANG PHYS. REV. D 107, 026022 (2023)

026022-12



Notice that the correct order of the amplitude
AHð1; 2;…; nÞ is Oðm1Þ, therefore physically one expects
the contribution to higher power of m vanishes. We have
checked this fact up to n ¼ 10. Moreover, we have
observed that the only contribution to the leading order
of amplitudes is i ¼ 2 and j ¼ 1, which means

Kð2Þ
H ðΘ0Þ ¼ 0 and KðiÞ

H ð1;Θi−2; nÞ ¼ 0

for 2 < i ≤ bn=2c: ðC7Þ
Note that

KðiÞ
H ð1;Θj; nÞ ¼ 0⇒ KðiÞ

H ð1;Θa; nÞ ¼ 0 for a < j; ðC8Þ

since KðiÞ
H ð1;Θa; nÞ is nothing but the linear combination of

those with j > a. Therefore, Eq. (C7) already ensures the
vanishing of OðmhÞ with h > 1. In addition, the general
conjecture, which is even stronger than (C7) and confirmed
up to ten points, reads

KðiÞ
H ð1;Θ2ði−2Þ; nÞ ¼ 0 for 2 ≤ i ≤ bn=2c: ðC9Þ

We now give a proof of the simplest case of conjecture
(C9), say i ¼ n=2 for even n, for which we have

Kðn=2Þ
H ð1; 2;…; nÞ ¼

X
τ∈partðn=2Þ;jτkj¼2

Yn=2−1
k¼0

p1 · Fτk · v

DIk

;

ðC10Þ
where we sum over the ordered partition of ð2;…; n − 1Þ
into n=2 sets with each set contains two elements. The
above expression is invariant under the permutation on any
two labels, therefore

Kðn=2Þ
H ð1;Θn−4; nÞ ¼ 0; ðC11Þ

which completes the proof.

In summary, the effective BCJ numerator contributing to

the leading order of the amplitude AHð1; 2;…; nÞ is Kð2Þ
H ,

where thepower ofm is only contributed from the overall pole
v · k ¼ − k2

2m and the factormv · Fτ0 · v in numerator (6). This
fact is equivalent to the boundary (4) does not contain particle
2 except for the I0. The proof is straightforward. Whenever
there is a Ikðk ≠ dÞ, which consists of 2 and a Ikþ1 does not
consist of 2, thenΔðIk; Ikþ1Þ ¼ Īkj<2 ¼ ∅, whichmeans that
this boundary at least contributes to the superficial order of
Oðm3Þ, unless jτkj ¼ 1 for which this term vanishes.
Similarly, for the remaining Id ⊃ f2g case, ΔðId;∅Þ also
becomes an empty set, and this boundary will either con-
tribute to at least superficial order Oðm3Þ or vanishes.
Therefore, the remained pole structure contains two parts

of contribution. The pole structure of the first part is related to
Pf34…n−1g with an additional overall pole D23…n−1, which
implies that there are F n−3 terms. The other part is also
corresponded to Pf34…n−1g, but does not have the pole
D34…n−1. So naively there are 2F n−3 terms contributing to
orderOðm1Þ. However, for the first part which contains pole
D34…n−1, the numerator of each term must include a factor
mv · F2 · v and hence vanishes. Consequently, we obtain the
expression of the effective BCJ numerator (29) in the heavy
limit and the leading order of amplitude is given by (28).

2. Double copy

It is quite interesting that the vanishing properties (C9) are
precisely sufficient to ensure the leading order of amplitude
for heavy scalars coupled to gravitons also only receives the

contribution from Kð2Þ
H . Consider the double copy of (C6)

MH
n ¼

X
α;β∈Sn−2

KHð1; α; nÞmð1; α; nj1; β; nÞKHð1; β; nÞ;

¼
Xn−3
j¼0

X
Θ0j

Xbn=2c
i;i0¼2

KðiÞ
H ð1;Θ0j; nÞKði0Þ

H ð1;Θ0j; nÞ
dΘ0j

; ðC12Þ
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whereΘ0j for j ¼ 0; 1;…; n − 3 is the nested commutators of depth n − 3; n − 2;…; 0 of the unordered set f2; 3;…; n − 1g
and dΘ0j is the corresponding propagator denominator. Note that with the support of (C8), the conjecture (C9)
implies

KðiÞ
H ð1;Θ0j; nÞKði0Þ

H ð1;Θ0j; nÞ ¼ 0 for iþ i0 − j − 2 ¼ 2 with i; i0 ≠ 2; ðC13Þ

Kð2Þ
H ð1;Θ0j; nÞKði0Þ

H ð1;Θ0j; nÞ ¼ 0 for i0 − jþ 1 ¼ 2 with i0 ≠ 2; ðC14Þ

which would have contributed at Oðm2Þ. Therefore, the amplitude is simplified into

MH
n ¼

X
Θ01

Kð2Þ
H ð1;Θ01; nÞ2

dΘ01
þ
X
Θ02

Kð2Þ
H ð1;Θ02; nÞ2

dΘ02
; ðC15Þ

Importantly, the above two contributions are at the same order Oðm2Þ, where for the first part, i.e., the contribution from
summing overΘ01, one needs to collect terms in pair on the support of (C9) to organize the result in explicitOðm2Þ. Forn ¼ 4,
there would be no contribution from the second part and the amplitude reads

MH
4 ¼ Kð2Þ

H ð1; 2; 3; 4Þ2
s12

þ Kð2Þ
H ð1; 3; 2; 4Þ2

s13
¼ 2mv · kKð2Þ

H ð1; 2; 3; 4Þ2
s12s13

; ðC16Þ

where we have used Kð2Þ
H ð1; 2; 3; 4Þ ¼ Kð2Þ

H ð1; 3; 2; 4Þ. A more nontrivial case is for n ¼ 5, the result is given by

1

s34

�
Kð2Þ

H ð2; ½3;4�Þ2
s12

þKð2Þ
H ð½3;4�;2Þ2

s134

�
þ 1

s24

�
Kð2Þ

H ð3; ½2;4�Þ2
s13

þKð2Þ
H ð½2;4�;3Þ2

s124

�
þ 1

s23

�
Kð2Þ

H ð4; ½2;3�Þ2
s14

þKð2Þ
H ð½2;3�;4Þ2

s123

�

þKð2Þ
H ð2;3;4Þ2
s12s123

þKð2Þ
H ð3;2;4Þ2
s13s123

þKð2Þ
H ð2;4;3Þ2
s12s124

þKð2Þ
H ð4;2;3Þ2
s14s124

þKð2Þ
H ð3;4;2Þ2
s13s134

þKð2Þ
H ð4;3;2Þ2
s14s134

; ðC17Þ

where we have omitted the scalar labels 1 and 5 in Kð2Þ
H . Note that for two terms in each pair in the first line, the

numerators are equal, which is the part of the conjecture (C9) with i ¼ 2, j ¼ 0. Therefore, by collecting terms in
pairs the first line gives rise to an additional v · k and we have the amplitude consistently atOðm2Þ. This argument works
for general n with each pair corresponding to cubic graphs with two identical subtrees placed reversely on the
scalar line.
Moreover, the amplitude (C15) can be simplified further, e.g., for (C17), the first pair in the first line reads

1

s34

ðs12 þ s134ÞKð2Þ
H ð2; ½3; 4�Þ2

s12s134
¼ 1

s34

ð2mv · kþ s34ÞKð2Þ
H ð2; ½3; 4�Þ2

s12s134
: ðC18Þ

Similar operations can be applied to the remaining two pairs, and one can check that the amplitude is then given by

MH
5 ¼ 2mv · k

�
Kð2Þ

H ð2; ½3; 4�Þ2
s12s134s34

þ Kð2Þ
H ð3; ½2; 4�Þ2
s13s124s24

þ Kð2Þ
H ð½2; 3�; 4Þ2
s14s123s23

�
; ðC19Þ

where the second line of (C17) has been canceled. The
analogous cancellation has also been observed at higher
points, which leads to the conjecture of a more compact
version of (C15)

MH
n ¼ 2mv · k

X
g

Kð2Þ
H ð1;Θ00ðIÞ;Θ00ðĪÞ; nÞ2
s1Is1ĪdΘ00ðIÞdΘ00ðĪÞ

; ðC20Þ FIG. 6. Cubic graphs with two identical subtrees placed
reversely on the scalar line.
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where we sum over the cubic graphs g corresponding to
half of the possible Θ01 s; i.e., each graph is either of two
graphs with two identical subtrees (contain legs I and Ī)
where the subtrees are placed reversely on the scalar line
(see Fig. 6). We also define Θ00ðIÞ to be the nested
commutator of depth jIj − 1 of the unordered set I and

dΘ00ðIÞ to be the corresponding propagator denominator; for
each term in the summation, Θ00ðIÞ and Θ00ðĪÞ are given by
the subtrees of the graph g. The above expression contains
ð2n − 7Þ!! terms, which is equal to the number of terms in
an (n − 1)-point amplitude of gravitons scattering(without
heavy scalars).
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