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In this paper we construct a stringy embedding of the dark bubble model of an expanding 4D cosmology
with the help of branes rotating in extra dimensions. The Universe rides a bubble which has nucleated in an
unstable higher dimensional background. Our construction is therefore a string theoretical realization of
Vilenkin’s quantum cosmology. While the cosmological constant vanishes at lowest order, loop corrections
predicted by the weak gravity conjecture can induce a phenomenologically viable value. The model
predicts the existence of large extra dimensions compatible with observational constraints, and we note a
possible connection with the dark dimension proposal.
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I. INTRODUCTION

Finding metastable vacua in string theory with a
positive cosmological constant Λ, remains an unsolved
problem [1–3]. The dark bubble model differs in crucial
aspects from other proposals, with our four-dimensional
universe riding an expanding bubble whose embedding
naturally induces a positive cosmological constant [4,5]. It
makes use of ingredients such as strings [6,7], branes [8],
extra dimensions and anti–de Sitter (AdS) spaces that
commonly surface in string theory. For a quick review,
see [9].
What distinguishes the dark bubble from other attempts

to construct dS space is that it makes explicit use of the
notorious instabilities that seem to be present when
supersymmetry is broken in string theory (i.e., any vacua
in string theory, if nonsupersymmetric, is unstable and
will decay via the nucleation of branes, as a consequence
of the weak gravity conjecture (WGC) [10–12]). The
starting point for the dark bubble is a metastable AdS5
space that decays into one with a lower energy through the
nucleation of a spherical bubble [4]. Our Universe (on the
codimension one boundary) is riding the bubble as it
expands. As explored in [13], the nucleation event can be
identified with the creation event in Vilenkin quantum
cosmology.

A remaining challenge has been to find an explicit
embedding of the dark bubble into string theory.1 In this
paper we present progress on this task. In Sec. II we review a
simple type IIB string theory construction with a stack of
rotating D3-branes whose near-horizon geometry takes the
form of AdS5 × S5 perturbed by angular momentum on the
S5 [17]. These solutions are holographic duals of states of
N ¼ 4 super Yang-Mills (SYM), living on an S3, at nonzero
chemical potential and temperature. The chemical potential,
or angular velocity on the gravitational side, breaks the
supersymmetry of the system, even in the extremal limit.
From a 5D point of view the metric takes the simple form of
an AdS-Reissner-Nordström (RN) black hole.2

In Sec. III, we study the dynamics of a D3-brane in
such a background using the probe approximation. The
background has previously been shown to be unstable to
the nucleation of D3-branes, which tunnel from the black
hole horizon, through a potential barrier, to a classical
turning point outside the horizon [19]. Emerging at
rest, such a brane will then start to expand, and we show
how a 4D observer will interpret this as a novel Friedmann–
Lemaître–Robertson–Walker (FLRW) cosmology. This
provides the first stringy realization of the dark bubble
model in supersymmetric string theory. In Sec. IV we
perform a comparison between the Hamiltonian obtained
in Sec. III and the Israel junction conditions [20] used
in the dark bubble model [21], confirming that the
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1In the context of nonsupersymmetric string theory, where
supersymmetry is broken or absent already at the string scale,
dS from dark bubbles has been studied in [14]. Other interest-
ing proposals include [15] and, in one dimension lower, [16].

2In [18], AdS5-Kerr black holes were used for brane nucleation.
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ten-dimensional top-down construction unambiguously
matches with that of the five-dimensional one.
In Sec. V, we further analyze the four-dimensional

cosmology arising from this top-down construction and
how the dynamics of the embedded universe are intrinsi-
cally related to higher dimensional features, such as the
angular momentum of the D3-brane. As a consequence of
supersymmetry in the unperturbed background that we start
from, the D3-branes are critical to leading order, and thus
our scenario has a close to vanishing 4D cosmological
constant. However, in Sec. VI we take an additional step,
making use of WGC to argue that there will be a small
higher order deviation from criticality, inducing a tiny
positive cosmological constant. We discuss the possible
physical consequences, and point out similarities (and
differences) with the dark dimension proposed in [22].
We summarize our results in the final Sec. VII, and

discuss further work needed to establish the dark bubble as
a rigorous implementation of dark energy in string theory.

II. TEN-DIMENSIONAL BACKGROUND
MODEL REVIEW

In this section, we review the string backgrounds that we
will use to embed the dark bubble. They consist of black
brane solutions of type IIB supergravity, sourced by a
stack of D3-branes with angular momentum in the trans-
verse directions. Their near-horizon limit is asymptotically
AdS5 × S5, and after a reduction on the S5 they appear as
five-dimensional charged black holes. These solutions were
introduced in [23] starting from a consistent truncation to 5D
N ¼ 2 gauged SUGRA, and were uplifted to 10D in [24]. In
general, they support three independent angular momenta,
corresponding to charges of the 5D black holes, but we
restrict ourselves to the case where these are identical.
By AdS=CFT, the solutions are dual to states of N ¼ 4

SYMwith nonzero temperature and R-charge density. With
this application in mind, the solutions have been studied by
several authors, see, e.g., [17,19,25–28]. In particular, it
was shown in [19,28] that at sufficiently large R-charge
chemical potential, they are unstable to the emission of the
D3-branes sourcing them. This was seen by studying a
probe D3-brane in a fixed background solution, and
showing that its energy is minimized outside the event
horizon. In general, however, there exists a potential barrier
between the horizon and the true minimum, so D-branes
wanting to lower their energy must do so through tunnel-
ing, or nucleation [29].
In the dual N ¼ 4 theory, the position of the D3-branes

is dual to the expectation value of scalar fields, and the
instability indicates that some scalar degrees of freedom
want to condense, thus Higgsing the gauge group. This is
analogous to the phenomenon of color superconductivity,
which is known to occur in QCD at large baryon chemical
potential. However, our focus will be mainly on the
gravitational side of the duality. We will now review the

necessary features of this set up for our purpose. More
information and details can be found in [19].
Our starting point is the line element describing the

geometry of the 10D background, given by

ds210 ¼ ds25 þ L2
X3
i¼1

fdσ2i þ σ2i ðdϕi þ L−1AðrÞÞ2g; ð2:1Þ

where L is the AdS5 radius, which also sets the scale of the
extra dimensions. The σi can be parametrized with the
angles on a two-sphere as

σ1 ¼ sinθ; σ2 ¼ cosθ sinψ ; σ3 ¼ cosθ cosψ : ð2:2Þ
The 5D asymptotically AdS metric is given by

ds25 ¼ −hðrÞ−2fðrÞdt2 þ hðrÞ½fðrÞ−1dr2 þ r2dΩ2
3�; ð2:3Þ

where dΩ2
3 is the usual unit metric of the three-sphere. The

radial functions hðrÞ and fðrÞ are expressed as

hðrÞ ¼ 1þ q2

r2
; ð2:4Þ

fðrÞ ¼ 1 −
M
r2

þ r2

L2
hðrÞ3: ð2:5Þ

In order to simplify our future expressions, it will be
useful to substitute the mass parameter M in favor of the
horizon radius rH, defined to be the largest root of fðrÞ:

M ¼ r2H

�
1þ r2H

L2
hðrHÞ3

�
: ð2:6Þ

The one-form AðrÞ appearing in the 10D metric (2.1)
acts as a gauge field from the 5D point of view, and takes
the form

A ¼ q
r2H þ q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2H þ q2Þ þ r4H

L2
hðrHÞ3

r �
1 −

r2H þ q2

r2 þ q2

�
dt:

ð2:7Þ

We have used the gauge freedom to add a constant that sets
AðrÞ to zero on the horizon. This is necessary in order for it
to have finite norm there.
The rotating D3-branes will source the self dual F5

Ramond-Ramond field strength, which can be written in
terms of the radial function hðrÞ and the one-form A [19].
What we will need is the corresponding four-form potential
C4, with dC4 ¼ F5, given by

C4 ¼
1

L
½ðr2 þ q2Þ2 − ðr2H þ q2Þ2�dt ∧ ϵ3

þ L2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2H þ q2 þ r4H

L2
hðrHÞ3

r X
i

σ2i dϕi ∧ ϵ3; ð2:8Þ

U. DANIELSSON, O. HENRIKSSON, and D. PANIZO PHYS. REV. D 107, 026020 (2023)

026020-2



where ϵ3 is the volume form of the unit three-sphere. This
four form will be important in the next section, as it enters
into the Wess-Zumino (WZ) part of the brane action, thus
influencing the brane’s dynamics.
Let us now come back to the metric (2.3). For computa-

tional convenience, it is useful to perform a change of
coordinates by defining

z2 ¼ r2hðrÞ ¼ q2 þ r2: ð2:9Þ

This change of coordinates will transform (2.3) into a patch
of AdS5 RN,

ds25 ¼ −gðzÞdt2 þ gðzÞ−1dz2 þ z2dΩ2
3;

gðzÞ ¼ 1 −
2κ5μ

z2
þ κ25θ

2

z4
þ k2z2; ð2:10Þ

where we defined

2κ5μ¼Mþ2q2; κ25θ
2¼q2ðMþq2Þ; k¼L−1; ð2:11Þ

with κ5 ¼ 8πG5. For a small black hole, with zH ≪ L, we
are back in flat space and require θ < μ to get a horizon and
no naked singularity. On the other hand, if we consider an
horizon larger that the AdS5 radius, we find that θ ≪ μ is
needed.
For computational purposes in the incoming sections, it

will be more convenient to express (2.10) in terms of the
two horizons of a Reissner-Nordström black hole. With
fzh; zHg as the inner and outer horizons, we have
gðzhÞ ¼ gðzHÞ ¼ 0, and make the ansatz

gðzÞ ¼ k2

z4
ðz2 þ cÞ ðz2 − z2hÞ ðz2 − z2HÞ: ð2:12Þ

Matching with (2.10) one obtains

κ5μ ¼ 1

2
ðz2h þ z2H þ k2ðz4h þ z2hz

2
H þ z4HÞÞ;

κ25θ
2 ¼ z2h z

2
H ð1þ k2ðz2h þ z2HÞÞ;

c ¼ z2h þ z2H þ 1

k2
; ð2:13Þ

which simplifies further when the black hole is extremal
(i.e., zh ¼ zH). Equipped with this new set of coordinates
and relations, we can embark to study the dynamics of the
nucleated branes in this rewritten background. This will be
the task of the next section.

III. EMBEDDING THE NUCLEATED BRANE

A. The brane action

Let us now consider the motion of the nucleated brane in
the ten-dimensional background. This calculation follows
closely the one in [19], and we refer the reader there for

more details. We start from the action of a (probe) D3-
brane, which is the sum of a Dirac-Born-Infeld (DBI) term
and a WZ term:

SD3 ¼ −T3

Z
d4ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detP½G�

p
þ T3

Z
P½C4�: ð3:1Þ

The WZ term with C4 captures the nongravitational forces
on the brane due to fields external to it. P½…� denotes the
pullback of spacetime fields to the world volume of the
brane. Note that the dilaton ϕ is constant in the solutions of
interest. In the following we denote the brane’s embedding
functions by capital versions of the spacetime coordi-
nates: XμðξÞ.
We assume the brane to wrap the three-sphere inside the

AdS5 piece of the metric, with a radial z coordinate that
depends only on time. Since the background black hole
rotates in the azimuthal ϕi directions on S5, we must also
allow our probe to move in those directions. Since we set
the three angular momenta equal in the background, we
assume that the brane rotates with the same angular velocity
in all ϕi directions. As will become evident later on, from
the point of view of an observer living in AdS5, the rotation
translates into an effective charge under the gauge field A.
When a brane nucleates, carrying a portion of the charge, it
will also effectively lower the charge of the remaining black
hole.3 The brane’s world volume can be parametrized by
the angles of the three-sphere, as well as a timelike
coordinate τ that we keep arbitrary for now. The embedding
is then given by

T ¼ T ðτÞ; Z ¼ ZðτÞ; Θ ¼ θ0; Ψ ¼ ψ0;

Φ1 ¼ Φ2 ¼ Φ3 ¼ ΦðτÞ: ð3:2Þ

Here, θ0 and ψ0 are constants—in the symmetric case we
are interested in, nothing will end up depending on them.
Derivatives with respect to τ will be denoted by a dot.
The components of the 10D metric ds210 will be denoted by
Gμν, and ðC4Þt and ðC4Þϕi

will denote the coefficients
of dt ∧ ϵ3 and dϕi ∧ ϵ3 in (2.8), respectively. It will be
useful to define Gtϕ ¼Pi Gtϕi

, Gϕϕ ¼Pi Gϕiϕi
, as well

as ðC4Þϕ ¼PiðC4Þϕi
.

The velocity of a comoving observer on the brane is

_X ≡ ∂Xμ

∂τ
∂μ ¼ _T ∂t þ _Z∂z þ _Φ

X3
i¼1

∂ϕi
; ð3:3Þ

whose square is

_X2¼ _Xμ
_Xμ ¼Gtt

_T 2þGzz
_Z2þ2Gtϕ

_Φ _T þGϕϕ
_Φ2: ð3:4Þ

3This is ignored in the probe approximation, but is still
essential when we compare with the appropriate limit of the
Israel junction conditions across the brane.
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Then, the induced line element on the brane world volume
can be written as

ds24 ¼ _X2dτ2 þ ZðτÞ2dΩ2
3: ð3:5Þ

We note that picking τ to be the proper time of a brane-
bound observer would set _X2 ¼ −1, and the induced metric
then takes the standard FLRW form with ZðτÞ acting as the
scale factor.
The action for a probe D3-brane finally takes the form

SD3 ¼ −T3

Z
dτ ∧ ϵ3fZ3

ffiffiffiffiffiffiffiffiffi
− _X2

p
− ðC4Þt _T − ðC4Þϕ _Φg;

¼ −2π2T3

Z
dτfZ3

ffiffiffiffiffiffiffiffiffi
− _X2

p
− ðC4Þt _T − ðC4Þϕ _Φg

≡
Z

dτLD3; ð3:6Þ

where in the second line we performed the angular integrals
over the S3.

B. The probe D-brane Hamiltonian

It is useful to define the conserved angular momentum:

J≡ 1

2π2T3

dLD3

d _Φ
¼ Z3ffiffiffiffiffiffiffiffiffi

− _X2
p ðGtϕ

_T þGϕϕ
_ΦÞþðC4Þϕ: ð3:7Þ

One can then Legendre transform to substitute _Φ for J,
automatically satisfying Φ’s equation of motion (EOM).
Defining JC¼J−ðC4Þϕ, we find

_Φ ¼ −
Gtϕ

Gϕϕ

_T � JC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG

2
tϕ

G2
ϕϕ
− Gtt

Gϕϕ
Þ _T 2 − Gzz

Gϕϕ

_Z2

ðZ6Gϕϕ þ J2CÞ

vuuut ð3:8Þ

and

LJ
D3 ¼ LD3 − _ΦJ;

¼ −2π2T3

�
−ðC4Þt _T −

Gtϕ

Gϕϕ
JC _T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
Z6 þ J2C

Gϕϕ

���
Gtt −

G2
tϕ

Gϕϕ

�
_T 2 þ Gzz

_Z2

�s �
;

¼ −2π2T3
_T
�
−ðC4Þt −

Gtϕ

Gϕϕ
JC þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
Z6 þ J2C

Gϕϕ

��
Gtt −

G2
tϕ

Gϕϕ
þ GzzZ02

�s �
; ð3:9Þ

where now a prime denotes a derivative with respect to the
spacetime time coordinate t. This result can be nicely
interpreted from a 5D point of view. Denoting the compo-
nents of the 5D metric ds25 by gμν, we can write it as

LJ
D3 ¼ −2π2T3

_T
�
−ðC4Þt −

JC
L

At

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
Z6 þ J2C

L2

�
ðgtt þ gzzZ02Þ

s �
: ð3:10Þ

The linear term JC in (3.10) shows that the brane carries
charge and couples to the bulk gauge field. Note that it is JC
rather than J that measures the charge. The relative shift can
be understood by frame dragging due to the rotation in the
extra dimensions. Focusing on the square root term, we
note that in the absence of JC, it looks exactly like an
effective 5D DBI term. The modification due to JC can be
interpreted as the addition of a flux that corresponds to a
uniform density of particles, or 0-branes, dissolved into the
D3-brane. This is how the brane carries the charge from a
5D point of view. To better understand this, we can
formally collapse the brane to a point by putting Z ¼ 0,

and thus find the action − 2π2T3JC
L

_T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgtt þ gzzZ02Þ

p
.

In the absence of the dissolved 0-branes, the total mass

of the D3 would approach zero in this limit. Here, however,

the mass approaches 2π2T3JC
L , and we interpret this as the

total mass of the dissolved particles. Lastly, the ðC4Þt term
can be interpreted as a 5DWZ term, since one can define an
effective 5D five-form field Feff

5 ¼ d½ðC4Þtdt ∧ ϵ3� with
Feff
5 proportional to the volume form of ds25.
Next, we can further Legendre transform to obtain the

Hamiltonian

H¼ 2π2T3
_T
� −gtt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z6þ J2C

L2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgttþgzzZ02Þ

p − ðC4Þt−
JC
L
At

�
; ð3:11Þ

given in terms of the proper time of the brane. However, it
is important to realize that this is not the time variable
relevant for a 4D observer. Such an observer will be moving
together with the nucleated brane in AdS5 but will not be
moving together with the brane in the five internal
dimensions.4 The relevant proper time, τ̃, is then simply
computed as

4Compare a Kaluza-Klein (KK) compactification to 4D. The
proper time of a 4D observer, built out of KK particles, does not
involve the internal momenta or velocities of those particles.
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dτ̃ ¼ dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgtt þ gzzZ02Þ

q
: ð3:12Þ

Using

gtt þ gzzZ02 ¼ gtt
1þ gzzðdZdτ̃ Þ2

; ð3:13Þ

we then find that the Hamiltonian in terms of the proper
time of the 4D observer is given by

H ¼ 2π2T3

dT
dτ̃

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt

�
Z6 þ J2C

L2

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gzz

�
dZ
dτ̃

�
2

s

− ðC4Þt −
JC
L

At

�
: ð3:14Þ

Now, we can use AdS-RN coordinates and split the
previous Hamiltonian (3.14) to find

ðC4Þtþ
JC
L
At ¼

1

L
ðZ4−z4HÞþ

κ5 JC θ
L

�
1

z2H
−

1

Z2

�
ð3:15Þ

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt

�
Z6þJ2C

L2

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þgzz _Z

2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Z6þJ2C

L2

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðZÞþ _Z2

q
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Z6þJ2C

L2

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Z2þ1−

2κ5μ

Z2
þ κ25θ

2

Z4
þ _Z2

s
: ð3:16Þ

From now on, we let a dot refer to the proper time τ̃ of the
4D observer.
As mentioned above, the nucleating D3-brane carries

away some charge through the density of dissolved
D0-branes. Thus, the remaining black hole will have its
charge reduced by the charge of the D3. Hence, the charge
in the metric inside of the brane will be shifted accordingly.
This Hamiltonian should be put equal to a conserved

energy E, while the constant in ðC4Þt is a gauge choice that
also shifts E. When we move beyond the probe approxi-
mation considering the nucleation event, matching against
the junction conditions, we will see how any ambiguity is
fixed by energy conservation.

IV. MATCHING THE HAMILTONIAN
WITH THE JUNCTION CONDITIONS

The original dark bubble proposals were formulated in
five-dimensional AdS space, with the thin-wall bubble
represented as a codimension one shell. This meant that its
dynamics could be studied using Israel junction conditions.

In this section, we will show that such junction conditions
can, in the appropriate limit, reproduce the dynamics
described by the probe brane Hamiltonian found in the
previous section.
Starting from the equation of motion for the scale factor

Z obtained from the Hamiltonian (3.11), we solve for _Z2,
imposing H ¼ E ¼ 0 since the bubble will nucleate at rest
with, in an approximately extremal background, zero total
energy. Then, the EOM controlling the dynamics of the
brane is of the form

_Z2¼−fðZÞ−k2Z2þ
k2ðZ4−Z4

Hþθκ5Jc
Z2

H
ð1−Z2

H
Z2 ÞÞ2

k2J2cþZ6
; ð4:1Þ

with fðZÞ¼1−2κ5μ
Z2 þκ2

5
θ2

Z4 , such that gðZÞ ¼ k2Z2 þ fðZÞ.
The last term corresponds to the contribution of the Wess-
Zumino term in the action of the brane. We note that the
leadingZ2 term in the largeZ limit cancels, consistent with
the tension of the brane equaling the critical one, implying
no net 4D cosmological constant. The expression (4.1) is
simple enough to be compared to the Friedmann equation
obtained from the junction condition for the bubble. This
will be our next step.
Let us start by consider a thin shell in the form of a brane

that tunnels from the horizon ZH, nucleates at radius
Z > ZH and starts to expand. The shell will be a junction
between the outer metric described by gþðZÞ and the inner
metric described by g−ðZÞ, with

g�ðZÞ ¼ k2�Z
2 þ 1 −

2κ5μ�
Z2

þ κ25θ
2
�

Z4
: ð4:2Þ

The junction condition [20] for this system becomes

T3 ¼
3

κ5

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g−ðaÞ
a2

þ _a2

a2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþðaÞ
a2

þ _a2

a2

s !
; ð4:3Þ

where κ5 ¼ 8πG5, _a denotes a derivative with respect to the
proper time of a shell observer, andZ ¼ aðτÞ. We can solve
exactly the junction conditions for _a2 to obtain the
following Friedmann-like equation:

_a2 ¼ 1

4σ2a2
½ðk2− − k2þÞa2 þ ðf−ðaÞ − fþðaÞÞ�2 þ

σ2

4
a2

−
1

2
½ðf−ðaÞ þ fþðaÞÞ þ ðk2− þ k2þÞa2�; ð4:4Þ

with f�ðaÞ¼1−2κ5μ�
a2 þκ2

5
θ2�
a4 and σ¼T3

κ5
3
¼ðk−−kþÞ¼Δk.

In order to compare with (4.1), we must make sure to be in
the right regime, i.e., that of the probe approximation. This
implies that we must work at linear order in the perturba-
tions when making expansions of the form:
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k� ¼ k∓ 1

2
Δk; θ� ¼ θ∓ 1

2
Δθ; μ� ¼ μ∓ 1

2
Δμ: ð4:5Þ

Note that Δk ¼ k− − kþ > 0, while Δθ ¼ θ− − θþ < 0
since the black hole is losing charge due to the nucleation.
Substituting these expressions into the previous Friedmann
equation, and considering terms up to linear order, we find

_a2 ¼ −fðaÞ þ k
Δk

ðf−ðaÞ − fþðaÞÞ

þ 1

4a2ðΔkÞ2 ðf−ðaÞ − fþðaÞÞ2

¼ −fðaÞ − k2a2 þ k2

a6

�
a4 þ a2

2kΔk
ðf−ðaÞ − fþðaÞÞ

�
2

;

ð4:6Þ

such that fðaÞ carries zeroth order information about the
mass μ and charge θ, while f−ðaÞ − fþðaÞ contains terms
linear in Δμ and Δθ.
Expression (4.6) can be simplified even further. This can

be done by evaluating the junction condition and gðZÞ at
the horizon ZH. In the probe limit we need both g�ðZÞ to
vanish at the horizon ZH. This implies

0th∶ k2a2 þ gðaÞ ¼ 0;

1st∶ kΔka2H −
κ5Δμ
a2H

þ κ5θΔθ
a4H

¼ 0: ð4:7Þ

Using (4.7) in expression (4.6) one arrives at

_a2 ¼ −fðaÞ− k2a2 þ k2

a6

�
a4 − a4H −

κ25θΔθ
a2H kΔk

�
1−

a2H
a2

��
2

:

ð4:8Þ

This should now be compared with what we obtained from
the Hamiltonian in Eq. (4.1), with Z ¼ aðτÞ. In fact, the
overall structure is identical. The first two terms correspond
to the function gðaÞ in the metric of the 5D black hole,
while the last term in (4.8) requires a deeper analysis.
The first thing one observes is the absence of J2c in the

denominator of the expression (4.8), coming from the
junction conditions. This is simply because we used a
constant tension T3 as the input to the junction conditions.
What the string theory brane action tells us, is that this is
not quite the whole story. The brane carries charge through
dissolved flux, and this shows up in the equation of state of
the brane. This stringy insight can be used to improve the
junction conditions. One can show that simply replacing T3

by T3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2J2c

a6

q
turns (4.8) into (4.1).

The linear term in Jc of (4.1) is easily identified in (4.8).
We immediately see that

Jc ¼ −
κ5 Δθ
kΔk

: ð4:9Þ

With this, the matching is complete. We have proved that
the Hamiltonian’s EOM and those coming from the
junction conditions across the brane are unambiguously
the same expression described using different variables that
can straightforwardly be related. This implies that the top-
down construction from the DBI-WZ action (3.1) in 10D
from string theory yields exactly the same result as the
junction condition for the codimension 1 shell in the five-
dimensional AdS5 bulk. Hence, we have just found a string
theory realization of the dark bubble model.

V. FOUR-DIMENSIONAL COSMOLOGY
ON A D3 BRANE

As we have already observed, the tension of the brane is
critical (to leading order), and as a consequence the
cosmological constant is vanishing. Let us see why.
The junction conditions are formulated within 5D

gravity, and one should work in units so that G5 ¼ πL3

2N2
c

is a constant that does no change across the shell. The
leading piece of the junction conditions at large scale factor
a then becomes

T3 ¼
3Δk
8πG5

¼ −
3

8πG5

ΔL
L2

: ð5:1Þ

From ΔG5 ¼ 0 it follows that

ΔL
L

¼ 2

3

ΔNc

Nc
; ð5:2Þ

and together with (5.1) and L4 ¼ 4πgsNcl4s one then
obtains:

T3 ¼ −
1

ð2πÞ3gsl4s
ΔNc ¼ −ΔNcTD3; ð5:3Þ

where ΔNc ¼ −1 corresponds to the nucleation of a single
brane. Hence, we confirm that the critical tension is exactly
that of a D3-brane, and that the cosmological constant will
be zero. Let us now study the dynamics of the induced four-
dimensional cosmology.
We begin by simplifying the Friedmann equation (4.1)

by rewriting the mass μ and charge θ in terms of the
horizons. Using (2.13) we find

_a2 ¼ −
k2ða2H − a2Þða2h − a2Þða2h þ a2H þ 1

k2 þ a2Þ
a4

þ
k2
�
a4 − a4H þ ah Jc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðk2a2Hþa2hÞ

p
aH

ð1 − a2H
a2 Þ
�2

k2J2c þ a6
; ð5:4Þ
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where ah, aH represent the inner and outer horizons,
respectively. Note that ah ¼ aH implies a degenerated
double horizon and one can recover the extremal description.
Equipped with this handy expression, we can investigate

the potential V (i.e., − _a2) controlling the dynamics of the
bubble. The qualitative behavior of V can be found in
Fig. 1. There are three (four) special points in the plot:

(i) The horizons fah; aHg (first two roots in the non-
extremal case), which correspond to the inner and
outer horizons of the Reisser-Nordström black hole.
In the extremal case, both horizons coincide, which
corresponds to the first root of the blue plot.

(ii) The nucleation point fanucg (second or third roots,
respectively), which is the value of a at which theD3
brane (hence the 4D universe) will nucleate. The
region between aH and anuc is the classical forbidden
region that the brane will have to tunnel through.

(iii) The maximal size fabg is given by the last root of
the potential V. At this point, the size of the bubble is
maximal, and the 4D universe with no Λ4D and
positive curvature, will reach its maximum size and
start contracting.

The potential that we have found lacks a sustained
cosmological constant and experiences only a fraction of
an e-folding just after creation. The expansion rate vanishes
at nucleation, the universe then accelerates for a short time
after which it enters a decelerated phase. Since the
curvature is positive, and there is no asymptotic cosmo-
logical constant, the universe will eventually stop expand-
ing and start to contract, entering an oscillating phase with
repeated bounces.
Looking at the potential in Fig. 1, it is easy to see how the

different parameters control the shape of the potential. By
construction, the potential (5.4) goes to 1 when the scale
factor a → ∞. The AdS scale k−1 will control the overall
value of the potential, while Jc, which is the angular
momentum of the brane with respect to the 10D back-
ground, will regulate the barrier of the potential.

For convenience, the angular momentum Jc can be

written as a3H
k η, as was done in [19], with η as a dimension-

less parameter. In Figs. 2 and 3 we have plotted extremal as
well as nonextremal potentials for several values of η. As
one can see, all values of η in the nondegenerate black hole
will yield a barrier that the brane will have to tunnel through
in order to nucleate. This is not the case for the extremal
black hole, as can be understood by expanding the potential
close to the outer horizon aH. Qualitatively, the expression
becomes

Vða∼aHÞ∼ða2H−a2hÞða−aHÞ
þf½ah;aH;k;η�ða−aHÞ2þOða−aHÞ3: ð5:5Þ

The first term will contribute positively in the nonextremal
case, since by definition ah < aH, creating a barrier for all
values of η in the nonextremal case. On the other hand, if
one imposes extremality, ah ¼ aH, one can solve the
function f to find the values for η such that there exist a
barrier.
Let us now use the relation between Jc and Δθ obtained

in Eq. (4.9), together with the expression (5.2) relating the

FIG. 2. T ¼ 0 case (extremal).

FIG. 3. T ∼ 0 case (nondegenerate).

FIG. 1. The potential controlling the dynamics of the embedded
four-dimensional universe.
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jump in the AdS scale and the ratio of emitted branes ΔNc
to the number of branes Nc sitting in the stack. For a single
emitted brane one can then write

2

3

Jc
Nc

k2 ¼ −κ5Δθ: ð5:6Þ

At this point, one can wonder what is the portion of charge
Δθ that the emitted brane carries with respect to the total
charge θ of the stack of branes. The most natural ansatz is to
assume that the brane carries a fraction 1=Ñ of the total
charge θ, where Ñ is of the same order of magnitude as the
total number Nc of branes in the stack [19]. That is, the
emitted brane carries its share of the total momentum or
charge. So we get Δθ ¼ −θ=Ñ. Making use of expression
(2.13) in the large k limit and extremal case, one can rewrite
Δθ as

Δθ ¼ −
ffiffiffi
2

p

κ5 Ñ
k a3H; ð5:7Þ

which corresponds to the rhs of Eq. (5.6). Finally, rewriting
Jc in terms of η, one obtains

η ¼ 3ffiffiffi
2

p Nc

Ñ
: ð5:8Þ

As long as we are off extremality, the precise value of η (as
long as it is not too different from the preferred value) does
not matter too much with respect to the overall shape of the
potential. At extremality, it does matter but we will not
discuss that case in any further detail in this paper.

VI. PHYSICAL IMPLICATIONS

Let us now discuss possible physical consequences of
our embedding of the dark bubble into string theory. While
there is no reason to believe that this simple example would
be fully realistic, there might be some generic features that
most models have in common. To find out, let us express
the various physical scales in terms of the 4D Planck scale
l4, and the number of branes Nc in the background.
Ignoring numerical factors we have

l35 ∼
L3

N2
c
; l24 ∼

k2

Δk
l35 ∼

Nc

L
l35; ð6:1Þ

and find from this

L ∼ N2=3
c l5 ∼ N1=2

c l4; l4 ∼ N1=6
c l5: ð6:2Þ

Furthermore, from the holographic dictionary we have

L4

l4s
∼ gsNc; ð6:3Þ

so that

l10 ∼ g1=4s ls ∼ N1=4
c l4; ð6:4Þ

where l10 is the 10D Planck scale. Hence we conclude that
L ≫ l10 ≫ l4 ≫ l5 with Nc ≫ 1. Having l5 ≪ l4 is
unusual and contrary to what you find in conventional
compactifications, where L ≫ l5 automatically leads to
l5 ≫ l4. The reason is the presence of the large factor
k=Δk ∼ Nc in the relation between the 5D and 4D Planck
scale. As can be seen from the junction conditions, this is
also the reason why a brane with a tension set by string
scale can separate two AdS vacua with curvature radius L
much larger than string scale (i.e., small k). It is a direct
consequence of l5 being so small.5

We also note that the mass of a 4D particle induced by

the end point of a stretched string L
l2s
¼ g1=2s

l4
. Any particles of

lower mass must then be obtained as field theory excita-
tions in the 5D bulk that extends in the fifth dimension.
This is exactly how 4D gravitational waves were shown to
appear in [21].
By construction, there is no cosmological constant

in this model since the tension of the branes is BPS.
Since the backgrounds break supersymmetry one could
expect, as argued by [10] extending the WGC conjecture,
there will be an instability so that the emitted branes
actually can escape to infinity. This should take the form
of a correction to the tension of the brane, making it slightly
subcritical. From the dual N ¼ 4 SYM theory, one might
expect corrections of order 1=N2

c, since there are fields
only in the adjoint representation. After the nucleation
of a D3-brane, however, the gauge group is Higgsed as
SUðNÞ → SUðN − 1Þ ×Uð1Þ, and there are fields in the
fundamental representation of the remaining SUðN − 1Þ
and corrections of order 1=Nc may be expected. Using this,
we expect a mismatch in the junction condition of order
T3=Nc, yielding

ρΛ ∼
1

L4
; ð6:5Þ

corresponding to a Hubble scale

RH ∼ Ncl4: ð6:6Þ

Matching with the present Hubble scale, which is essen-
tially set by the cosmological constant, we find Nc ∼ 1060.

5This is very different for Randall-Sundrum constructions
[30,31], which are qualitatively similar to conventional compac-
tifications. There, we have GRS4 ¼ 2k−kþ

k−þkþ
GRS5, while for the dark

bubble we have GDB4 ¼ 2k−kþ
k−−kþ

GDB5, with the option of taking
Δk ¼ k− − kþ small.
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This yields L ∼ 10−5m and l5 ∼ 10−45 m, with l4 ∼
10−35 m and 1

l10
∼ 10 TeV.6

One can note that the size of the length scale L is
identical to the one of the dark dimension proposed in [22],
using a more conventional higher dimensional embedding.
Contrary to us, they find the 5D Planck scale to be lower
than the 4D one as a natural consequence of their dimen-
sional reduction. Intriguingly, for the dark bubble we find
the 10D Planck scale to be lowered to TeV scales (with the
string scale a bit lower than that, depending on the string
coupling). It is quite remarkable how a single dimension-
less number, Nc, uniquely fixes the relation between all the
scales—including the cosmological constant.
We also need to check that the induced cosmological

constant is big enough to yield an eternally expanding
universe. If it is too small, then curvature will still win,
and the universe will recontract. For σ ¼ Δk − ϵ with
ϵ ∼G5=L4 ≪ Δk, we find an extra term in the potential
(V.4) of the form a2=R2

H where

1

R2
H
∼
ϵk2

Δk
∼
G5k6

Δk
∼

1

N2
cl24

: ð6:7Þ

The leading large a behavior of (5.4) then becomes

− _a2∼1−
1

N2
cl24

a2

−
k2ða4hþa2ha

2
H−a4Hþ2aha2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2hþa2H

p
ηÞ

a2
: ð6:8Þ

To make sure that the cosmological constant wins before
curvature becomes important, we need, assuming ah ∼ aH,

1

N2
cl24

a2 ∼
a4H

Ncl24a
2
≫ 1: ð6:9Þ

This gives a ∼ N1=4
c aH and the constraint aH ≫ N3=4

c l4.
Note that this is consistent with a ≫ RH, which implies that
the curvature is small. It is amusing to note that this
condition implies that the horizon radius of the 5D black
hole sustaining our Universe need to satisfy aH ≫ 107 km.
We conclude that if we choose aH large enough, the

effective potential will be as in Fig. 4. We first note a big
barrier that the Universe must tunnel through. It then
nucleates, accelerates, and then enter into a phase of
decelerated expansion. It then passes over the top of
another hill before entering into a phase where the dark
energy dominates.

The presence of macroscopic extra dimensions is heavily
constrained in conventional compactifications. The most
severe astrophysical constraint on the size of the extra
dimensions comes from neutron stars. One expects KK
gravitons to be emitted into the extra dimensions by
supernovae, and then to be retained by the neutron stars.
These clouds of KK gravitons will emit gamma rays that in
principle could be detectable. In case of six extra dimen-
sions, Ref. [32] found that the extra dimensions must have a
size smaller than about 10−14 m to be consistent with
observational constraints.
The constraints differ dramatically in the case of the dark

bubble. The reason is that gravity in 4D is much stronger
than gravity in the higher dimensions. For this reason, the
emission of gravitational waves into the extra dimensions is
heavily suppressed. We see this from writing G4 ¼ 2k2

Δk G5

as G5 ¼ 1
Nc

LG4

2
, where we note the huge suppression

coming from 1=Nc. As already noted in footnote 5, this
makes the dark bubble unique in comparison with Randall-
Sundrum and conventional compactifications.
Let us see in more detail how it works. Consider a string

stretching outwards from the bubble. From the 4D point of
view it will correspond to a massive particle. If the string,
together with its end point on the brane, swings in the
directions parallel with the three space directions of the 4D
observer, then there will be gravitational waves in the
induced metric on the brane as well as in the 5D bulk. This
uplift from 4D to 5D was explained in detail in [21]. From
the 4D perspective, the waves will be caused by the motion
of the point particle corresponding to the endpoint of the
string with a strength set by G4. In fact, as explained in [7],
it is the backreaction of the brane to this motion that will
dominate the generation of gravitational waves also in 5D.
Let us now imagine that the string is swinging instead in the
dimensions transverse to the brane without any motion of
the end point on the brane. Since there is now no direct
involvement of the brane in sourcing the waves, the
strength of the waves is set by the strength of the
gravitational force in the bulk.

FIG. 4. Using 1=Nc corrections, one can induce a small
Λ4D > 0.

6If there were only 1=N2
c corrections to the tension, then we

would instead have ρΛ ¼ 1=ðNcL4Þ and get RH ¼ N3=2
c l4. This

leads to Nc ¼ 1040, with L ∼ 10−15m and 1=l10 ∼ 109 GeV. The
latter intermediate scale appears in [22] as well.
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To correct the observational constraints so they become
applicable to the dark bubble, we consider the relation
between the 10D Planck scale and the 4D one given by

1

l24
∼

1

Nc

L6

l810
; ð6:10Þ

where we see the extra factor 1=Nc coming from the
junction conditions. Formally absorbing the factor 1=Nc ∼
10−60 above into L, we find that the constraint from neutron
stars is changed to L < 10−4 m. Remarkably, this is
consistent with the other estimates above.
It would be interesting to perform a more careful analysis

of how the analog of KK gravitons can be emitted in the
dark bubble model to establish whether the observational
constraints are actually satisfied.
It remains a challenge to see whether the presence of

these other large dimensions give rise to other constraints,
in particular when it comes to nongravitational physics. To
analyze this, the dark bubble model must be developed
further to capture particle physics. As discussed in [21],
fluxes within the brane come together with two-form fields
in the bulk. The interplay between these fields, and the
bending of the brane, should reproduce not only electro-
magnetism but also the other gauge groups of the standard
model. To achieve this, one would expect there to be several
closely separated branes, possibly corresponding to distinct
nucleation events.7

VII. CONCLUSIONS

In this paper we have provided a consistent embedding
of the dark bubble model of the expanding universe into
string theory. The background we use corresponds to an
AdS-Reissner-Nordström black hole in 5D. The charge of
the black hole is due to D3-branes rapidly rotating on the
internal five-sphere. The black hole can reduce its charge
by emitting one of the spinning branes through nucleation.
This corresponds to the creation of a dark bubble 4D
cosmology as the brane emerges after tunneling and
begins to expand. Supersymmetry is broken due to the
presence of the spinning branes, but to lowest order the
tension of the branes remains the critical one. As a
consequence, the 4D cosmological constant vanishes,
and the universe will eventually reach its maximal size
and then start to contract again. As a result you get a
bouncing cosmology.

If one takes the WGC into account, this is not the whole
story. One then expects there to be a small reduction of the
tension below the critical one to guarantee that the black
hole can decay by emitting branes, which escape to infinity.
We have conjectured that such an effect should be present
through 1=Nc corrections. If present, these will generate a
small and positive cosmological constant, which eventually
will dominate the expansion. One could argue that the
presence of asymptotic supersymmetry may imply a dark
bubble version of the de Sitter swampland conjecture
[2,33]. This, however, seems to be in contradiction with
the expectations from WGC.
We have estimated the size of the cosmological constant

obtaining intriguing results, where all important scales—
from the 4D cosmological constant to the five dimensional
Planck scale—are related by a single (large) integer: the
number of background branes Nc. The measured cosmo-
logical constant requires Nc ∼ 1060, and the model predicts
large extra dimensions of size L ∼ 10−4 m. A preliminary
analysis, making use of unique features of the dark bubble,
suggests that the model is compatible with astrophysical
constraints. We also note a possible parallel with the dark
dimension proposed in [22]. To determine whether this
particular model is compatible with phenomenology, it will
be important to better understand how particle physics is
realized.
Clearly, there could be other ways to generate a positive

cosmological constant. One possibility would be to start out
in a model where supersymmetry is already broken before
the black hole is added [34]. If the tension of the branes is
supercritical, then one would expect them to nucleate and
mediate a decay. Another intriguing possibility is the brane/
jet instabilities of [35], which are diagnosed by a similar
probe brane computation as the one we performed in the
current paper. In both cases, the specifics of the internal
manifold is responsible for the instability; in the spinning
brane backgrounds it is due to rotation, while in [35] it is
due to a nontrivial warp factor.
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