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In this paper we demonstrate that the different generalizations of the Schwarzians, supersymmetric or
purely bosonic, can be easily constructed by using the nonlinear realizations technique.
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I. INTRODUCTION

The Schwarzian derivative (1), or just the Schwarzian,
appears in apparently unrelated fields of mathematics:
from classical complex analysis to integrable systems
[1]. In contrast, in physics the Schwarzian appears
either in the transformation properties of the conformal
(supersymmetric) stress tensor [2,3] or arises as the low
energy limit of the Sachdev-Ye-Kitaev (SYK) model [4].
Schwarzian also appeared as a quantum correction in
Hamiltonians of some supersymmetric mechanic models
[5]. Therefore, it is not strange that the possible
generalizations of the Schwarzian are mainly related
to its supersymmetric extensions where the supersym-
metric Schwarzian naturally appears in the superconfor-
mal transformations of the supercurrent [3,6-8].
However, this generalization quickly stops at A =4
supersymmetry due to appearance of components with
negative conformal dimension in the current superfield
JN) for N> 4. In addition, the recent construction of
the “flat space” version of the Schwarzian [9,10] raised
the question about the existence of the systematic way to
build the generalized (bosonic ones or possessing higher
N > 4 supersymmetries) Schwarzians.

The treatment of the supersymmetric Schwarzians as
the anomalous terms in the transformations of the

currents superfield JW)(Z) [3] leads to the conclusion
that the structure of the (super-)Schwarzians is completely
defined by the conformal symmetry and, therefore, it
should exist a different, probably purely algebraic, way
to define the (super-)Schwarzians. The main property of the
(super-)Schwarzians that defines their structure is their
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invariance with respect to (super)conformal transforma-
tions. The suitable way to construct (super)conformal
invariants is the method of nonlinear realizations [11,12]
equipped with the inverse Higgs phenomenon [13].
However, the natural invariant objects in the nonlinear
realization approach are the Cartan forms, which contain
the differentials of the coordinates of the (super)space with
nontrivial transformation properties. Thus, an additional
question concerns the implementation of the inert (super)
coordinates in the nonlinear realization approach.

This method was first applied to the s/(2) algebra in [14]
to obtain the standard Schwarzian and then extended to
different superconformal algebras in [15—18]. Later on, this
approach has been applied to the cases of nonrelativistic
Schwarzians and Carroll algebra [19]. It should be noted
that the constraints proposed in these papers look like the
results of an illuminating guess. Moreover, in some practi-
cally interesting cases the proposed constraints are too
strong to set the recovered supersymmetric Schwarzian
as a constant.

In two of our papers [20,21] the method proposed in [14]
was modified in two directions. First, we introduced the
“inert superspace” as the coordinates of the independent
“inert” coset elements. Second, the constraints were
imposed on the full Cartan forms by either nullifying them
or identifying with the “inert superspace” forms. This last
feature gives us the possibility to invoke into the game the
powerful method of the Maurer-Cartan equations to ana-
lyze the consequences of the constraints, which drastically
simplifies calculations.

In this paper, we apply the proposed approach to
construct some new generalized Schwarzians. After a short
review of the basic steps of our approach in Sec. II, we will
construct

(1) A “flat space” variant of the Schwarzian (Sec. III),

(ii) A bosonic variant of the Schwarzian with su(1,2)

symmetry (Sec. IV), and
(iii) Schwarzians with A -extended
(Sec. V).
We conclude in the Sec. VI with some interesting but
unsolved at the moment questions and hypotheses.

supersymmetry

Published by the American Physical Society
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II. SKETCH OF THE IDEA

Before getting to the main results of our paper, let us
illustrate how the method of nonlinear realizations works
when applied to the Schwarzians in two simpler examples:
the standard bosonic Schwarzian (A = 0 case) and one of
supersymmetric Schwarzians (N = 2 case).

A. N =0 case

The Schwarzian derivative {¢,7} is defined by the
relation

(0} _§-§<f) F=of

Its famous property is the invariance with respect to

SL(2,R) Mobius transformations, acting on :

7at+b
Ccr+d

/

= {7} = {1, 7}. (2)

Note that the “time” 7 is invariant with respect to these
SL(2, R) transformations.
The action of the bosonic Schwarzian mechanics (see,

e.g., [4])
1
Sschw[t] = 5 dT{l‘, T} (3)
leads to the following equation of motion
d 2
d—{t, t} =0 = {r,7} = 2m* = const. (4)
T

As SL(2,R) transformations of ¢ are involved, it is
natural to look at this system from the nonlinear realization
viewpoint. Indeed, one can consider the s/(2, R) algebra,
spanned by the Hermitian generators P, D, K
i[D,P] = P,

iD.K]=-K. i[K.P|=2D (5)

and parametrize the group element in the following way:

g= eitP pizK piuD (6)
This parametrization is similar to one used in the con-
struction of the conformal mechanics [22], when P, D, and
K generate time translations, dilatations, and conformal
boosts, respectively. Then the Cartan forms, invariant with
respect to left multiplication ¢’ = gyg, read

g 'dg = iwpP + iwpD + iwgK = wp = e7"dt,
wp = du —2zdt, wg = e"(dz + Z*dt). (7)

The infinitesimal s/(2, R) transformations

go = €@PHIDER) — 5 — G 4 bt + &1,
d 1d d
— 07 = =—o0u ——0otz 8
dt 2dt dt ®)
are just the ones expected for 7 (2).

If one continues this way, treating ¢ as time and « and z
as functions of ¢, imposing a covariant condition wp = 0
would result in the elimination of z as an independent
variable, z = %% (This is a manifestation of the inverse
Higgs phenomenon [13].) Then one can obtain the action of
conformal mechanics as [22]

S == [ (wx + o)
a8 e
:/dt[(%)_m_] c— e (9)

Note that the equation of motion that follows from the
action (9)

L 1 (du\?]
—et -y [ U =0 10
e {2dt2u+4<dt>}+me (10)

can be rewritten as the constraint on the Cartan forms [22]

wg —mlwp = 0. (11)
Thus the Schwarzian mechanics are essentially the con-
formal mechanics rewritten in the new coordinates.

The Cartan forms in (7) are invariant with respect to
sI(2,R) transformations (8), while the time variable ¢
transforms according to (2), (8). At this point one may
impose our main condition [14,15,20]

wp = e~"dt = dr, (12)

where 7 is a new invariant “time,” which is completely inert
under s/(2, R) transformations. Treating now ¢, u, z as the
functions of z, one can express the Goldstone fields « and z
in terms of ¢, 7

. . 7
u=logt, wp=du—2ze"dr=0=>z=—e"u=—5. (13)
Putting these relations into the remaining form wg, one

immediately obtains that it is proportional to the
Schwarzian {f,7}:

1 1 1t £\2 1
a)KZEdT[ﬁ—EhZ} zi{é—%(;) ]d‘r:zd‘r{t,r}.
(14)

The Schwarzian action is, obviously, S¢pw = — f wg.
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B. A/ =2 case

This idea can be straightforwardly generalized to
the supersymmetric case. To obtain supersymmetric
Schwarzians, we should consider the proper superalgebra,
which differs from (5) by the presence of supercharges Q'
superconformal charges S', and, possibly, internal symmetry
generators J*/. Then one should introduce the superconfor-
mally inert superspace coordinates 7 and 8 using the relations

(wg)" = db', (15)
|

wp = Ar,

i[D.P] =P,
{0, 0} = 2P,

1
ilJ, 0] :EQ’

. 1
i[D, Q] = 3 0,

ilK, Q] = =S,

i[D.K] = —K,
{S,8} = 2K,

i0.0] = -

N[ =

I
i[D, 0] :EQ’
i[K,Q] = -S,

0, ilJ, 8] ==,

iD, 5] = —%s,
i[P,S] = Q.

where the forms At and d@' are invariant with respect
to standard superspace transformations 6t ~ €0, 60 ~ €.
After imposing the condition wp = 0 also, one realizes that
the remaining forms are composed of supersymmetric
Schwarzians and their derivatives. As one of the
simplest examples, let us consider N =2 Schwarzian
mechanics [15,20].

In the case of N =2 supersymmetry we start from
N = 2 superconformal algebra su(1, 1/1) with the follow-
ing (anti)commutation relations

i[K,P] =2D,
{0,8} = -2D +2J,

}
1 ——
2 2

(16)

We parametrize the SU(1, 1|1) group element in the following way:

g= eizPe§Q+;= 0 pyS+r S pizK iuD o]

The Cartan forms

g 'dg = iwpP + woQ + (I)QQ +iwpD + w;J + wgS + @¢S + iwgK

explicitly read

(17)

(18)

wp = e "Nt = e7"(dt + i(dEE + dEE)),

wy = e_%“%(dcf +wAt), g = e_%_i%(df +wAr),

wp = du — 2zt — 2i(d&y + déy), w; = dp — 2ur At + 2(déw — d&),
ws = e (dy — iy dé + z(dE + wAt)),

og = 55 (dy + iy dE + 2(dE + yAr)),

wyg = " (dz + 22\t = i(ydip + pdy) + 2iz(d&p + dEw)).

Now we impose the following conditions on the forms wp,
@g, Wp (]9)

Wp = AT, C()Q = d@, C?)Q = dé, wp = 0. (20)
Here, Atz = dr +i(d60 + d9). The forms Az, do, do
are invariant with respect to N =2 supersymmetry
transformations

ot = i(ed + &0), 0=e¢, 0=t (21)

Covariant derivatives with respect to z, 6, 0 are

o -0 - 9 9 i
02, b=2_i0L {D.D}=-2id..
00 "or 35 0 DD}=-2

The constraints on the Cartan forms (20), expanded in
projections Az, dO, df with the help of (22), are

i‘+i(:f§+c.f¢_f) =e', z :le‘"zk

2
E+ ey =0, D¢ = i) DE=0,
E+ ety = 0, DE=eutid)  DE=0. (23)
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Using (23), we express all Cartan forms in the terms of
N = 2 Schwarzian

Syes :%_g—g-m% (24)
as
Wy = i8Sy At
wg = —%SNZZdH — %DSN'ZZAT,
D5 = %Sszdé + %DSNZZAT,
wg = —%d@DSN:Q +%d9DSN:2
b3 Ae(ilD. DIS o~ 83 y) (25)

Note that the same conclusion about the structure of the
forms can be achieved by the analysis of Maurer-Cartan
equations the forms of (18) satisfy. We will use such
equations in Sec. V to study a system with N super-
symmetries.

The constructed A/ =2 Schwarzian (24) is invariant
with respect to superconformal transformations that
explicitly read

5t = i(8& + €&) — it(8€ + &)
8¢ = € — et + ie&é
O = € — &t — igE

g’ — pe0+E Qess+é Sg =

(26)

Thus one can construct the supersymmetric Schwarzian
action as

SNZSChW = _%/dfdedésj\[z
1/ ~
:_E CUJ/\COQ/\COQ

:l/G)P/\a)5/\d)Q

It is matter of a quite lengthy calculation to check that the
equations of motion that follow from the action (27) can be
written as

d
d—SN=2 =0 = Sy_, = const = —2m. (28)
T

Looking at the Cartan forms (25), one may note that
Eq. (28) reduces them to the forms on the subalgebra that
were formed by the following generators:

R =P+ m*K —2imlJ, I'=Q+imS,
I'=0Q—imsS, {I, T} =2R. (29)

The reduction of the Cartan forms on the algebra su(1, 1|1)
to the forms on the subalgebra (29) is the key ingredient of
the covariant reduction used in [23] to construct N = 2
superconformal mechanics. Thus, in the N =2 super-
symmetric case the Schwarzian mechanics is nothing but
the superconformal mechanics written in the superfields
{t,&,&} depending on the coordinates of the inert super-
space {7, 0, 9}. Unfortunately, this relation does not work
beyond the N/ = 2 case with m # 0.

III. FLAT SPACE ANALOG
OF THE SCHWARZIAN

As the first example of the generalized Schwarzian in
this section we will consider the use nonlinear realizations
to construct the so-called flat space analog of the
Schwarzian. The latter was discovered in [9] by study of
coadjoint orbits of product of Virasoro group with func-
tions on the circle. Later it was found [10] to play a role in
the holographic description of two-dimensional gravity in
flat space, just like the original Schwarzian, which is related
to the Sachdev-Ye-Kitaev model that provides a holo-
graphic dual to the Jackiw-Teitelboim gravity [24,25] in
anti—de Sitter space.

The Schwarzian appearing in [9,10] is connected to
the Maxwell algebra. The latter contains the Hermitian
generators of translation P, the analog of the dilatation-
central-charge generator Z, the analog of the conformal
boost K, and the generator of U(1) rotations obeying the
following relations:
ilJ,P] =P,

i[J.K| =K. i[K.P|=2Z. (30)

If we parametrize the Maxwell group element g as

g= eit(P+qJ+m2K) eizKeiuzeizﬁJ’ (31)

then the Cartan forms
g 'dg = iwpP + iwzZ +iwgK + iw,J (32)
will read

wp = e~?dt, wy; = du — 2zdt,

wg = e?(dz — qzdt + m*dt), w;=d¢. (33)
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The constraints

wp = dr, wz; =0 (34)
result in the following relations:
. i
e 2= (35)

Finally,

U (i ot A
wg = d”{i <? _t_2> + m?t —Equ] = dtSpy-  (36)

This is exactly the flat space analog of the Schwarzian
constructed in [9,10]
S~ / WDk .

It is possible that other related Schwarzian actions, such as
one combining standard and flat Schwarzians [26] or the
supersymmetric version of the flat action [27] can also be
obtained in algebraic way.

IV. SCHWARZIAN WITH su(1,2) SYMMETRY

In this section we will consider the bosonic version of the
N =2 superconformal mechanics system with su(1,2)
symmetry.

The su(1,2) algebra includes the following generators:

(i) The generators P, D, K, forming s/(2, R) subalgebra.

(i) The generators Q, Q, and S, S: the bosonic analogs

of the supersymmetric and conformal supersym-
metry generators.
(iii) U(1) generator U.
The generators P, D, K, and U are Hermitian, while the Q
and S generators obey the conjugation rules (Q)' =

0, (S)" = S. The nonzero commutators read
|
i[P,K] = -2D, ilP,D] = —P, ilK,D] = K,
iiP,S)=-0, iP,S]=-0, K, Q=S K, Q=S5
1 - 1 1 - 1-
[U7 Q] = Qv [Uv Q] = _Qv [Uv S] - Sa [Ua S} = _Sa
> . 3 . < e = 3 .
[0, 0] = —yP, i[O, §] = —EyU —iyD, [S,S] = —rK, i[S, 0] = EyU —iyD. (37)
We parametrize the group element in a standard way as
g= itP pl($0+¢ 0) ,i(vS+75) fizK ,iuD figU (38)

The Cartan forms read

wp = e <dt + %y(qﬁd(}ﬁ - g?ﬁdgb)) = e "At,
wp = du —iy(vde — vdd) — 2z/\t,

2

2 .
wg = e {dz + <12 + }’Z v2172> At —iyz(vdgp — vdp) + %y(vd@ — bdv) — % vi(vdd + vdep)

wg = e [dp — vA],

o = e 7 [dgp — DAL,

wg = 57 {dv - <z + %ym‘)) (dp — vAt) — iyvzd(}} ,

i

g = ertie {d@ - (Z - Eym')> (dep — vAt) + iy@zdgb] ,

3 _
wy = do — Ey(vdqﬁ + vdep — vOAL).

(39)

The constraints we are going to impose are of three different types:
(i) The constraints that introduce the inert “time” 7: wp = dz.

(i) The constraints realizing the inverse Higgs phenomenon [13]: wp = wy = @y = 0.
(iii) The dynamical constraints that produce the equations of motion: wy = wg = &g =
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The results of two first constraints are

v = e‘”d),

i+31(0 - D) = e

b= e‘“(;ﬁ, z==e"i. (40)

The dynamical constraints give the following equations
of motion:

b =iid—ierid’

b = it +Hiey P,

i = (i = 22 ).

. (41)

To get the Schwarzian-like system one has to pass from the
variable u to the “old” time 7 (40). The result

(G~ drdd—dd) 3G +5h-9d)
P+ (pp— P ) 2(i+2(pp— )

REL S
2+ 2(pp-d9))

(42)

is somewhat complicated, but it evidently generalizes the
equation of motion of the standard Schwarzian mechanics

ETO%
|~ :2 2.
i 2<t) "

V. SCHWARZIANS WITH HIGHER (N > 4)
SUPERSYMMETRY

It has been well known for a long time that the super-
symmetric Schwarzians appear in the transformations of
the current superfield J?)(Z) under N -extended super-
conformal algebra [3]. In fact, such an appearance of the
supersymmetric Schwarzians can be considered as their
definition. However, N extended superconformal theories
have the natural upper bound N/ = 4, since for N' > 4 the
|

(43)

[D,P| = -iP,  [D.K]=iK,
i i
D, Q)] :_Ein D, S}] :ESiv
10:, 0} = 25;;P, {8, 8} = 26K,

current superfield J¥)(Z) has components with negative
conformal dimension. In the series of the previous
papers [20,21] and related but using a slightly different
approach [15,16], all such ' = 4 super-Schwarzians were
reproduced. As expected, they coincide with the
Schwarzians from the seminal paper by K. Schoutens [3].

However, the approach developed in [15,16,20,21], and
which we advocated here, does not possess the upper
bound on the number of supersymmetries. So, it is natural
to try to construct some analogs of the Schwarzian with
higher N' > 4 supersymmetry. Alas, our first attempts in
this direction were failures. The analysis of the super-
algebras osp(4*|4), and su(1,1|N/2 > 2) leads to the
conclusion that, as a result of standard constraints imposed
on the differential forms

wp=01, (00)*=d0% (@g),=d0, wp=0, (44)
all others, in contrast to the already studied cases with
N < 4, are put to zero leaving no room for the Schwarzians
in the standard sense. Instead, in such an approach we
obtain a set of higher-order differential equations on the
fields involved, which can be treated as describing some
dynamical (and quite possibly integrable) system. Though
discussion of these dynamical systems is beyond the scope
of this paper, let us note that there exists at least one
possibility when the standard constraints are not strong
enough to put the Schwarzian to zero for N' > 4. It is
given by the series of osp(N|2) superalgebras, which we
discuss in detail.

A. Superalgebra osp(N|2)

The bosonic part of the superalgebra osp(A|2) contains
among the subgroups sl(2) x so(N') with the generators
(P.D,K)and J;;=—J;;,i,j=1.2,....N, respectively [28].
The fermionic part of this algebra includes 2 - N fermionic
generators Q;, S; forming the vectors with respect to so(N)
algebra and doublet with respect to s/(2) subalgebra. The
commutation relations have a rather compact form:

[P, K] = 2iD,
K. Q] =iS;. [P,S;] = —iQ;,

{0:, 8} = =26;;D + J;;,

Jijs ) = 1(0id j = 8jd it = 8t jic + 80 ik )

[Jij. Qi) =1(60 Q) — 64 Q:). Vi

Sil = 1(6yS; — 8S;)-

(45)
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The group element can be defined as
g = eitP i eviSi iz giuD phijli; (46)
Here, the superfields t, &, u, z, v, /1,-]- depend on the

coordinates of A -extended superspace 7, 6,. Defining the
Cartan forms as

Q = g'dg =iwpP + iwgK + iwpD + (wp);0;

+ (wg);S; + i(@y); i, (47)
one may impose the standard constraints of our
approach [20,21]:
wp = At =dr+id0,6;, (wg); =db;, wp=0. (48)

Here, 7 and 6; are the coordinates of the “inert” superspace.
The covariant (with respect to the flat V-extended super-
symmetry, generated by Q; and P) differentials Az and d0;
can be used to define the covariant derivatives as

with

o . .
DT:(?T, Di:£—19i012> {Dl,Dj}:—215”0, (50)

B. Maurer-Cartan equations

One may explicitly calculate the forms (47) and analyze
the consequences of the constraints (48). However, in
practice this way is a rather cumbersome and involved.
The simplification comes from the evident statement that
our constraints include the Cartan forms themselves, and,
therefore, it makes sense to use the Maurer-Cartan equa-
tions to analyze their consequences.

If the Cartan form Q is defined as in (47), then by
construction it obeys the Maurer-Cartan equation'

Q) — d1 Q) = [Q), 2],

Q =Q(d)), Q=Q(dy).

(51)

This equation can be expanded into following set

dA = ATDTA + dgl‘DiA, (49) Of equations:
|
i(dzwlp - dlwzp) = —i(wlpsz - wmwzp) - Z(C‘)IQ)i(a)ZQ)i’
i(dzwu( - d1w2K) = i(leCUZD - 6011)6021() - 2(6015)1‘(0)25)1"
i(dyw p — dywyp) = =2i(w1 pwrgx — W1k Wap) + 2(@19);(@as); — 2(@20);(@15);,

i(dz(wu)ij —d, (a’zj)ij) = 2i(a)11)ik(a)21>kj - 2i(w21>ik((‘)ll)kj - (a)lQ)[i(wZS)j] + ((’)2Q>[i(wls)j]7

1

dy(w19); — di(029); = ©01p(@s5); — 0rp(015); + 2 (01p(@20); = wap(@19);) + 2(@1)) ik (@20) i = 2(@21) i (@10

dz(a’ls)i —d, (wzs)i = _w1K<a)2Q)i + wZK(a)lQ)i - % (wlD(wzs)i - a’zD(a)ls)i) + Z(le)ik(wZS)k - 2(0)21)ik(w15)k-

(52)

To analyze the consequences of these constraints let us represent other forms in most general way as

(G)S)i == AT‘P,’ + dQJA,J,

(wj)ij = ATXU + id@kzkij,

Substituting constraints (48) and the anzatz for other forms (53) into Eq. (52), one finds that the dwp equation is satisfied

identically, and the dw, equation implies that

Aij + 2Xl] - O, Zkil + ZIik - 0 (54)
As by definition £;;; = —%;;, the second equation implies that X;;; is completely antisymmetric. The second dw; equation
reads
. . 1
DX+ Zpij = =2XinZgnj + 2X 2 + 3 (0¥ — 0 ¥s),
=261 Xij — ouXj1 + 6 Xip — 6y X ji + 6 Xix = DiZyij + D Zyij — 2883, 25 — 21, Xy (55)

'Here, d, and d, are mutually commuting differentials, dz is the commuting bosonic object, while d6 is the anticommuting fermionic

one.
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The dwp equation implies that

The second equation is satisfied due to A;; = —-2X;; =
—2X|;j)- The dwg equation reads

Dklpi - Aik — _éikC "‘ 2Xl]A]k - 212]”]‘{}

- i(6,~lE‘.k + 5ikEl) - lekl]A

J?
i — 21ZA . (57)
Finally, the dwg equation reads

iD,C + 5, = 2%,A;,

~28,4C — D&, — D8y = ~2A A . (58)
Taking into account simple equations (54), (56), one may
note that the second equation (57) is a direct consequence
of the first in (55), and the second equation (58) follows
from the first ones in (57) and (54). Therefore, the really
independent variables are Zijk = Z[ijk]’ Xl] = X[”], lPi,

and C. They satisfy the following set of equations:

=20 X;j — 6uX i + 60Xy — 0uXjx + 6 Xk

=Dy Zy;j + DXy — 20X, — 20 2, 2. (59)

. . 1
1D X+ 2= —2Xin Zpj +2X 5, X +5 (0¥ =6, 'Ys),

(60)
Dk‘Pi +2Xik = _5lkc_4leX]k _212/(1]‘1‘]’ (61)
iD,C+ W, = —4¥,X,. (62)

The first of these equations (59) defines X;; in terms of %,
and its derivative. Using this solution and Eq. (59) again,
one can find D, X;; and substitute it to the next Eq. (60).
This reduces (60) to terms with 6;; symbols, which allow
us to find W¥;. Continuing down this road, one can simplify
(61) to find C and check that the last one (62) becomes just
an identity. Therefore, all the superfields X;;, ¥;, C can be
expressed in terms of X, satisfying (59). It is remarkable
that this can be done for an arbitrary number of super-
symmetries /. The solution explicitly reads

1 .
Xij = 537 PnZimij = 2ZimnZjmn).
2i .
lP[ = —m (DlXil + 21anzimn)’
1
C= —N(Djlpj _4anan)' (63)

Thus, all the Cartan forms can be expressed in terms
of a unique object: superfield Z;;.. This superfield Z;,

being fully antisymmetric over permutations of the indices,
appeared as the d6 projection of the form (w;);;. Due to
these properties, one can call this superfield X, as the
supersymmetric A -extended Schwarzian. It satisfies the
nonlinear constraint given by Eq. (59), where X;; is
expressed in terms of X;; by (63).

C. Explicit form of the supersymmetric
N -extended Schwarzian

From the previous subsection, we see that the super-
symmetric A -extended Schwarzian X; jx we are looking for
appears as a d6 projection of the form (w;),;. Thus, the
final task is to express X;; in terms of the parameters
of the group element (46), depending, in virtue of our
constraints (48), on the coordinates of the flat inert
superspace 7, 0;.

The Cartan forms Q = ¢g~'dg, explicitly calculated for
the group element (46), read

(UP = e_”At = e_”(dt + 1d§/§j>’
(CUQ>1 = e_”/z(déj + Atl//j)Mjl,
wp = du — 21d§kl//k - ZZAZ,
(w5); = "> (dy; + idEyiw; + 2(dE; + Ay ) )M j;,
wg = e"(dz + 2 At +idy jy; + 2izdE ),
1 i
(@) = 7 (M) @M, + 3 (M=) (M) e (A,
- dénl//m + Al‘wmlz”n)‘ (64)

Here, the so(N') matrix M;; is defined as

M;;= (62'1)1','
dhikdij Bl _
=06;j+24;+ o 3l +on (M) =M
(65)
The constraints (48) imply
P+ g = e, Dt +iD;§é, = 0,
Dmgk = eu/z(M_])mk7 ll/l - _e_uéh
= Ee_uil, Diu = 21Dl§]l//] (66)

Some of these relations define some of the Goldstone
fields in terms of derivatives of others, and some are not
independent. For example, acting by D; on the second
relation and symmetrizing with respect to i, j one can obtain

Di(Djt +iD ;&) + D;j(D;t +1D;&iéy) = 0
= (1 + iéké:k)éij = Di&D ;. (67)
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Therefore, D;&; has structure implied by the third equation of (66). From this, it can also be derived that

Dieu = %Di(Dméanfn) = 3Dil)manmén = 3 (_2iDi§néjn - DmDiganfn)

N

N

= 3 (_2iDi€nén - WDi&n&n - Dieu) = Dieu = _2iDi§m&m' (68)

N

Taking into account all known kinematic equations, the d@ projection of the form w; reads

i

1 . . .
(wl)kl =..+ dep Py (M_l)knDpMnl - E (Dpfmén - ngngm)e_u(M_l)km(M_l)ln =..+ ldepzpkl' (69)

2

This expression can be further simplified leading to the
following supersymmetric Schwarzian:

ﬁD[iDjéka]ém

70
> DD

1
Y = Ee_uD[iDjéka]é:m =

The standard bosonic Schwarzian is hidden inside the
components of the third derivative of Z;;;. Roughly speak-
ing, the bosonic part of the Schwarzian reads

2iD,,D,D %, ,

NN -1V =2)

o] ( _ 3) P Sl

T2\t 2R NN -1V -2)
N-2 . .

Note that DX;;; is absent in Eq. (59) and starts from an
independent component.

As we are discussing arbitrarily high supersymmetries,
it is natural to ask whether the main constraint D;t +
iD;¢;&; = 0 puts the system on shell. Explicit component
analysis of this constraint for some values of N\ indicates,
however, that it is essentially an algebraic one, defining
superfields ¢ and ¢; in terms of some unconstrained scalar
superfield.

D. Properties with respect to coordinate changes

The supersymmetric Schwarzian should possess a spe-
cial property with respect to coordinate changes, known
as the composition law. The coordinate changes are diffeo-
morphism transformations

0,0, =0,(.0). <=z6). (72)

constrained by D;7 + iD;0 jéj = 0, so that the derivative D;
transforms homogeneously, D; = D,-é,-D;-. If the composi-

tion law holds for the Schwarzian, it should have the form

[
Sl (7, 07,0 = £ [0(7.0); 7, 0]
+ M Z, [E(7.0): 7, 0] (73)

with some matrix M(;;y™"". The Schwarzian reads

i D iD' mD m
o = ﬂM (74)
2 DDy,
As for D;{; and D,-éj the relations D;{D;{; ~ §;; and
D,6,D jék ~ §;; hold, one can shortly obtain

D0,D,0,

D,{ D,y = N

DL, (75)
Then, directly substituting D;{; = DiéjD}C  into (74), we
obtain

(76)

Thus the Schwarzian transforms as in (73), as it should be.

VI. CONCLUSION

In this paper we applied the method of nonlinear realization
to some bosonic [Maxwell algebra and su(1,2) one] and
supersymmetric osp(N|2) algebras. After introducing the
coordinates of the inert (super)spacetime and imposing the
proper constraints,

Cartan forms = Cartan forms on the flat superspace,

we expressed all the Cartan forms of the initial (super)algebra
through a single object: a generalized Schwarzian. While
doing so, we were able to construct the Schwarzians with
N -extended supersymmetry.
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The obtained results have to be treated as the first steps
in the complete analysis of the Schwarzian systems.
Two immediate, but still unanswered questions, concern
the following:

(i) The existence of other N -extended systems for

N > 4, such as related to F(4) superalgebra, and

(i) The structure of the equations of motion in Schwar-

zian supersymmetric mechanics.
It is clear that there is no hope to have the superfield
actions for the theories with N -extended supersymmetry.
However, the question of the equations of motion for such a
system is not trivial. As we know, in the bosonic case the
equations of motion of the Schwarzian mechanics reduces
to the condition

Schwarzian = const.

It is interesting to understand whether this property can be
extended to the supersymmetric case. Another interesting
continuation concerns the supersymmetric Maxwell group,
its analysis, and possible relation of the corresponding
Schwarzians with the flat-space analogs of the Sachdev-Ye-
Kitaev model.

Finally, there is a strong expectation that all models
constructed in a such manner have to be integrable. It
would be interesting to analyze the situation with integra-
bility, at least for the simplest models.
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