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We consider a d-dimensional unitary conformal field theory with a compact Lie group global
symmetry G and show that, at high temperature T and on a compact Cauchy surface, the probability
of a randomly chosen state being in an irreducible unitary representation R of G is proportional to
ðdim RÞ2 exp½−c2ðRÞ=ðbTd−1Þ�. We use the spurion analysis to derive this formula and relate the constant b
to a domain wall tension. We also verify it for free field theories and holographic conformal field theories
and compute b in these cases. This generalizes the result in 2109.03838 that the probability is
proportional to ðdimRÞ2 when G is a finite group. As a byproduct of this analysis, we clarify
thermodynamical properties of black holes with non-Abelian hair in anti–de Sitter space.
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I. INTRODUCTION

In [1], a simple formula is derived for the density of
black hole microstates in theory with finite group gauge
symmetry G. The formula states that, if we pick a random
state from a uniform distribution of all states of the black
hole in the semiclassical regime, the probability of it being
in a unitary irreducible representation R of G is

PR ¼ ðdimRÞ2
jGj ; ð1:1Þ

where jGj is the number of elements in G so that

X
R

PR ¼ 1: ð1:2Þ

It was also conjectured in the paper that the formula applies
to any conformal field theory (CFT) at high temperature on
a sphere with finite group global symmetry G. This
generalizes the result of [2] from two dimensions to
arbitrary dimensions. The conjecture is verified in the
context of free field theories and weakly coupled theories
in [3], and a general derivation is presented in [4] using the
result of [5]. See also [6] for earlier results on black holes
with discrete gauge charges in specific models.

In this paper, we generalize this result to the case
where G is a compact Lie group. Since jGj is infinite
and G has infinitely many unitary irreducible representa-
tions, Eq. (1.1) needs modifications. We show that, at high
temperature and on a compact Cauchy surface, the prob-
ability PR for a random state to be in a representation R of
G is given by

PR ¼ ðdim RÞ2
�

4π

bTd−1

�
dimG=2

exp

�
−
c2ðRÞ
bTd−1 þ � � �

�
;

ð1:3Þ

where T is the temperature, d is the dimensions of the
spacetime of the CFT, c2ðRÞ is the second Casimir of R,
and � � � represents terms subleading in 1=T. An important
point is that b is a positive constant independent of R and T.
For small representations, where c2ðRÞ ≪ Td−1, the R
dependence of PR is captured by the ðdim RÞ2 factor as
in the finite group case (1.1). For large representations
where c2ðRÞ ≫ Td−1, PR decays exponentially.
We derive Eq. (1.3) by calculating the twisted partition

function,

ZðT; gÞ ¼ Tr½UðgÞe−βĤ�; ð1:4Þ

where the trace is taken over the CFT Hilbert space,UðgÞ is
the action of g ∈ G on the Hilbert space, β ¼ 1=T, and Ĥ is
the Hamiltonian. When g ¼ 1, it is the standard partition
function with the universal large T behavior,

ZðT; g ¼ 1Þ ¼ exp ðaTd−1 þ � � �Þ; ð1:5Þ
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for some constant a. In two dimensions, it is related to the
Cardy formula with

a ¼ π2ðcL þ cRÞ=6; ð1:6Þ

where cL and cR are the central charges in the left and right
movers.
We employ the spurion analysis for the theory obtained

by dimensional reduction of the CFT on the thermal circle
and show that the g dependence of ZðT; gÞ is of the form

ZðT; g ¼ eiϕÞ ¼ exp

�
aTd−1 −

b
4
Td−1hϕ;ϕi þ � � �

�
;

ð1:7Þ

where the inner product hϕ;ϕi is given by the trace of ϕ2 in
the adjoint representation. The constant b is related to the
tension of the domain wall which generates the g-twisted
sector and therefore is positive. We also verify this formula
by calculating b for free field theories and for holographic
conformal field theories. Since the twisted partition func-
tion ZðT; gÞ is a class function of g, i.e., invariant under the
conjugation g → hgh−1 for any h ∈ G, we can expand
ZðT; gÞ in characters χRðgÞ of unitary irreducible repre-
sentations of G. We calculate the coefficients for the
expansion of Eq. (1.7) and obtain

ZðT; gÞ=ZðT; 1Þ ¼
�

4π

bTd−1

�
dimG=2X

R

dim R

· χRðgÞ exp
�
−
c2ðRÞ
bTd−1 þ � � �

�
: ð1:8Þ

Our main result (1.3) then follows.
For d ¼ 1, Eq. (1.3) is derived for BF gauge theory

coupled to Jackiw–Teitelboim gravity [7]. For d ¼ 2, the
formula for G ¼ Uð1Þ is derived using the modular
invariance of 2D CFTs [2]. Our results generalize this to
d ≥ 3 and to non-Abelian G. The exponential suppression
factor in Eq. (1.7) is also mentioned for free field theories in
a note added to [3]. We note that the right-hand side of

Eq. (1.8) is in the same form as that of the partition function
of the two-dimensional Yang-Mills theory with gauge
group G and the coupling constant proportional to
1=Tðd−1Þ=2 [8–12]. There may also be a connection between
our results and the recent study of the entanglement entropy
in the presence of a global symmetry [13].
In the holographic derivation of Eq. (1.8), we use the

Einstein gravity coupled to the Yang-Mills theory with
gauge group G and a finite number of matter fields in anti–
de Sitter space (AdS). When G is non-Abelian, there are
two types of relevant bulk geometries besides the thermal
AdS: black holes with and without non-Abelian hair. Both
bulk geometries obey the same boundary condition at the
infinity of AdS. However, the former has genuinely non-
Abelian configurations of the gauge field, while the gauge
field in the latter is commutative. There is an extensive
literature on such solutions (see [14,15] for some reviews).
One of the outstanding questions in this area has been
whether solutions with non-Abelian hair are thermody-
namically stable. As we will show in this paper, the two
types of solutions, with and without non-Abelian hair,
converge in the high temperature limit T → ∞. We com-
pute the 1=T corrections to their thermodynamical quan-
tities for purely electric solutions and show that the black
holes with non-Abelian hair have lower free energies. This
determines that the black holes with non-Abelian hair are
thermodynamically more stable.
The coefficients a and b computed for free field theories

and holographic CFTs are summarized in Table I below.
When we haveN free scalars orN free fermions, both a and
b are proportional to N. In holographic CFTs, both a and b
are proportional to ld−1=GN assuming GN ∼ e2, where GN
is the Newton’s constant, e is the gauge coupling constant,
and l is the curvature radius of AdS. Thus, in both the free
field theories and holographic CFTs, a and b are propor-
tional to the number of degrees of freedom of the system.
The organization of this paper is as follows. In Sec. II, we

give a general argument for the large T behavior in Eq. (1.7)
using the spurion analysis for the theory obtained by
dimensional reduction of the CFT on the thermal circle.
In Sec. III, we expand the right-hand side of Eq. (1.7)
in characters of representations of G and derive Eq. (1.8).

TABLE I. The coefficients a and b in Eq. (1.5) for a variety of CFTs. For the free scalar, the results are for d > 3.
wd−1 is the area of the unit (d − 1) sphere.

a b

A free scalar with G ¼ Uð1Þ 2ζðdÞ 4ζðd − 2Þ
A free scalar in a representation ρ of G 2ζðdÞ dim ρ 4ζðd − 2Þc2ðρÞ dim ρ

dim G

A free spinor with G ¼ Uð1Þ d ¼ 2∶ ζð2Þ ¼ π2=6 1
d ¼ 3∶ 3ζð3Þ 16 log 2

Holographic CFT ð4πd Þd−1 wd−1ld−1

4dGN
ð4πd Þd−2 4ðd−2Þwd−1ld−1

e2
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In Secs. IV–VI, we discuss examples. In Sec. IV, we derive
the large T behavior when G ¼ Uð1Þ for free field theories
and holographic CFTs. In Sec. V, we generalize these
results to a non-Abelian group G. The holographic dual in
this case involves the Yang-Mills theory with gauge group
G, and we need to consider two types of black hole
solutions: those with and without non-Abelian hair. We
show that the two solutions converge at high temperature
and reproduce the behavior in Eq. (1.8). In Sec. VI, we
discuss the theormodynamical stability of the black hole
with non-Abelian hair.

II. SPURION ANALYSIS

Consider a d-dimensional CFT on a (d − 1)-dimensional
compact Cauchy surface Σd−1 times the thermal circle S1β at
temperature T ¼ 1=β. We assume that the CFT is invariant
under a compact Lie group G. To calculate the twisted
partition function (1.4), we use the approach of [16–18] and
couple the CFT to a background gauge field A with gauge
group G.1 Upon dimensional reduction on S1β, dynamical
degrees of freedom acquire thermal masses.2 The low
energy theory on Σd−1 is then described by a gauge field
a ¼ AjΣd−1

coupled to a scalar field ϕ in the adjoint
representation of G, which is related to the holonomy of
the gauge field around the thermal circle as

g ¼ exp

�
i
I
S1β

A

�
≡ eiϕ: ð2:1Þ

The low energy effective Lagrangian in (d − 1) dimensions
has the derivative expansion,

L ¼ trAdj½Td−1VðeiϕÞ þ cTd−3ðDϕÞ2 þ g−2YMF
2 þ � � ��;

ð2:2Þ

where the scalar potential trAdjVðgÞ is a class function of g
as required by gauge invariance in d dimensions, D is the
covariant derivative, F ¼ daþ a2, and � � � are terms sup-
pressed by 1=T. The expansion may also include Chern-
Simons terms. The twisted partition function ZðT; gÞ is
obtained by setting g ¼ eiϕ to be constant and a ¼ 0.
Therefore, its g dependence is captured by the potential
term trAdjVðgÞ in the effective Lagrangian as

ZðT; gÞ=ZðT; 1Þ ¼ exp ð−trAdj½Td−1VðgÞvolðΣd−1Þ� þ � � �Þ:
ð2:3Þ

There are situations where not all dynamical degrees of
freedom become massive. For example, consider a free
massless scalar field theory that has been dimensionally
reduced on the thermal circle. The resulting theory con-
tains a free massless scalar field in one dimension lower. If
such light degrees of freedom remain, they must be taken
into account in the low-energy effective Lagrangian.
However, the leading term proportional to Td−1 would
not contain these light degrees of freedom. This is because
anything that multiplies Td−1 must be dimensionless and it
is not possible to write down a dimensionless term
involving these dynamical degrees of freedom in the
low-energy effective Lagrangian. Therefore, Eq. (2.3)
remains valid.
It is important to note that the above discussion

assumes that the original conformal field theory in d
dimensions exists and that it makes sense to put the
theory on the thermal circle. For example, the massless
free scalar field theory does not exist in d ¼ 2 due to
infrared divergence. Similarly, the theory in d ¼ 3 suffers
from infrared divergence when placed on the thermal
circle, as the dimensionally reduced theory contains a
free massless scalar field in two dimensions. Indeed, in
Sec. IVA we will see that when we calculate Zðg; TÞ for
the free massless scalar field theory in d ¼ 3, Eq. (2.3) is
modified by the presence of a T2 logT term in the
coefficient of VðeiϕÞ. However, Eq. (2.3) is still valid for
d > 3, where it is meaningful to place the free massless
scalar field on the thermal circle. It is also interesting to
note that, for d > 3, there are subleading terms in
Eq. (2.3) that contain logT factors. This indicates that
the light dynamical degrees of freedom can affect these
subleading terms, but not the leading Td−1 term that is
relevant for our analysis.
Now, we relate the potential trAdjVðgÞ to the tension of

the domain wall which generates the g-twisted sector in the
CFT Hilbert space. To do so, we note that the Lagrangian
density (2.2) is of the same form for any smooth compact
manifold Σd−1, provided we use the metric of Σd−1 to write
L in a diffeomorphism invariant way. In particular, we can
choose Σd−1 ¼ S̃1 × Σd−2, with S̃1 having unit circum-
ference and the thermal boundary condition, and compute
VðgÞ for this geometry. By exchanging the thermal circle S1β
with S̃1 as done for example in [19], we can interpret the
twisted partition function ZðT; gÞ as the untwisted partition
function in the g-twisted sector on S1β × Σd−2 with the twist
along the S1β direction. Since we are computing the partition
function of the CFT, we can rescale the spacetime so that
the thermal circle S1β has a unit circumference and the

volume of S̃1 × Σd−2 is proportional to Td−1. In the limit of
T → ∞, the exponent trAdj½Td−1VðgÞvolðΣd−1Þ� þ � � � of
Eq. (2.3) can be interpreted as the ground state energy of
the g-twisted sector on S1β × Σd−2 times the circumference T

of the rescaled S̃1.

1We thank David Simmons-Duffin for discussion on this
approach.

2There are situations where not all dynamical degrees of
freedom become massive. Our results including Eq. (2.3) are not
modified in such situations, as we will explain in the next
paragraph.
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Since we expect that the ground state energy of the
g-twisted sector with g ≠ 1 is higher than that of the
untwisted ground state, trAdjVðgÞ should have the global
minimum at g ¼ 1.3 Therefore, in the high temperature
limit,

ZðT; gÞ=ZðT; 1Þ → CðTÞδðg; 1Þ; T → ∞; ð2:4Þ

for some CðTÞ, where δðg; 1Þ is the delta function on the
group manifold G localized at g ¼ 1. The delta function
can be expanded in terms of characters as

δðg; 1Þ ¼
X
R

dimR · χRðgÞ; ð2:5Þ

where the sum is over unitary irreducible representations of
G and the volume ofG is normalized to be 1. Therefore, the
probability PR for a random state to be in the representation
R is proportional to ðdim RÞ2, for fixed R in the limit of
T → ∞. This explains the ðdim RÞ2 factor in Eq. (1.3).
To reproduce the exp ½−c2ðRÞ=ðbTd−1Þ� factor in

Eq. (1.3), we expand the potential TrVðgÞ around g ¼ 1.
Since it is a class function of g, the expansion should take
the form,

trAdj½Td−1Vðg ¼ eiϕÞvolðΣd−1Þ�

¼ constantþ b
4
Td−1hϕ;ϕi þ � � � : ð2:6Þ

The coefficient b must be non-negative since the minimum
of trAdjVðgÞ is at g ¼ 1. This reproduces Eq. (1.7). As we
will show in the next section, this is equivalent to Eq. (1.8)
and therefore to Eq. (1.3).

III. EXPANSION IN CHARACTERS

We have shown that the twisted partition function has the
universal high temperature behavior,

ZðT; g ¼ eiϕÞ=ZðT; 1Þ ¼ exp

�
−
b
4
Td−1hϕ;ϕi þ � � �

�
:

ð3:1Þ

Since it is a class function of g, we can expand it in
characters χRðgÞ. The purpose of this section is to find the
expansion coefficients and derive Eq. (1.8).
To do so, we use the fact that the left-hand side of (3.1)

approximately solves the heat equation for T ≫ 1 as

�
bTd

d − 1

∂

∂T
þ Δ

���
bTd−1

4π

�
dimG=2 ZðT; gÞ

ZðT; 1Þ
�
≃ 0; ð3:2Þ

and obeys the initial condition,

�
bTd−1

4π

�
dimG=2 ZðT; gÞ

ZðT; 1Þ
����
T¼∞

¼ δðg; 1Þ: ð3:3Þ

Here Δ is the Laplace operator on the group manifold G.
Since each character is an eigenstate of the Laplace
operator,

ΔχRðgÞ ¼ −c2ðRÞχRðgÞ; ð3:4Þ

and since characters make an orthonormal basis of class
functions, fχRðgÞe−c2ðRÞ=ðbTd−1ÞgR gives the complete set of
solutions to the heat equation. Therefore, we can expand

�
bTd−1

4π

�
dimG=2 ZðT; gÞ

ZðT; 1Þ ≃
X
R

dRχRðgÞ exp
�
−
c2ðRÞ
bTd−1

�
:

ð3:5Þ

To determine the expansion coefficient dR, we use the
initial condition (3.3), which can be written asX

R

dRχRðgÞ ¼ δðg; 1Þ: ð3:6Þ

Since δðg; 1Þ ¼ P
R dim R · χRðgÞ, the expansion coeffi-

cients are determined as

dR ¼ dim R; ð3:7Þ

and we obtain

ZðT; gÞ=ZðT; 1Þ ¼
�

4π

bTd−1

�
dimG=2X

R

dim R · χRðgÞ

× exp

�
−
c2ðRÞ
bTd−1 þ � � �

�
: ð3:8Þ

IV. EXAMPLE 1: Uð1Þ SYMMETRY

In the remainder of the paper, we will study free field
theories and holographic CFTs on S1β × Sd−1 and calculate
the coefficient b explicitly. The circumference of the
thermal circle S1β is β, and the radius of the Cauchy surface
Sd−1 is normalized to be 1.
We begin by studying CFTs with G ¼ Uð1Þ. Each state

in the Hilbert space can be labeled by a charge Q, and the
conjectured formula takes the form

PQ ¼
ffiffiffiffiffiffiffiffiffiffi
4πb
Td−1

r
exp

�
−

Q2

bTd−1

�
1þO

�
1

T
;
Q2

T2d−4

���
: ð4:1Þ

We verify this by calculating the grand canonical partition
function with an imaginary chemical potential μ ¼ iTθ,

3Though it is a reasonable assumption, it is desirable to have a
precise derivation of the statement. It is currently being inves-
tigated by H. Ooguri, S. Pal, Z. Sun, and Z. Zhang.
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ZðT; μ ¼ iTθÞ ¼ Tr½e−βĤþiθQ̂�: ð4:2Þ

We assume that Q̂ is quantized in such a way that the field
with the smallest nonzero Uð1Þ charge has charge 1. In the
limit of large T and small μ, we show

ZðT; μÞ ¼ exp

�
aTd−1

�
1þO

�
1

T

��

þ b
4
Td−3μ2

�
1þO

�
μ2;

1

T

���
; ð4:3Þ

for some constants a and b. The Fourier transformation of
this formula with respect to θ ¼ −iβμ gives the canonical
partition function, which leads to Eq. (4.1).

A. Free field theory

1. Free scalar theories

Consider a massless complex free scalar field ϕ in d
spacetime dimensions.4 We normalize the Uð1Þ generator
Q̂ such that ϕ has charge 1. For such a theory on R × Sd−1,

the grand canonical partition function with an imaginary
chemical potential is given by [20]

ZscalarðT;μ¼ iTθÞ ¼ exp

�X∞
n¼1

e−nβ
d−2
2

n
cosðnθÞ ð1− e−2nβÞ

ð1− e−nβÞd
�
:

ð4:4Þ
As we are interested in the high temperature limit, that is,
when θ ¼ −iβμ is small, we first expand the exponent in
powers of θ as

ZscalarðT; μÞ ¼ exp

�X∞
k¼0

Ckθ
2k

�
; ð4:5Þ

where the coefficient Ck is given by

Ck ¼
ð−1Þk
ð2kÞ!

X∞
n¼1

n2k−1e−
ðd−2Þ
2

nβ ð1 − e−2nβÞ
ð1 − e−nβÞd : ð4:6Þ

At high temperature, one might think that the sum
over n in Eq. (4.6) can be approximated by an integral
over x ¼ nβ as

Ck ≈
ð−1Þk
ð2kÞ! T

2k

Z
∞

0

fðxÞdx; fðxÞ ¼ x2k−1e−
d−2
2
x ð1 − e−2xÞ
ð1 − e−xÞd : ð4:7Þ

However, we need to be careful when 2k ≤ d − 1 as fðxÞ is singular at x ¼ 0 and the integral approximation will fail when x
is small. To take this into account, we introduce a cutoff at some small value x0 and use the integral approximation only for
x > x0. The terms in the summation in Eq. (4.6) are not converted to integral form when n is such that nβ < x0. Taking this
singular behavior into account, the correct approximation is

Ck ≈
ð−1Þk
ð2kÞ!

�
2Td−1

Xx0T
n¼1

n2k−d þ T2k

Z
∞

x0

dxfðxÞ
�
: ð4:8Þ

It is straightforward to show that Eq. (4.8) is independent of x0 for large values of T. In this way, we find that the coefficients
Ck can be approximated as

Ck ≈
�

ð−1Þk
ð2kÞ!

�Z
∞

0

dxx2k−1e−
d−2
2
x ð1 − e−2xÞ
ð1 − e−xÞd

�
T2k 2k ≥ d; ð4:9aÞ

Ck ≈
�

ð−1Þk
ð2kÞ!

�
2 logT þ 2γ þ 2 log x0 þ

Z
∞

x0

dxx2k−1e−
d−2
2
x ð1 − e−2xÞ
ð1 − e−xÞd

�
Td−1 2k ¼ d − 1; ð4:9bÞ

Ck ≈
�

ð−1Þk
ð2kÞ! 2ζðd − 2kÞTd−1− ð−1Þk

ð2kÞ! T
2k

�
2x2k−dþ1

0

d−2k−1 þ
Z

∞

x0

dxx2k−1e−
d−2
2
x ð1 − e−2xÞ
ð1 − e−xÞd

�
2k < d − 1. ð4:9cÞ

The constant γ appearing in Eq. (4.9b) is the Euler-Mascheroni constant. At θ ¼ 0, the partition function is
ZscalarðT; 0Þ ¼ eC0 . Since Eq. (4.9c) gives C0 ¼ 2ζðdÞTd−1, the coefficient a in Eq. (1.5) is given by a ¼ 2ζðdÞ for
the massless free scalar.

4We generally assume that d > 3 due to certain subtleties with massless scalar fields in two and three dimensions which we
discuss later.
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For d > 3, Eq. (4.9c) gives

C1 ≈ ζðd − 2ÞTd−1; ð4:10Þ

where we ignore the second term of Eq. (4.9c), since it is
subleading in 1=T. Thus we find that the grand canonical
partition function is

ZscalarðT; μÞ ≈ exp ½ζðd − 2ÞTd−3μ2ð1þOðμ2; 1=TÞÞ�
× ZscalarðT; 0Þ: ð4:11Þ

In summary, the grand canonical partition function of the
massless free complex scalar field theory in d > 3 dem-
onstrates the universal behavior at high temperature as in
Eq. (4.3), with constants

a ¼ 2ζðdÞ; b ¼ 4ζðd − 2Þ: ð4:12Þ

When d ¼ 3, there is a logarithmic term in the exponent
due to Eq. (4.9b),

ZscalarðT; μÞ ≈ exp½ðlogT þ 2.96351…Þ
× μ2ð1þOðμ2; 1=TÞÞ�ZscalarðT; 0Þ: ð4:13Þ

However, the massless scalar field at d ¼ 3 does not make
sense at finite temperature since it has the same infrared
issue as that of the massless scalar field at d ¼ 2. We
believe that the appearance of the logT singularity is a
reflection of the infrared pathology in this case. We can also
check from the Eq. (4.9b), in d > 3 case, if d is odd, logT
term appears on the d−1

2
th subleading term. This came from

the light degrees of freedom mentioned in Sec. II.

2. Free spinor theories

For the massless scalar field, we cannot consider theories
in d ¼ 2, 3 due to the infrared problem. As it is good to also
have an example in these dimensions, we consider the
theory of a free spinor field.
In two dimensions, the grand canonical partition func-

tion of a free complex Weyl spinor is given by

ZspinorðT; μ ¼ iTθÞ ¼
Y∞
n¼1

ð1þ e−βðn−1
2
ÞeiθÞ

× ð1þ e−βðn−1
2
Þe−iθÞ: ð4:14Þ

We can transform this into the plethystic form as

ZspinorðT; μ ¼ iTθÞ ¼ exp

�X∞
n¼1

ðlogð1þ e−βðn−1
2
ÞeiθÞ þ logð1þ e−βðn−1

2
Þe−iθÞÞ

�
;

¼ exp

�
−

X∞
n;m¼1

ð−1Þm
m

ðe−βmðn−1
2
Þeimθ þ e−βmðn−1

2
Þe−imθÞ

�
;

¼ exp

�
−
X∞
m¼1

ð−1Þm
m

cosðmθÞ
sinh mβ

2

�
: ð4:15Þ

As in the free scalar case, we expand the exponent of the partition function in θ as

ZspinorðT; iμÞ ¼ exp

�X∞
k¼0

Dkθ
2k

�
; ð4:16Þ

for some coefficients Dk. We find that

D1 ¼ −
1

2

X∞
m¼1

ð−1Þm m

sinh mβ
2

¼ −
1

2

X∞
n¼1

�
2n

sinhðnβÞ −
2n − 1

sinh ð2n−1
2

βÞ
�
; ð4:17Þ

where we split the series into m ¼ 2n and m ¼ 2n − 1 terms and sum them as pairs, which is valid as D1 converges due to
the hyperbolic sine function in the denominator. At high temperature, we can approximate the summation as an integration
over x ¼ nβ:

D1 ≈ −
T2

4

Z
∞

0

dxðfðxþ βÞ − fðxÞÞ ≈ −
T2

4

Z
∞

0

dxf0ðxÞβ ≈ T
4
; fðxÞ ¼ x

sinh x
: ð4:18Þ

Similarly,
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D0 ¼ −
X∞
m¼1

ð−1Þm
m sinh mβ

2

: ð4:19Þ

In this case, we need the cutoff x0 to covert the sum into an integral as

D0 ≈ −2T
Xx0T
m¼1

ð−1Þm
m2

−
T
2

Z
∞

x0

dxg0ðxÞ ≈ ζð2ÞT; gðxÞ ¼ 1

x sinh x
2

; ð4:20Þ

where we used the zeta function identity −
P∞

m¼1
ð−1Þm
m2 ¼ ζð2Þ

2
.

Let us turn to d ¼ 3, where the grand canonical partition function of the free spinor theory is

ZspinorðT; μ ¼ iTθÞ ¼
Y∞
n¼0

ð1þ e−βðnþ1ÞeiθÞ2nþ1ð1þ e−βðnþ1Þe−iθÞ2nþ1; ð4:21Þ

¼ exp

"
−
X∞
m¼1

ð−1Þm
m

e−
mβ
2

cothmβ
2

sinh mβ
2

cosðmθÞ
#
: ð4:22Þ

Expanding the exponent in powers of θ, we find the coefficients to be

D0 ≈ −
Xx0T
m¼1

ð−1Þm 4

m3β2
þ T

2

Z
∞

x0

dxf0ðxÞ ≈ 3ζð3Þ; fðxÞ ¼ 1

x
e−

x
2

coth x
2

sinh x
2

;

D1 ≈ −
Xx0T
m¼1

ð−1Þm 4

mβ2
þ T

2

Z
∞

x0

dxg0ðxÞ ≈ 4T2 log 2; gðxÞ ¼ xe−
x
2

coth x
2

sinh x
2

; ð4:23Þ

where we used zeta function identities
P∞

m¼1
ð−1Þm
m ¼ log 2 and

P∞
m¼1

ð−1Þm
m3 ¼ − 3

4
ζð3Þ.

Combining these results, we find

ZspinorðT; μÞ ≈ f exp½ 1
4T μ

2ð1þOðμ2; 1=TÞÞ�ZspinorðT; 0Þ d ¼ 2; ð4:24aÞ

ZspinorðT; μÞ ≈ f exp½4 log 2 μ2ð1þOðμ2; 1=TÞÞ�ZspinorðT; 0Þ d ¼ 3; ð4:24bÞ

where the partition functions at βμ ¼ 0 for both dimensions
are given by

ZspinorðTÞ ¼ ZspinorðT; 0Þ ≈ f eζð2ÞT d ¼ 2; ð4:24cÞ

ZspinorðTÞ ¼ ZspinorðT; 0Þ ≈ f e3ζð3ÞT2

d ¼ 3: ð4:24dÞ

Equations (4.24c) and (4.24d) show that the free Weyl
spinor theory also demonstrates the universal behavior in
Eq. (4.3) at high temperature with the coefficients

a ¼ ζð2Þ ¼ π2

6
; b ¼ 1; ð4:25Þ

for d ¼ 2, and

a ¼ 3ζð3Þ; b ¼ 16 log 2; ð4:26Þ

for d ¼ 3. For d ¼ 2, the Cardy formula gives a ¼
π2ðcL þ cRÞ=6, and the above value of a is consistent with

ðcL; cRÞ ¼ ð1; 0Þ for the complex Weyl spinor. As ex-
pected, the result at d ¼ 3 is free from the logT singularity
we saw for the free scalar field in Eq. (4.13).

B. Holographic CFT

We now consider a holographic CFT, whose bulk theory
is described at low energy in terms of the Einstein gravity
coupled to the Maxwell field and a finite number of matter
fields in AdSdþ1. The action of the theory is given by

I ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
1

16πGN

�
Rþdðd− 1Þ

l2

�
−

1

4e2
F2þ �� �

�
;

ð4:27Þ

where � � � represents matter field terms. The curvature
radius l is related to the cosmological constant as
Λ ¼ −dðd − 1Þ=2l2. To calculate the grand canonical
partition function, we impose the boundary condition that
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the boundary geometry is S1β × Sd−1 and the gauge field A
has the holonomy around the thermal circle S1β at the
boundary given by

exp

�
i
I
S1β

Aτ

�
¼ eβμ; ð4:28Þ

where μ is identified with the chemical potential of the
boundary CFT. We solve the Einstein and Maxwell
equations assuming the spherical symmetry on Sd−1 and
setting all other matter fields to zero.
There are two classical solutions under these conditions;

one is the thermal AdS and the other is the AdS Reissner-
Nordstrom (RN) black hole. At high temperature, the RN
solution is dominant [21,22]. The RN solution can be
written in static coordinates as

ds2 ¼ VðrÞdτ2 þ dr2

VðrÞ þ r2dΩ2
d−1;

VðrÞ ¼ 1 −
m
rd−2

þ vq2

r2d−4
þ r2

l2
; ð4:29aÞ

A ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 1

2ðd − 2Þ

s �
q

rd−2H
−

q
rd−2

�
dτ; v ¼ 4πGN

e2
;

ð4:29bÞ

where m and q are related to the ADM mass and the
charge of the black hole [21,23,24]. This solution
has its ADM mass, charge, temperature, and entropy
given by

M ¼ ðd − 1Þwd−1

16πGN
rd−2H

�
1þ vq2

r2d−4H
þ r2H

l2

�
; ð4:30aÞ

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þðd − 2Þ

p �
wd−1

8πGN

�
vq; ð4:30bÞ

T ¼ d − 2

4πrH

�
1 −

vq2

r2d−4H

�
þ rHd
4πl2

; ð4:30cÞ

S ¼ wd−1

4GN
rd−1H ; ð4:30dÞ

where wd−1 is the surface area of the unit (d − 1)-sphere,
and the horizon radius rH is the largest real positive root of
VðrÞ [22,25–27]. The chemical potential of the black hole
system is related to the charge Q as

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 1

2ðd − 2Þ

s
q

rd−2H
¼ e2

ðd − 2Þwd−1

Q
rd−2H

: ð4:31Þ

By the AdS=CFT correspondence, the grand canonical
partition function of the CFT can be calculated using the
Euclidean action for this solution.
At high temperature, the horizon radius rH of the stable

black hole grows linearly in the temperature as

T ≈
rHd
4πl2

ð1 − XÞ; X ¼ d − 2

d
vq2l2

r2d−2H
; ð4:32Þ

where we keep X as small which is equivalent to small
jμj approximation in free field calculation. The grand
potential ΦðT; μÞ is related to the grant canonical partition
function as

ZAdSðT; μÞ ¼ e−βΦðT;μÞ; ð4:33Þ

and is given by the Euclidean action of the RN solution,

ΦðT; μÞ ¼ M − TS − μQ ≈ −
wd−1rdH
16πGNl2

�
1þ d

d − 2
X

�
:

ð4:34Þ

Using

rH ¼ 4πl2

d
T

1 − X
; X ¼ dðd − 2Þ2

8π2l2ðd − 1Þ
vμ2

T2
þOðX2Þ;

ð4:35Þ

we find

−βΦðT; μÞ ≈ wd−1ð4πl2=dÞd
16πGNl2

Td−1

þ wd−1ðd − 2Þ
e2

�
4πl2

d

�
d−2

μ2Td−3: ð4:36Þ

Rescaling the temperature as lT → T, the grand canonical
partition function of the dual CFT on the sphere with unit
radius is given by

ZCFTðT; μÞ ≈ exp

�
wd−1

�
4π

d

�
d−1

�
ld−1

4dGN
Td−1

þ dðd − 2Þld−1

4πe2
μ2Td−3

��
: ð4:37Þ

This determines the coefficients a and b of Eq. (4.3) in this
case as

a ¼
�
4π

d

�
d−1 wd−1ld−1

4dGN
;

b ¼
�
4π

d

�
d−2 4ðd − 2Þwd−1ld−1

e2
: ð4:38Þ
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V. EXAMPLE 2: NON-ABELIAN SYMMETRY

When G is non-Abelian, we utilize the fact that the
twisted partition function ZðT; gÞ is a class function
invariant under the conjugation g → hgh−1 for any h.
This allows us to restrict g to the maximum torus of G
and simplify our calculation. In both free field theories and
holographic CFTs, we find

ZðT; g ¼ eiϕÞ ¼ exp

�
−
b
4
Td−1hϕ;ϕi þ � � �

�
ZðT; g ¼ 1Þ;

ð5:1Þ

where the constant b is independent of ϕ or T.

A. Massless free scalar

Suppose a compact Lie group G has a faithful unitary
representation ρ with dim ρ ¼ n. Consider n massless
scalar fields in d dimensions. Though the theory has a
larger symmetry of OðnÞ, we focus on its G subgroup. We
would like to calculate the finite temperature partition
function of this theory with an insertion of g ∈ G as

ZðT; gÞ ¼ Tr½UðgÞe−βĤ�: ð5:2Þ

Since ZðT; gÞ is a class function of g, without loss of
generality, g can be restricted to the maxim torus of G. In
this case, UðgÞ acts as a multiplication of a phase factor on
each of the scalar fields. We can then apply Eq. (4.4) for
G ¼ Uð1Þ to each scalar field and assemble the results to
obtain

ZscalarðT;gÞ¼ exp

�X∞
n¼1

e−
d−2
2
nβ

n

χρðgnÞþχ�ρðgnÞ
2

ð1−e−2nβÞ
ð1−e−nβÞd

�
;

ð5:3Þ

where χρ is the character of the representation ρ and χ�ρ is
that for its conjugate. Writing g ¼ eiϕ and expanding in
powers of ϕ,

χρðgnÞ þ χ�ρðgnÞ
2

¼ trρð1 − n2ϕ2 þ � � �Þ;

¼ dim ρ −
dim ρ

dimG
c2ðρÞhϕ;ϕin2 þ � � � ;

ð5:4Þ

where trρ is the trace over the representation ρ and
hϕ;ϕi ¼ trAdjϕ2. We can repeat the calculation of G ¼
Uð1Þ in Sec. IV to obtain

ZscalarðT; eiϕÞ ≈ exp

�
−ζðd − 2ÞTd−1 dim ρ

dimG
c2ðρÞhϕ;ϕi

þ � � �
�
ZscalarðT; g ¼ 1Þ; ð5:5Þ

where we assumed d > 3.

B. Holographic CFT

Consider a holographic CFT in d dimensions, whose
bulk theory is described in low energy in terms of the
Einstein gravity coupled to the Yang-Mills field with gauge
group G and a finite number of matter fields in AdSdþ1.
The action of the theory is given by

I ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
1

16πGN

�
Rþ dðd − 1Þ

l2

�

−
1

4e2
hF;Fi þ � � �

�
; ð5:6Þ

where F is in the Lie algebra of gauge group G and � � �
represents matter field terms. To calculate the grand
canonical partition function, we impose the boundary
condition that the boundary geometry is S1β × Sd−1 and
the gauge field Aμ has the holonomy around the thermal
circle S1β as

P exp

�
i
I
S1β

A

�
¼ eβμ ¼ g: ð5:7Þ

We assume that the solution is spherically symmetric on
Sd−1, and all the other matter fields are set to zero. We
calculate the field strength and the stress-energy tensor as

Fμν ¼ ∂μAν − ∂νAμ − i½Aμ; Aν�;

Tμν ¼
1

e2

�
hFμα; Fα

νi −
1

4
gμνhFαβ; Fαβi

�
: ð5:8Þ

There are three classical solutions under these condi-
tions. The first is the thermal AdS,

ds2 ¼
�
1 −

Λr2

3

�
dτ2 þ dr2

1 − Λr2
3

þ r2dΩ2
d−1; A ¼ −iμdτ:

ð5:9Þ

The second makes use of the Uð1Þ RN solution (4.27),
ds2Uð1Þ and aμ with the chemical potential μUð1Þ, by the
substitution

ds2 ¼ ds2Uð1Þ; Aμ ¼
ϕ

hϕ;ϕi1=2 aμ; μ ¼ ϕ

hϕ;ϕi1=2 μUð1Þ:

ð5:10Þ
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Since H commutes with itself, the Yang-Mills equation for
Aμ reduces to the Maxwell equations for aμ. The rescaling
by hϕ;ϕi−1=2 is needed to match the stress energy tensors
of both systems.
The third is a genuinely non-Abelian solution. A dyonic

black hole solution with SUðNÞ hair is known in AdS4 [28].
Here, we construct a purely electric black hole solution
with SUð2Þ hair with the following ansatz [29],

ds2 ¼ −μðrÞσðrÞ2dt2 þ dr2

μðrÞ þ r2dθ2 þ r2sin2θdϕ2;

μðrÞ ¼ 1 −
2mðrÞ

r
−
Λr2

3
;

Aμ ¼ hðrÞ τ3
2
dtþ wðrÞ τ1

2
dθ

þ
�
cot θ

τ3
2
þ wðrÞ τ2

2

�
sin θdϕ; ð5:11Þ

where we use Pauli matrices τ1;2;3 as generators of the Lie
algebra of SUð2Þ and the inner product is defined as twice
the trace of two elements’ multiplication. The AdS boun-
dary condition requires σðr → ∞Þ ¼ 1. The functions,
σðrÞ, mðrÞ, hðrÞ, and wðrÞ, are determined by numerically
solving the Einstein Yang-Mills equations, which take the
form [29]

h00 ¼ h0
�
σ0

σ
−
2

r

�
þ 2w2

μr2
h; ð5:12aÞ

w00 þ w0
�
σ0

σ
þ μ0

μ

�
þ wh2

σ2μ2
þ wð1 − w2Þ

μr2
¼ 0 ð5:12bÞ

m0 ¼ v
�
r2h02

2σ2
þ w2h2

σ2μ
þ μw02 þ 1

2r2
ð1 − w2Þ2

�
; ð5:12cÞ

σ0 ¼ v

�
2σw02

r
þ 2w2h2

σμ2r

�
; ð5:12dÞ

where the prime denotes differentiation with respect to r.
The horizon radius rH is defined as the largest solution to
μðrÞ ¼ 0 and v ¼ 4πGN=e2.
Since we have the three possible solutions, we should

determine which one gives the dominant contribution to the
partition function. Above the Hawking-Page temperature,
we should consider either the second or the third solution. It
turns out that the two solutions converge at high temper-
ature. This is because, as the temperature rises, the horizon
grows and approaches the AdS boundary, where the
interaction terms in the bulk equations of motion are
suppressed. This expectation will be confirmed by the
numerical computation below.
In the asymptotically AdS case, there are stable hairy

black hole solutions, and those with SUðNÞ hair have been
extensively studied [14,28–31]. In particular, Bjoraker and
Hosotani in[29] discussed the existence of a purely electric
SUð2Þ charged black hole in AdS4, which is of our interest,
but it has not been constructed explicitly.
Let us construct the genuinely non-Abelian solution with

SUð2Þ purely electric hair in AdS4 at high temperature. We
determineσðrÞ,mðrÞ,hðrÞ, andwðrÞ by integratingEq. (5.12)
from the horizon to the infinity. Since a thermodynamically
stable black hole has a large horizon at high temperature, we
can expand them in the inverse powers of rH as

hðrÞ ¼ rHh̃0ðr̃Þ þ r−1H h̃1ðr̃Þ þOðr−2H Þ; mðrÞ ¼ r3Hm̃0ðr̃Þ þ rHm̃1ðr̃Þ þOð1Þ;
σðrÞ ¼ 1þ r−2H σ̃1ðr̃Þ þOðr−3H Þ; wðrÞ ¼ w̃0ðr̃Þ þ r−2H w̃1ðr̃Þ þOðr−3H Þ;
μðrÞ ¼ r2Hμ̃0 þ μ̃1 þOðr−1H Þ; ð5:13Þ

where r̃ ¼ r=rH. Once we substitute this expansion into Einstein Yang-Mills equations (5.12), and solve the leading order
equations, we get leading value of the functions:

h̃0ðr̃Þ ¼ h0H

�
1 −

1

r̃

�
; m̃0ðr̃Þ ¼

�
−Λþ 3vh02H

6
−
vh02H
2r̃

�
; σ̃0ðr̃Þ ¼ 1; ð5:14Þ

and w̃0 is the solution of

0 ¼ ̈w̃0 þ
3vh02Hðr̃ − 2Þ − Λr̃ð1þ 2r̃3Þ

r̃ðr̃ − 1Þð−3vh02H − Λðr̃þ r̃2 þ r̃3ÞÞ
_̃w0 þ

9h02Hr̃
2

ð3vh02H þ Λðr̃þ r̃2 þ r̃3ÞÞ2 w̃0: ð5:15Þ

Here, h0H ¼ dhðrÞ
dr jr¼rH ∼ dh̃0ðr̃Þ

dr̃ jr̃¼1. Then, the leading thermodynamic quantities of the black hole with non-Abelian hair are
given by [29]
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QE ¼ 4π

e2
h0ðrÞr2 τ3

2

����
r→∞

; ⟶
rH→∞ 4π

e2
r2Hh

0
H
τ3
2
; ð5:16aÞ

QM ¼ 4π

e2
ð1 − wðrÞ2Þ τ3

2

����
r→∞

; ⟶
rH→∞ 4π

e2
ð1 − w̃0ðr̃Þ2Þ

τ3
2
; ð5:16bÞ

M ¼ mðrÞ
GN

����
r→∞

; ⟶
rH→∞ −Λþ 3vh02H

6GN
r3H; ð5:16cÞ

T ¼ 1

4π
σðrHÞμ0ðrHÞ; ⟶

rH→∞ rH
4π

ð−Λ − vh02HÞ; ð5:16dÞ

S ¼ πr2H
GN

: ð5:16eÞ

The AdS boundary condition implies w̃0ðr̃ → ∞Þ ¼ 1.
Since it is known that the black hole is unstable if wðrÞ
has a node [a nontrivial solution to wðrÞ ¼ 0] [32,33], we
require w̃0ðr̃Þ be positive everywhere. Under these con-
ditions, we find a unique solution for w̃0 when Λ, v and h0H
are given. This establishes the existence of a stable
(nodeless) solution in leading order for given values of
rH, Λ, v, and h0H, provided h02H; vh

02
H < −Λ, which are

always satisfied for large enough T.
As expected, at high temperature, the thermodynamic

quantities of the solution converge to those of the
embedded Uð1Þ RN black hole as

M ¼ rH
2GN

�
−
Λr2H
3

þ e2GNQ2

4πr2H

�
; QE ¼ Q

τ3
2
;

T ¼ 1

4πrH

�
−Λr2H −

e2GNQ2

4πr2H

�
; S ¼ πr2H

GN
: ð5:17Þ

In Fig. 1, we show the Helmholtz free energies of the two
solutions as functions of T, with Q, v, and Λ fixed as

ffiffiffiffiffiffiffi
−Λ

p
GNQ ¼ 100; v ¼ 1; Λ ¼ −1: ð5:18Þ

We observe that Helmholtz free energies of the two
solutions converge at high temperature. We also note that,
if we look at smaller temperature, the free energy of the
Uð1Þ RN black hole (in the orange curve) becomes larger
than that of the genuinely non-Abelian solution (in the
dotted red curve). We will discuss more about it in Sec. VI.
Having our expectation confirmed, we can utilize the

Uð1Þ RN solution to estimate the high temperature behav-
ior of the holographic CFT with non-Abelian global
symmetry G in any dimensions. In particular,

ZG

�
T; μ ¼ ϕ

hϕ;ϕi1=2 μUð1Þ

�
∼ ZUð1ÞðT; μUð1ÞÞ; T ≫

1

l
;

ð5:19Þ

where ZG denotes the grand canonical partition function for
the Einstein Yang-Mills system in AdSdþ1 with gauge
group G and ZUð1Þ is that for the Einstein Maxwell system.
By using Eq. (4.37), we obtain

FIG. 1. They are plotted at a fixed value of Λ ¼ −1; v ¼ 1, and
ffiffiffiffiffiffiffi
−Λ

p
GNQ ¼ 100.
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ZGðT; μÞ ¼ exp

�
aTd−1 þ b

4
Td−3hμ; μi þ � � �

�
;

¼ exp

�
aTd−1 −

b
4
Td−1hϕ;ϕi þ � � �

�
; ð5:20Þ

where βμ ¼ iϕ.

VI. STABILITY OF BLACK HOLE
WITH NON-ABELIAN HAIR

In the holographic CFT with non-Abelian gauge sym-
metry, there are two types of black holes solutions, with and
without non-Abelian hair. In the previous section, we
showed that the two solutions converge at high temper-
ature. Since the two solutions differ at lower temperature, it
is interesting to find out which solution is preferred
theormodynamically. In this section, we calculate 1=T
corrections to the Helmholtz free energies of the two
solutions at the same temperature and charge. We find
that the black hole with non-Abelian hair has a lower free
energy and is more stable. To be specific, we consider
G ¼ SUð2Þ though we believe the results apply to any
compact Lie group.
Since we know the exact solution without non-Abelian

hair, we focus on evaluating 1=T corrections to the solution
with hair. We start with the equations

̈h̃1 ¼ −
2

r̃
_̃h1 þ δ̃h; δ̃h ¼ _̃σ1

_̃h0 þ
2w̃2

0

μ̃0r̃2
h̃0;

_̃m1 ¼ vðr̃2 _̃h0 _̃h1 − r̃2 _̃h
2

0σ̃1 þ δ̃mÞ; δ̃m ¼ w̃2
0h̃

2
0

μ̃0
þ μ̃0 _̃w

2
0;

_̃σ1 ¼ v

�
2 _̃w2

0

r̃
þ 2w̃2

0h̃
2
0

μ̃20r̃

�
; ð6:1Þ

which are subleading order terms of Eq. (5.12) with respect
to the expansion taken in Eq. (5.13). These differential
equations depend on the zeroth-order quantities; we note
that σ̃0, h̃0, and m̃0 are directly calculated to be Eq. (5.14),
whereas w̃0 is solved numerically, when Λ and h0H are
given, using the differential equation in Eq. (5.15). Hence,
we know all zeroth-order quantities, and we can decide h̃1,

m̃1, w̃1, and σ̃1 from Eq. (6.1). We first find _̃h1 as

_̃h1ðr̃Þ ¼
1

r̃2

Z
r̃

1

dr̃0r̃02δ̃hðr̃0Þ: ð6:2Þ

Since σðrÞ goes to one when r̃ → ∞, σ̃1 goes to zero as
r̃ → ∞, and

σ̃1ðr̃Þ ¼ −Δσ̃ þ
Z

r̃

1

dr̃0 _̃σ1ðr̃0Þ; Δσ̃ ≔
Z

∞

1

dr̃ _̃σ1ðr̃Þ:

ð6:3Þ

Then, by taking the quantities _̃h1 and σ̃1, given by
Eqs. (6.2) and (6.3), we can solve m̃1 in Eq. (6.1) as

m̃1ðr̃Þ
v

¼ 1

2v
þ
Z

r̃

1

dr̃0
h0H
r̃0

Z
r̃0

1

dr̃00r̃002δ̃hðr̃00Þ

þ
Z

r̃

1

dr̃0
h02H
r̃0

�
Δσ̃ −

Z
r̃0

1

dr̃00 _̃σ1ðr̃00Þ
�

þ
Z

r̃

1

dr̃0δ̃mðr̃0Þ: ð6:4Þ

We are interested in m̃1ðr̃ → ∞Þ because it corresponds to
the mass of the black hole. The subleading contribution to
the mass of the non-Abelian black hole is expressed as

m̃1ðr̃ → ∞Þ ¼ 1

2
þ
Z

∞

1

dr̃v

�
h0Hr̃δ̃hðr̃Þ

þ h02H

�
1 −

1

r̃

�
_̃σ1ðr̃Þ þ δ̃mðr̃Þ

�
: ð6:5Þ

Now that we have computed h̃1, m̃1, and σ̃1, we can
estimate the thermodynamic quantities of the black hole as

Q ≈
v
GN

�
r2Hh

0
H þ

Z
∞

1

dr̃r̃2δ̃hðr̃Þ
�
τ3
2
;

T ≈
rH

4πGN

_̃μ0

����
r̃¼1

þ 1

4πGNrH
ð _̃μ1 − _̃μ0Δσ̃Þ

����
r̃¼1

;

M ≈
−Λþ 3vh02H

6GN
r3H þ m̃1ðr̃ → ∞Þ

GN
rH; ð6:6Þ

where r̃ ¼ r=rH and the massM is evaluated in the infinite
radius limit, provided from the value of mðrÞ at r → ∞.
Finally, the Helmholtz free energy of black hole with non-
Abelian hair is given by

F ¼ M − TS;

¼ r3HF̃0 þ
rH
GN

�
1

4
þ v

Z
∞

1

dr̃Δm̃ðr̃Þ

þ 1

4
ð−Λþ vh02HÞΔσ̃

�
; ð6:7Þ

where vΔm̃ is the integrand of the Eq. (6.5) and

F̃0 ¼
1

GN

�
1

12
Λþ 3

4
vh02H

�
: ð6:8Þ

Let us compare this with the free energy of the Uð1Þ RN
black hole. For the solution to have the same temperature
and charge, the radius of the horizon of the RN black hole
must be
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rH;RN ¼ rH þ Δr̃
rH

;

Δr̃ ¼ −ð−Λþ vh02HÞΔσ̃ þ 2vh0H
R∞
1 dr̃r̃2δ̃hðr̃Þ

−Λþ 3vh02H
: ð6:9Þ

The free energy is then

FRN ¼ r3HF̃0 þ
rH
GN

�
1

4
þ vh0H

Z
∞

1

dr̃r̃2δ̃hðr̃Þ

þ 1

4
ð−Λþ vh02HÞΔσ̃

�
: ð6:10Þ

We remark again that the two free energies in Eqs. (6.7) and
(6.10) have same leading behavior. By taking the difference
of the two free energies, we obtain

FRN − F ¼ vrH
GN

�
h0H

Z
∞

1

dr̃r̃2δ̃hðr̃Þ −
Z

∞

1

dr̃Δm̃ðr̃Þ
�
;

ð6:11Þ
which comes from the 1=T correction. When we numeri-
cally calculate this difference, it has strictly positive value
as shown in Fig. 2. Therefore, the black hole with non-
Abelian hair has a smaller free energy and is thermody-
namically preferred over the Uð1Þ RN black hole at finite
temperature.
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