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We describe two different, but equivalent semiclassical views of black hole physics in which the
equivalence principle and unitarity are both accommodated. In one, unitarity is built-in, while the black
hole interior emerges only effectively as a collective phenomenon involving horizon (and possibly other)
degrees of freedom. In the other, more widely studied approach, the existence of the interior is manifest,
while the unitarity of the underlying dynamics can be captured only indirectly by incorporating certain
nonperturbative effects of gravity. These two pictures correspond to a distant description and the
description based on entanglement islands/replica wormholes, respectively. We also present a holographic
description of de Sitter spacetime based on the former approach, in which the holographic theory is located
on the stretched horizon of a static patch. We argue that the existence of these two approaches is rooted in
the two formulations of quantum mechanics: the canonical and path integral formalisms.
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I. INTRODUCTION AND SUMMARY

For a long time, the puzzle of black hole information loss
has caused confusion about how gravity works at the
quantum level [1–3]. This confusion arises mostly due to
the following features of the semiclassical description of
black holes:

(i) Despite the fact that spacetime is fundamentally
quantum mechanical, it is described as a classical
object.

(ii) While the fundamental theory has a preferred class
of time foliations for spacetimes with a horizon,
general relativity seems to treat all the coordinates
equally.

The purpose of this paper is to elucidate these points and
present a coherent picture in which the results of semi-
classical theory are consistently interpreted to address
issues related to the information puzzle. This picture builds
on recent developments of our understanding of quantum
gravity.
The first hint that spacetime consists of quantum degrees

of freedom came from the discovery that black holes have
entropy [4,5]. In the standard statistical mechanical

interpretation, this implies that the horizon, a region which
general relativity describes as empty space, contains a
quantum mechanical substance. This interpretation is
indeed supported by the anti–de Sitter (AdS)/conformal
field theory (CFT) correspondence [6]—a concrete reali-
zation of holography [6–10].
Recent progress in understanding the AdS=CFT corre-

spondence, and holography more generally, has shown that
while general relativity is diffeomorphism invariant, there
appear to be a preferred class of coordinates at the quantum
level. From the viewpoint of the boundary theory, these
coordinates correspond to descriptions based on quantum
operators constructed by a simple procedure or operators
which are not exponentially complex in fundamental degrees
of freedom [11–16], and they cover only a portion of
spacetime when there is a horizon. In a system with a black
hole, these coordinates are associated with Schwarzschild
time slicing, or any other time foliation associated with an
observer located outside the horizon. This conforms to the
earlier idea that black hole evolution obeys the standard rules
of quantummechanics—and hence is unitary—whenviewed
by an external observer [17–20]. Indeed, we see that there is
nothing unusual with the results of semiclassical theory if a
black hole is described using only external frames.
The issue, then, is how to interpret the existence of the

black hole interior which arises when the external coordi-
nates are analytically extended in general relativity. We take
the view that the picture of the black hole interior arises only
effectively at the semiclassical level. In particular, we adopt
the construction in Refs. [21–25] in which the interior
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emerges because of the special, chaotic nature of the horizon
dynamics.1 A key idea is that when the black hole is
described in an external quasistatic reference frame, its large
acceleration with respect to the free falling frame makes the
dynamics at the horizon—more precisely the stretched
horizon [19]—appear string theoretic, which is chaotic
across all low energy species. This makes the black hole
vacuum microstate generic in the relevant microcanonical
ensemble, allowing us to erect the effective theory of the
interior.
The erected effective theory is defined only up to errors of

order e−ðSBHþSradÞ=2, where SBH and Srad are the Bekenstein-
Hawking entropy and the coarse-grained entropy of the
degrees of freedom entangled with the black hole, respec-
tively. Operators describing the interior are state dependent
[26,31,32], though only weakly in the sense of Refs. [25,30].
Reflecting the fact that the Hilbert space associated with the
black hole system is finite dimensional, the effective theory
can be used only for a finite time interval; the existence of the
black hole singularity is consistent with this [21]. Similarly,
weak cosmic censorship can be viewed as a statement that a
distant description, which corresponds to a simple boundary
description in holography, can be used for an arbitrarily long
time, to the extent that the theory is well defined in the
infrared.
In this paper, we review the construction described above

and refine it, including subtle evolutionary effects for a
dynamically formed black hole. We present the whole
framework in a coherent manner and address various issues
associated with it, including its realization in the boundary
description of holography. In doing so, we also discuss the
relation of the present construction to other recent related
works. In particular, we discuss the relation between the
picture described here and that based on quantum extremal
surfaces and entanglement wedge reconstruction [33–37].
We argue that the latter emerges through coarse graining
necessary to describe a semiclassical black hole without
specifying its microscopic structure [24]. We also see that
the two are closely tied, respectively, to the canonical and
path integral formulations of quantum mechanics [38].
We expect that at the macroscopic level, generic (quasi-)

static horizons, including cosmic horizons, have locally the
same statistical features.s Indeed, the horizon of de Sitter
spacetime has the same entropy per area as that of a black
hole [39], and so is the temperature of the Hawking cloud at
the stretched horizon. In fact, building on the analyses in
Refs. [22,40], we see that the holographic description of a
static patch of de Sitter spacetime is very much an “inside-
out” version of that of a black hole. We present this
description in the context of more general holography
for cosmological spacetimes [41,42]. We also discuss the

relationship of the present description with other recent
proposals [43–48].

A. Overall picture and outline of the paper

In the rest of this section, we present an overview of the
picture presented in this paper, pointing to where the details
of each subject are covered. The assumptions about the
setup which we adopt throughout the paper will be
summarized at the end of this section.

1. No puzzle for a black hole when
viewed from the exterior

Consider a nonrotating, noncharged black hole in a 4-
dimensional asymptotically flat spacetime. At the classical
level, the black hole is uniquely specified by one continu-
ous parameter: its mass M. We view this system from a
distance, i.e., we describe it using Schwarzschild time
slicing or something related to it in a simple manner.
When quantum effects are included, the black hole has a

finite entropy

SBHðMÞ ¼ 4π
GNM2

ℏc
; ð1:1Þ

where GN is Newton’s constant. This means that at the
quantum level the black hole is characterized by discrete—
albeit exponentially dense—states, rather than a continu-
ous, classical number.2 Specifically, the number of inde-
pendent states in the energy interval between M − δM=2
and M þ δM=2 is given by

N ðMÞ ∼ eSBHðMÞ δM
M

: ð1:2Þ

Note that this is a general phenomenon in quantum
mechanics. Like other physical systems, the entropy in
Eq. (1.1) diverges in the limit ℏ → 0.
The semiclassical theory treats the black hole as a

classical object while retaining the finite nature of the
entropy. This is not inconsistent: the concept of entropy can
be defined at the level of thermodynamics without explic-
itly taking into account the fundamental discreteness. The
disadvantage of this treatment, however, is that one can no
longer resolve each microstate, hence requiring a statistical,
or thermodynamic, treatment of the system [4,5,49,50].
At the semiclassical level, a black hole is described as

having a definite mass M but with the Hawking cloud
around it, which is in a thermal mixed state of temperature

TH ¼ ℏc3

8πkGNM
; ð1:3Þ

1A detailed description of relations of this construction to
earlier work [26–30] is given in Ref. [25] and throughout this
paper.

2Of course, quantum mechanics allows for a superposition of
these independent states, so that the expectation value of the
energy, or M, can take continuous values.
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where k is the Boltzmann constant. This is a proxy for an
ensemble of black hole microstates with energies between
M − δM=2 and M þ δM=2, which dominates the corre-
sponding microcanonical ensemble of states associated
with the spacetime region near the black hole. Below,
we adopt natural units ℏ ¼ c ¼ k ¼ 1.
The formation and evaporation of a blackhole described in

an external frame is a process in which quantum information
in the initial collapsing matter is dispersed among spacetime
degrees of freedom, represented by the Bekenstein-Hawking
entropy; Hawking emission then transfers it back to matter
degrees of freedom in the semiclassical description. For an
external observer, this entire process is unitary if all the
microscopic degrees of freedom are accounted for. An
important point is that with quantum effects, the instanta-
neously defined apparent horizon is stretched, at which the
local (Tolman)Hawking temperature is the string scale [19].3

The trajectory of this stretched horizon is timelike, so an
object falling into a black hole reaches there within finite
time. This object is then absorbed by the black hole, whose
information will eventually be sent back to ambient space as
Hawking radiation.
This implies that in the external frame description, the

stretched horizon behaves as a regular material surface as
far as the flow of quantum information is concerned. The
semiclassical theory, however, treats the horizon degrees of
freedom appearing in the middle of the process to be
classical, or at best an ensemble of quantum states
represented by the Hawking cloud. Therefore, in any
semiclassical calculation, the quantum information in the
initial mattermust appear to be lost in the final state; there is
no way to completely describe the microscopic information
on the horizon while staying in the semiclassical regime. In
other words, Hawking’s calculation [5] must have led to
information loss, and indeed it did [1].

2. Emergence of the interior

A puzzling feature of the picture described above is that
general relativity seems to imply that the black hole horizon
is smooth. Namely, when an object freely falls into the
horizon, it does not experience anything special there. This
is obviously not the case when an object falls into a regular
material surface.
As discussed in Refs. [21–25], the stretched horizon is

distinguished from other, regular material surfaces by its
chaotic [51], fast-scrambling [52,53] dynamics across all
low energy species. Here, by all low energy species, we
mean all quantum fields appearing in the low energy
effective theory below the string scale. These features arise

because of the large relative acceleration, of order the string
scale, between the quasistatic frame (a natural frame in
holography) and the free falling frame at the stretched
horizon. It is this aspect of the horizon dynamics that allows
us to erect a description in which an object falls freely
through the stretched horizon. This is done by making the
state take a fully generic form in the relevant microcanonical
ensemble.4

Specifically, when described in a quasistatic reference
frame, quantum degrees of freedom of a black hole consist
of modes in a spatial region near the stretched horizon
(called the zone) as well as those at the stretched horizon.
We call them zone and horizon modes, respectively. While
the dynamics of the former is described by the low energy
effective field theory, that of the latter is not. Note that these
modes are defined for each time interval in which the black
hole can be viewed as quasistatic.
Let us now focus on a (small) subset of the zone modes

which is relevant for describing an infalling physical object.
In particular, the object will be described by excitations of
these modes over the black hole vacuum. Let us call these
modes hard modes and all other black hole (zone and
horizon) modes soft modes. From the assumption that the
horizon degrees of freedom obey chaotic dynamics, we can
then conclude that a black hole vacuummicrostate takes the
form

jΨðMÞi ¼
X
n

XeSbhðM−EnÞ

in¼1

cnin jfnαgijψ ðnÞ
in
i; ð1:4Þ

where jfnαgi represent states of the hard modes, specified

by the occupation numbers nα for each mode α, and jψ ðnÞ
in
i

are the states of the soft modes that have energy M − En,
where En is the energy carried by jfnαgi. Note that since
the total energy of the black hole system is constrained to
be M, the number of independent horizon-mode states

jψ ðnÞ
in
i coupling to jfnαgi in Eq. (1.4) is given by

SbhðM − EnÞ, the density of states at energy M − En. Here,

SbhðEÞ ¼ 4πE2l2P ð1:5Þ

is the Bekenstein-Hawking entropy density at energyEwith
lP being the Planck length. (The contribution from the hard
modes to the black hole entropy is negligible.) Also note that
because of the chaotic nature of the horizon dynamics, the
coefficients cnin take random values across all low energy
species. In fact, the quasistatic form of Eq. (1.4) is achieved
quickly after any disturbance, i.e., within the scrambling
timescale of order Ml2P lnðMlPÞ [52,53].

3By the string scale, we mean the scale at which the low energy
effective field theory description breaks down. The appearance of
this scale is associated with the nonzero Newton’s constant,
which controls quantum corrections to the system since it always
appears with ℏ.

4For a charged or rotating black hole, the relevant ensemble
consists of microstates with charge or angular momentum con-
strained to lie within a small window dictated by quantum
uncertainties.
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The universality of the form of the state in Eq. (1.4)
allows us to erect the effective theory of the interior.
Specifically, we can define the normalized state coupling
to jfnαgi in Eq. (1.4)

kfnαg⟫ ¼ ςn
XeSbhðM−EnÞ

in¼1

cnin jψ ðnÞ
in
i; ð1:6Þ

where

ςn¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

eSbhðM−EnÞ
in¼1 jcnin j2

q ¼e
En
2TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

e−
Em
TH

s
½1þOðe−1

2
SbhðMÞÞ�:

ð1:7Þ

Plugging this into Eq. (1.4), we obtain the standard
thermofield double form [54,55]

jΨðMÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
me

−Em
TH

q X
n

e−
En
2TH jfnαgikfnαg⟫; ð1:8Þ

up to exponentially small corrections of order e−Sbh=2. We
can thus evolve an object in the zone (generated by acting
creation/annihilation operators on jfnαgi’s) using the time
evolution operator associated with the proper time of the
falling object, which is different from the original time
evolution operator in the boundary theory but still local in
bulk spacetime [21–25]. This implies the existence of a
description in which the falling object passes the horizon
and enters the black hole interior smoothly.
We emphasize that the criterion for a state to take the

universal form in Eq. (1.4) is much stronger than that for
regular thermalization; in particular, it must exhibit uni-
versal thermalization across all low energy species. It is
reasonable to expect that such strong thermalization is
achieved within a reasonable timescale only by the string
scale dynamics, which singles out the stretched horizon.
We also stress that the prescription of obtaining interior
spacetime described here does not require a detailed
knowledge about microscopic dynamics of quantum grav-
ity; only some basic assumptions are sufficient.
As the evaporation of a black hole progresses, informa-

tion stored in the horizon degrees of freedom is gradually
transferred to Hawking radiation. After the Page time [20],
entanglement between hard modes and early Hawking
radiation becomes nonnegligible, so that the interior
description must involve this Hawking radiation [29].
The way this occurs is that the black hole interior, more
precisely kfnαg⟫’s in Eq. (1.8), must involve early
Hawking radiation in addition to the black hole degrees
of freedom.
This last statement may seem to contradict the recent

claim about entanglement wedge reconstruction that the
interior of an old black hole can be reconstructed using only

early Hawking radiation [33–35]. This is, however, not the
case [24]. A key point is that such entanglement wedge
reconstructionmakes crucial use of boundary time evolution,
which allows for reconstructing states of the black hole and
radiation modes at an earlier time. On the other hand, the
effective theory of the interior uses thesemodes directly at the
time relevant for describing an infalling object. This under-
standing resolves an apparent puzzle associated with cau-
sality in entanglement wedge reconstruction.
In this paper, we first perform a detailed analysis of the

near horizon mode structure in Secs. II and III, and study its
relation to the holographic boundary picture in Sec. IV. The
construction of the effective theory of the interior is
presented in Secs. III and V, where we also discuss the
refinement of the construction needed to accommodate the
effects of evaporation on the instantaneous state of the zone
modes. The relationship of this picture to entanglement
wedge reconstruction is discussed in Sec. V.

3. de Sitter holography

The similarity between the static patch description of de
Sitter spacetime and the external description of black hole
spacetime has been studied for a long time [39]. Based on
this similarity, it was suggested that de Sitter spacetime
may admit a holographic description with finite-dimen-
sional Hilbert space [56,57]. In this paper, building on the
earlier analysis in Refs. [22,40], we develop a holographic
description of de Sitter spacetime based on the (quasi)static
picture.
First, we note that the analogue of a collapse formed,

single-sided black hole is cosmological de Sitter spacetime,
which arises approximately in the middle of a cosmological
history, e.g., at late times in a bubble universe with positive
cosmological constant. In this case, there is a single static
patch as viewed by an observer (timelike geodesic), which
is the inside-out analog of the exterior of the black hole. We
define the zone and horizon modes as those inside (on the
observer side of) the stretched horizon and those on the
stretched horizon, respectively. As in the case of a black
hole, a microstate for the de Sitter vacuum then takes the
form

jΨðEÞi ¼
X
n

XeSdSðE−EnÞ

in¼1

cnin jfnαgijψ ðnÞ
in
i; ð1:9Þ

where jfnαgi represent states of the hard modes and jψ ðnÞ
in
i

are the states of the soft modes that have energy E − En,
where En is the energy of jfnαgi measured at the location
of the observer. Here,

SdSðEÞ ¼ πE2l2P ð1:10Þ

represents the de Sitter entropy, with E being the “energy”
of the de Sitter vacuum related to the Hubble radius α by
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E ¼ α

l2P
: ð1:11Þ

Again, the coefficients cnin take random values across all low
energy species becauseof universally chaotic dynamics at the
horizon. This randomization is achieved rather quickly,
within the scrambling timescale of order α lnðα=lPÞ [58].
Using a microstate in Eq. (1.9), the effective theory

describing a region outside the horizon (as viewed from the
observer) can be constructed analogously to the black hole
case. By identifying the normalized state kfnαg⟫ using
Eq. (1.9), we can rewrite the full state as

jΨðEÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
me

−Em
TH

q X
n

e−
En
2TH jfnαgikfnαg⟫; ð1:12Þ

where TH is the de Sitter temperature. This state represents
the semiclassical vacuum state of global de Sitter spacetime
at time when the effective theory is erected.
We thus find that the effective global de Sitter picture

emerges from a cosmological de Sitter spacetime as a
collective phenomenon involving horizon modes. Like the
black hole case, the effective theory of global de Sitter
spacetime is intrinsically semiclassical in that there is an
intrinsic ambiguity of order e−SGH=2 in the definition of the
theory, where SGH is the Gibbons-Hawking entropy. This,
therefore, addresses the issue identified as a puzzling
feature in Ref. [59] that symmetries of classical (global)
de Sitter spacetime cannot be implemented exactly in a
finite-dimensional Hilbert space.
The holographic theory of de Sitter spacetime described

here is presented in Secs. III and V. Its relation to
holography in more general spacetimes is discussed in
Sec. IV, where we will see how static patch de Sitter
holography arises naturally from holography in more
general cosmological spacetimes. In Sec. V, we will
describe the construction of the effective theory and see
that this theory is sufficient to provide a semiclassical
description of future measurements of the observer.

4. Intrinsically two-sided systems

While we find that the analytically extended
Schwarzschild and global de Sitter spacetimes emerge
from the more physical, single-sided spacetimes via col-
lective dynamics involving horizon modes, there is nothing
theoretically wrong with considering an “intrinsically two-
sided” system, which comprises two copies of the holo-
graphic theory for the single-sided system.
In Sec. VI, we analyze such two-sided systems using our

framework. We will see that these two-sided systems lead
to physics similar to the corresponding single-sided sys-
tems at the semiclassical level, despite the fact that the
microscopic structures of relevant states are significantly

different. We also comment on possible relations of our
framework to other proposals for holographic theories
developed in the context of intrinsically two-sided systems.
In particular, we discuss the relationship of our description
of de Sitter spacetime with the DS/dS correspondence
[43,44] and the Shaghoulian-Susskind proposal [45–48].

5. Gravitational path integral:
Ensemble from coarse graining

The approach described so far is formulated most
naturally in the canonical formalism of quantum mechan-
ics. For example, we have introduced the concept of
horizon modes and their associated states. However,
quantum mechanics must also be formulable using path
integral. What does the picture look like in this case?
The path integral formalism has a very different starting

point. In the context of quantum gravity, it is the collection
of classical field configurations on classical geometries,
which are then integrated over to obtain physical results.
This implies, however, that a black hole (or de Sitter)
spacetime appearing in the path integral must be treated as a
(semi)classical object, so its detailed microscopic structure
cannot be discriminated. In fact, since the energy
differences between different black hole microstates are
suppressed by e−SBHðMÞ, these states cannot be discrimi-
nated by direct measurement.
From the microscopic point of view, this means that a

black hole appearing in gravitational path integral is a
coarse-grained object. This mandatory coarse graining
introduces the concept of ensemble averaging in interpret-
ing the result of gravitational path integral. This interpre-
tation, in fact, reproduces many features which are
attributed to the ensemble nature of holographic theories
in lower dimensional quantum gravity [36] using an
ensemble of microscopic states in a single theory [24].
However, if the classical black hole spacetime necessarily
represents an ensemble of microstates, how can the under-
lying unitarity of a black hole evolution be captured by the
quantum extremal surface method [33–35] which uses such
classical spacetime?.
A key observation is that while gravitational path integral

can only calculate ensemble averages, it can still do so for
many different quantities. In particular, adopting the replica
method, the gravitational path integral can calculate the
traces of powers of the density matrix of Hawking radiation
TrρnR. This is the replica wormhole calculation of
Refs. [36,37]. From this, the ensemble average of the
von Neumann entropy of the radiation can be obtained

SR ¼ −lim
n→1

∂

∂n
TrρnR ∼minfSrad; Sbhg; ð1:13Þ

which follows the Page curve. The reason why we could
obtain the Page curve here is because we have calculated
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the ensemble average of the microscopic von Neumann
entropy, which obeys the Page curve for all members of the
ensemble. This is unlike Hawking’s calculation which
gives the von Neumann entropy of the averaged state.
This replica method prescription involving gravita-

tional path integrals is virtually equivalent to the entan-
glement island prescription for calculating entropies,
adopted in Refs. [33–35]. This, therefore, provides the
following interpretation of the results in Refs. [33–35]:
while any formalism treating a black hole as a classical
object, including the gravitational path integral, must
involve an ensemble average over microstates, micro-
scopic information about some quantities can still be
deduced by computing such ensemble averages. The
entanglement island prescription (implicitly) adopts this
for von Neumann entropies.
The issue described here is discussed in Sec. VII. It is

based on the picture outlined in Refs. [24,38]. The idea that
the semiclassical description involves an ensemble of
microstates was also discussed in Refs. [60–64], and the
understanding of the Page curve presented there is based on
the developments in Refs. [65–71].

6. Quantum mechanics vs general
relativity in quantum gravity

It is important that the extremization procedure involved
in the calculation of an entanglement island is performed on
global spacetime of general relativity. In particular, for a
black hole spacetime, it must be performed on the whole
spacetime including the interior of the black hole.
This picture, therefore, is complementary to that based

on the external view of the black hole. Here the existence of
the black hole interior is manifest, while understanding the
unitarity of black hole evolution requires a method incor-
porating nonperturbative effects of quantum gravity, such
as replica wormholes. On the other hand, in the framework
based on the external view, the unitarity of the evolution is
built-in, and the interior emerges only effectively as a
collective phenomenon involving horizon (and possibly
other, entangled) degrees of freedom.
Despite the fact that the two pictures appear very

different, they give the same physical conclusions. In
particular, a black hole evolves unitarily and has a smooth
horizon. The origin of historical confusions about black
hole physics come from the fact that only one of these
features is manifest in a given low energy description; the
other appears in a highly nontrivial manner. It is interesting
that the description in which unitarity of quantum mechan-
ics is manifest naturally comes with the canonical/
Hamiltonian formulation of quantum mechanics, while
the one in which the interior predicted by general relativity
is manifest is naturally associated with the path integral/
Lagrangian formulation. It is an interesting question if a
microscopic formulation of quantum gravity can make both
these features manifest.

B. List of assumptions

Here we list out the assumptions that we use throughout
the paper. We focus on spacetimes which are spherically
symmetric at the semiclassical level, although excitations
on them are not restricted to be spherically symmetric. We
take the number of spacetime dimensions to be 3þ 1,
although our arguments can be generalized straightfor-
wardly to dþ 1 dimensions with d ≥ 3.
When discussing black holes, we mostly consider a

spherically symmetric, noncharged black hole in an asymp-
totically flat spacetime (or an analogous object such as a
spherically symmetric, noncharged small black hole in an
asymptotically AdS spacetime). It is straightforward to
include the effect of a charge or rotation unless the black
hole is extremal or near extremal. An extension to (near)
extremal and lower dimensional black holes is expected to
be nontrivial, since these black holes have different
structures for the densities of states than “generic” black
holes considered in this paper; see, e.g., Refs. [72,73].

II. QUANTUM FIELD ON
BACKGROUND SPACETIME

In this section, we discuss the behavior of quantum fields
in spherically symmetric background spacetimes. The
calculation presented here is elementary. The results, how-
ever, are used in later sections, so we include them for
completeness.
We consider a 4-dimensional spacetime with the metric

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; ð2:1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2. For simplicity, we consider
a minimally coupled real scalar field Φ in this spacetime,
whose action is given by

I ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð−gμν∂μΦ∂νΦ −m2
ΦΦ2Þ: ð2:2Þ

After changing the radial coordinate to the tortoise coor-
dinate r� defined by

dr� ¼
dr
fðrÞ ; ð2:3Þ

the metric becomes

ds2 ¼ fðrÞð−dt2 þ dr2�Þ þ r2dΩ2: ð2:4Þ

Here, r should be regarded as a function of r�. The equation
of motion derived from Eq. (2.2) is then given by
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�
−∂2t þ ∂

2
r� −

fðrÞf0ðrÞ
r

þ fðrÞ
r2

∂
2
Ω −m2

ΦfðrÞ
�
ðrΦÞ ¼ 0;

ð2:5Þ

where ∂
2
Ω is defined by ∂

2
Ωχ ¼ ð1= sin θÞ∂θðsin θ∂θχÞþ

ð1= sin2 θÞ∂2ϕχ.
We look for positive frequency solutions of the form

Φðt; r�; θ;ϕÞ ¼ e−iωt
φlmðr�Þ

r
Ylmðθ;ϕÞ ð2:6Þ

with ω ≥ 0, where Ylmðθ;ϕÞ represent real spherical
harmonics, satisfying ∂

2
ΩYlm ¼ −lðlþ 1ÞYlm. This

results in a linear, second-order differential equation for
φlmðrÞ

−
d2

ðdr�Þ2
φlmðr�Þ þ fVlðr�Þ − ω2gφlmðr�Þ ¼ 0; ð2:7Þ

where the effective potential Vlðr�Þ is given by

VlðrÞ ¼ fðrÞ
�
f0ðrÞ
r

þ lðlþ 1Þ
r2

þm2
Φ

�
: ð2:8Þ

The corresponding equations for higher spin fields are
generally more complicated, but they can also be derived
using a semiclassical method [74–77].
We are interested in spacetime that has a horizon at

radius rþ determined by

fðrþÞ ¼ 0: ð2:9Þ

The location, rs, of the stretched horizon [19] is determined
by the condition that the proper distance between r ¼ rþ
and rs is the string length ls:���� Z rs

rþ

drffiffiffiffiffiffiffiffiffi
fðrÞp ���� ≈ ls; ð2:10Þ

giving

jrs − rþj ≈
jf0ðrþÞjl2s

4
: ð2:11Þ

Here, we have assumed that jf0ðrþÞj is not much suppressed
compared with the natural size determined by dimensional
analysis, jf0ðrþÞj ∼ 1=rþ, which is indeed the case for the
spacetimes that we consider in this paper. The Hawking
temperature, asmeasured at r satisfyingfðrÞ ¼ 1, is givenby

TH ¼ jf0ðrþÞj
4π

; ð2:12Þ

so that the location of the stretched horizon also coincides
with the place where the local (Tolman) Hawking

temperature T locðrÞ ¼ TH=
ffiffiffiffiffiffiffiffiffi
fðrÞp

becomes the string scale,
≈1=2πls [24].

A. Schwarzschild black hole

Let us consider a Schwarzschild black hole of mass M.
The metric is given by

fðrÞ ¼ 1 −
rþ
r
; ð2:13Þ

where rþ ¼ 2Ml2P. The tortoise coordinate is given by

r� ¼ rþ rþ ln
r − rþ
rþ

; ð2:14Þ

which maps r∶ðrþ;∞Þ to r�∶ ð−∞;∞Þ, and the effective
potential is

Vlðr�Þ ¼
�
1 −

rþ
r

��
rþ
r3

þ lðlþ 1Þ
r2

þm2
Φ

�
; ð2:15Þ

which is plotted in Fig. 1 for mΦ ¼ 0.5 The stretched
horizon is located at

FIG. 1. The effective potential Vl of a Schwarzschild black
hole (solid lines) for a minimally coupled massless scalar field
with l ¼ 0; 1; 2 as a function of the tortoise coordinate r�. The
Hawking temperature TH ¼ 1=4πrþ is indicated by the horizon-
tal dashed line. The approximated curves in Eq. (2.20) are also
plotted (dotted lines) in the region where they are relevant.

5For a general, not necessarily a scalar, field of mΦ ¼ 0, we
have

Vlðr�Þ ¼
�
1 −

rþ
r

��ð1 − s2Þrþ
r3

þ lðlþ 1Þ
r2

�
; ð2:16Þ

where s is the spin-weight parameter and l ≥ jsj. In the near
horizon limit, this leads to the approximate potential of Eq. (2.20)
but with λl ¼ ðl2 þ lþ 1 − s2Þ=r2þ, giving a higher potential
barrier for larger jsj for a fixed value of l − jsj.
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rs − rþ ≈
l2s
4rþ

⟺ r�s − rþ ≈ −2rþ ln
2rþ
ls

; ð2:17Þ

and the Hawking temperature is given by

TH ¼ 1

4πrþ
: ð2:18Þ

While we cannot solve Eq. (2.7) analytically, we can
study the behavior of the field in the near horizon and far
regions by making appropriate approximations. We are
mostly interested in the near horizon “zone” region

rs < r < rz; rz ≈
3

2
rþ; ð2:19Þ

where rz indicates the location of the potential barrier. The
near horizon limit corresponds to r − rþ ≪ OðrþÞ, where
r� ≈ rþ þ rþ ln½ðr− rþÞ=rþ�⇔ r≈ rþ þ rþeðr�−rþÞ=rþ . The
effective potential in this region is given by

Vlðr�Þ ≈ λle
r�−rþ
rþ ; λl ¼ l2 þ lþ 1

r2þ
þm2

Φ: ð2:20Þ

This approximation is valid if r� is negative with jr�j
sufficiently larger than rþ; see Fig. 1. This implies that
we can trust solutions obtained using Eq. (2.20)
if ω2 ≪ Vlðr� ¼ −rþÞ ∼ λl.
Two independent real solutions of Eq. (2.7) with

Eq. (2.20) can be taken as

Re½I2irþωð2
ffiffiffiffiffi
λl

p
rþe

r�−rþ
2rþ Þ�; Im½I2irþωð2

ffiffiffiffiffi
λl

p
rþe

r�−rþ
2rþ Þ�;
ð2:21Þ

where IνðxÞ is the modified Bessel function of the first
kind. The first solution is exponentially increasing in r� at
large r�, so it does not correspond to modes that are
localized in the zone region; it corresponds to decaying
modes for signals sent from the far region. We thus focus on
the second solution, which is exponentially damped at large
r�. This solution is approximated by a trigonometric
function in the near horizon region

φlmðr�Þ ∝ Im½I2irþωð2
ffiffiffiffiffi
λl

p
rþe

r�−rþ
2rþ Þ�

⟶
jr�j≫rþ

r�<0
sin ½ωr� þ ωrþðlnðλlr2þÞ − 1Þ�: ð2:22Þ

Given that the effective potential at the stretched horizon
has the value Vlðr�sÞ ¼ λll2s=4r2þ, we find

ω≳
ffiffiffiffiffi
λl

p
ls

2rþ
: ð2:23Þ

We also find that imposing a boundary condition at the
stretched horizon makes the spectrum discrete, with the gap
between adjacent levels given by

Δω≡ ωn − ωn−1 ≈
π

2rþj ln 2ffiffiffiffi
λl

p
ls
j ; ð2:24Þ

where we have imposed a simple Dirichlet boundary
condition φlmðr�sÞ ¼ 0 for illustrative purposes. Note that
for a given l, each level has (2lþ 1)-fold degeneracy
corresponding to m ¼ −l;−lþ 1;…;l. While the details
of the spectrum do depend on the boundary condition, its
basic structure—the discreteness and the scale character-
izing the gaps—does not.

B. de Sitter spacetime

A similar analysis can be performed for de Sitter
spacetime in static coordinates

fðrÞ ¼ 1 −
r2

r2þ
; ð2:25Þ

leading to the same basic conclusion. Here, rþ ¼ α with α
being the Hubble radius. The tortoise coordinate is given by

r� ¼
rþ
2
ln
1þ r

rþ

1 − r
rþ

; ð2:26Þ

which maps r∶ð0; rþÞ to r�∶ ð0;∞Þ, and the effective
potential is

Vlðr�Þ ¼
�
1 −

r2

r2þ

��
−

2

r2þ
þ lðlþ 1Þ

r2
þm2

Φ

�
; ð2:27Þ

which is plotted in Fig. 2 formΦ ¼ 0. The stretched horizon
is located at

FIG. 2. The effective potential Vl of de Sitter spacetime for a
minimally coupled massless scalar field with l ¼ 0; 1; 2 as a
function of the tortoise coordinate r�. The Hawking temperature
TH ¼ 1=2πrþ is indicated by the horizontal dashed line.
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rþ − rs ≈
l2s
2rþ

⟺ r�s ≈ rþ ln
2rþ
ls

; ð2:28Þ

and the Hawking temperature is given by

TH ¼ 1

2πrþ
: ð2:29Þ

For l ≠ 0, the effective potential blows up at small values
of r�. Therefore, if ω is small, we can restrict to r� > rþ
which corresponds to the region near the cosmological
horizon. For l ¼ 0, the effective potential blows up at small
r� only when mΦ >

ffiffiffi
2

p
=rþ; otherwise, the potential is

confining, leading to a small number of bound states.
Below, we focus on the case mΦ >

ffiffiffi
2

p
=rþ for l ¼ 0.

With this restriction, the effective potential in the near
horizon region is given by

Vlðr�Þ ≈ 4λle
−2 r�

rþ ; λl ¼ l2 þ l − 2

r2þ
þm2

Φ; ð2:30Þ

except for l ¼ 1 with mΦ ¼ 0, in which case

Vl¼1ðr�Þ ≈
32

r2þ
e−4

r�
rþ for mΦ ¼ 0: ð2:31Þ

This approximation is valid only for r� ≳ rþ. We can thus
trust the solutions of Eq. (2.7) obtained using these
Vlðr�Þ’s only if ω2 ≪ Vðr� ¼ rþÞ ∼ λl (or ≪ 1=r2þ for
l ¼ 1, mΦ ¼ 0).
The most general solution corresponding to the approxi-

mate potential in Eq. (2.30) is given by

φlmðr�Þ ¼ Re½AIirþωð2
ffiffiffiffiffi
λl

p
rþe

− r�
rþÞ�; ð2:32Þ

where A ∈ C is an arbitrary constant. In order for the
original field Φðt; r�; θ;ϕÞ in Eq. (2.6) to be well defined,
the exact solution of φlmðr�Þ must vanish at least as fast as
r� when r� ≈ r → 0. This condition fixes the phase of A in
the approximate solution, leading to a single solution for
φlmðr�Þ in the near horizon region:

φlmðr�Þ⟶
r�≫rþ

sin

�
ωr� −

1

2
ωrþ lnðλlr2þÞ þ δ

�
; ð2:33Þ

where δ is determined by the phase of A. For l ¼ 1 and
mΦ ¼ 0, a similar analysis gives

φlmðr�Þ ∝ Re

�
AIi

2
rþωð2

ffiffiffi
2

p
e−

2r�
rþ Þ
�

⟶
r�≫rþ

sin

�
ωr� −

ln 2
4

ωrþ þ δ

�
: ð2:34Þ

Given that the effective potential in Eq. (2.30) has the
value Vlðr�sÞ ¼ λll2s=r2þ, we find

ω≳
ffiffiffiffiffi
λl

p
ls

rþ
for ðl; mΦÞ ≠ ð1; 0Þ; ð2:35Þ

and by imposing the boundary condition φlmðr�sÞ ¼ 0, we
obtain a discrete spectrum with

Δω ≈
π

rþj ln 2ffiffiffiffi
λl

p
ls
j for ðl; mΦÞ ≠ ð1; 0Þ: ð2:36Þ

For ðl; mΦÞ ¼ ð1; 0Þ, the corresponding quantities are
given instead by Vlðr�sÞ ¼ 2l4s=r6þ and

ω≳
ffiffiffi
2

p
l2s

r3þ
; Δω ≈

π

rþ ln 23=4rþ
ls

for ðl; mΦÞ ¼ ð1; 0Þ:

ð2:37Þ

Once again, the basic structure of the spectrum found here
does not depend on the boundary condition at the stretched
horizon.

C. General near horizon limit

We now see that the structure of the spectrum for

ω ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

r2þ
þm2

Φ

s
; l ≫ 1 ð2:38Þ

in the near horizon region is universal for generic horizons,
beyond the black hole and de Sitter spacetimes discussed so
far. This reflects the universality of the near horizon limit,
giving Rindler spacetime.
To see this, let us consider a spacetime with the metric in

Eq. (2.1) which has a horizon at r ¼ rþ. We assume that
fðrÞ > 1 in the region r > rþ, which we call the allowed
region. For a given horizon, this can always be arranged.
Specifically, if fðrÞ > 1 in r < rþ, as in de Sitter spacetime,
we redefine r → −r (and rþ → −rþ) to make the allowed
region r > rþ. Note that this makes r and rþ negative.
In the near horizon region, we then have fðrÞ ≈

f0ðrþÞðr − rþÞ with f0ðrþÞ > 0. Here, we have assumed
that f0ðrþÞ is not too suppressed compared with its natural
size f0ðrþÞ ∼ 1=jrþj. (This excludes the horizon of a near
extremal black hole from our consideration.) The tortoise
coordinate in the near horizon region is then
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r� ≈
1

f0ðrþÞ
ln
r − rþ
cjrþj

; ð2:39Þ

where c > 0 is an unimportant Oð1Þ number defining the
origin of r�,

6 and the effective potential in this region is
given by

Vlðr�Þ ≈ cjrþjf0ðrþÞλlef0ðrþÞr� ≈ λlef
0ðrþÞr� ;

λl ¼ f0ðrþÞ
rþ

þ lðlþ 1Þ
r2þ

þm2
Φ: ð2:40Þ

We want λl > 0 for this potential to trap modes in the near
horizon region. (Here we exclude the nongeneric case of
λl ¼ 0 from consideration.) If rþ > 0, this condition is
satisfied for any values of l and mΦ. If rþ < 0, we restrict
our treatment to modes with large enough l or mΦ such
that λl > 0.
For the above approximation to hold, we need

ω2 ≪ Vðr� ∼ −1=f0ðrþÞÞ ∼ λl, which for l ≫ 1 gives
the condition in Eq. (2.38). Assuming that ω is in this
range, we can obtain the general solution to Eq. (2.7) as

φlmðr�Þ ¼ Re

�
AI 2iω

f0ðrþÞ

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cjrþjλl
f0ðrþÞ

s
e
f0ðrþÞr�

2

��
; ð2:41Þ

where A ∈ C is an arbitrary constant. The relevant solution
is selected by a boundary condition at r� ≈OðrþÞ, which
depends on spacetime under consideration. For
Schwarzschild black hole and de Sitter spacetimes, these
were given at r ≈ rz, and r ¼ 0, respectively. This fixes the
phase of A and gives us a single solution for each ω. In the
near horizon limit, it takes the form

φlmðr�Þ ≈ sin

�
ωr� þ

ω

f0ðrþÞ
ln
cjrþjλl
f0ðrþÞ

þ δ

�
for r� < 0; jr�j ≫ jrþj; ð2:42Þ

where δ is an Oð1Þ phase determined by the phase of A.
The existence of the stretched horizon, at r�s≈

−ð1=f0ðrþÞÞ lnð4cjrþj=l2sf0ðrþÞÞ, has two effects. First,
since Vlðr�sÞ ≈ λll2s=jrþj2, frequency ω for given λl is
bounded from below:

ω≳
ffiffiffiffiffi
λl

p
ls

jrþj
: ð2:43Þ

Second, imposing a boundary condition at r� ¼ r�s quan-
tizes the spectrum:

Δω ∼
πf0ðrþÞ

2j ln 2ffiffiffiffi
λl

p
ls
j : ð2:44Þ

We find that these are universal features of the spectrum in
the regime of Eq. (2.38).

III. THE ABSENCE OF SPACETIME
BELOW THE STRING LENGTH

A key element of the analysis in the previous section is
the hypothesis that spacetime, as we usually perceive, does
not exist below the string length. In normal circumstances,
this hardly affects low energy physics because of Wilsonian
decoupling. In the presence of a horizon, however, large
gravitational red/blue shift makes this fact relevant for low
energy physics. Its significance can be best seen in the
tortoise coordinate, in which the wavelength of a massless
mode is preserved while propagating; in terms of this
coordinate, the removal of the spacetime region within the
string length from the horizon leads to excising a half line.
The proper distance, used in defining the stretched

horizon in Eq. (2.10), is associated with the particular time
foliation that leads to the static form of the metric, Eq. (2.1).
In the case of an evaporating black hole, we apply our
treatment to a sufficiently small time window, e.g.,
Δt≲ rþ, in which the system can be viewed as approx-
imately static. The issue of time slicing will be discussed
further in Sec. IV.
In this section, we demonstrate that the Bekenstein-

Hawking entropy, SBH, as well as Hawking temperature,
TH, follow only from two inputs from the ultraviolet (UV)
physics (or two assumptions from the point of view of low
energy theory):

(i) Spacetime does not exist below the string length,
which introduces the “boundary” of space—the
stretched horizon—at a proper distance ls away
from the horizon.

(ii) Physics associated with the boundary is (maximally)
quantum chaotic [51] across all low energy species
[22], so the black hole and de Sitter vacuum micro-
states (or themicrostates associated with any horizon)
are typical in a suitable microcanonical ensemble.

In particular, these reproduce SBH and TH up to incalculable
Oð1Þ coefficients. In the situation where the state evolves in
time at the semiclassical level, for example when the black
hole is evaporating or the system is perturbed by excita-
tions, we assume that the typicality described above is
reached quickly. In fact, it is believed that the dynamics
associated with horizons is fast scrambling [52,53].7

6In Secs. II A and II B, c was taken to be 1=e and 2,
respectively.

7As discussed in Ref. [22], this assumption implies the absence
of fundamental global symmetries (see, e.g., Refs. [78–81]);
specifically, any linearly realized global symmetry is explicitly
broken by anOð1Þ—or not exponentially suppressed—amount at
the string scale.

MURDIA, NOMURA, and RITCHIE PHYS. REV. D 107, 026016 (2023)

026016-10



Next we discuss the UV sensitivities of the various
modes, classifying them into modes that can be reliably
described in the semiclassical theory and those that are
intrinsically quantum gravitational. This provides a refine-
ment of the concept of hard and soft modes introduced in
Refs. [21,22] to describe an analytic extension of spacetime
at the microscopic level; the meaning of this analytic
extension in quantum gravity will be discussed in more
detail in Sec. V. Finally, we will discuss how the vacuum
and excited states of semiclassical theory are related to the
microscopic description given here.

A. Entropy, temperature, and microstates for a
semiclassical vacuum

As stated above, we assume that the unknown UV
physics of quantum gravity appears in low energy physics
as a lack of space below the proper length of order ls. As we
have seen in Sec. II, this makes the spectrum discrete:

ωðlÞ
n ¼ ωðlÞ

0 þ nΔωðlÞ n ¼ 0; 1; 2;…; ð3:1Þ

where

ωðlÞ
0 ≈

ffiffiffiffiffi
λl

p
ls

jrþj
; ΔωðlÞ∼

���� πf0ðrþÞ2 ln 2ffiffiffiffi
λl

p
ls

����: ð3:2Þ

Following Refs. [21,22], we take the view that the energy of
the system, which is usually attributed to the background, is
carried by the quanta that fill these energy levels.
For concreteness, let us consider a Schwarzschild black

hole. The case of de Sitter spacetime can be analyzed
similarly, which wewill discuss at the end of this subsection.
Suppose that there areNðlÞ

n quanta of fieldΦ at the nth level
of angular momentum l, which has (2lþ 1)-fold degen-
eracy. The total energy carried by Φ is then

EΦ ¼ gΦ
X∞
l¼0

X∞
n¼0

ωðlÞ
n NðlÞ

n ; ð3:3Þ

where gΦ is the number of degrees of freedom for field Φ.
(gΦ ¼ 1 for a real scalar field.) The picture of Refs. [21,22] is
that the sumof this energy for all low energy fields represents
the total energy of the system (as measured at r satisfying
fðrÞ ¼ 1), which is determined self-consistently by the

spacetime background used in calculatingωðlÞ
n . In the present

case

Ebh ¼
X
Φ
EΦ ¼ M; ð3:4Þ

where the sum runs over all low energy fields that can be
viewed as elementary in the effective field theory at a scale
slightly below 1=ls.

8

While the expressions forωðlÞ
0 andΔωðlÞ are different for a

field with spin, their values are of the same order as those of a
scalar field. In particular, using Eq. (2.16) in footnote 5, one
finds that λl in Eq. (3.2) is simply replaced as

λl → λl;s ¼
l2 þ lþ 1 − s2

r2þ
ðl ≥ jsjÞ ð3:5Þ

for mΦ ¼ 0. This does not change the values of ωðlÞ
0 and

ΔωðlÞ much, as long as jsj ≈Oð1Þwhichwe assume here. In
any case, the precise numbers for these quantities are not
important, or trustable, as we will discuss in Sec. III B.
Because of the assumption of chaotic and fast scram-

bling dynamics at the stretched horizon, especially those
across all low energy species, the distribution of energy
among various species and levels is determined purely by
the content of low energy fields. In particular, the distri-
bution of quanta in each degree of freedom is given by
maximizing the combinatorial numbers

CΦðfNðlÞ
n gÞ ¼

8<:
Q∞

l¼0

Q∞
n¼0

ðNðlÞ
n þ2lÞ!

NðlÞ
n !ð2lÞ! ðNðlÞ

n ≥ 0Þ for Φ∶ bosonQ∞
l¼0

Q∞
n¼0

ð2lþ1Þ!
NðlÞ

n !ð2lþ1−NðlÞ
n Þ! ð0 ≤ NðlÞ

n ≤ 2lþ 1Þ for Φ∶ fermion
ð3:6Þ

under the constraint of Eq. (3.4).9 Following the standard analysis in statistical mechanics, we find

NðlÞ
n ¼ 2lþ 1

eβω
ðlÞ
n ∓ 1

; ð3:7Þ

8We ignore the kinetic energy, which is not important for a black hole that is spherically symmetric at the classical level.
9As in the standard statistical mechanics, this gives the most probable configuration of quanta. The probability of finding other

configurations satisfying the constraint is not zero but exponentially suppressed.
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where ∓ takes the minus and plus signs for bosonic and
fermionic degrees of freedom, respectively, and β is
determined by the condition

Ebh ¼
X
Φ
gΦ
X∞
l¼0

X∞
n¼0

ð2lþ 1ÞωðlÞ
n

eβω
ðlÞ
n ∓ 1

: ð3:8Þ

Note that β in Eq. (3.8) does not depend on Φ, and there is
no “chemical potential” for anyΦ, since the dynamics at the
stretched horizon is chaotic across all low energy species.
We can calculate the right-hand side of Eq. (3.8) by using

Eq. (3.1) and replacing the sum over l and n with the
corresponding integrals. Assuming that

l ≫ 1;
l2

r2þ
≫ m2

Φ; ð3:9Þ

which is justified a posteriori as the integral is dominated
by l ∼ rþ=ls, we may use

ωðlÞ
0 ≈

lls
r2þ

; ΔωðlÞ ∼
1

jrþ ln rþ
lls

j : ð3:10Þ

This gives

Ebh ≈ Ndof
r5þ
β4l2s

����� ln β

rþ

����þOð1Þ
�
; ð3:11Þ

where Ndof ¼
P

Φ gΦ is the total number of degrees of
freedom of low energy fields. Using

1

l2P
≈
Ndof

l2s
ð3:12Þ

(see, e.g., Ref. [82]) as well as Ebh ¼ M and rþ ¼ 2Ml2P,
we find

β ≈Ml2P; ð3:13Þ

which is the inverse Hawking temperature. We also find
that

S ¼
X
Φ
gΦ lnCΦ ≈M2l2P; ð3:14Þ

as indicated by the Bekenstein-Hawking entropy. Note that
since the contribution to

lnCΦ ≈
X∞
l¼0

2l
X∞
n¼0

βωðlÞ
n e−βω

ðlÞ
n ð3:15Þ

comes predominantly from the l ≈Oðrþ=lsÞ modes, the
entropy is given primarily by the number of different
independent states that these large l modes can take.

In the present method based on a low energy description
of the system, the coefficients in Eqs. (3.13) and (3.14)
cannot be obtained. This is because the quantities are
dominated by the contributions from the l ∼ rþ=ls modes
that are localized near the stretched horizon, where the
effect of unknown UV physics dominates. While this
implies that the calculation is UV sensitive, its agreement
with the results of Bekenstein and Hawking still gives us
information about the UV physics; in particular, this
unknown physics does not drastically increase the degrees
of freedom compared to what is suggested by naively
cutting off the spacetime at r� ≈ r�s. Note that this
calculation is equivalent to that in Refs. [21,22], in which
the mass and entropy of a black hole are obtained by
integrating appropriate powers of the local Hawking
temperature. The logic, however, is reversed here; once
the geometry is given (within a time window of order rþ)
by Eqs. (2.1) and (2.13), and correspondingly the energy of
the system byM, then a typical state represents a black hole
vacuum microstate with the temperature and entropy of the
black hole given by Eqs. (3.13) and (3.14). Microstates of
the black hole vacuum correspond to different ways in
which the energy levels in Eq. (3.1) are occupied under the
energy constraint.
As in the standard thermal system, the microscopic state

of a black hole changes generically in a timescale of order
the inverse temperature β ≈Ml2P. This implies that the
energy of the system, i.e., the mass of the black hole, can be
specified only up to the precision of ΔE ∼ 1=β; the state of
a black hole comprises a superposition of energy eigen-
states with the spread of eigenvalues of order 1=β or larger.
In the following, we always assume that the state of the
system of interest, e.g., a black hole or de Sitter spacetime,
is specified with this maximal precision. A similar com-
ment also apples to other quantities, such as the momentum
of a black hole, whose minimal uncertainty is of order
Δp ∼ Δð ffiffiffiffiffiffiffiffiffiffi

2ME
p Þ ∼ 1=Ml2P. The number of independent

states consistent with this specification is given by the
Bekenstein-Hawking entropy of Eq. (3.14). If the state
involves superpositions of wider ranges of energy, momen-
tum, and so on, e.g., as a result of backreaction of Hawking
emission [83,84], then our discussion below applies to each
branch specified with the maximal precision for these
quantities.
Note that a typical state in the space spanned by the

independent microstates specified by E ¼ M and p ¼ 0
within the minimal uncertainties of ΔE and Δp has angular
momentum of order the uncertainty ΔJ ∼

ffiffiffiffiffiffiffiffiffi
Ndof

p
rþ=

ls ∼ rþ=lP. This is consistent with the maximal precision
with which angles can be specified consistently with the UV
cutoff:Δθ ∼ ls=rþ for each species.We can thus regard these
microstates as those of a nonrotating black hole in semi-
classical theory.
We finally mention that we can discuss de Sitter

spacetime in a similar manner. One difference is that we
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do not have a well-established notion of energy attributed to
the spacetime in this case. However, by taking

EdS ¼
α

l2P
; ð3:16Þ

as implied by the Bekenstein-Hawking (or Gibbons-
Hawking [39]) entropy SGH ¼ πα2=l2P and Hawking tem-
perature TH ¼ 1=2πα, we reproduce all the properties
associated with a static patch of the de Sitter spacetime
[22]. (Physically, this energy can be specified only up to the
precision of order TH.) While the relationship of this energy
to more conventionally defined energies is not clear, it
represents some “energy” defined at r ¼ 0, at which
fðrÞ ¼ 1, rather than at asymptotic infinity.10

B. UV (in)sensitivity: Zone and horizon modes

Even though the density of states given by Eqs. (3.1) and
(3.2) reproduces the entropy and temperature associated
with the horizon, we do not expect that the precise spectrum
is given by these expressions. This is because interactions
near the stretched horizon, with the effective coupling given
by T locðrsÞ2l2s ∼Oð1Þ, deform the spectrum significantly
from that of free theories (though the density of states will
not change when coarse grained at a scale of order rþ in the
r� coordinate).
To analyze this issue in more detail, let us consider the

effective potential Vlðr�Þ for a fixed l and negligible mΦ.
From Eq. (3.2), the average gap between adjacent energy
levels is given by

ΔωðlÞ ∼
1

rþ ln rþ
lls

: ð3:17Þ

For a black hole, the height of the barrier is given by

ωðlÞ
barrier ∼

l
rþ

: ð3:18Þ

As we have seen, the temperature of the system is ∼1=rþ,
and the modes with

ω≲ 1

rþ
and l≲ rþ

ls
ð3:19Þ

are significantly occupied. For each of these modes, the
wave function is oscillatory between r� ¼ r�s and

r� ≈ −
2

f0ðrþÞ
lnl≡ rðlÞ�b ; ð3:20Þ

outside of which it is exponentially damped. Thus the size
of the region supporting these modes is given, in units of
the wavelength of Hawking radiation, as

jrðlÞ�b − r�sj
rþ

≈
���� 1

rþf0ðrþÞ
ln

rþ
l2l2s jf0ðrþÞj

���� ∼ ���� ln rþ
lls

����; ð3:21Þ

where we have used jf0ðrþÞj ∼ 1=rþ in the last expression.
For illustration, let us fist consider the two extreme cases

of l ≈Oð1Þ and Oðrþ=lsÞ. For l ≈Oð1Þ, there are
1=ΔωðlÞrþ ∼ lnðrþ=lsÞ independent modes that have ω ≈
Oð1=rþÞ for each orbital and magnetic quantum numbers l
andm. We may take them to be wave packets of width ≈rþ
in r� distributed uniformly between r�s and rðlÞ�b without
having a significant overlap with each other; see Fig. 3. In
order for these to form a basis, we need to prepare two sets
of wave packets, moving toward larger and smaller values
of r�. Among these (approximately orthogonal) wave
packets, the ones closest to the stretched horizon, i.e.,
those located within ∼rþ in r� from the stretched horizon,
are special in that their dynamics cannot be described by a
semiclassical theory. This is because the interaction
strength of the unknown UV dynamics is strong there,
which can also be seen from the fact that the unknownOð1Þ
coefficient in the definition of the stretched horizon in
Eq. (2.10) translates into the ambiguity of the location of
the stretched horizon of order rþ in r�. We call modes
corresponding to these wave packets, i.e., the wave packets
“next to” the stretched horizon, horizon modes. On the
other hand, the dynamics of other ∼ lnðrþ=lsÞwave packets
can be described by a semiclassical theory (at least) in the
relevant timescale of order 1=TH ∼ rþ. Modes associated
with these semiclassically describable wave packets are
called zone modes.
For l ≈Oðrþ=lsÞ, the situation is different. In this case,

there are only 1=ΔωðlÞrþ ≈Oð1Þ independent modes
having ω ≈Oð1=rþÞ for each l and m, which, given
Eq. (3.21), are all supported within ∼rþ from the stretched
horizon. Therefore, they are all horizon modes. As stated
earlier, the entropy of a black hole (or de Sitter spacetime)
is dominated by the number of independent states of these
high l modes

S ∼ Ndof

XOðrþ=lsÞ

l¼0

Xl
m¼−l

Oð1Þ ∼ r2þ
l2P

; ð3:22Þ

so the dynamics of the black hole (de Sitter) microstates
cannot be described by a semiclassical theory. Indeed, the
dynamics of these modes is expected to be nonlocal in the
spatial directions along the horizon [52,53].

10It is interesting to note that if one considers the quantity
E ¼ RΣ ffiffiffiffiffiffi−gp

ρd3x, along the lines of Ref. [85], then one would get
E ¼ α=l2P. Here, Σ is the t ¼ 0 surface of global de Sitter
spacetime comprising two static patches, g ¼ −r4 sin2 θ is the
determinant of the spacetime metric (in the static coordinates),
ρ ¼ 3=8πl2Pα

2 is the energy density, and d3x ¼ drdθdϕ.
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In general, we call modes localized near the stretched
horizon, i.e., within ∼rþ in r�, horizon modes while those
away from it we call zone modes. We use the term “zone
modes” also in spacetimes other than the black hole
spacetime, including de Sitter spacetime, even though there
may not be real zones in these spacetimes. In the case where
the region near the horizon is connected to another
(ambient/bath) region across a barrier of the effective
potential, we restrict the use of the term zone modes to
those modes that are contained in the region near the
horizon. For example, for a Schwarzschild black hole in
asymptotically flat spacetime, zone modes only refer to
modes within the zone r≲ rz of the black hole. Modes
located outside the barrier, r≳ rz, are not directly involved
in the near horizon dynamics, and we call them far modes.
It is important to realize that the terminologies intro-

duced above are associated with the spatial position of
modes at a given time, or more precisely a time interval of
widthΔt≲OðrþÞwithin which the system can be regarded
as approximately static. This implies, for example, that a
zone mode according to the classification at time t1 can be a
horizon, zone, or far mode (or a superposition of them)
according to the classification at another time t2. In
particular, if the mode is well localized in the zone at time
t1 and is propagating toward the stretched horizon, then it
will be a horizon mode according to the classification at t2,
a time after this mode has reached the stretched horizon.
Generally, a horizon mode remains as a horizon mode for a
long time, although it occasionally becomes an outgoing
zone mode through interactions at the stretched horizon.

C. Vacuum microstates of semiclassical theories

Consider a state specified by the occupation numbers of
all the levels in Eq. (3.1) (with the precise values of ωðlÞ

n

modified by interactions). This should be understood as a
state of full quantumgravity. In particular, a typical pure state
given in this way represents amicrostate of a black hole or de
Sitter vacuum.We now connect this description to the picture
in semiclassical theory, wherein a vacuum state takes the
form of a mixed, (approximately) thermal state.
For this purpose, we first consider a subset of zone

modes which is relevant for describing a physical object (or
objects) falling into the horizon. In the context of de Sitter
spacetime, this means an object accelerating away from the
observer toward the cosmological horizon. We can choose a
subset of modes to accommodate any semiclassical object;
the object is then described as an excitation of this set of
modes over the semiclassical vacuum state.11 We call these
modes hard modes. They comprise only a tiny subset of the
zone modes, since even the most entropic configuration of
semiclassical matter has the entropy suppressed by powers
of lP=rþ compared with the entropy of the Hawking cloud
[7,86], of which the entropy of the zone modes comprises
an Oð1Þ fraction. The rest of the zone modes and the
horizon modes are together called soft modes.

FIG. 3. A schematic depiction of approximately orthogonal, independent modes having ω ≈OðTHÞ and localized in the zone for a
field of negligible mass. (a) For l ≈Oð1Þ, there are ∼ lnðrþ=lsÞ independent ingoing and outgoing modes. Their approximate basis can

be taken to be wave packets of width ∼rþ in r�, distributed uniformly over the classically allowed region between r�s and rðlÞ�b , where
rðlÞ�b − r�s ∼ rþ lnðrþ=lsÞ. (b) For modes with l ≈Oðrþ=lsÞ, the classically allowed region is near the stretched horizon with

rðlÞ�b − r�s ∼ rþ, so all these modes must be regarded as horizon modes.

11This subset can be chosen to represent bound or metastable
states (or an object made out of them). We may even choose it to
represent a microscopic black hole, although such a construction
would have to be made more precise.
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Similar to the zone and horizon modes, the hard and soft
modes are defined at a specific time t. In particular, a mode
defined as a hard (or soft) mode at time t may not be a hard
(soft) mode at another time. This issue, however, is less
relevant for these modes than for the zone and horizon
modes, since the concept is used almost exclusively to
construct an effective theory describing the region behind
the horizon, which is erected at a given instantaneous time t
as we will see below.
We label hard modes collectively by α, which includes

all possible quantum numbers like species, level, and
orbital and spin angular momenta. The state of these modes
is specified by giving the occupation number nα (≥ 0) for
each α, which we denote by jfnαgi and normalize such that

hfmαgjfnαgi ¼ δfmαg;fnαg ¼ δmn; ð3:23Þ

where m and n are shorthand notations of fmαg and fnαg.
We assume that different hard-mode states are observatio-
nally distinguishable in that two different states do not have
identical quantum numbers within the uncertainties ΔE,
Δp, and so on.
Suppose that the system consists only of zone and

horizon modes; examples include de Sitter spacetime.12

In this class of systems, the state of the entire system is
generally given as an entangled state of hard and soft
modes. Because of the energy constraint, the state of soft
modes that comes with the hard-mode state jfnαgi must
have energy E − En, up to the uncertainty ΔE required by
quantum mechanics, which is typically of the order of the
Hawking temperature TH. Here, E is the total energy of the
system, e.g., EdS in Eq. (3.16) for de Sitter spacetime, and

En ¼ Efnαg ¼
X
α

nαωα ð3:24Þ

is the energy of the hard-mode state jfnαgi.
The relevant Hilbert space of the system is then given by

HðEÞ ¼ ⨁
n
ðjfnαgi ⊗ HðnÞ

softÞ; ð3:25Þ

where HðnÞ
soft is the Hilbert space spanned by the soft-mode

states that carry energy E − En within the uncertainty ΔE.
Given that the number of hard modes is much smaller than
the number of relevant soft modes, the effective dimension

of the Hilbert space HðnÞ
soft is given by

ln dimHðnÞ
soft ¼ SðE − EnÞ; ð3:26Þ

where SðEÞ is the entropy density of the system at energy E.
For de Sitter spacetime, it is given by the Gibbons-Hawking
entropy

SðEÞ ¼ SdSðEÞ ¼ πE2l2P; ð3:27Þ

which gives the standard expression of SGH ¼ πα2=l2P
for E ¼ EdS ¼ α=l2P.
A typical state described in Sec. III A corresponds to a

typical state in the Hilbert space HðEÞ of Eq. (3.25). For
our purposes, we need not be very precise about what we
mean by typical, but for concreteness one might imagine a
state that is typical in HðEÞ under the Haar measure.

Denoting a set of generic orthonormal basis states of HðnÞ
soft

by jψ ðnÞ
in
i (in ¼ 1;…; eSðE−EnÞ), the state we are interested in

can be written as

jΨðEÞi ¼
X
n

XeSðE−EnÞ
in¼1

cnin jfnαgijψ ðnÞ
in
i; ð3:28Þ

where the real and imaginary parts of complex coefficients
cnin ’s can be viewed as taking random values following
independently the Gaussian distributions with

hRe cnini ¼ hIm cnini ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðRe cninÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðIm cninÞ2i

q
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2eSsys
p : ð3:29Þ

Here, the brackets represent the ensemble average over (a
sufficiently large portion of) the ðn; inÞ space, and

eSsys ¼
X
n

eSðE−EnÞ ≡ zeSðEÞ ð3:30Þ

is the number of independent states of the form of
Eq. (3.28) with

z ¼
X
n

e−
En
TH ; ð3:31Þ

where we have used ∂SðEÞ=∂E ¼ 1=TH and En ≪ E.13 In
other words, we can say that cnin is a complex Gaussian
random variable, which implies that the phases of cnin ’s are
distributed uniformly.
Note that by taking the basis of HðnÞ

soft for each n, we find
that soft-mode states are orthogonal

hψ ðmÞ
im

jψ ðnÞ
jn
i ¼ δmnδimjn : ð3:32Þ

This is because states jψ ðnÞ
in
i with different n can be

observationally discriminated, which follows from the
12This is always the case if the effective potential increases

monotonically as r� moves away from the stretched horizon.
Another system exhibiting a similar behavior is Rindler space-
time, although in this case the system has a planar rather than
spherical symmetry.

13We have used the equal sign for a relation that becomes exact
in the thermodynamic limit.
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distinguishability of different hard-mode states jfnαgi as
well as the fact that the state of combined hard and soft
mode system is specified with the minimal uncertainty. In
particular, even if some observables (e.g., E and p) may
have to be intrinsically coarse grained (by ΔE and Δp),
jψ ðnÞ

in
i’s with different n can still be discriminated at the

semiclassical level, and hence are orthogonal.14

We also note that Ssys ¼ SðEÞ þ ln z is equal to SðEÞ at
the leading order in lP=rþ and 1=Enrþ. This implies that
the standard interpretation of the Gibbons-Hawking
entropy as the entropy of de Sitter spacetime persists. A
similar comment applies to a black hole, for which the
density of soft-mode states is given by the Bekenstein-
Hawking entropy

SðEÞ ¼ SbhðEÞ ¼ 4πE2l2P; ð3:33Þ

although in this case the entire system also has degrees of
freedom outside the zone, and Ssys ¼ SðEÞ þ ln z repre-
sents only the entropy of the black hole system (i.e., the
zone and horizon modes) without including the contribu-
tion from the far modes.
We now take a complete set of orthonormal states of the

form of Eq. (3.28), i.e., states having the energy E within
ΔE, in a generic basis:

jΨAðEÞi ¼
X
n

XeSðE−EnÞ
in¼1

cAnin jfnαgijψ
ðnÞ
in
i ðA¼ 1;…; eSsysÞ;

ð3:34Þ

where

hΨAðEÞjΨBðEÞi ¼ δAB ⟺
X
n

XeSðE−EnÞ
in¼1

cA�ninc
B
nin

¼ δAB:

ð3:35Þ

In general, these states provide a basis for microstates of a
semiclassical vacuum. For example, if the spectrum ωα is
given such that it represents hard modes inside the stretched
de Sitter horizon, then the set fjΨAðEÞig forms a basis for
the microstates of the de Sitter vacuum.
We stress that in order for the states of Eq. (3.34) to be

microstates of the spacetime, they need to be taken
generically in the space of HðEÞ. For example, if we took
eSsys orthonormal states that are, or approximately are,
product states

jΨðEÞi ≈ jfnαgijψ ðnÞ
in
i; ð3:36Þ

then these states would still form a “basis” of the micro-
states in Eq. (3.34) in the sense that all the states of the form
in Eq. (3.34) can be obtained by superposing them,
although none of them is by itself a microstates of the
spacetime under consideration—these special, exponen-
tially rare, states (states whose entanglement structure is
significantly different from generic states) are “firewall” [3]
states which do not represent the spacetime under consid-
eration. This is because spacetime is a manifestation of the
entanglement structure of a holographic boundary state
[87–92], and entanglement cannot be represented as a
linear operator—the concept of a linear vector space
comprising the microstates of a spacetime is only an
approximate one [40,93]. This issue will be discussed
further in the next section.
Since a semiclassical theory can describe only the

dynamics of hard modes, it concerns only about the state
of these modes. Thus, the vacuum state ρvacðEÞ in a
semiclassical theory is obtained by taking a typical vacuum
microstate and then tracing out the soft modes. Specifically,
it is given by

ρvacðEÞ ¼ TrsoftjΨAðEÞihΨAðEÞj

¼
X
n

� XeSðE−EnÞ
in¼1

jcAnin j2
�
jfnαgihfnαgj

¼
X
n

e−
En
TH

z
jfnαgihfnαgj þOðe−1

2
SðEÞÞ: ð3:37Þ

Here, in the last equation we have used

εABn ≡ ze
En
TH

XeSðE−EnÞ
in¼1

cA�ninc
B
nin

− δAB ≈Oðe−1
2
SðE−EnÞÞ; ð3:38Þ

which can be derived from Eq. (3.29). More precisely,
when we vary A and B, εABn behave as complex Gaussian
random variables with mean 0 and variance e−SðE−EnÞ, but
obeying

ðεABn Þ� ¼ εBAn ;
X
n

e−
En
TH

z
εABn ¼ 0; ð3:39Þ

where the second relation follows from Eq. (3.35). In the
case of de Sitter spacetime, the thermal state in Eq. (3.37)
gives the vacuum state describing a static patch of the de
Sitter spacetime with Hubble radius α ¼ El2P.
The hard and soft modes described here provide a

refinement of the hard and soft modes defined in
Refs. [21–25]. In Refs. [21–25] a simple frequency space
criterion was used to define the hard and soft modes, while

14We assume that such coarse grainings would be performed
using smoothing functions which damp very rapidly outside the
windows of order ΔE and Δp so that Eq. (3.23) is valid with
sufficient accuracy. With this assumption, Eq. (3.32) is also valid
at the same level of accuracy.
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in our new definition here, the hard modes are chosen to be
a subset of the zone modes whose dynamics we intend to
describe at the semiclassical level. This makes it possible,
for example, to describe the dynamics of zone modes with
ω ∼OðTHÞ using a semiclassical theory, which was not
possible with the previous definition. For many practical
purposes, however, the two definitions are interchangeable.
For a small object falling into the horizon, for example, the
difference between the two definitions is not significant if
we choose the frequency cutoff to be sufficiently larger than
TH. We can then employ the same construction for
spacetime beyond the horizon, which we will discuss
in Sec. V.

1. Evaporating black hole

The situation is more complicated if the region near the
horizon is coupled to an ambient/bath system. An important
example of this is a black hole in asymptotically flat
spacetime; other examples include a small black hole in
asymptotically AdS spacetime and a large AdS black hole
coupled to a separate bath system. In this case, the near
horizon system, consisting of the zone and horizon, evolves
in time, and this evolution modifies the vacuum states.
For concreteness, let us focus on a black hole in

asymptotically flat spacetime. The state of the entire system
then involves the hard, soft, and far (located outside the
zone, r > rz) modes. Thus, denoting orthonormal basis
states of the far modes by jϕai, one would consider the state
of the system to be given by15

jΨAðMÞi¼?
X
n

XeSbhðM−EnÞ

in¼1

XSrad
a¼1

cAninajfnαgijψ
ðnÞ
in
ijϕai; ð3:40Þ

where we have assumed that the black hole system,
comprising the hard and soft modes, is at rest and has
energy M (up to the uncertainty of order TH). Here, eSrad is
the number of independent far-mode states relevant here,
i.e., those significantly entangled with the black hole
system (typically Hawking radiation emitted earlier from
the black hole), and A is the index for microstates running
over

A ¼ 1;…; eSsþr ; Ssþr ¼ Ssys þ Srad; ð3:41Þ

with Ssys given by Eq. (3.30) with SðEÞ ¼ SbhðEÞ. The
coefficients cAnina satisfy the properties analogous to those
in Eq. (3.29)

hRe cAninai ¼ hIm cAninai ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðRe cAninaÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðIm cAninaÞ2i

q
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2eSsþr
p ; ð3:42Þ

with brackets representing the ensemble average over (a
sufficiently large portion of) the ðn; in; aÞ space. Note that
jΨAðMÞi represent microstates of the system with the black
hole put in the semiclassical vacuum, and a generic state in
the Hilbert space of dimension eSsþr has the black hole of
mass M. Since black hole evaporation is a thermodynami-
cally irreversible process [94,95], most of these microstates
do not become a state with a larger black hole in empty
space when evolved backward in time—there is some junk
radiation around it. This, however, does not change the fact
that there are eSsþr independent microstates relevant for the
discussion here.
The fact that the height of the potential barrier is finite,

however, implies that only modes with ω < ωðlÞ
barrier are

thermalized in the zone. Given that the dynamics at the
stretched horizon is strongly coupled, outgoing modes (i.e.,

modes moving toward larger r) with ω > ωðlÞ
barrier can still be

viewed as obeying the thermal distribution, but this is not

the case for ingoing modes with ω > ωðlÞ
barrier. At the

microscopic level, this implies that the microcanonical
ensemble in Sec. III A is taken with the extra constraint that

the occupation numbers of ingoing modes with ω > ωðlÞ
barrier

are zero, leading to16

jΨAðMÞi∝?
X
n

Y
α0∈ingoing

ω>ω
ðlÞ
barrier

δnα0 ;0

×
XeSbhðM−EnÞ

in¼1

XSrad
a¼1

cAninajfnαgijψ
ðnÞ
in
ijϕai; ð3:43Þ

where the ∝ symbol represents “up to a normalization
constant,” and the question mark above it indicates that this
relation is tentative and will be updated momentarily. (The

effect of the lack of ingoing soft modes with ω > ωðlÞ
barrier is

negligible for our purpose.) This corresponds to taking the
Hartle-Hawking [96] and Unruh [54] vacua for hard modes

with ω < ωðlÞ
barrier and > ωðlÞ

barrier, respectively. The effect of
the constraint on soft modes is negligible, since the vast

15We assume that the standard issues for a factorization of
Hilbert space in quantum field theory, such as those associated
with short distance divergences and constraints from gauge
invariance, are dealt with appropriately.

16Strictly speaking, there are small but nonzero amplitudes for
outgoing hard modes with ω > ωðlÞ

barrier to be reflected back from
the potential barrier. We mostly ignore this effect because it is not
essential for our discussion. Including it, however, is straightfor-
ward; instead of taking the terms with ∃ α0; nα0 ≠ 0 to be exactly
absent, we keep these terms with small coefficients (compared to
those of the terms with ∀ α0; nα0 ¼ 0). Note that the size of these
coefficients in general depends strongly on fnα0 g, reflecting the
ωα0 dependence of the reflection amplitudes.
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majority of the relevant modes have ω ∼ TH and l ≫ 1,

and hence ω ≪ ωðlÞ
barrier.

The story, however, does not end here. Because of the
coupling between the black hole system (zone þ horizon)
and the asymptotically flat spacetime around the region
r ∼ rz, thermal quanta in the zone “leak” into the latter. This
occurs mostly via s-wave modes that tunnel through the
potential barrier. We emphasize that this process, occurring
near the edge of the zone [97,98] (for related discussions,
see Refs. [99–101]), is governed by semiclassical physics
—it does not involve strongly coupled, intrinsically quan-
tum gravitational physics in any significant way. Given a
black hole microstate in Eq. (3.43) (slightly modified due to
backreaction; see below), the emission of quanta into the
asymptotic region occurs unitarily following the dynamics
of standard quantum field theory. The apparent violation of
unitarity inHawking’s analysis [1] occurs becausewe cannot
calculate the configuration of zone mode quanta using
semiclassical theory due to the strong dynamics near the
stretched horizon. It is this incalculability that makes the
semiclassical description of Hawking radiation, obtained
after tracing out the soft modes, intrinsically thermal and
hence leading to a mixed final state. Physics away from the
stretched horizon can indeed be fully semiclassical, even
within and at the edge of the zone.17

The emission of Hawking particles to the ambient space
at r ∼ rz gives a backreaction to the state of the black hole.
In this region, quanta of the zone region is leaked into the
ambient space through tunneling the potential barrier (and
also via thermal hopping to some extent). This removes
some of the quanta that would be reflected back to the zone
by the potential, producing a deficit in ingoing zone mode
quanta relative to those in the states of Eq. (3.43), i.e., with

the Hartle-Hawking vacuum. Note that the process occurs
only for low energy fields of mass mΦ ≲ TH. Given that an
Oð1Þ number of quanta are emitted within each time
interval of order 1=TH ∼ rþ, there are ∼ lnðrþ=lsÞ quanta
missing throughout the zone for each low energy field Φ of
mΦ ≲ TH. Denoting the annihilation operators for hard
mode quanta by bα (see below for more detail), we finally
find that the microstates of an evaporating black hole are
given by

jΨAðMÞi ∝
Y

ᾱ∈ingoing
mΦ≲TH ;ω∼TH

bᾱ
X
n

Y
α0∈ingoing

ω>ω
ðlÞ
barrier

δnα0 ;0
XeSbhðM−EnÞ

in¼1

XSrad
a¼1

cAninajfnαgijψ
ðnÞ
in
ijϕai; ð3:44Þ

where the number of annihilation operators bᾱ in the
product is at most of order lnðrþ=lsÞ for each field; the
precise number depends on the choice of the hard modes. A
schematic depiction of the occupation of various modes is
given in Fig. 4.
The deficit of ingoing modes described above implies

that there is a negative energy flux carrying negative

entropy for each field of mΦ ≲ TH. Note that these energy
and entropy are measured with respect to the thermal,
Hartle-Hawking vacuum state in Eq. (3.43) for modes with
ω ∼ TH. The flux has negative entropy because with the
lack of some of the zone mode quanta, the number of
independent states realizing the most probable configura-
tion is smaller by eOð1Þ lnðrþ=lsÞ for each field. Thus, the
microstate index A in Eq. (3.44) runs effectively only for

A ¼ 1;…; Amax; lnAmax − Stot ∼ − ln
rþ
ls
; ð3:45Þ

where Stot is the coarse-grained entropy of the total system
ignoring the backreaction

FIG. 4. A schematic depiction of quanta occupying various
modes. Solid arrows indicate that the occupation numbers of the
modes are determined by the thermodynamic consideration as
described in Sec. III A. For zone modes, this applies to the
outgoing mode as well as the ingoing modes with ω≲ ωðlÞ

barrier,
except that backreaction of Hawking emission at r ∼ rz leads to a
deficit for some of these ingoing modes as indicated by the
dashed arrow.

17This implies that the process of black hole mining [102,103]
also occurs unitarily, which is governed by semiclassical physics
if it is performed away from the stretched horizon. It also implies
that the semiclassical calculation of the gray body factor, such as
that in Ref. [104], is valid as long as rþ=ls is sufficiently large; see
below.
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eStot ¼
X
n

Y
α0∈ingoing

ω>ω
ðlÞ
barrier

δnα0 ;0e
SbhðM−EnÞeSrad ≡ z0eSbhðMÞþSrad ;

ð3:46Þ
and we have taken the number of low energy degrees of
freedom relevant for the emission process to be of Oð1Þ.18
As discussed in Refs. [97,98], this negative entropy is
essential for the unitarity of the black hole evolution, in
particular for the black hole to keep relaxing into a lower
mass black hole while absorbing the negative energy flux.
Again, we emphasize that semiclassical physics is suffi-
cient to understand the unitary emission process at r ∼ rz
and the resulting emergence of a negative energy and
entropy flux. The unknown UV physics enters only in the
process occurring at the stretched horizon, in which the
ingoing negative energy-entropy flux is absorbed into
horizon modes and the black hole relaxes into its semi-
classical vacuum state.
So far, we have assumed that our black hole is large, in

particular lnðrþ=lsÞ ≫ 1. In this limit, the difference of
energies between adjacent discrete levels for modes relevant
for Hawking emission,∼rþ= lnðrþ=lsÞ, is much smaller than
the uncertainty of energyofHawkingquanta,∼rþ, so that the
effect of the discreteness of energy levels is negligible in
calculating the spectrum of Hawking radiation. In particular,
the semiclassical calculation of the spectrum, including the
gray body factor, persists with high precision. If the value of
lnðrþ=lsÞ is reduced, however, the effect of the discreteness
of levels may become important. In particular, if the size of

the classically allowed region rðlÞ�b − r�s ≈ 2rþ lnðrþ=lsÞ,
becomes smaller than a half wavelength of a Hawking
quantum λH=2 ≈ π=TH ≈ 4π2rþ, i.e.

rþ ≲ e2π
2

ls; ð3:47Þ
then the effect may become non-negligible. (This condition
can also be obtained by requiring Δω in Eq. (2.24) to be
larger than TH.) A naive guess is that in this regime, the
energy of eachHawking quantum is larger than that obtained
by the semiclassical calculation, since the frequency of the
lowest energy level is expected to become larger than TH. An
interesting point is that the black hole enters the regime of
Eq. (3.47) before itsmass is reduced to thePlanckmass, since
this condition can be written as

M ≲ e2π
2

ls
2l2P

: ð3:48Þ

For ls=lP ≈ 20, as we might expect in our universe, the right-
hand side is 4 × 109 times larger than the Planck mass

(corresponding to the black hole of TH ≈ 1 × 108 GeV). We
leave further discussion of this issue, including its possible
phenomenological implications, for the future.

D. Excited states

Before concluding this section, let us discuss semiclassical
excitations in the zone. The states we have considered so far
are typical states in a suitably defined microcanonical
ensemble. For a black hole, for example, the relevant
ensemble consists of the states that contain a fixed energy
E in a spatial region r≲ rz within an uncertainty ΔE. These
states are all vacuum states from the point of view of
semiclassical theory as indicated by the fact that the
Bekenstein-Hawking entropy is associated with the back-
ground (vacuum) spacetime in semiclassical theory.
We can, however, consider atypical states obtained by

acting annihilation and/or creation operators of hard modes

bγ ¼
X
n

ffiffiffiffiffi
nγ

p jfnα − δαγgihfnαgj; ð3:49Þ

b†γ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p jfnα þ δαγgihfnαgj ð3:50Þ

A state obtained in this way is not typical as it does not have
the most probable configuration among the states in the
ensemble. on these vacuum states, where γ specifies the
mode which is annihilated/created by the operator. (States
obtained by acting annihilation operators can become
relevant when one considers backreaction of the
Hawking emission or black hole mining process. In

particular, some of the operators bðzÞᾱ in Eq. (3.44) can
be superpositions of the bγ operators, if we choose the hard
modes to include the relevant zone modes.)
We are interested in semiclassical excitations whose

backreaction to the geometry is negligible, or regarded as
being small, for example a baseball falling into an astro-
nomical black hole. This implies that the number of
creation/annihilation operators that can be acted on a
vacuum state is limited, so that their algebra defined on
a vacuum state does not close in a strict mathematical sense.
This type of structure is in fact common in erecting a
semiclassical theory in quantum gravity, and here we
simply treat the space of states obtained in this way as a
Hilbert space; for a mathematically more rigorous treat-
ment, see, e.g., Ref. [105]. In holography, one can think of
this space as a code subspace embedded in a physical
Hilbert space [106–108], although we do not discuss the
error correcting nature of operators in this paper.
Strictly speaking, the space of semiclassical excitations

generated by bγ and b†γ acted on each vacuum state is not
orthogonal to the space of vacuum microstates; namely, the
Hilbert space cannot be strictly written asHexc ⊗ Hvac [25].
One can see this by calculating inner products between states
obtained by exciting black hole microstates in Eq. (3.43):

18This implies that the range of in in Eq. (3.44) is, strictly
speaking, smaller than that in Eqs. (3.40) or (3.43). For the lack of
a better notation, we interpret the sum in Eq. (3.44), and
analogous expressions later, to include this minor effect.

BLACK HOLE AND DE SITTER MICROSTRUCTURES FROM A … PHYS. REV. D 107, 026016 (2023)

026016-19



hΨAðMÞjb†βbγjΨBðMÞi ¼ δβγ
X
n

Y
α0∈ingoing

ω>ω
ðlÞ
barrier

δnα0 ;0
XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

nγcA�ninac
B
nina

; ð3:51Þ

hΨAðMÞjbβb†γ jΨBðMÞi ¼ δβγ
X
n

Y
α0∈ingoing

ω>ω
ðlÞ
barrier

δnα0 ;0
XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

ðnγ þ 1ÞcA�ninacBnina: ð3:52Þ

These are not proportional to δAB in general, so that excited states built on different vacuum microstates are not necessarily
orthogonal.However, forA ≠ B, the right-hand sides of the above equations are exponentially suppressed by a factor of e−Stot=2,
where we have taken

hΨAðMÞjΨBðMÞi ¼ δAB ⇔
X
n

Y
α0∈ingoing

ω>ω
ðlÞ
barrier

δnα0 ;0
XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

cA�ninac
B
nina

¼ δAB: ð3:53Þ

Therefore, the deviation from the product space structure is exponentially small.
Incidentally, the annihilation and creation operators in Eqs. (3.49) and (3.50) satisfy the standard commutation relations

½bβ; b†γ � ¼ δβγ
X
n

jfnαgihfnαgj; ½bβ; bγ� ¼ ½b†β; b†γ � ¼ 0 ð3:54Þ

as operators, without having an exponentially small cor-
rection. In erecting a semiclassical theory, one regards all
the microstates jΨAðMÞi as representing the same geometry
M. This allows us to define field operators

ΦΓðxÞ ¼
X
γ0
ðbγuγ0 ðxÞ þ b†γvγ0 ðxÞÞ; ð3:55Þ

where we have split the index γ into the index for species Γ
and that for other quantum numbers γ0, e.g., a component of
spin, whose structure may depend on Γ: γ ¼ ðΓ; γ0Þ. Here,
uγ0 ðxÞ and vγ0 ðxÞ are mode functions defined in the allowed
region of M. Because of Eq. (3.54), these field operators
and their conjugate momenta obey the standard equal-time
commutation relations, so that the resulting semiclassical
theory respects causality exactly. For black hole and de
Sitter spacetimes, this theory can be used to describe
physics in the regions r > rs and < rs, respectively.

IV. HOLOGRAPHIC DESCRIPTION

So far, we have assumed that the fundamental descrip-
tion of a system represents spacetime in the allowed region
(with the horizon degrees of freedom included). For
example, this corresponds to taking a distant view for a
black hole and a static patch view for de Sitter spacetime.
Why is this the case?
In this section, we discuss this issue from the perspective

of holography. We assume that these spacetimes arise in
setups in which the holographic description has only a

single boundary; in particular, the black hole is formed by a
gravitational collapse, and de Sitter spacetime arises in a
cosmological context, for example as a universe created by
bubble nucleation [109] which is filled with a positive
cosmological constant. These setups are, arguably, more
“realistic” than those with multiple boundaries, which will
be discussed in Sec. VI. We conclude the section with a
discussion on how the (effective) boundary Hilbert spaces
describing the spacetimes considered here are related to the
infinite-dimensional “fundamental” Hilbert space.

A. Black hole spacetime

We begin by considering a collapse formed black hole in
an asymptotically AdS spacetime. We would like to know
what spacetime picture can be obtained from the boundary
CFT by reconstructing the bulk in a simple manner. By
simple reconstruction, we mean reconstruction of the bulk
using only low-complexity, causally propagating operators
and sources in the CFT [16]. In particular, we are interested
in obtaining a “gauge-fixed” bulk description where the
spacetime is foliated by equal-time hypersurfaces, using
which the canonical formulation of quantummechanics can
be employed.
One way to obtain such a description is to “pull” the

boundary into the bulk by coarse graining boundary
degrees of freedom [13,14,110]. Based on intuition from
tensor networks [107,108,111], one can consider a series of
states [112] defined on successfully “renormalized” boun-
daries obtained by moving the original boundary inward to
the bulk. The coarse-grained degrees of freedom are
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distributed locally on a renormalized boundary, although
the dynamics they obey are not necessarily local.
This procedure is expected to work beyond the

AdS=CFT context, which we assume to be the case, and
henceforth we will not necessarily assume that the space-
time is asymptotically AdS. A particular way of performing
this renormalization is to “continuously” coarse grain
boundary degrees of freedom uniformly throughout the
renormalized boundary space. This leads to a specific
spacelike or null hypersurface swept by a series of
renormalized boundaries called a holographic slice [13],
which we will discuss in more detail below. This surface
plays the role of an equal-time hypersurface in the bulk,
providing a gauge fixing necessary for the canonical
formulation.
In Fig. 5(a), we depict holographic slices in a black hole

spacetime obtained without including quantum effects in
the bulk. We find that the slices do not enter the black hole
interior, hence providing a distant view of the black hole.
This is because the black hole horizon, sufficiently after the
black hole has stabilized, plays a role of a barrier [113] for
extremal surfaces, which are used to move renormalized
boundaries. In fact, the slices approach Schwarzschild time
slices near the black hole; they then stay near the horizon
for long time and are eventually capped off at r ¼ 0.
In order to describe an evaporating black hole, quantum

effects in the bulk must be included. The procedure of
forming a holographic slice can be extended to incorporate
these effects [14]. In this case, the holographic slice is
smoothly capped off at r ¼ 0 initially, but at some

(boundary) time it becomes asymptoting to a quantum
extremal surface located (approximately) at the horizon;
and as time progresses further, it again becomes a surface
without a hole. This is depicted in Fig. 5(b). This behavior
of holographic slices, in fact, can be used to define what we
mean by the “formation” and “evaporation” of a black hole.
The holographic slices approximate Schwarzschild time
slices in this case as well, giving a distant description of the
black hole. Note that the region swept by the holographic
slices is essentially the simple wedge [16], which can be
reconstructed in a simple manner using the Hamilton-
Kabat-Lifschytz-Lowe (HKLL) procedure [11,12,114]
together with boundary time evolutions with sources.
In any event, the description of a black hole that naturally

results from a holographic theory with a single boundary is
an exterior/distant one. In this description, the unitarity of
black hole evolution is not an issue, since the stretched
horizon behaves as a regular material surface from the point
of view of quantum information flow. The question, rather,
is in what sense the near empty interior region exists for an
infalling observer as predicted by general relativity. We will
come back to this issue in Sec. V.

B. de Sitter (or cosmological) spacetime

To discuss holographic descriptions beyond AdS=CFT,
we need to introduce a “boundary” in spacetime on which a
holographic state can be defined. One way to do this is to
consider a renormalized boundary deep in the bulk—called
a renormalized leaf [13,14] in this context—and

FIG. 5. Holographic slices in a black hole spacetime in ingoing Eddington-Finkelstein coordinates ðv; rÞ obtained (a) without and
(b) with quantum effects in the bulk. These slices correspond to equal-time hypersurfaces in the bulk, which approach Schwarzschild
time slices near the black hole. The figures are taken from Refs. [13,14].

BLACK HOLE AND DE SITTER MICROSTRUCTURES FROM A … PHYS. REV. D 107, 026016 (2023)

026016-21



“unrenormalize” it by successively integrating in relevant
degrees of freedom, making the holographic slice grow
toward the “nonrenormalized” boundary. This procedure
depends on the background spacetime, but we can perform
it in each branch of a state representing a well-defined
spacetime in the semiclassical limit.

1. General picture

To be specific, let us adopt the scheme in Refs. [13,14],
in which successively renormalized boundaries σðλÞ, para-
meterized by “renormalization scale” λ, are obtained by the
flow equation

dxμ

dλ
¼ sμ; ð4:1Þ

where xμ are the embedding coordinates of the codimen-
sion-2 surface σðλÞ, on which the holographic states are
defined, and sμ is the evolution vector given by

sμ ¼ 1

2
ðΘklμ þ ΘlkμÞ: ð4:2Þ

Here, fkμ; lμg are the future-directed null vectors orthogo-
nal to σðλÞ, normalized such that kμlμ ¼ −2,19 and Θk;l

represent quantum expansions in the corresponding direc-
tions [115], which reduce to the classical expansions θk;l
in the limit that bulk quantum effects are ignored.20

We assume that σðλÞ is neither quantum trapped nor

antitrapped, so that the quantum expansion Θs associated
with the evolution vector sμ satisfies

Θs ¼ ΘkΘl ≤ 0: ð4:3Þ

This condition is needed for the consistency of the
interpretation that the flow (toward larger λ) corresponds
to coarse graining of the boundary degrees of freedom.
Since a holographic slice is nothing but a codimension-1

surface swept by σðλÞ, we can extend it “outward” using the
flow equation. For a generic spacetime, we can perform this
extension up to the point where one of the Θk;l becomes
zero, i.e., until σðλÞ becomes a quantum marginally trapped
or antitrapped surface. Suppose thatΘk ¼ 0 throughout this
surface, which we call σð0Þ. Then, the dimension of the
Hilbert space associated with states on the holographic slice
is bounded [115,116] by the generalized entropy of σð0Þ, so
that the σð0Þ can be identified as an equal-time surface of a
nonrenormalized boundary—or a leaf—on which a non-
renormalized boundary state is given.21 A codimension-1
surface foliated by such leaves is called a holographic
screen [117], or Q-screen in the quantum context [118], on
which a holographic theory for general spacetimes is
supposed to live [40–42]. This framework is indeed
consistent with the hypothetical relationship [112] between
bulk spacetime and the entanglement structure of a boun-
dary state. A sketch of a holographic screen, leaves, and a
holographic slice is given in Fig. 6.
In some cases, nonrenormalized leaves cannot be

reached with a finite evolution in λ. In particular, this
occurs in asymptotically AdS and flat spacetimes. In an
asymptotically AdS spacetime, the metric in the asymp-
totic region can be expanded in a Fefferman-Graham
series [119]

FIG. 6. A holographic theory resides on a holographic screen, which is a hypersurface foliated by quantum marginally antitrapped (or
trapped) surfaces called leaves. At a given boundary time, a boundary state lives on a leaf, from which one can reconstruct a bulk equal-
time hypersurface using the flow equation in Eq. (4.1).

19This condition does not fix the normalizations of kμ and lμ
separately, but it is sufficient to ensure the validity of the
following treatment. In particular, sμ is invariant under rescalings
of kμ and lμ satisfying kμlμ ¼ −2. Below, we fix this freedom
conveniently in each setup when we give explicit expressions for
kμ, lμ, θk;l, and Θk;l.

20More precisely, we must use a modified version of the
quantum expansion which includes a bulk entropy contribution
from an “exterior” region, as described in Ref. [14].

21If we follow the flow further beyond λ ¼ 0, then we lose this
property; in this sense, σð0Þ is the “maximally unrenormalized”
leaf.
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ds2 ¼ L2

z2
fgabðxa; zÞdxadxb þ dz2g; ð4:4Þ

where L is the AdS length scale, a; b ¼ 0;…; d − 1, and

gabðxa; zÞ ¼ gð0Þab ðxaÞ þ z2gð2Þab ðxaÞ þ � � � with gð0Þab being the
conformal boundary metric. Suppose that σðλÞ is taken to
be a constant t ¼ x0 surface at a constant z ¼ ϵ. The null
normals are then given by kμ ¼ ðL=ϵÞð−dtþ dzÞ and
lμ ¼ ðL=ϵÞð−dt − dzÞ, yielding Θk ¼ −ðd − 1Þ=L and
Θl ¼ ðd − 1Þ=L up to higher order corrections in ϵ.
Here, we have used the fact that the quantum expansions
Θk;l approach classical expansions θk;l in the asymptotic
region because of the lack of matter there. This implies
that a leaf of any regularized boundary located at z > 0 is,
in fact, a renormalized one, and that the nonrenormalized
holographic screen can lie formally only at spacelike
infinity,22 where a nonregularized holographic CFT lives
in AdS=CFT. It also gives the evolution vector

sμ ¼ ðd − 1Þϵ
L2

∂

∂z
þOðϵ2Þ; ð4:5Þ

showing that the holographic slice extending inward from
a regularized boundary evolves initially in the z direction,
up to corrections suppressed by ϵ; see Fig. 7(a). This
behavior is the same as that of the conventional holo-
graphic renormalization group flow [120–124] in the
AdS=CFT correspondence. We also find that the flow
freezes, jdz=dλj → 0, as z → 0.
For an asymptotically flat spacetime, the metric in the

asymptotic region can be expanded in the Bondi-Sachs
form [125,126] as

ds2 ¼ −
V
r
e2βdu2 − 2e2βdudr

þ r2hABðdxA − UAduÞðdxB −UBduÞ; ð4:6Þ

where A;B ¼ 1;…; d − 1, and each function admits a large
r expansion of the form V ¼ rþOð1Þ, β ¼ Oðr−2Þ,
UA ¼ Oðr−2Þ, and hAB ¼ Oð1Þ. As in the case of an
asymptotically AdS spacetime, let us consider σðλÞ which
is a constant time slice of the surface r ¼ R. The null
normals are then given by kμ ¼ du and lμ ¼ ðV=rÞduþ
2dr, leading to Θk ¼ −2=R and Θl ¼ 2=R at the leading
order in 1=R. We thus find that a leaf of a regularized
holographic screen is a renormalized one, and the flow
vector is

sμ ¼ 2

R

�
−

∂

∂u
þ ∂

∂r

�
þO

�
1

R2

�
; ð4:7Þ

showing that the generated flow follows a hypersurface of
equal Minkowski time in the inward radial direction, up to
corrections suppressed by 1=R, and that it freezes as
R → ∞. This is illustrated in Fig. 7(b), from which we
see that any process occurring in the bulk within a finite
time interval can be described by a boundary theory located
at spatial infinity i0. By taking the time interval to infinity,
one recovers an S-matrix description in the bulk. This view
is consistent with discussions of flat space holography
advanced, e.g., in Refs. [127–131].

2. de Sitter spacetime

Let us now discuss de Sitter spacetime. As we will see
below, care is needed to consider holography of de Sitter
spacetime in a static patch. Our view is that in this context,
the concept of exact de Sitter spacetime arises only as a
result of idealization, very much analogous to an eternal
single-sided black hole in an asymptotically flat spacetime
(which does not exist because of Hawking radiation).23

For now, we bypass this issue by considering de Sitter
spacetime in a cosmological setup. In particular, we consider

FIG. 7. Renormalized holographic screens, on which regular-
ized holographic theories reside, are timelike hypersurfaces in an
asymptotically AdS and flat spacetimes, which are depicted by
the dotted blue lines in the Penrose diagrams in (a) and (b),
respectively. In both cases, holographic slices agree with the time
slices given by timelike Killing vectors in the asymptotic regions.
In the nonrenormalized limit, physics occurring in a finite time is
described by holographic theories located at the conformal
boundary (r ¼ ∞) and spatial infinity (i0) in the cases of
asymptotically AdS and flat spacetimes, respectively.

22We adopt a definition of the nonrenormalized holographic
screen such that it is a hypersurface foliated by leaves, on which
at least one of the Θk;l vanishes.

23This is consistent with the expectation from string theory that
there is no absolutely stable de Sitter vacuum [132,133].
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an empty bubble universe inwhich there is a positive vacuum
energy density ρΛ. The interior of the bubble is an open
Friedmann-Lemaître-Robertson-Walker (FLRW) universe
described by the metric

ds2 ¼ −dτ2 þ aðτÞ2
�
dχ2 þ

�
1ffiffiffiffiffiffi
−κ

p sinhð ffiffiffiffiffiffi
−κ

p
χÞ
	

2

dΩ2

�
:

ð4:8Þ

Here,

aðτÞ ¼
ffiffiffiffiffiffi
−κ
Λ̃

r
sinhð

ffiffiffiffi
Λ̃

p
τÞ ð4:9Þ

is the scale factor, where Λ̃ is related to the vacuum energy
density by Λ̃ ¼ 8πρΛl2P=3, and κ < 0 is a curvature param-
eter related to the physical curvature radius by
rcurvðτÞ ¼ aðτÞ= ffiffiffiffiffiffi

−κ
p

. The holographic screen is located at
the apparent horizon, where θk ¼ 0 and θl > 0:

χ ¼ χscðτÞ ¼
1ffiffiffiffiffiffi
−κ

p ln

�
coth

ffiffiffiffi
Λ̃

p
τ

2

�
; ð4:10Þ

where we have taken kμ and lμ to be the future-directed
ingoing and outgoing null vector orthogonal to a leaf,
respectively, and we have indexed leaves by FLRW times
at their locations. Here, we have ignored the difference
between classical and quantum expansions, which is valid
because we consider the semiclassical vacuum state, imply-
ing that Gibbons-Hawking radiation is not extracted as
semiclassical radiation.
At late times, the universe behaves like a de Sitter

spacetime:

aðτÞ ≈
ffiffiffiffiffiffi
−κ

p

2
ffiffiffiffi
Λ̃

p e
ffiffiffĩ
Λ

p
τ for τ ≫

1ffiffiffiffi
Λ̃

p : ð4:11Þ

The metric in Eq. (4.8) then becomes flat slicing of the de
Sitter spacetime; see Fig. 8. On the other hand, the physical
distance to the holographic screen approaches the Hubble
radius 1=

ffiffiffiffi
Λ̃

p
:

aðτÞχscðτÞ ¼
1ffiffiffiffi
Λ̃

p sinhð
ffiffiffiffi
Λ̃

p
τÞ ln

�
coth

ffiffiffiffi
Λ̃

p
τ

2

�
⟶
τ≫ 1ffiffĩ

Λ
p

1ffiffiffiffi
Λ̃

p
�
1 −

2

3
e−2

ffiffiffĩ
Λ

p
τ

�
: ð4:12Þ

The holographic theory thus describes a static patch of the
late-time de Sitter spacetime, i.e., the patch inside the
holographic screen.
The holographic slices approach static de Sitter time

slices at late times. To see this, we can calculate kμ and lμ

for arbitrary ðτ; χÞ

kμ ¼
 

1

−
ffiffiffiffi
Λ̃
−κ

q
1

sinhð
ffiffiffĩ
Λ

p
τÞ

!
; lμ ¼

 
1ffiffiffiffi

Λ̃
−κ

q
1

sinhð
ffiffiffĩ
Λ

p
τÞ

!
ð4:13Þ

and their associated quantum expansions

8>><>>:
Θk ≈ θk ¼ 2

ffiffiffiffi
Λ̃

p �
cothð

ffiffiffiffi
Λ̃

p
τÞ − cothð ffiffiffiffi−κp

χÞ
sinhð

ffiffiffĩ
Λ

p
τÞ

�
;

Θl ≈ θl ¼ 2
ffiffiffiffi
Λ̃

p �
cothð

ffiffiffiffi
Λ̃

p
τÞ þ cothð ffiffiffiffi−κp

χÞ
sinhð

ffiffiffĩ
Λ

p
τÞ

�
:

ð4:14Þ

The evolution vector is then

�
sτ

sχ

�
¼ 2

ffiffiffiffi
Λ̃

p 0B@ cothð
ffiffiffiffi
Λ̃

p
τÞ

−
ffiffiffiffi
Λ̃
−κ

q
cothð ffiffiffiffi−κp

χÞ
sinh2ð

ffiffiffĩ
Λ

p
τÞ

1CA: ð4:15Þ

We are interested in the spacetime region well inside the
holographic screen

χ ≪ χscðτÞ ⟶
e
ffiffĩ
Λ

p
τ≫1

ffiffiffiffiffiffi
−κ

p
χ ≪ 2e−

ffiffiffĩ
Λ

p
τ ð4:16Þ

at late times

α ¼ 1ffiffiffiffi
Λ̃

p ≪ rcurvðτÞ → e
ffiffiffĩ
Λ

p
τ ≫ 1; ð4:17Þ

where α is the Hubble radius of the late time universe. In
this region, the relation between the FLRW coordinates
ðτ; χÞ and the de Sitter static coordinates ðt; rÞ is given by

FIG. 8. Penrose diagram of de Sitter spacetime. A de Sitter
bubble corresponds to the upper-left half of this diagram, where
FLRW equal-time hypersurfaces are drawn by green lines. The
holographic screen is located along the trajectory of the apparent
horizon, which is depicted by the solid blue curve.
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�
αe

τ
α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − r2

p
e

t
α;

α
2

ffiffiffiffiffiffi
−κ

p
χe

τ
α ¼ r;

ð4:18Þ

leading to the sμ vector in the static coordinates

�
st

sr

�
≈

 
− 8

3α3
r2

ð1−r2=α2Þ2 e
−2t

α

− 2
r ð1 − r2

α2
Þ

!
≈

 
− 8r2

3α3
e−

2t
α

− 2
r

!
: ð4:19Þ

We thus find that both st and sr are negative, and jstj ≪ jsrj
in the relevant region.
From the above analysis, we conclude that in the

holographic description of de Sitter spacetime, the region
swept by holographic slices is the interior of the static
patch. Thus, what is analogous to the exterior of a single-
sided black hole is the interior of a static patch in de Sitter
spacetime. This indicates that the interior of the static patch
is the region in which semiclassical field operators can be
reconstructed in a simple manner. We note that the same
conclusion can also be obtained by regularizing de Sitter
spacetime in different ways, for example by considering a
big-bang universe filled with two fluid components with
the equation-of-state parameters w ¼ −1 and w > −1, or
with a single fluid component of w ¼ −1þ ϵ, where ϵ
(> 0) is taken sufficiently small that the system can be
viewed as in a de Sitter vacuum [40,41]. This provides a
justification for the description of de Sitter spacetime
adopted in Secs. II and III, focusing on a single static
patch.24

It is important that the holographic description based on
a single static patch, which we may call “single-sided” de
Sitter spacetime, assumes an appropriate physical regulari-
zation. Had we started with exact de Sitter spacetime, then
the location of a leaf would be on the bifurcation surface or
the future horizon. In this case, a subregion of the leaf
would have degenerate extremal surfaces, all of which are
located on the future horizon and have areas equal to the
volume of the subregion. This would imply that holo-
graphic slices sweep only a codimension-1 surface in the
bulk, i.e., the future horizon, failing to reconstruct the
codimension-0 spacetime [40].25 For Θk ¼ 0 and Θl ≠ 0,
this can also be seen from the fact that sμ ∝ kμ.
The picture of a single-sided de Sitter spacetime is shown

in Fig. 9, in which the region near the bifurcation surface
and the past horizon should be viewed as regularization
dependent. This picture can also be obtained if we begin
with a renormalized holographic screen foliated by

renormalized leaves located deep inside the static patch
and then push the screen outward by unrenormalizing it
using the flow equation. Renormalized leaves then
approach the bifurcation surface (or the future horizon if
the assumed deviation from exact de Sitter spacetime is
significant), but they never get there. Given the nondecou-
pling of bulk gravity on these leaves, we expect that the
holographic theory on the screen is gravitational, but we do
not make any further speculation about this theory here.

3. de Sitter entropy

The fact that holographic states in a single-sided de Sitter
spacetime are analogous to those in a single-sided black
hole suggests that we can interpret the de Sitter entropy in
an analogous manner to the black hole case [135]. At the
classical level, de Sitter spacetime is parametrized by one
continuous number: the Hubble radius α. At the quantum
level, this freedom leads to the corresponding independent
quantum states, which are discretized. The number of
independent states corresponding to the value of the
Hubble radius between α and αþ δα is

N ∼ eSGH
δα

α
; ð4:20Þ

where

SGH ¼ πα2

l2P
ð4:21Þ

is the Gibbons-Hawking entropy. As in standard statistical
mechanics, this result does not depend on the detailed

FIG. 9. A holographic description of “single-sided” de Sitter
spacetime. Holographic slices agree (approximately) with equal-
time hypersurfaces in static coordinates. The smaller the amount
of UV renormalization becomes, the closer renormalized leaves
are to the bifurcation surface. The geometry in the vicinity of the
past horizon (indicated by light green) and the bifurcation surface
(light blue) is regularization dependent.

24It is also comforting that there is a perturbative positive energy
theorem in a static patch of de Sitter spacetime [134].

25More precisely, if we use global information of the boundary
state, the interior of the static patch may be reconstructed.
However, the entanglement wedge of a boundary subregion in
this case contains either the entirety or none of the interior,
depending on the size of the subregion. This indicates a
“singular” nature of the limit of de Sitter spacetime.
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choice of δα (unless δα is taken to be exponentially small
in SGH).
Now, suppose that the timescale for the evolution of a de

Sitter microstate is given by Δt. Using the energy of
Eq. (3.16), we find that the required uncertainty of α,
determined by ΔEΔt ∼ 1, is

Δα ∼
l2P
Δt

: ð4:22Þ

We expect that Δt ∼ 1=TH ∼ α because of large redshift
between the location of the stretched horizon, where
everything is controlled by the string scale, and the location
at which the time t is measured, r ¼ 0. This gives

Δα ∼
l2P
α
: ð4:23Þ

In the semiclassical regime α ≫ lP, this uncertainty is
smaller than the Planck length, Δα ≪ lP, which is con-
sistent with the fact that the Hubble radius can be precisely
specified (treated classically) in a semiclassical theory.
Note that the situation described above is analogous to

the black hole case. For a black hole, E ¼ M and rþ ∼Ml2P
give Δrþ ∼ l2P=Δt. Assuming Δt ∼ 1=TH ∼Ml2P, this
leads to

Δrþ ∼
1

M
: ð4:24Þ

In the semiclassical regime M ≫ 1=lP, we find Δrþ ≪ lP.
There is one apparent difference between the de Sitter

and black hole cases. Since the de Sitter spacetime is an
“inside-out” version of the black hole spacetime, simple
operators can cause excitations inside the stretched horizon,
r < rs, and with many such excitations the geometry will
be backreacted. In particular, we can form a black hole
inside the de Sitter horizon, leading to a different semi-
classical geometry. We will now try to understand micro-
scopic entropies of such geometries and their relations to
the de Sitter entropy.26

We naturally expect that the original theory on the
holographic screen can accommodate all such solutions.
This interpretation is consistent if we regard a holographic
theory of de Sitter spacetime to be associated with a fixed
vacuum energy ρΛ (within uncertainty), and not a fixed
horizon radius. In this case, the solution with a black hole
has an entropy smaller than the solution with no black hole
[39], so the dimension of the Hilbert space of the holo-
graphic theory is

dimH ∼
X

ΔS≤ΔSmax

eSGH−ΔS ⇒ ln dimH ∼ SGH ð4:25Þ

even including all the spacetimes with varying sizes of
black holes. Here, ΔS is the entropy deficit of a spacetime
with a black hole(s), SGH is the Gibbons-Hawking entropy
expressed in terms of the vacuum energy ρΛ or the Hubble
radius α0 of the de Sitter spacetime without a black hole

SGH ¼ πα20
l2P

¼ 3

8ρΛl4P
; ð4:26Þ

and ΔSmax is the entropy deficit when the cosmic and black
hole horizons have the same radius, which occurs with
rþ;bh ¼ rþ;dS ¼ α0=

ffiffiffi
3

p
:

ΔSmax ¼ SGH − 2 ×
πα20
3l2P

¼ πα20
3l2P

¼ 1

8ρΛl4P
; ð4:27Þ

where the factor of 2 comes from the fact that we have
both cosmological and black hole horizons. The fact that
ΔSmax is positive serves as a consistency check for our
interpretation.27

In fact, because of the inside-out nature, forming black
holes inside the de Sitter horizon is analogous to forming
(small) black holes outside the black hole horizon, specifi-
cally in the zone,while keeping the total energy fixed (though
the latter necessarily breaks the spherical symmetry). Such
excited states can be included in the Hilbert space associated
with the central black hole without changing its dimensions,
ln dimH ¼ Sbh, at the leading order.

C. Holographic Hilbert spaces

Before concluding this section, we discuss the structure
of holographic boundary Hilbert spaces in a more general
setting. The picture presented here builds on the analyses
performed in Refs. [13,40] and is suggested by relations
between bulk geometries and boundary entanglement
entropies.

26A similar issue was also discussed in Ref. [45].

27In dþ 1 dimensions, this occurs when the black hole mass
becomes

M ¼ d − 1

d − 2

�
d − 2

d

�
d=2 volðΩd−1Þ

8πld−1P

αd−20 ð4:28Þ

with

rþ;bh ¼ rþ;dS ¼
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d

r
α0: ð4:29Þ

Here, volðΩd−1Þ ¼ 2πd=2=Γðd=2Þ is the volume (area) of the
(d − 1)-dimensional unit sphere. The maximal entropy deficit is
thus

ΔSmax ¼
volðΩd−1Þαd−10

4ld−1P

�
1 − 2 ×

�
d − 2

d

�d−1
2

�
; ð4:30Þ

which is indeed positive for all d ≥ 2.
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1. Effective boundary Hilbert spaces HeffðAÞ
Consider a set of states associated with a leaf σ

characterized by its volume A on the boundary. (A is an
area from the point of view of bulk spacetime.) Holography
implies that the number of degrees of freedom on the leaf is
given by

N ¼ A
4GN

; ð4:31Þ

which we will assume to be uniformly distributed over the
leaf. Here, we have used GN instead of lP, since discussion
in this subsection does not depend on the number of
spacetime dimensions. We denote the Hilbert space com-
prising states of these N degrees of freedom by HeffðAÞ,
so that

ln dimHeffðAÞ ¼ A
4GN

: ð4:32Þ

The reason for the subscript “eff” will become clear later.
We expect that states of these N degrees of freedom can

represent various different spacetimes, or more precisely
the domain of dependence Dσ of a spacelike hypersurface
bounded by σ in these spacetimes. In addition, for a given
bulk spacetime, there may be many independent states in
HeffðAÞ that span the space of microstates for the space-
time, as in the case of black hole and de Sitter spacetimes.
How can these happen?
Let us assume that the entanglement entropy of sub-

regions of a boundary state jψi dual to a semiclassical
geometry can be calculated via the Hubeny-Rangamani-
Ryu-Takayanagi (HRRT) prescription [87–89] (or its
quantum extension [90–92]). In particular, we assume that
the boundary and bulk Hilbert spaces can be appropriately
factorized, which may involve a gauge choice or the
introduction of edge modes [136–141]. Here we consider
the “classical limit,” meaning that all the subregions we
consider contain OðN Þ degrees of freedom. Given a bulk
spacetime, one can then find the corresponding entangle-
ment entropies for all subregions of the boundary. The
collection of all boundary subregions and their correspond-
ing entanglement entropies will be referred to as the
entanglement structure of the state, which we denote
by SðjψiÞ.
First, we note that for a given entanglement structure S0,

we can always find a basis of the Hilbert space HeffðAÞ in
which all basis states have the specified entanglement
structure. This is because by applying local unitaries to
a state, one can generate eN orthogonal states while
preserving the entanglement structure of the original state.
This fact, however, does not mean that these eN states span
an eN -dimensional space of microstates for bulk spacetime
corresponding to the entanglement structure S0. Indeed, by
generically superposing eOðN Þ of these states, one would

obtain a state whose entanglement structure is drastically
different from S0, so that the resulting state is dual to a
completely different spacetime, if it represents bulk space-
time at all.
Of course, given an entanglement structure, there exists a

subspace of dimension eOðN pÞ with p < 1 in which generic
states have this same entanglement structure up to OðN pÞ
corrections. This is because we generally have

S
�XeM

i¼1

cijψ ii
�

¼ S0 þOðMÞ; ð4:33Þ

where Sðjψ iiÞ ¼ S0 for all i, so that for M ¼ OðN pÞ the
corrections are suppressed by powers ofN compared to S0,
which is of order N . The subspace obtained in this way,
however, comprises only an exponentially small subset of
HeffðAÞ; in particular, it is a measure zero subset of
HeffðAÞ in the classical limit.
A nontrivial thing is that for N ≫ 1, there exist sub-

spaces of dimension eOðN Þ in which generic states have the
same entanglement structure S0 up to small corrections.
Specifically, for such a subspace spanned by basis states
jψ ii (i ¼ 1;…; eQN ), we have

S
�XeQN

i¼1

cijψ ii
�

¼ S0 þOðN p;p < 1Þ; ð4:34Þ

where Q ≤ 1 does not scale withN . The existence of these
subspaces with entanglement structures invariant under
superpositions is expected from canonical typicality (also
referred to as the general canonical principle) [142,143],
which states that generic states in such a subspace have the
same reduced density matrix for small subsystems (up to
small corrections). This is the case despite the fact that the
size of the subspace is large enough that one would naively
think that superpositions would ruin the entanglement
structure at OðN Þ. The proof of this statement is purely
kinematical and hence applies generally. In fact, according
to canonical typicality the correction term in Eq. (4.34) is
exponentially small, Oðe−QN =2Þ.
In Fig. 10, we show a sketch of the collection C of states

in HeffðAÞ which have the same entanglement structure S0

up to corrections higher order in 1=N

C ¼ fjψijSðjψiÞ ¼ S0 þOðN p;p < 1Þg ð4:35Þ

in the case that they form a subspace of dimension eQN

with Q < 1. In addition to this subspace represented by the
pink plane, C contains eN − eQN states (slightly “thick-
ened” inHeffðAÞ) orthogonal to it, which are schematically
represented by the red arrow. Furthermore, in the eQN -
dimensional subspace, there are exponentially rare states
that do not have the entanglement structure S0. These states
can be obtained by fine-tuning coefficients when we
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expand jψi in terms of the basis states jψ ii of the subspace
and are represented by white arrows.
In Ref. [40], it was argued that it is this eQN -dimensional

subspace that comprises the space of microstates for a
spacetime. In particular, for Q < 1 the corresponding
entanglement structure S0 can be nonmaximal,28 and
generic states in this subspace can have dual bulk spacetimes
which are simply reconstructable. In this case, even if one
considers an exponentially large superposition of micro-
states, geometric operators are effectively linear so long as
the state is generic within the subspace [93]. On the other
hand, if Q ¼ 1, the “subspace” is the whole Hilbert space
HeffðAÞ, so applying Page’s analysis [144], we see that the
only entanglement structure consistentwith Eq. (4.34) is that
of maximal entropy. In this case, the resulting spacetime is
not in a simple wedge, and reconstruction of the bulk
requires some level of nonlinearity, or state dependence.29

The structure discussed above allows for a single holo-
graphic Hilbert spaceHeffðAÞ to harbor effective subspaces
dual to different geometries. In fact, similarly to Eq. (4.25),
one can show thatHeffðAÞ satisfying Eq. (4.32) can support
a number of eQN -dimensional subspaces with Q < 1.
Geometric operators are approximately linear in each of
these subspaces, which gives the effective linear space of
microstates for a fixed semiclassical geometry.

2. Fundamental boundary Hilbert space HUV

So far, we have considered boundary Hilbert space with
fixed volume A: HeffðAÞ. However, general spacetime

involves boundary evolution in which the volume of a leaf
(a boundary equal-time surface) changes [42]. Such an
evolution can occur in the “fundamental” Hilbert space
HUV which contains, at least effectively, HeffðAÞ’s with
different A’s30:

HUV ⊃ fHeffðAÞj dimHeffðAÞ ∈ Ng: ð4:36Þ
A naive possibility is to literally haveHUV ⊃ ⨁AHeffðAÞ,
but this need not be the case. In fact, motivated by the
relation between geometric objects in the bulk and quantum
information theoretic quantities on the boundary, which has
been learned in AdS=CFT and is expected to apply beyond,
one can imagine that HeffðAÞ’s are contained in HUV in a
more intricate manner.
In Refs. [13,112], it was envisioned that HeffðAÞ is

embedded in HUV as an effective subspace (in the sense
discussed before; see, e.g., Fig. 10) in which a generic state
has the property X

i

Si ¼
A

4GN
; ð4:37Þ

where Si represents the entanglement entropy of the state in
a sufficiently small subregion, Ai, of the holographic space
Ω, on whichHUV is defined; the sum runs over all of these
small subregions such that Ω ¼∪i Ai and Ai ∩ Aj ¼ ∅
(i ≠ j). This allows us to consider holographic states of all
bulk spacetimes, and also their dynamics, in a single
Hilbert space HUV.
The Hilbert space HUV will be defined by introducing a

short distance cutoff δ in Ω and then sending δ to zero,
so that

dimHUV → ∞: ð4:38Þ
For (dþ 1)-dimensional asymptotically AdS and flat bulk
spacetimes, Si will behave as

Si ∼
k∂Aik
δd−2

and Si ¼ fðAiÞ
kAik
δd−1

; ð4:39Þ

respectively. Here, kxk represents the volume of the object
x, ∂Ai is the boundary of Ai, and fðAiÞ is a function
of Oð1Þ.31
According to this picture, states representing a cosmo-

logical spacetime with finite leaf area comprise a tiny
effective subspace of HUV, obtained from a generic
state in HUV by an infinite number (in the limit δ → 0)

FIG. 10. A sketch of the collection of states in holographic
Hilbert space HeffðAÞ which have the same entanglement
structure at leading order in 1=N . It forms an eQN -dimensional
subspace of HeffðAÞ (represented by the pink plane) except that
exponentially rare nongeneric states are excluded (white arrows),
and that eN − eQN isolated states orthogonal to it are added
(red arrow).

28By the entanglement structure being maximal, we mean that
for any subregion A its entanglement entropy SA is maximal, i.e.,
SA ¼ kAk=4GN, at the leading order in 1=kAk. Here kAk is the
volume of A on the boundary.

29This is indeed the case for the interior of a black hole; see
Sec. VA.

30A semiclassical description is valid only when
dimHeffðAÞ ≫ 1, but we will be sloppy about it in writing
Eq. (4.36).

31In asymptotically flat spacetime, for example, the ratio
of fðAiÞ for Ai being a half of Ω, A1=2, to that for Ai
being a cutoff size region, Aδ, is fðA1=2Þ=fðAδÞ ¼
ð1= ffiffiffi

π
p ÞfΓ½d=2�=Γ½ðdþ 1Þ=2�g.
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of fine-tunings.32 It will be interesting to study the
dynamics in HUV in the thermodynamic limit, using
information from semiclassical theory.

V. ANALYTIC EXTENSION OF SPACETIME
IN QUANTUM GRAVITY

In a single-sided system, the spacetime region obtained
from analytic extension in general relativity—e.g., the
interior of a black hole and the region outside a static
patch in de Sitter spacetime—emerges as a collective
phenomenon involving horizon (and possibly other)
modes. This can occur because a huge gravitational red/
blueshift at the stretched horizon makes the string dynamics
relevant in a static description, which makes the state take a
generic, universal form across all low energy species. In
this section, we review this construction [21–25] and refine
it to include the effect of black hole evolution analyzed in
Sec. III C.

A. The interior of a black hole

Consider a state of a black hole of mass M at some time
t ¼ t�. We assume that it is in the semiclassical vacuum
state, which is achieved typically more than one scrambling
time tscr after the last perturbation, where33

tscr ¼ 2rþ

�
ln
rþ
lP

þOð1Þ
�
: ð5:3Þ

As discussed in Sec. III A, we assume that the mass of the
black hole (as well as other quantities such as the
momentum) is specified with the maximal precision
allowed by the uncertainty principle, ΔM ∼ TH. If the state
of the system involves a superposition of a black hole of a
wider range of masses, then our consideration below

applies to each of the branches containing a black hole
with minimal uncertainties.34

Ignoring evolution effects for now, a black hole vacuum
state is given as in Eq. (3.40). This state picks out a set of
special states of the combined system of soft and far modes:
thosemultiplied by thehard-mode states jfnαgi inEq. (3.40).
We denote these states using the double-ket symbol

kfnαgA⟫ ¼ ςAn
XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

cAninajψ
ðnÞ
in
ijϕai: ð5:4Þ

Here, A is the index for the microstate, specified by the
coefficients cAnina in Eq. (3.40), and ςAn is the normalization
constant

ςAn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
eSbhðM−EnÞ
in¼1

P
eSrad
a¼1 c

A�
nina

cAnina

q ¼ ffiffiffi
z

p
e

En
2TH

�
1 −

1

2
ε̃AAn

�
;

ð5:5Þ
where z is given byEq. (3.31). The last expression is obtained
by using statistical properties of cAnina in Eq. (3.42), and ε̃

AB
n is

the quantity analogous to εABn in Eq. (3.38):

ε̃ABn ≡ ze
En
TH

XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

cA�ninac
B
nina

− δAB

≈Oðe−1
2
fSbhðM−EnÞþSradgÞ; ð5:6Þ

which satisfies

ðε̃ABn Þ� ¼ ε̃BAn ;
X
n

e−
En
TH

z
ε̃ABn ¼ 0: ð5:7Þ

Substituting Eq. (5.4) into Eq. (3.40), we see that the
state can be written in the thermofield double form

jΨAðMÞi ¼ 1ffiffiffi
z

p
X
n

e−
En
2TH jfnαgikfnαgA⟫; ð5:8Þ

up to exponentially suppressed corrections of order
e−fSbhðMÞþSradg=2. We can also check that the states
kfnαgA⟫ are orthonormal in fnαg as well as the microstate
index A, up to exponentially small corrections [25]:

⟪fmαgAkfnαgB⟫ ¼ δmnη
AB
n ; ð5:9Þ

32A similar picture was discussed for de Sitter spacetime in
Ref. [145].

33This expression is obtained from the fact that the scrambling
time represented in ingoing Eddington-Finkelstein time v ¼
tþ r� is [33]

vscr ¼
1

2πTH
ln Sbh ≈ 4rþ ln

rþ
lP

: ð5:1Þ

The scrambling time in Schwarzschild time is then related to this
time by [24]

tscr ¼ vscr þ r�s ≈ 2rþ ln
rþ
lP

; ð5:2Þ

where the r�s term in the middle expression comes from the fact
that the scrambling time in Eq. (5.1) is defined as the minimal
time needed to recover information about an object falling into
the stretched horizon (at r� ¼ r�s) at a location sufficiently far
from the horizon, r� ≈OðrþÞ. In the last equation, we have used
r�s ≈ −2rþ lnðrþ=lPÞ, obtained from Eq. (2.17) by identifying ls
with lP.

34In practice, different branches decohere with environment, so
focusing on a single branch is phenomenologically forced on us
when we discuss the physics of the black hole itself, such as its
interior, using the pure state language. Of course, when discus-
sing more global aspects, such as the full unitarity of a black hole
formation and evaporation process, we need to take into account
all these branches [83,84]. However, the effect from such a
superposition, i.e., a superposition of “macroscopically distin-
guishable” black holes, is subdominant in entropic consideration,
compared with the Bekenstein-Hawking entropy associated with
a black hole with minimal uncertainties.
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where

ηABn ≡
�
1 for A¼ B

ε̃ABn ≈Oðe−1
2
fSbhðM−EnÞþSradgÞ for A ≠ B:

ð5:10Þ

Since the spectrum of the states jfnαgi represents semi-
classical physics in the zone of the single-sided black hole,
the corresponding states kfnαgA⟫ of the soft and far modes
can be identified as the states in the second exterior of an
effective two-sided black hole, given by Eq. (5.8).
With this identification, one can construct annihilation

and creation operators for modes in the second exterior

b̃Aγ ¼
X
n

ffiffiffiffiffi
nγ

p kfnα − δαγgA⟫⟪fnαgAk ð5:11Þ

¼
X
n

ffiffiffiffiffi
nγ

p
ςAn−γ ς

A�
n

XeSbhðM−En−γ Þ

in−γ¼1

XeSbhðM−EnÞ

jn¼1

XeSrad
a;b¼1

cAn−γin−γ a

× cA�njnbjψ
ðn−γÞ
in−γ

ijϕaihψ ðnÞ
jn
jhϕbj; ð5:12Þ

b̃A†γ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p kfnα þ δαγgA⟫⟪fnαgAk ð5:13Þ

¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p
ςAnþγ

ςA�n
Xe

SbhðM−Enþγ Þ

inþγ¼1

XeSbhðM−EnÞ

jn¼1

XeSrad
a;b¼1

cAnþγinþγ a

× cA�njnbjψ
ðnþγÞ
inþγ

ijϕaihψ ðnÞ
jn
jhϕbj; ð5:14Þ

in addition to those in the first exterior, Eqs. (3.49) and (3.50).
Here, n�γ ≡ fnα � δαγg, and we have used the same symbol
γ to specify both the first and second exterior modes. From
these operators, one can then construct annihilation and
creation operators for interior modes, as well as the infalling
time evolution operator, through an appropriate Bogoliubov
transformation [21–25].35Wewill see this constructionmore
explicitly below for an evaporating black hole.

In this picture, the second exterior of the black hole
emerges effectively as a collective phenomenon associated
with the soft and far modes. Note that while the energy of
each soft or early Hawking mode may be tiny, ≲TH, their
collective excitation can have a much larger energy, ≫ TH.
In particular, a “quasiparticle” created by b̃A†γ in the second
exterior has energy Eγ, which is negative and jEγj > TH.
The fact that this energy is negative implies that the
Hamiltonian H of the original single-sided black hole is
mapped to the generator of the timelike isometry in the
effective two-sided picture

H ↦ HR −HL; ð5:15Þ

where HR and HL are the Hamiltonian operators acting on
the first and second exteriors, respectively. As we will see
below, excitation in the black hole interior is a super-
position of quasiparticle excitations built by b̃Aγ ’s and b̃A†γ ’s
and original excitations in the zone.
It is worth mentioning that we have no freedom in

choosing the basis in the space of kfnαgA⟫’s. In other
words, the interpretation that kfnαgA⟫ is a state in which nα
of the mode corresponding to α in the first exterior is
excited in the second exterior, is not invariant under unitary
transformation

kfnαgA⟫ → kfnαgA⟫ ¼
X
n0
Unn0kfn0αgA⟫; ð5:16Þ

so that a state obtained by acting b̃Aγ or b̃A†γ on jΨAðMÞi in
Eq. (3.40) cannot be regarded as the vacuum state at the
semiclassical level. This is because the minimal uncertainty
condition imposed on jΨAðMÞi allows us to physically
distinguish between different jfnαgi’s, and hence there is
no ambiguity in defining the corresponding kfnαgA⟫’s.
Our framework, therefore, does not suffer from the “frozen
vacuum” problem posed in Ref. [146].
We also comment that jϕai in Eq. (5.4) may not consist

of only the early Hawking radiation; if a major portion of
the radiation interacts with other degrees of freedom, such
degrees of freedom must also be included in jϕai. This is
because jϕai’s represent states of all the degrees of freedom
that are entangled significantly with the hard and soft
modes. It follows that the degrees of freedom that were
once the second-exterior degrees of freedom keep playing
that role even if they no longer take the form of Hawking
radiation. This situation, however, does not last forever. The
role as a second exterior emerges only relationally with
respect to the hard modes. Thus, after the black hole is
evaporated completely, the Hawking radiation as well as
any other degrees of freedom that have interacted with it
become regular matter that does not have any spacetime
interpretation.
Finally, we emphasize that the construction described

here is performed in a theory with gravity in the bulk,

35This construction differs from a similar construction in
Refs. [26,31,32], inwhich the degrees of freedom that are identified
as those in the first exterior of the effective two-sided black hole
increase as the black hole evaporates; in particular, Hawking
radiation emitted earlier composes degrees of freedom in the first
exterior. In the construction here, the number of degrees of freedom
composing the first exterior (zone modes) decreases as the
evaporation progresses; in particular, early Hawking radiation is
identified as a part of the degrees of freedom in the second exterior.
The idea that the construction of interior operators involves early
Hawking radiation was promoted in Ref. [29], but its specific
realization is different here. In contrast to the picture laid out in
Ref. [29], the second exterior of the effective two-sided geometry
arises primarily from degrees of freedom directly associated with
the black hole (soft modes), and the involvement of Hawking
radiation is indirect (although it is significant for an old black
hole, i.e., a black hole that is nearly maximally entangled with the
rest of the system). In particular, the structure of entanglement is
not bipartite between the first exterior and early Hawking
radiation degrees of freedom as envisioned in Ref. [29].
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implying that the precise spectrum of the horizon and zone
modes (represented by the boundary conditions on the
stretched horizon in the low energy field theory) are not
arbitrary; rather, they are determined by a consistent UV
theory. In other words, the construction here should be
viewed as being performed in a holographic boundary
theory (see, e.g., footnote below). The physics in a non-
gravitational bulk can be reproduced if we send lP → 0

(with fixed rþ ¼ 2Ml2P), which implies ls → 0 because of
Eq. (3.12). The change from the distant description to the
infalling description considered here is then reduced to the
change of reference frames in quantum field theory (from
the Rindler to Minkowski frame for rþ → ∞).

1. Effective theory of the interior
of an evaporating black hole

As we have seen in Sec. III C, for an evaporating black
hole some of the ingoing zone modes are not excited in the
black hole vacuum; see, e.g., Eq. (3.44) and Fig. 4. Strictly
speaking, however, the coefficients of the terms involving
zone-mode states in which these modes are excited are not
exactly zero (though they are exponentially suppressed);
see footnote 16. We can therefore define the double-ket
states as in Eq. (5.4) for all fnαg and construct annihilation
and creation operators, Eqs. (5.11)–(5.14), for the second
exterior mode corresponding to any hard mode γ in the first
exterior.
Nevertheless, it is true that in the black hole vacuum

state, the hard-mode states in which these ingoing modes
are excited do not have sizable coefficients. We thus have to
use Eq. (5.4) in Eq. (3.44) instead of Eq. (3.40), and we
obtain

jΨAðMÞi ∝
Y

ᾱ∈ingoing
mΦ≲TH ;ω∼TH

bᾱ
X
n

Y
α0∈ingoing

ω>ω
ðlÞ
barrier

δnα0 ;0e
− En
2TH

× jfnαgikfnαgA⟫; ð5:17Þ

up to exponentially small corrections. We thus find that the
ingoing modes α0 with the frequency larger than the barrier
height are virtually not entangled with the corresponding
second exterior modes in the vacuum microstate.
This implies that the spacetime is not smooth across the

future horizon of the second exterior, or the past horizon of
the first exterior, since the missing entanglement is essential
for the connectedness of the spacetime there. The spacetime
region which the effective theory built on the state in
Eq. (5.17) describes is thus the shaded region in Fig. 11,
which we refer to as region K. Here, U and V are the
Kruskal-Szekeres coordinates erected at t ¼ t�:

ds2 ¼ −dUdV þ r2dΩ2
d−1; ð5:18Þ

which are given in the near horizon region by

�
U ¼ −Re−ω

V ¼ Reω;

�
U ¼ Re−ω

V ¼ Reω;�
U ¼ Re−ω

V ¼ −Reω;

�
U ¼ −Re−ω

V ¼ −Reω
ð5:19Þ

for Region I (U < 0, V > 0), Region II (U;V > 0), Region
III (U > 0, V < 0), and Region IV (U;V < 0), respec-
tively, with

R ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþjr − rþj

p
; ω ¼ 1

2rþ
ðt − t�Þ: ð5:20Þ

With the state given by Eq. (5.17), the interior of the black
hole is in the semiclassical vacuum in the infalling frame.
We now study in more detail how the interior region is

described in this effective theory. Let us first take the
Schrödinger picture (as we have implicitly been doing). We
want to understand what an object located in the zone and
falling toward the black hole will experience as it crosses
the horizon. An excited state with N particles in the zone
can be obtained by applying appropriate superpositions of
creation operators b†γ on a black hole vacuum state:

jΨðt ¼ t�Þi≡
YN
i¼1

�X
γ

fðiÞγ b†γ

�
jΨAðMÞi; ð5:21Þ

where jΨAðMÞi is the black hole vacuum microstate in
Eq. (3.44), and fðiÞ is the wave function of the i-th particle
represented in the γ space. This state can be straightfor-
wardly mapped to that in the effective theory—we simply
have to take jΨAðMÞi to be that in Eq. (5.17) instead of
Eq. (3.44). We denote this state in the effective theory by
jΨðτ ¼ 0Þi:

U V
singularity

edge of
the zone

t = t*

K

FIG. 11. The spacetime region K described by the effective
theory of the interior erected at a boundary (Schwarzschild)
time t ¼ t�.
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jΨðt ¼ t�Þi ↦ jΨðτ ¼ 0Þi; ð5:22Þ

by choosing the origin of the infalling time τ to match the
boundary time t ¼ t�.
The operators used to interpret a state in the effective

theory is given by bγ and b†γ in Eqs. (3.49) and (3.50) and
b̃Aγ and b̃A†γ in Eqs. (5.11) and (5.13). In particular, we can
form infalling mode operators out of superpositions of
these operators

aAξ ¼
X
γ

ðαξγbγ þ βξγb
†
γ þ ζξγb̃

A
γ þ ηξγb̃

A†
γ Þ; ð5:23Þ

aA†ξ ¼
X
γ

ðβ�ξγbγ þ α�ξγb
†
γ þ η�ξγb̃

A
γ þ ζ�ξγb̃

A†
γ Þ; ð5:24Þ

where ξ is the label in which the frequency ω with respect
to boundary time t is traded with the frequency Ω
associated with infalling time τ, and αξγ , βξγ , ζξγ , and
ηξγ are the Bogoliubov coefficients calculable using the
standard field theory method [54,55].36

To obtain the generator of infalling time evolution H̃, we
start from the generator of boundary time evolution

H ¼ Hsoft þ
X
γ

ωγb
†
γbγ þHintðfbγg; fb†γgÞ; ð5:26Þ

where Hsoft gives time evolution of the soft modes as well
as interactions between the hard and soft modes. The
infalling time evolution generator is then given by

H̃ ¼
X
ξ

Ωξa
A†
ξ aAξ þ H̃intðfaAξ g; faA†ξ gÞ; ð5:27Þ

where H̃intðfaAξ g; faA†ξ gÞ is determined by matching it with

Hintðfbγg; fb†γgÞ. The state in the effective theory evolves
as

jΨðτÞi ¼ e−iH̃τjΨðτ ¼ 0Þi: ð5:28Þ

Note that the generator in Eq. (5.27) contains a term that
involves both bγ and b̃Aγ operators, e.g., b†γ b̃Aγ0 , even in the
free part. Thus, it acts on the hard and soft (and far) modes
simultaneously, as can be seen in Eqs. (5.12) and (5.14).
The effective theory is defined with the initial state on Σ,

the zone at t ¼ t�, and its mirror in the second exterior Σ̃,
and the spacetime is not smoothly connected across the U
axis (or formally has an infinite energy shock wave along
the U axis). We can, therefore, trust results obtained using
the theory only in the region

K ¼ DðΣ ∪ Σ̃Þ ∩ fðU;VÞjV > 0g; ð5:29Þ

shown in Fig. 11, where DðXÞ represents the domain of
dependence of X. This is, however, all we need to describe
the fate of the fallen object. Note that here we consider the
fate of an object falling into a black hole in its semiclassical
vacuum. Also, if an object leaves the region DðΣ ∪ Σ̃Þ
before hitting the singularity, we can choose to erect an
effective theory at a different time such that the entire
trajectory of the object (until it hits the singularity) is
contained in the region described by the effective theory;
such a choice is always possible [21].
The description of the interior which is more along the

lines of a conventional quantum field theory treatment can
be obtained by adopting the Heisenberg picture [25]. With
the operators in Eqs. (5.23) and (5.24), quantum field
operators at τ ¼ 0 are given by

Φ̃Γðx; 0Þ ¼
X
s;Ω;L

ðfsðΩ;LÞφΩ;LðxÞaAξ

þ gsðΩ;LÞφ�
Ω;LðxÞaA†ξc Þ; ð5:30Þ

where we have decomposed index ξ into Γ, s, Ω, and L
which represent species, spin, frequency, and orbital
angular momentum quantum numbers, respectively, with
ξc representing the CPT conjugate of ξ. Here, fsðΩ;LÞ and
gsðΩ;LÞ are the standard factors providing Lorentz repre-
sentation of the field (Dirac spinors, polarization vectors,
etc), and φΩ;LðxÞ are the spatial wave functions, deter-
mined by matching Φ̃Γðx; 0Þ with quantum field operators
of the original theory at t ¼ t�.

37

The Heisenberg picture field operators can then be
defined as

Φ̃Γðx; τÞ ¼ eiH̃τΦ̃Γðx; 0Þe−iH̃τ; ð5:31Þ

where H̃ is given in Eq. (5.27). The quantities we are
interested in are the correlators

36For a massless scalar field, for example, Eq. (5.23) takes the
form

aAξ ¼ � i

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
ΩξTH

p Z
∞

0

dωγ

"
Ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−
ωγ
TH

q bγ þ
Ξ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

ωγ
TH − 1

q b†γ

−
Ξ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−
ωγ
TH

q b̃Aγ −
Ξffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e
ωγ
TH − 1

q b̃A†γ

#
ð5:25Þ

in the near horizon limit. Here, we have adopted the con-
tinuum notation for the sum over the frequency, and Ξ ¼
ðΩξ=2πTHÞ�

iωγ
2πTHΓð1� ωγ

2πiTH
Þ=jΓð1� ωγ

2πiTH
Þj is a pure phase.

The � symbol in these equations takes þ and − for ingoing
and outgoing modes, respectively.

37This match requires information of the coefficients in
Eqs. (5.23) and (5.24).
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hΦ̃Γ1
ðx1ÞΦ̃Γ2

ðx2Þ � � � Φ̃Γn
ðxnÞi

¼ Tr½ρ̃ð0ÞΦ̃Γ1
ðx1ÞΦ̃Γ2

ðx2Þ � � � Φ̃Γn
ðxnÞ�; ð5:32Þ

where xi ¼ fxi; τig, and ρ̃ð0Þ ¼ jΨðτ ¼ 0ÞihΨðτ ¼ 0Þj.
Since these are expectation values in the state at a fixed
time τ ¼ 0, we must adopt the in-in formalism rather than
the more conventional in-out formalism to calculate them.
This ultimately comes from the fact that the S-matrix
cannot be defined at the semiclassical level for an object
falling into a black hole.
Using the Schwinger-Keldysh method, Eq. (5.32) can be

written as a path integral over an appropriate closed time
contour with the boundary condition given by ρ̃ð0Þ. We can
also calculate it using perturbation theory in the canonical
in-in formalism. Note that fields in Eq. (5.32) need not be in
the interior of the black hole; they only need to be in the
region K. We can thus compute correlators between fields
inside and outside the horizon using Eq. (5.32).
In the construction of the effective theory described so

far, we have used an input from semiclassical theory to
determine the coefficients in Eqs. (5.23) and (5.24).
However, we expect that this is ultimately not needed.
In particular, we expect that these coefficients are deter-
mined (though not uniquely) by the requirement that the
generator H̃ can be written in the local form in terms of the
original quantum fields [22]; namely, when aAξ ’s in H̃ are

represented by bγ’s and b̃Aγ ’s which in turn are represented
by quantum fields and their canonical conjugates, H̃ takes a
local form in the first and emergent second exteriors. To
find the coefficients directly from the boundary theory, one
possibility is to use a physical probe to construct the
infalling Hamiltonian, along the lines of Refs. [147,148].
We leave a detailed study of these issues for the future.

2. State dependence and intrinsic ambiguity

The operators in the effective theory constructed so far,
b̃Aγ , b̃

A†
γ , aAξ , and aA†ξ , depended on the vacuum microstate,

indexed by A, on which the excited states are built. This
dependence, however, can be relaxed in such a way that a
single set of operators can describe an object in the zone
even if it is entangled arbitrarily with the vacuum micro-
states [25,30] (see also Ref. [32]).
The Hilbert space spanned by all the independent

vacuum microstates of a black hole of mass M is given by

M ¼
�XeStot

A¼1

aAjΨAðMÞi
����aA ∈ C;

XeStot
A¼1

jaAj2 ¼ 1

	
; ð5:33Þ

where Stot is given by Eq. (3.46). We consider a subspace of
M spanned by eSeff independent microstates

M̂¼
�XeSeff

A0¼1

aA0 jΨA0 ðMÞi
����aA0 ∈C;

XeSeff
A0¼1

jaA0 j2 ¼ 1

	
; ð5:34Þ

where Seff < Stot. By choosing the bases of M and M̂
appropriately, we can take fjΨA0 ðMÞig to be a subset of
fjΨAðMÞig, so hΨA0 ðMÞjΨB0 ðMÞi ¼ δA0B0 .
We now define the following operators associated with

the Hilbert subspace M̂

B̃γ ¼
XeSeff
A0¼1

b̃A
0

γ ; B̃†
γ ¼

XeSeff
A0¼1

b̃A
0†

γ ; ð5:35Þ

where b̃A
0

γ and b̃A
0†

γ are given by Eqs. (5.12) and (5.14).
These operators will work as desired if the excited states
obtained by acting b̃A

0
γ ’s and b̃A

0†
γ ’s on jΨA0 ðMÞi are

effectively orthogonal for different A0’s. In fact, we can
show that the algebra of these operators in the black hole
Hilbert space built on M̂, i.e., the space spanned by the
vacuum microstates of M̂ and the states in which these
microstates have been excited, is the same as that of the
mode operators in the second exterior of the corresponding
two-sided black hole, up to correction of order [25]

ϵ ¼ max

�
e
Emax
2TH

e
1
2
fSbhðMÞþSradg

;
e
Emax
2TH

þSeff

eSbhðMÞþSrad

	
; ð5:36Þ

where Emax is the maximum energy which an excitation can
carry in the semiclassical theory. Given that Emax ≪ M, we
find that the error is exponentially small for

Seff ≺ SbhðMÞ þ Srad ≈ Stot; ð5:37Þ

where the symbol ≺ here means that Seff is smaller
than SbhðMÞ þ Srad and that the fractional difference
between Seff and SbhðMÞ þ Srad is not exponentially small,
specifically

SbhðMÞ þ Srad − Seff ≫
Emax

2TH
: ð5:38Þ

Below, we use the symbols ≺ and ≻ to mean similar
relations.
Similarly, we can define infalling mode operators

Aξ ¼
X
γ

ðαξγbγ þ βξγb
†
γ þ ζξγB̃γ þ ηξγB̃

†
γÞ; ð5:39Þ

A†
ξ ¼

X
γ

ðβ�ξγbγ þ α�ξγb
†
γ þ η�ξγB̃γ þ ζ�ξγB̃

†
γÞ; ð5:40Þ

which act linearly in the black hole Hilbert space built on
M̂. Here, the coefficients αξγ , βξγ , ζξγ , and ηξγ are the same
as those in Eqs. (5.23) and (5.24). The matrix elements of
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products of Aξ and A†
ξ in the black hole Hilbert space

built on M̂, then, are the same as the corresponding field
theory values on the two-sided black hole background, up
to corrections suppressed by ϵ in Eq. (5.36).38

The existence of operators Aξ and A†
ξ allows us to erect

the effective theory such that the dependence of operators
on states is invisible in the effective theory. Suppose that the
state at t ¼ t� is an entangled state between semiclassical
excitations and black hole vacuum microstates

jΨðt�Þi ¼
XStot
A¼1

X
I

dAIðt�ÞjΨA;IðMÞi; ð5:41Þ

where jΨA;IðMÞi represents the state in which the semi-
classical excitation I exists on the black hole vacuum state
jΨAðMÞi. Even in this case, given that the logarithm of the
dimension of the excitation Hilbert space, Sexc, is much
smaller than Stot, we can write the state using the Schmidt
decomposition as

jΨðt�Þi ¼
XK
I¼1

gIjΨAðIÞ;IðMÞi; ð5:42Þ

where
PK

I¼1 jgIj2 ¼ 1, gI > 0, and K is the Schmidt
number. The point is that since K satisfies

K ≤ Sexc ≪ SbhðMÞ þ Srad; ð5:43Þ

M̂ can always be taken to contain the space of vacuum
microstates spanned by fjΨAðIÞðMÞijI ¼ 1;…;Kg. This
guarantees that the effective theory respects the standard
tenet of quantum mechanics that physical observables are
given by linear operators acting on the Hilbert space of the
theory.
Since Seff only needs to satisfy Eq. (5.37), one might

think that a single, fixed set of Aξ, A
†
ξ operators can cover

the states built on most of the black hole vacuum micro-
states in M of Eq. (5.33) by taking

Seff ¼ cfSbhðMÞ þ Sradg ð5:44Þ

with c close to (but not exponentially close to) 1. This is,
however, not the case. The dimension of the space M̂⊥
of vacuum microstates that are orthogonal to the states in
M̂ is

dimM̂⊥ ¼ eStot − eSeff ; ð5:45Þ

which is much larger than dimM̂ ¼ eSeff even for c close to
1. In fact, for c > 1=2, there is a simple relation between the
fraction of M which a fixed set of operators can cover and
the size of error for using these operators:

dimM̂
dimM

≈ ϵ: ð5:46Þ

This makes it clear that we cannot use a fixed set of
operators to cover a significant fraction of states in M
while keeping the error ϵ small. In fact, to cover all states in
M by fixed sets of operators, we need double exponentially
large number, OðeeStot−Seff Þ, of sets.39
Finally, we note that the construction of the effective

theory described here has an intrinsic ambiguity coming
from the fact that the actions of infalling mode operators are
not strictly orthogonal to M̂ in the space of black hole
microstates. Specifically, we find that the inner product
between states obtained by operating mode operators on
two vacuum microstates jΨAðMÞi and jΨBðMÞi reproduces
the field theory value multiplied by δAB, but with correc-
tions of order ϵ in Eq. (5.36) which are not proportional to
δAB. The existence of these exponentially suppressed
corrections means that an excited state cannot have an
exact and unambiguous association with a unique vacuum
microstate.
The fact that the corrections are only of order ϵ, however,

implies that up to these exponentially suppressed correc-
tions, the mode operators bγ , b

†
γ , B̃γ, B̃

†
γ , Aξ, and A†

ξ act
only on the excitation index I, and not on the vacuum index
A0. In other words, ignoring these corrections, the Hilbert
space can be viewed as

H ≈Hexc ⊗ ðHvac ≅ M̂Þ; ð5:47Þ

where these mode operators act only on Hexc, and an
excited state can be associated “uniquely” with a vacuum
microstate. The exponentially suppressed corrections dis-
cussed here constitute an intrinsic ambiguity of semi-
classical physics, resulting from the fact that the black
hole system (consisting of zone and horizon modes as well
as the relevant degrees of freedom of far modes) is finite
dimensional.

3. Consistency with the semiclassical expectation

Suppose that a falling object hits the stretched horizon at
t ¼ t� when viewed from the exterior. The object then
disappears from the zone, but this does not mean that the

38Precisely speaking, the operatorsAξ andA
†
ξ (and B̃γ and B̃

†
γ )

can be used for states built on a larger vacuum microstate space.
Specifically, the algebra of these operators is the same as the
corresponding semiclassical algebra in the space of black hole
states built on a typical state in subspace M̂0 of M as long as
dimðM̂0 ∩ M̂Þ≻ dimM̂0=2 [25].

39This is related to the well-known fact that in a Hilbert space
of dimension eS ≫ 1, there are OðeeSÞ approximately orthogonal
states with exponentially small overlaps of Oðe−S=2Þ.
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state immediately becomes the quasi-equilibrium form of
Eq. (3.44) with Eq. (3.42) at t ¼ t�; rather, it stays in a state
with excited horizon modes for a while. Now, consider that
we erect an effective theory of the interior shortly after t�:
t ¼ t� þ δt. In this case, the effective theory can have
semiclassical excitations in the interior reflecting the fact
that there is an object that has fallen into the horizon at t�.
These include everything that the object does to the
spacetime region described by the effective theory; in
particular, the excitations existing in the effective theory
need not be the object itself.40

On the other hand, if we erect an effective theory more
than one scrambling time after the last disturbance to the
stretched horizon, t ¼ t� þ Δt with Δt > tscr, then we
expect that the effective theory finds the semiclassical
vacuum in the interior, since the black hole state has already
equilibrated by then. (There can be zone mode excitations
corresponding to semiclassical objects in the zone.) Is this
consistent with the semiclassical expectation?
In Fig. 12, we show by the central blue diamond the

spacetime region described by the effective theory erected
at t ¼ t�, at which the object reaches the stretched horizon.
The coordinates U and V are given by Eqs. (5.19) and
(5.20). Now, consider the Kruskal-Szekeres coordinates Ũ
and Ṽ adapted to the effective theory erected at t ¼ t� þ Δt,
which are related to U and V by

Ũ ¼ Ue
1

2rþΔt; Ṽ ¼ Ve−
1

2rþΔt ð5:48Þ

(so that Ũ ¼ U and Ṽ ¼ V for Δt ¼ 0). The spacetime
region that can be described by this theory, depicted by the
red shaded region in Fig. 12 for Δt > 0, must thus satisfy

Ũ ≲ rz ¼ OðrþÞ ⇒ U ≲ rþe
− 1
2rþΔt: ð5:49Þ

It is then clear that the object that fell into the horizon at
t ¼ t� spends only tiny proper time in this region, given by

Δτ ≲ rþe
− 1
2rþΔt: ð5:50Þ

Since holography limits the maximum amount of informa-
tion an object can handle to be ofOð1Þ per Planck time, this

implies that the object cannot cause any physical effect in
an effective theory erected after t ¼ t� þ Δtmax, with

Δtmax ¼ 2rþ ln
rþ
lP

; ð5:51Þ

where the expression is reliable up to fractional corrections
of order 1= lnðrþ=lPÞ. Comparing this with the scrambling
time in Eq. (5.3), we find that the picture is indeed
consistent with what we expect from semiclassical theory.

4. Young black hole and the role of the Page time

The construction of the effective theory described so far
applies to a black hole of any age. However, if the black hole
is young, i.e., if it is not maximally entangled with other
systems, then we can have an alternative construction in
which the b̃Aγ and b̃

A†
γ operators act only on soft-mode states,

without involving far mode degrees of freedom [23,25].
This is done by projecting operators in Eqs. (5.11) and

(5.13) on the space of soft-mode states using the Petz map
[149,150]. Specifically, we can take

b̃Aγ ¼ σ−1=2
�X

a

hϕaj
�X

n

ffiffiffiffiffi
nγ

p kfnα − δαγgA⟫

× ⟪fnαgAk
�
jϕai

�
σ−1=2; ð5:52Þ

b̃A†γ ¼ σ−1=2
�X

a

hϕa

�����X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p kfnα þ δαγgA⟫

× ⟪fnαgAk
�
jϕai

�
σ−1=2: ð5:53Þ

Here,

U V

singularity

edge of
the zone

t = t*

t = t*+ t

FIG. 12. The spacetime regions described by effective theories
erected at t ¼ t� (blue) and t ¼ t� þ Δt with Δt > 0 (red). The
black arrow indicates a falling object that reaches the stretched
horizon at t ¼ t�.

40Suppose, for example, that the object hits the stretched
horizon at t ¼ t� with almost the speed of light. Then, the object
will not appear in the effective theory erected at t ¼ t� þ δt, since
it is squeezed into the U axis so strongly that it cannot exist in the
effective theory, a theory that cannot describe physics below the
Planck length. Even in this case, however, the object may emit a
high energy quantum in the outward direction shortly after it
crosses the horizon. The quantum would then have to appear in
the effective theory as a signal emerging from somewhere on the
U axis to the positive V direction, if δt is sufficiently small. (This
modification of the boundary condition along the U axis must
occur though a map of horizon excitations in the microscopic
theory to the effective theory, which requires a UV physics.)

BLACK HOLE AND DE SITTER MICROSTRUCTURES FROM A … PHYS. REV. D 107, 026016 (2023)

026016-35



σ ¼
X
a

hϕaj
�X

n

kfnαgA⟫⟪fnαgAk
�
jϕai; ð5:54Þ

and kfnαgA⟫’s are given by Eq. (5.4). Note that b̃Aγ , b̃
A†
γ ,

and σ are operators acting only on the space of soft-mode
states. Infalling mode operators acting only on the hard and
soft modes can then be constructed by substituting these b̃Aγ
and b̃A†γ in Eqs. (5.23) and (5.24).
The algebra of the above mode operators in the black

hole Hilbert space, i.e., the space obtained by acting mode
operators on the vacuum state in Eq. (3.44), follows that of
semiclassical theory up to errors of order

ϵyoung ¼ max

�
1

e
1
2
SbhðMÞ ;

eSrad

eSbhðMÞ

	
: ð5:55Þ

Therefore, if the black hole is young, i.e., Srad < SbhðMÞ,
then the operators b̃Aγ and b̃A†γ in Eqs. (5.52) and (5.53) as

well as aAξ and aA†ξ constructed using them can be used to
describe the interior of the black hole (up to corrections
suppressed exponentially in a macroscopic entropy). This
elucidates the role of the Page time in constructing the
effective theory: if a black hole is young, then interior
operators can be represented purely using the black hole
degrees of freedom (i.e., zone and horizon modes), while if
it is old, then the operators must involve the early Hawking
radiation (i.e., far modes).
The promotion of b̃Aγ , b̃

A†
γ , aAξ , and aA†ξ operators to act

linearly in M̂ can be made similarly as before. In particular,
errors of the promoted operators are of order

ϵ̂young ¼ max

�
1

e
1
2
SbhðMÞ ;

eSradþSeff

eSbhðMÞ

	
; ð5:56Þ

so that these operators work correctly as long as

Seff ≺ SbhðMÞ − Srad: ð5:57Þ

This agrees with the result of the general analysis in
Ref. [30].
Incidentally, in the way of constructing an effective

theory of the interior described here, operators b̃Aγ and b̃A†γ
cannot be represented using only far modes, even if the
black hole is old. Namely, unlike Eqs. (5.52) and (5.53),
projecting operators in Eqs. (5.11) and (5.13) on the space
of far-mode states does not work. Technically, this is
because of the energy constraint imposed on the black
hole, i.e., the combined system of zone and horizon modes.
The relation of this statement to entanglement wedge
reconstruction, in which the interior of an old black hole
is reconstructed only using the early Hawking radiation,
will be discussed below.

5. Relation to entanglement wedge reconstruction

As we have seen, operators in our effective theory
describing the interior must involve horizon degrees of
freedom, regardless of the age of the black hole. On the
other hand, the analysis [33–37] based on holographic
entanglement wedge reconstruction [151–156] says that
after the Page time operators acting on early radiation are
sufficient to reconstruct a portion of the black hole interior.
What is the relation between these two statements?
A key ingredient to understanding this is the boundary

time evolution [24]. In general, entanglement wedge
reconstruction assumes that we know the time evolution
operator of the boundary theory; in models discussed in
Refs. [33–37], for example, the Hamiltonian of a system
consists of boundary conformal field theory as well as an
auxiliary theory coupling to it. With this knowledge, one
can reconstruct the state of some of the horizon modes at
t ¼ th from the state of the radiation at t ¼ tR if

tR > th þ tscr: ð5:58Þ

Note that as discussed in Sec. III B, the notion of zone,
horizon, and far modes is associated with a specific time t,
so that a component of a horizon mode at some time can
become a far mode at a later time.
A detailed way in which the reconstruction described

above works was discussed in Ref. [24]. It is essentially the
Hayden-Preskill protocol [52] applied to the horizon and
zone modes. Recall that zone modes at t ¼ th − tsig either
become horizon modes (for ingoing modes) or far modes
(for outgoing modes) by t ¼ th. Here, tsig ≈ jr�sj is the
signal propagation time: the time it takes for a massless
quantum to propagate from the stretched horizon to the
edge of the zone. Hence, radiation at tR satisfying
Eq. (5.58) can reconstruct some of the zone modes. In
fact, we can arbitrarily choose which zone modes to
reconstruct, and we can take them to be hard modes.
This implies that radiation at t ¼ tR can reconstruct an
object in the interior of the effective theory erected at
t ¼ t� if

t� < tR − tscr − tsig ð5:59Þ

and t� þ tscr > tPage. In other words, an object in the black
hole interior can be reconstructed from radiation at t ¼ tR if
it exists in the inner wedge of the stretched horizon at

t ¼ tR − tscr; ð5:60Þ

assuming tR > tPage. This is sketched in Fig. 13(a). The
entanglement island, I rad, of the radiation, RðtRÞ, repre-
sents the spacetime region in which some information
about the region is reconstructed. Thus, its edge, i.e., the
minimal quantum extremal surface for RðtRÞ, is located
near the stretched horizon at t ¼ tR − tscr. Given that the

MURDIA, NOMURA, and RITCHIE PHYS. REV. D 107, 026016 (2023)

026016-36



discussion for reconstruction here is intrinsically semi-
classical, and hence does not have a precision of resolving
the Planck scale, this is consistent with what was found in
Refs. [33–35].
We stress that while the entanglement island I rad repre-

sents the interior region which one can reconstruct from the
radiation RðtRÞ, the amount of information that can be
reconstructed, or the size of code subspace [106,107] one
can construct, depends on the location in this region.
Suppose one wants to reconstruct an interior object that
has a significant amount of information, say having
(coarse-grained) entropy Sobj. Then, the radiation must
contain the corresponding amount of information. This
modifies Eqs. (5.59) and (5.60) to

t� < tR − tscr − tsig −
Sobj
TH

ð5:61Þ

and

t ¼ tR − tscr −
Sobj
TH

; ð5:62Þ

where tR must satisfy tR > tPage þ Sobj=TH. This feature
inherits from the use of the Hayden-Preskill protocol, and
more fundamentally boundary time evolution, in the
reconstruction. Because of the scrambling and quantum
error correcting nature of black hole dynamics, one can
arbitrarily choose which information to reconstruct [52],
but the amount of information to be reconstructed is
bounded from above by

Sobj ≤ THðtR − tscr − vobjÞ; ð5:63Þ

where vobj is the ingoing Eddington-Finkelstein time v at
the location of the object, chosen so that v ¼ t at the
stretched horizon. This is represented by the gradation of
the red shade in Fig. 13(a).
The discussion above makes it clear that entanglement

wedge reconstruction is nothing but the statement of
unitarity as viewed from the exterior. Indeed, the entangle-
ment island of radiation after the black hole is fully
evaporated can be viewed as the entire interior; see
Fig. 13(b).41

The understanding of entanglement wedge reconstruction
described above also elucidates why an operator acting
only on radiation RðtRÞ, in particular a unitary operator
representing a physical manipulation of RðtRÞ, can affect
the interior of a black hole I rad in a seemingly acausal
manner. In the manifestly unitary picture adopted so far in
this paper, based on an external view of the black hole, an
excitation X in the interior I rad is, in fact, “located” in the
zone and/or stretched horizon at t < tR (and possibly in the
early radiation as well for an old black hole), which is
timelike separated from RðtRÞ. There is, therefore, no
a priori reason why the operator generating X commutes
with operators acting on the radiation at t ¼ tR. In
particular, an operator OR acting on RðtRÞ can be a
“precursor” [157,158] of X; i.e., when evolved backward
in time,OR induces a change of the state of an object falling
into the black hole at an earlier time, which changes the
interior of the black hole.

FIG. 13. (a) Radiation at t ¼ tR, RðtRÞ, contains information about some of the horizon and zone modes at t < tR − tscr − tsig. This
allows us to reconstruct a portion I rad of the interior spacetime corresponding to the inner wedge of the stretched horizon at t ¼ tR − tscr.
The amount of information that can be reconstructed, however, depends on the location of an object in ingoing time, which is indicated
by the gradation of the red shade. (b) Radiation after the black hole is fully evaporated, Rðt > tevapÞ, allows for reconstruction of the full
interior region.

41Strictly speaking, the existence of an island in this case is not
rigorously established, since its edge cannot be obtained as a
surface that is quantum extremized in the regime in which a
semiclassical description is valid. However, from physical con-
sideration as well as continuity of I rad in t, we expect that RðtÞ
(t > tevap) has the entire interior region as the “island.”
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On the other hand, in the global spacetime picture of
general relativity, it is still true that radiation at t ¼ tR is
spacelike separated from the interior region I rad. This raises
the question of why there can be any unitary operator acting
on RðtRÞ which affects I rad, without completely jeopard-
izing the intuition coming from the semiclassical, global
spacetime picture. This issue was studied in Ref. [159], in
which it was argued that if the dynamics of a black hole is
sufficiently complex (e.g., leading to a pseudorandom
state), then the information about the interior I rad cannot
be accessed by any simple operator acting on RðtRÞ which
does not have exponential computational complexity. This
reproduces the causality of the semiclassical theory, assum-
ing that it represents only a feature of simple operations
performed on the system in each observer frame.
In the present context, the required complexity arises

from the dynamics of the stretched horizon as viewed from
the exterior of the black hole. Note that the time t� at which
the effective theory describing I rad is erected must satisfy
Eq. (5.61). This implies that ingoing zone modes (as well as
most of the horizon modes) at t ¼ t� must go through the
complex horizon dynamics before they become radiation
modes at t ¼ tR. In particular, this is true for the ingoing
hard modes for any choice of hard modes describing the
object carrying the entropy Sobj. The semiclassical picture
emerging from our framework, therefore, respects causal-
ity, at least in the sense of Ref. [159].
In entanglement wedge reconstruction, reconstructing

the interior on a Hawking radiation state involves backward
time evolution, so that the resulting boundary operators
acting on the radiation degrees of freedom are highly
fragile; i.e., a small deformation of the operators destroys
the success of the reconstruction. In the case of the effective
theory, on the other hand, interior operators are given
simply by Eqs. (5.12), (5.14), (5.23), and (5.24) in terms of
hard, soft, and far mode operators at time t�, which can be
obtained easily in the boundary theory from the structure of
entanglement of the whole state at t ¼ t�, if such a state is
given.42 In this “equal-time” conversion between the distant
and infalling descriptions, which use modes at a given time
t� directly, there is no upper limit on the amount of
information about the infalling object described, such as
that in Eq. (5.63); the only restriction on the size of the
object is the one coming from the validity of the semi-
classical picture.

B. The outside of a de Sitter static patch

A construction analogous to the black hole interior can
be applied to a state describing de Sitter spacetime [22]. As
we have argued in Sec. IV B, a microstate representing
empty de Sitter spacetime consists of the state of the “zone
modes” inside a static patch as well as that of the horizon
modes. Thus, by choosing a subset of the zone modes as
hard modes, it can be written in the form of Eq. (3.34) with
SðE − EnÞ → SdSðE − EnÞ. Here, SdSðEÞ is given by
Eq. (3.27), and E is the “energy” given in terms of the
Hubble radius α by E ¼ α=l2P; see Eq. (3.16). As in the case
of a black hole, we can define the “double-ket” states using
soft modes

kfnαgA⟫ ¼ ςAn
XeSdSðE−EnÞ

in¼1

cAnin jψ
ðnÞ
in
i; ð5:64Þ

where A ¼ 1;…; eSsys , and ςAn is the normalization constant

ςAn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
eSdSðE−EnÞ
in¼1 cA�ninc

A
nin

q ¼ ffiffiffi
z

p
e

En
2TH ½1þOðe−1

2
SdSðE−EnÞÞ�;

ð5:65Þ

where TH ¼ 1=2πα, and z is given by Eq. (3.31). In terms
of these states, the de Sitter vacuum microstate can be
rewritten as

jΨAðEÞi ¼
1ffiffiffi
z

p
X
n

e−
En
2TH jfnαgikfnαgA⟫: ð5:66Þ

Since the state jfnαgi is specified by the occupation
numbers nα of modes inside the stretched horizon of a static
patch, which we refer to as the polar region here, the
thermofield double state in Eq. (5.66) represents a vacuum
state at τ ¼ 0 of global de Sitter spacetime of which the
original static patch is a portion. Here, τ is global de Sitter
time, or time associated with closed slicing. This implies
that kfnαgA⟫ should be identified as the state of the other
hemisphere of the static patch at τ ¼ 0. States in which
modes in the polar region are excited or deexcited are those
obtained by acting corresponding creation operators
Eq. (3.50) or annihilation operators Eq. (3.49), respectively,
to a de Sitter vacuum microstate.43 These states are
naturally mapped to excited states in the effective theory
built on Eq. (5.66).
As in the case of a black hole, we can introduce

annihilation and creation operators for modes in the other
hemisphere in the effective theory as

42A specific construction can go as follow. We can fist
construct zone mode operators bγ and b†γ using the HKLL
procedure [11,12,114] or its extension [16]. We can then expand
the full state jΨðt�Þi at t ¼ t� in terms of the eigenstates of
number operators b†αbα’s and identify the kfnαg⟫ states asso-
ciated with jΨðt�Þi. This allows us to define b̃γ and b̃†γ operators
acting on kfnαg⟫’s, and hence infalling operators aξ and a†ξ
through Eqs. (5.23) and (5.24). The effective theory of the interior
(erected at t ¼ t�) can then be obtained using the generator H̃ of
time evolution, given in Eq. (5.27).

43Deexcited states become relevant if Gibbons-Hawking radi-
ation is extracted by a material.
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b̃Aγ ¼
X
n

ffiffiffiffiffi
nγ

p
ςAn−γ ς

A�
n

XeSdSðE−En−γ Þ

in−γ¼1

XeSdSðE−EnÞ

jn¼1

cAn−γin−γ c
A�
njn

× jψ ðn−γÞ
in−γ

ihψ ðnÞ
jn
j; ð5:67Þ

b̃A†γ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p
ςAnþγ

ςA�n
Xe

SdSðE−Enþγ Þ

inþγ¼1

XeSdSðE−EnÞ

jn¼1

cAnþγ inþγ
cA�njn

× jψ ðnþγÞ
inþγ

ihψ ðnÞ
jn
j; ð5:68Þ

which can be used to form annihilation and creation
operators for global time slicing

aAξ ¼
X
γ

ðαξγbγ þ βξγb
†
γ þ ζξγb̃

A
γ þ ηξγb̃

A†
γ Þ; ð5:69Þ

aA†ξ ¼
X
γ

ðβ�ξγbγ þ α�ξγb
†
γ þ η�ξγb̃

A
γ þ ζ�ξγb̃

A†
γ Þ; ð5:70Þ

where ξ is the label in which the frequency ω with respect
to static time t is traded with the frequency Ω associated
with global time τ, and αξγ, βξγ , ζξγ , and ηξγ are the
Bogoliubov coefficients (which, of course, differ from the
black hole case). The correspondence between the black
hole and de Sitter cases is summarized in Table I. Note
that for de Sitter spacetime, there is no region correspond-
ing to the region outside the zone of an evaporating
black hole.
Physical quantities in global de Sitter spacetime can be

calculated using the global time evolution operator

UðτÞ ¼ e−iH̃τ; ð5:71Þ

where

H̃ ¼
X
ξ

Ωξa
A†
ξ aAξ þ H̃intðfaAξ g; faA†ξ gÞ: ð5:72Þ

In the Heisenberg picture, this can be done by evolving
quantum fields Φ̃aðx; 0Þ formed from aAξ and aA†ξ at
τ ¼ 0 as

Φ̃aðx; τÞ ¼ UðτÞ†Φ̃aðx; 0ÞUðτÞ ð5:73Þ

and sandwiching their products by the state jΨðτ ¼ 0Þi
of the effective theory at τ ¼ 0 obtained by matching
with the state of the microscopic theory at t ¼ 0.
(jΨðτ ¼ 0Þi ¼ jΨAðEÞi if the system is in the semiclassical
vacuum.) In the Schrödinger picture, the state must be
evolved with UðτÞ while Φ̃aðx; 0Þ are inserted at inter-
mediate stages of the evolution.
The promotion of operators to a less state-dependent

form can be made in a similar way to the back hole case,
Eqs. (5.35), (5.39), and (5.40). The analysis of errors of
operator algebras can be performed similarly. In particular,
the global description in the effective theory has an intrinsic
error of order

ϵ ¼ max

�
e
Emax
2TH

e
1
2
SGH

;
e
Emax
2TH

þSeff

eSGH

	
; ð5:74Þ

where SGH is the Gibbons-Hawking entropy, Emax is the
maximum energy that an excitation can carry in the
effective theory, and Seff represents the size of the micro-
scopic Hilbert space covered by the promoted operators, as
defined in Eq. (5.34).
Like the case of a black hole, the effective theory of

global de Sitter spacetime is intrinsically semiclassical in
that the algebra of operators in the theory is defined only up
to an uncertainty of e−SGH=2. This is consistent with the
observation in Ref. [59] that symmetries of classical de
Sitter spacetime cannot be implemented exactly in a finite-
dimensional Hilbert space.

1. Consistency with the semiclassical expectation

Suppose an object hits the stretched horizon in the static
patch description at some time t ¼ tobj. The state shortly
after it will not take the form of Eq. (3.34) with random cAnin
which leads to the vacuum state of Eq. (5.66). Instead, it
stays in an excited state for a while, reflecting the existence
of an object just outside the horizon. In the effective theory,
this is represented as the existence of an excitation in the
other hemisphere at τ ¼ 0. Such an excitation has a
physical significance, since we can retrieve (a part of)
information about it if the system leaves the de Sitter phase
after t ¼ tobj, e.g., by tunneling into a Minkowski vacuum;
see Fig. 14.

TABLE I. Correspondence between an evaporating black hole and cosmological de Sitter spacetime.

Evaporating black hole Cosmological de Sitter spacetime

Microscopic level

( Zone region Polar region
Stretched horizon Stretched horizon

Far region � � �
Effective theory

�
Two-sided black hole Global de Sitter spacetime
The second exterior The other hemisphere
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According to the static patch description, the system is
expected to relax into an equilibrium state of the form of
Eq. (3.34) when one scrambling time44

tscr ¼ α

�
ln

α

lP
þOð1Þ

�
ð5:77Þ

has passed after the object hits the stretched horizon. This
implies that if we erect the effective theory at t� > tobj þ tscr,
then the effective theory sees the vacuum in the other
hemisphere. Is this consistent with the semiclassical
expectation?

In Fig. 15, we depict the Penrose diagram of the situation
in which an object hits the stretched horizon at tobj, and a
Minkowski bubble is nucleated at the location of the
observer, r ¼ 0, at t ¼ tobj þ Δt. We expect that if
Δt > tscr, the observer cannot receive any information
from the object, since then the effective theory erected at
t ¼ tobj þ Δt will not have an excitation in the other
hemisphere of the effective global de Sitter spacetime,
and so there is nothing that can send a signal to the
observer. From the viewpoint of the object, this implies that
it cannot send any signal to the observer after it crosses the
t ¼ tobj þ Δt hypersurface.
This is indeed consistent with what semiclassical theory

implies. We can show that in order for the signal to reach
the Minkowski bubble, and hence the observer, the object
must send it within the proper time

τobj ≲ lP ð5:78Þ

after it crosses the t ¼ tobj þ Δt hypersurface, but this is not
possible because the holographic principle does not allow
for the object to send physical information within lP.
Incidentally, this conclusion does not change even if the
object is accelerated toward r ¼ 0 after it crosses the

r = 0

t = t*

Minkowski
bubble

effective global de Sitter spacetime

static
patch

FIG. 14. Information outside the static patch in the effective
theory can be retrieved if the system leaves the de Sitter phase at a
later time, for example by tunneling into a Minkowski bubble
universe.

FIG. 15. An object falling into the stretched horizon at t ¼ tobj
can try to send a physical signal to the observer at r ¼ 0 who
enters a Minkowski bubble nucleated at r ¼ 0 at t ¼ tobj þ Δt.
The holographic static-patch description of de Sitter spacetime
suggests that this is not possible ifΔt is larger than the scrambling
time tscr. This expectation is consistent with the semiclassical
picture, since for Δt > tscr the object would have to send the
signal within proper time τobj ≲ lP, which is not possible.

44To obtain this expression, we can consider an analogue of
ingoing Eddington-Finkelstein time in de Sitter spacetime,
v ¼ t − r�, and use the general expression for scrambling time
to obtain

vscr ¼
1

2πTH
ln SdS ≈ 2α ln

α

lP
: ð5:75Þ

The scrambling time in static time is then

tscr ¼ vscr − r�s ≈ α ln
rþ
lP

; ð5:76Þ

where we have used r�s ≈ α lnðrþ=lPÞ, obtained from Eq. (2.28)
by identifying ls with lP.
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stretched horizon, as long as the invariant acceleration is
smaller than Oð1=lsÞ.45

2. Schwarzschild de Sitter spacetime

Our analysis applies straightforwardly to a Schwarzschild
de Sitter spacetime which has a black hole of radius rbh
(centered at r ¼ 0) in de Sitter spacetime of radius rdS, as
long as rbh is sufficiently smaller than rdS. (The case inwhich
rbh and rdS are comparable is analogous to the case of a near
extremal black hole, which we do not consider in this paper.)
Specifically, if rbh ≪ rdS, the black hole can be viewed

as a small excitation for the purpose of erecting the effective
theory outside the de Sitter horizon, so that the construction
described so far goes through without significant modifi-
cations. The situation is similar for the effective theory of
the black hole interior. A notable thing is that if the black
hole is old enough that it is maximally entangled and that
the majority of emitted Hawking radiation has reached the
stretched de Sitter horizon, then operators describing the
black hole interior must involve degrees of freedom
associated with the de Sitter horizon.

VI. INTRINSICALLY EXTENDED SPACETIMES

So far, we have been considering “realistic,” single-sided
systems and seen how the effective two-sided pictures
emerge as collective phenomena associated with the
stretched horizon degrees of freedom. However, there is
nothing theoretically wrong in considering “intrinsically
two-sided” systemswhich involve two copies of holographic
theories discussed so far. In fact, such systems have been
considered in various contexts in black hole [160–171] and
de Sitter [43–48,172–177] physics.
In this section, we discuss how such intrinsically two-

sided systems can be understood in the framework
described so far. In particular, we will see how these and
single-sided systems lead to similar semiclassical physics,
despite the fact that states in the two cases have rather
different structures at the microscopic level. While we
focus here on the two-sided case for a black hole, we expect
it is relatively straightforward to extend it to black holes
with more than two exterior regions [178].

A. Two-sided eternal black hole

Let us consider a static, two-sided eternal black hole.
Strictly speaking, for a finite black hole mass, this system
exists only as a large AdS black hole, but we can imagine
that a two-sided black hole in asymptotically flat spacetime

also behaves in approximately the same manner if it is
sufficiently large compared with the scale that we are
interested in.
We specifically consider a thermofield double state

which is prepared by the Euclidean path integral over a
half of the time compactified on a circle of length β [160].
In the context of the AdS=CFT correspondence, this is a
thermally entangled state of two CFTs. Similar to the case
of a single-sided black hole, we divide modes in each side
of the black hole into zone and horizon modes at the state
preparation time, which we refer to as t ¼ 0.46 We then
have four classes of modes, i.e., zone and horizon modes in
both (right and left) sides of the black hole.
Assuming that the two sides of the black hole have the

same microscopic structure (which corresponds to the case
that the two CFTs are the same), the black hole vacuum
state at t ¼ 0 as viewed from the exterior is given by

jΨðMÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
μ0e

−βEμ0
q X

μ

e−
β
2
Eμ jμiRjμiL; ð6:1Þ

where jμiR represent energy eigenstates of the holographic
theory describing the right side with energy Eμ and
similarly for jμiL. The mass M of the black hole is related
to β by a smoothness condition for spacetime [179]:

M ¼ rþ
2l2P

�
1þ r2þ

L2

�
; β ¼ 4πrþL2

3r2þ þ L2
; ð6:2Þ

where L is the AdS length. In the context of holography,
this relation can be viewed as arising from the requirement
that the boundary spacetime can be smoothly extended to
the bulk spacetime [180].
We note that the state jΨðMÞi has exactly zero energy

under the two-sided (modular) HamiltonianH ¼ HR −HL,
which is possible because the system is static under time
evolution generated by H.47 This time evolution corre-
sponds to Schwarzschild time evolution in a single-sided
black hole; see Eq. (5.15).
In general, the energy eigenstates jμiR do not agree with

the number eigenstates of the zone and horizon modes for
the right side (and similarly for the left side). However, to
describe the dynamics of a zone mode that has energy
E≳ 1=β ¼ TH, this issue can be ignored. Consider,
for example, a zone mode of energy ∼E localized at r̄�
in the zone and having a Gaussian tale of the form
∼e−Oð1ÞE2ðr�−r̄�Þ2 . The correction arising from the existence
of the stretched horizon to the quantum theory of matter on

45Note that here we have considered the case in which the
system was in a metastable de Sitter phase before entering a
Minkowski phase. We expect that the situation is different if the
earlier, de Sitter phase is only approximate in that there is
noticeable time dependence of background spacetime, as in the
case of slow-roll inflation. A different analysis will be needed for
such cases.

46For a large AdS black hole, we define zone modes to be all
the modes other than horizon modes defined as in Sec. III B.

47We can extend the state in Eq. (6.1) to the case in which two
CFTs are different. In this case, the state must have some, though
exponentially small, energy uncertainty, reflecting the fact that
the spectra of the two CFTs are not identical.
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classical black hole background is then suppressed by the
exponential of E2ðr̄� − r�;sÞ2. This implies that the effect of
the deviation of zone-mode states from the thermofield
double form coming from their interactions with the
stretched horizon is negligible compared with the factor
of e−βE=2 if the mode is sufficiently hard (E ≫ 1=β) or
away from the stretched horizon (r̄� − r�;s ≫ β).
We now take a subset of the zone modes on the right side

as right-side hard modes, whose state we denote by jniR.
Here, n ¼ fnαg represents the set of occupation numbers of
these modes. The corresponding zone modes on the left
side are then left-side hard modes, whose state is jniL. The
rest of the modes on the right and left sides are right- and
left-side soft modes, respectively, whose states we denote
by jψ iiR and jψ iiL. Here, the index i runs over all soft-
mode states, not just those in a specific energy window,
since we no longer impose the energy constraint for modes
on one side.
The state in Eq. (6.1) can then be approximated, for the

purpose of describing the dynamics of hard modes, as

jΨðMÞi≈ 1ffiffiffiffi
Z

p
X
n

X
i

e−
β
2
ðEnþEiÞjniRjψ iiRjniLjψ iiL; ð6:3Þ

where En and Ei are the energies carried by jniR and jψ iiR
defined with respect to H (or HR), and

Z ¼
X
n

X
i

e−βðEnþEiÞ: ð6:4Þ

We can then build an effective theory of the interior on the
vacuum microstate of Eq. (6.3).48

It is important to realize that the microscopic entangle-
ment structure of jΨðMÞi in Eq. (6.3) is different from that
of a microstate of a single-sided black hole, which takes the
form of Eq. (3.28) (ignoring the entanglement with far
modes). In particular, in Eq. (6.3), the hard modes on the
right side, which we identify as “our” side, are entangled
directly with those on the left side, while in Eq. (3.28) they
are entangled with the soft modes on the same side.
The way in which the thermal nature is introduced is also

different in two setups. In Eq. (6.3), the Boltzmann factors
are introduced already at the microscopic level, while in
Eq. (3.28) the coefficients take random values, and the
Boltzmann factors for the hard modes arise only sta-
tistically after tracing out the soft modes; see Eq. (3.37).
In the case of the two-sided black hole, tracing out the left
side gives

ρR ¼ 1

Z

X
n

X
i

e−βðEnþEiÞjniRjψ iiR RhnjRhψ ij: ð6:5Þ

Further tracing out the soft modes lead to

ρR;hard ¼
1

z

X
n

e−βEn jniRRhnj; ð6:6Þ

where z ¼Pn e
−βEn . At the microscopic level, the two-

sided black hole is a model of a single-sided black hole
only in the sense that Eq. (6.6) takes the same form
as Eq. (3.37).
Excited states in which there are objects in the right

exterior (our side) of the black hole are obtained by acting
with the annihilation/creation operators

bRγ ¼
X
n

ffiffiffiffiffi
nγ

p jfnα − δαγgiRRhfnαgj; ð6:7Þ

b†Rγ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p jfnα þ δαγgiRRhfnαgj ð6:8Þ

on the vacuum state in Eq. (6.3). As in the case of a
single-sided black hole, describing the interior requires
time evolution operator other than that generated by
H ¼ HR −HL. The appropriate generator H̃ can be con-
structed using annihilation/creation operators acting on left-
side hard modes

bLγ ¼
X
n

ffiffiffiffiffi
nγ

p jfnα − δαγgiLLhfnαgj; ð6:9Þ

b†Lγ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p jfnα þ δαγgiLLhfnαgj ð6:10Þ

as

H̃ ¼
X
ξ

Ωξa
†
ξaξ þ H̃intðfaξg; fa†ξgÞ; ð6:11Þ

where

aξ ¼
X
γ

ðαξγbRγ þ βξγb
†
Rγ þ ζξγbLγ þ ηξγb

†
LγÞ; ð6:12Þ

a†ξ ¼
X
γ

ðβ�ξγbRγ þ α�ξγb
†
Rγ þ η�ξγbLγ þ ζ�ξγb

†
LγÞ ð6:13Þ

are infalling mode operators with the coefficients αξγ , βξγ ,
ζξγ , and ηξγ taking the same values as those in Eqs. (5.23)
and (5.24) for near horizon modes. The reason why the
construction here need not involve soft modes is that the
black hole vacuum state given in Eq. (6.3), in fact, factors
into hard-mode and soft-mode parts:

48In this particular case, we can take the hard modes to be the
entire zone modes, though this is not the case in general.
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jΨðMÞi ≈
�

1ffiffiffi
z

p
X
n

e−
β
2
En jniRjniL

�

×

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
je

−βEj

q X
i

e−
β
2
Ei jψ iiRjψ iiL

!
; ð6:14Þ

so that the soft-mode piece can simply be ignored. Note that
unlike the construction in Refs. [169,170], we do not claim
that the generator H̃ of infalling time evolution can be
represented purely on the right operators.49 The evolution
with H̃ in Eq. (6.11) allows us to describe the semiclassical
physics in the domain of dependence of the union of zones
on both sides at t ¼ 0.
This erection of the effective theory without involving

soft modes is essentially nothing other than the construc-
tion of the semiclassical theory from the beginning. The
unknown UV physics, including the effect of ignoring
horizon modes, is reflected in the choice of the vacuum in
the effective theory. For example, for a large AdS black
hole in thermal equilibrium with the ambient AdS space-
time, the correct choice for typical soft-mode states is the
Hartle-Hawking vacuum. This choice, however, cannot be
derived from the low energy consideration alone.
We note that our starting point of Eq. (6.1) involves

a choice of time. Suppose we evolve the state jΨðMÞi
under the full, microscopic Hamiltonian HR þHL

50:

jΨðMÞi → e−iðHRþHLÞtjΨðMÞi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
μ0e

−βEμ0
q X

μ

e−ð
β
2
þ2itÞEμ jμiRjμiL: ð6:15Þ

In general, this state is not equivalent to jΨðMÞi; the phases
on the right-hand side have a physical meaning. For
example, as t increases from 0, the maximal interior volume
of a spatial surface anchored to the boundaries at time t
grows, although for t≳ eSBH the mixing between the hard
and soft modes becomes so important that the naive
semiclassical picture of interior volume grow ceases to
apply [181].
In the two-sided state in Eq. (6.3), the von Neumann

entropy of the right side is given by

SR ¼ −Tr½ρR ln ρR�

¼
X
n

X
i

e−βðEnþEiÞ

Z
½βðEn þ EiÞ þ lnZ�; ð6:16Þ

where ρR is given by Eq. (6.5). Approximating that the
density of states of the soft modes does not depend on Ei
and denoting it by SsoftðMÞ, we have up toOð1Þ coefficientsX

i

→ β

Z
dEieSsoftðMÞ; ð6:17Þ

where β is used to match the dimension. This gives

Z ∼
X
n

eSsoftðMÞ−βEn ¼ zeSsoftðMÞ; ð6:18Þ

and

SR ¼ ln ½zeSsoftðMÞ� þ βhEniR þOð1Þ: ð6:19Þ

Here,

hEniR ¼ 1

z

X
n

Ene−βEn ð6:20Þ

is the thermal energy of the hard modes in the right exterior,
as measured by H. Thus, up to the thermal contribution of
the hard modes (and an unimportant Oð1Þ term), the
entropy SR agrees with Ssys given by Eqs. (3.30) and
(3.31), which is the entropy of a single-sided black hole.
Namely, for a two-sided black hole in the state of Eq. (6.3),
the entropy of the black hole is given at the leading order by
the entanglement entropy between the two sides (i.e., two
CFTs in the AdS=CFT context).

1. Evaporation and the destruction of the wormhole

Let us now consider coupling the two-sided black hole
discussed so far to a reservoir so that the black hole can
radiate into it. We do this on the right side (i.e., our side) of
the black hole and see its effect on an object falling into the
black hole from the same side.
Before coupling the two systems, the state is given by the

product of the black hole state in Eq. (6.3) and the ground
state of the reservoir system jϕ0i:

jΨ0i ¼
1ffiffiffiffi
Z

p
X
m

X
j

e−
β
2
ðEmþEjÞjmiRjψ jiRjmiLjψ jiLjϕ0i;

ð6:21Þ

where Z is given by Eq. (6.4). After the coupling of the two
systems, this state is no longer an energy eigenstate, so it
starts evolving. Specifically, the coupling injects positive
energy shock waves into the two systems, after which the

49In the large N limit construction of Refs. [169,170], oper-
ators bRγ , b

†
Rγ , bLγ , and b†Lγ generate a type III1 von Neumann

algebra (which becomes type II∞ at the next order in 1=N [171]),
so that Hilbert spaces for jniR, jniL, jψ iiR, and jψ iiL are not
defined. This is not the case for finite N as envisioned here.

50It is important that this evolution is performed using the full,
microscopic Hamiltonian (or equivalently performed in the
boundary theory), since the analogous operator HR þHL in
the bulk field theory is singular at the bifurcation surface.
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Hawking emission process begins. This process backreacts
and produces a superposition of black holes having differ-
ent masses and momenta (at different locations) in the
right-side space. As discussed in Sec. III A, we focus on a
branch in which the black hole has a well-defined mass and
(vanishing) momentum, within the minimum uncertainty
required by quantum mechanics. We can then say that after
time t is passed, the state for each ðm; jÞ changes as51

jmiRjψ jiRjϕ0i⟶time evolution

þ projection

X
n

XeSbhðMR−EnÞ

in¼1

X
a

cmj
nina

jniR

× jψ ðnÞ
in
iRjϕðm;jÞ

a i; ð6:22Þ

where

X
n

XeSbhðMR−EnÞ

in¼1

X
a

jcmj
nina

j2 ¼ 1; ð6:23Þ

MR is the mass of the black hole as viewed from the

right side, and jϕðm;jÞ
a i represents the state of the reservoir.

Here, jniRjψ ðnÞ
in
iR and jϕðm;jÞ

a i carry energies MR and
Em þ Ej −MR, respectively (within the uncertainty), and
we have assumed that t is not too large that the structure of
the black hole is dramatically altered (for example, that it is

fully evaporated). The index of jψ ðnÞ
in
iR now carries sub-

index n because the energy of jψ ðnÞ
in
iR is correlated with that

of jniR.
Substituting Eq. (6.22) into Eq. (6.21), we obtain the

state at time t

jΨti ¼
1ffiffiffiffi
Z

p
X
n

X
m

XeSbhðMR−EnÞ

in¼1

X
j

X
a

e−
β
2
ðEmþEjÞcmj

nina

× jniRjψ ðnÞ
in
iRjmiLjψ jiLjϕðm;jÞ

a i: ð6:24Þ

We assume that for t > tscr, the coefficients cmj
nina

take
Gaussian random values across ðn; in; aÞ for each ðm; jÞ, as
in Eq. (3.42), although this assumption is less justified than
that for a single-sided black hole. Now, consider the (non-
normalized) states multiplying jniR in the sum over n in
Eq. (6.24).

kn⟫R;nn ¼
1ffiffiffiffi
Z

p
X
m

XeSbhðMR−EnÞ

in¼1

X
j

X
a

e−
β
2
ðEmþEjÞ

× cmj
nina

jψ ðnÞ
in
iRjmiLjψ jiLjϕðm;jÞ

a i: ð6:25Þ

With the assumption stated above, the norms of these states
are given by

R;nn⟪nkn⟫R;nn ¼
1

Z

X
m

XeSbhðMR−EnÞ

in¼1

X
j

X
a

e−βðEmþEjÞjcmj
nina

j2

¼ 1

ðPne
−βREnÞ e

−βREn ; ð6:26Þ

up to corrections exponentially suppressed in SbhðMRÞ.
Here, in the last line we have used

hjcmj
nina

j2i ¼ 1P
n

P
a e

SbhðMR−EnÞ ð6:27Þ

⇒
XeSbhðMR−EnÞ

in¼1

X
a

jcmj
nina

j2 ¼ eSbhðMR−EnÞ

ðPne
SbhðMR−EnÞÞ

¼ 1

ðPne
−βREnÞ e

−βREn ; ð6:28Þ

and

βR ¼ ∂SbhðEÞ
∂E

����
E¼MR

ð6:29Þ

is the temperature of the black hole as viewed from the right
side, which is different from β. The state kn⟫R;nn is thus
related to the corresponding normalized state kn⟫R by

kn⟫R;nn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

−βREn
p e−

βR
2
Enkn⟫R: ð6:30Þ

From Eqs. (6.25) and (6.30), we find that the state in
Eq. (6.24) can be written in the thermofield double form

jΨti ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

−βREn
p X

n

e−
βR
2
En jniRkn⟫R: ð6:31Þ

This allows us to erect the effective theory of the interior,
following the construction described in Sec. V. In particu-
lar, it implies that an object located in the zone of the right
side at time twill smoothly pass through the horizon (of the
black hole of mass MR) from the right side.52

51We regard the left states jmiLjψ jiL as (approximate) eigen-
states of the left boundary Hamiltonian so that they do not evolve.

52We can also erect an effective theory as viewed from the
left exterior, i.e., the opposite to the side from which the black
hole evaporates. The construction is analogous to that described
here—we identify km⟫L as the state that comes with jmiL,
leading to the state in the effective theory

jΨ0
ti ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

−βEn
p X

n

e−
β
2
En jniLkn⟫L; ð6:32Þ

where β ¼ ∂SbhðEÞ=∂EjE¼M. The analysis presented below also
applies to this case with similar conclusions.
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It is interesting to consider what happens if the initial
state has an excitation in the second exterior, i.e., the
exterior on the left side. Suppose that the state at the time of
the coupling, t ¼ 0, has an excitation in the zone, e.g.,

jΨiniti ¼
YN
i¼1

�X
γ

fðiÞγ b†Lγ

�
jΨ0i; ð6:33Þ

where jΨ0i is given by Eq. (6.21). In this case, the state
after t > tscr is given by Eq. (6.24) with the replacement

e−
β
2
Emcmj

nina
jϕðm;jÞ

a i →
X
p

e−
β
2
EpUm

p c
pj
nina

jϕðp;jÞ
a i; ð6:34Þ

where Um
p is a unitary matrix which has the indices

p ¼ fpαg and m ¼ fmαg and depends on fðiÞγ . Similarly,
if there is an excitation on the left side that fell into the
stretched horizon at an earlier time, then the state of the left-
side soft modes at t ¼ 0 deviates from that in Eq. (6.21),
causing the change of the state at time t

e−
β
2
Ejcmj

nina
jϕðm;jÞ

a i →
X
k

e−
β
2
EkVj

kc
mk
nina

jϕðm;kÞ
a i; ð6:35Þ

where Vj
k is a unitary matrix acting on the space of the left-

side soft states. With the changes in Eqs. (6.34) and (6.35),
we can define kn⟫R;nn analogously to Eq. (6.25) and
calculate its norm

R;nn⟪nkn⟫R;nn

¼ 1

Z

X
m

XeSbhðMR−EnÞ

in¼1

X
j

X
p;p0

X
k;k0

X
a;a0

e−
β
2
ðEpþEp0þEkþEk0 Þ

× Um�
p Um

p0V
j�
k V

j
k0c

pk�
nina

cp
0k0

nina0
hϕðp;kÞ

a jϕðp0;k0Þ
a0 i

¼ 1

ðPne
−βREnÞ e

−βREn ; ð6:36Þ

which we find is the same as Eq. (6.26) up to exponentially
suppressed corrections. Here, we have assumed that there is
no intricate (and unexpected) cancellation between Vj�

k V
j
k0

and cpk�nina
cp

0k0
nina0

in the sum over ðk; k0Þ, which would
jeopardize the scaling in the last line.53

With this assumption, we thus find that the state of the
effective theory is still given by Eq. (6.31). This implies that
the existence of an excitation on the left exterior at t ¼ 0
cannot affect the effective theory erected at t > tscr after
evaporation began on the right side. In other words, the
Einstein-Rosen bridge between the two sides is broken by

Hawking radiation for t > tscr, although an object falling
into the black hole from either side sees smooth spacetime
when it crosses the horizon.
At the technical level, this occurs because the energy

constraint in Eq. (6.22) (i.e., the condition that the mass of
the black hole as viewed from the right side is MR) breaks
entanglement between the right and left side modes
necessary to have a bridge [21]. To see this, we can trace
out the soft and far modes in the state of Eq. (6.24)

TrsoftþfarjΨtihΨtj¼
1

ðPm0e−βREm0 ÞðPn0e
−βEn0 Þ

×
X
m

X
n

e−βREme−βEn jmiRjniLRhmjLhnj

ð6:37Þ

and find that it takes a different form than

TrsoftþfarjΨ0ihΨ0j ¼
1P

n0e
−βEn0

X
m

X
n

e−
β
2
ðEmþEnÞ

× jmiRjmiLRhnjLhnj; ð6:38Þ

obtained from the thermofield double state which has a
connected Einstein-Rosen bridge. In particular, we see that
the hard modes on the right side are mostly entangled with
the right-side soft modes and far modes in jΨti, and not
with modes on the left side as in jΨ0i.
Physically, this breaking of the Einstein-Rosen bridge

occurs due to decoherence caused by Hawking emission
from the right side. After the Hawking emission, black
holes of different masses (as viewed from the right side) can
be semiclassically discriminated, so that they should be
viewed as living in different branches of the wave function.
Thus, unless a falling object somehow preserves coherence
among these different branches,54 it cannot see any signal
sent from the left exterior inside the black hole. In general,
the Einstein-Rosen bridge—or wormhole—prepared by the
thermofield double state in Eq. (6.3) is fragile under a
realistic physical process occurring to it.55

2. Entangled black holes

For a reason similar to the case above, entangled black
holes of the form

53A similar assumption is not needed for Um�
p Um

p0, since the
number of degrees of freedom of semiclassical excitations is too
small to jeopardize this scaling anyway.

54It is not clear towhat extent this is possible because the falling
object necessarily feels gravity generated by the black hole in
question.

55If the decoherence is imperfect, the two sides can be “weakly
connected,” e.g., connected in the interior but with a physical
domain wall between the two horizons.
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jΨðM1;M2Þi ¼
XeSsysðM1Þ

A¼1

XeSsysðM2Þ

B¼1

ηABjΨAðM1ÞijΨBðM2Þi

ð6:39Þ

generically do not have an Einstein-Rosen bridge connect-
ing them; an object falling into one of the black holes sees a
smooth horizon but cannot receive any signal sent in from
the other black hole [21]. The same comment applies to
more than two entangled black holes.

3. Interior holography?

We now discuss the possibility of formulating a “holo-
graphic theory of the interior.” In the discussion so far, the
fundamental degrees of freedom are assumed to live on
boundaries (e.g., holographic screens or AdS boundaries)
outside the black hole horizon. However, discussion in
Sec. IV suggests that a holographic theory may be able to
live on an apparent horizon, the surface on which one of the
(quantum) expansions vanishes. We may, therefore, specu-
late that a holographic theory for the interior can be
formulated by picking out the degrees of freedom relevant
for describing the interior and distributing them on the
horizon; see Fig. 16.
As seen in Fig. 16, the time evolution of this theory

occurs toward the future on both arms of the horizon, so
that the holographic space at a given time consists of two

disconnected two-spheres. One can then calculate entan-
glement entropy between the left and right sides of the
black hole by finding a maximin surface [152] homologous
to one of the two-spheres, which turns out to be the
bifurcation surface (see Fig. 16). The entanglement entropy
is thus given by

S ¼ Abh

4GN
; ð6:40Þ

where Abh is the area of the horizon. The proposed theory,
therefore, passes one of the simplest checks for consistency.
It is not clear if the theory described here is fully

consistent or useful. For example, the continuous renorm-
alization procedure in Refs. [13,14] cannot be used here to
describe the interior, since the procedure requires the bulk
to be normal (while it is trapped here). We have discussed
this nonetheless, since it is related to similar proposals in de
Sitter spacetime [45–48], which we will address later.

B. Global de Sitter spacetime

We now discuss a possible description of global de Sitter
spacetime analogous to a static, two-sided black hole. As in
the case of a two-sided black hole in asymptotically flat
spacetime, we consider it to be an approximate description
of a sufficiently long-lived metastable de Sitter spacetime.
Specifically, we assume that global de Sitter spacetime at

t ¼ 0 can be described by a state of a thermofield doublelike
form between two holographic theories each of which
describes a static patch. Following the case of a two-sided
black hole, we may divide modes in each theory into “zone”
and horizonmodes.We then take a subset of the zonemodes
to be hard modes while leaving all the other modes as soft
modes. In the case of de Sitter spacetime, however, we
expect that gravity is not decoupling in the holographic
theories (because the boundary is not in an asymptotic
region; see Sec. IV B), so that the two theories are interacting
through it.56 We thus denote by jniN, jψ iiN, jniS, and jψ iiS
the states of the hard and soft modes in the limit that gravity
is turned off in these holographic theories. Here, the sub-
scripts N and S specify the theory under consideration
(referring to the north and south hemispheres, respectively).
Assuming that the two theories have the same micro-

scopic structure, the relevant thermofield double state can
be written as

jΨ0ðEÞi ≈ 1ffiffiffiffi
Z

p
X
n

X
i

e−
β
2
ðEnþEiÞjniNjψ iiNjniSjψ iiS;

Z ¼
X
n

X
i

e−βðEnþEiÞ; ð6:41Þ

time time

FIG. 16. Holographic theory of the interior may be constructed
by distributing the interior degrees of freedom over the horizon
HðtÞ, which consists of two marginally trapped surfaces as
indicated by the wedges. Time t evolves toward the future on
both components of the horizon. Entanglement entropy between
the two sides is computed by finding the maximin surface,
obtained by minimizing the area of a surface homologous to a
component of the horizon on a Cauchy surface anchored to HðtÞ
(green dots) and then maximizing it over possible Cauchy
surfaces, which leads to the bifurcation surface (blue dot). The
entanglement entropy is thus given by the Bekenstein-Hawking
entropy of the black hole.

56By gravity we mean the full dynamics associated with
gravity at short and long distances. Note that in 2þ 1 dimensions,
there is no massless propagating graviton.
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in the limit that gravity is turned off in holographic theories.
Here, E ¼ α=l2P, and En and Ei are the energies carried by
the hard and soft modes in the north hemisphere defined
with respect to the Hamiltonian H ¼ HN −HS. We expect
that the state in Eq. (6.41) can be prepared by the Euclidean
path integral over a half of the time compactified on a circle
of length β (in the limit that gravity is turned off); see
Fig. 17(a). While the location of the boundary is now
reversed compared with the case of a black hole, depicted in
Fig. 17(b), we assume that the periodicity β of the time
direction is still related to the temperature of de Sitter
spacetime as β ¼ 1=TH ¼ 2πα, as in Ref. [179].
When gravity is turned on in holographic theories, the

Euclidean path integral preparing the state is expected to
receive extra contributions suppressed by the gravitational
coupling which are not diagonal in the space spanned by
jnijψ ii. This gives the correction to the state of the form

jΨ0ðEÞi → jΨðEÞi
¼ jΨ0ðEÞi þ

X
m;n

X
j;i

εm;n;j;ijmiNjψ jiNjniSjψ iiS;

ð6:42Þ

where εm;n;j;i are coefficients of order l2P=α
2. We suspect

that these off-diagonal parts are related to the fact that,
unlike the case of a black hole, a positive energy shockwave
in de Sitter spacetime gives a traversable “wormhole”
between the two hemispheres [173,176].
Excited states in which there are objects in the north and

south hemispheres of the global de Sitter spacetime can be
obtained by acting annihilation/creation operators, given by
Eqs. (6.7)–(6.10) with R → N and L → S, on the vacuum
state in Eq. (6.42). Describing the region outside the
horizons of the two static patches requires time evolution

operator other than that generated by H ¼ HN −HS. The
appropriate generator H̃ can be constructed as

H̃ ¼
X
ξ

Ωξa
†
ξaξ þ H̃intðfaξg; fa†ξgÞ; ð6:43Þ

where

aξ ¼
X
γ

ðαξγbRγ þ βξγb
†
Rγ þ ζξγbLγ þ ηξγb

†
LγÞ; ð6:44Þ

a†ξ ¼
X
γ

ðβ�ξγbRγ þ α�ξγb
†
Rγ þ η�ξγbLγ þ ζ�ξγb

†
LγÞ ð6:45Þ

are mode operators with the coefficients αξγ , βξγ , ζξγ, and
ηξγ determined by semiclassical calculation.
Since the t ¼ 0 hypersurface is a Cauchy surface, this

effective theory describes the entire global de Sitter
spacetime. The theory, however, is intrinsically semiclass-
ical. The choice of the vacuum cannot be derived from the
first principle, although we expect that the correct choice
corresponding to typical soft-mode states is the Bunch–
Davies vacuum [182]. The description of field fluctuations
on the de Sitter background is also only statistical. To go
beyond this, e.g., to describe the details of a state depending
also on the horizon microstate, we must resort to the
microscopic theory.
In the jΨðEÞi state, the von Neumann entropy of the

north hemisphere is

SN ¼
X
n

X
i

e−βðEnþEiÞ

Z
½βðEn þ EiÞ þ lnZ� þO

�
l2P
α2

�
:

ð6:46Þ

FIG. 17. Preparation of a holographic state of the thermofield double form by Euclidean path integral. In each panel, the thick red line
represents the location at which the holographic theory resides, while the shaded region corresponds to the bulk region that can be
simply reconstructed, e.g., by the procedure of continuously pulling in the boundary.
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Assuming that the density of states of the soft modes does
not depend on Ei and denoting it by SsoftðEÞ, we have

SN ¼ ln ½zeSsoftðEÞ� þ βhEniN þOð1Þ; ð6:47Þ

where z ¼Pn e
−βEn , and hEniN ¼Pn Ene−βEn=z is the

thermal energy of the hard modes in the north hemisphere,
as measured by H. Thus, the entropy SN agrees with Ssys
given by Eqs. (3.30) and (3.31) at the leading order.
Namely, in the global state of Eq. (6.42), the entropy of
de Sitter spacetime can be interpreted as the entanglement
entropy between the two hemispheres, at the leading order.

1. Relation to the DS/dS correspondence

The theory we are considering consists of two holo-
graphic systems located on the stretched horizons of two
static patches, each of which covers one half of the spatial
section of global de Sitter spacetime at t ¼ 0, the global
time at which the spatial volume becomes minimal. These
two systems, each of which is expected to be strongly
coupled, are weakly interacting through gravity. This
structure is reminiscent of that in the DS/dS correspon-
dence [43,44], a proposed holographic description of de
Sitter spacetime.
While the two theories have similar structures at t ¼ 0,

they can be different at t ≠ 0. In particular, if we evolve our
theory with HN þHS, the places where the holographic
systems are located move toward the future along the
stretched horizons of the two static patches, as indicated by
the red drawings in Fig. 18. This makes simply recon-
structed regions stay within the static patches. On the other
hand, in the DS/dS correspondence, each of the holo-
graphic systems is completed itself into de Sitter spacetime
of one lower dimensions, leading to the simply recon-
structed region called a DS/dS patch, which is depicted by
the blue drawings in the figure.
One might speculate that the two theories represent the

same system evolved differently in holographic space. It
will be interesting to study this possible relation, but we
leave it for the future.

2. Relation to the Shaghoulian-Susskind proposal

At the end of Sec. VI A, we discussed the possibility of
having a holographic theory of the black hole interior by
placing the relevant degrees of freedom on the apparent
horizon. We can consider an analogous situation for
de Sitter spacetime, in which case the degrees of freedom
relevant for describing the region outside the horizons of
the two static patches are placed on the horizon; see Fig. 19.
As in the case of the black hole, we can test the

consistency of this picture by computing the entanglement
entropy between the two patches, which can be done using
the maximin procedure. By minimizing a surface homolo-
gous to one of the horizons on a spacelike surface bounded

by the two horizons at a fixed time, we find the resulting
surface is nothing other than one of the horizons. The
subsequent maximization over spacelike surfaces thus
gives us the same surface, so the de Sitter horizon is the
maximin surface. This gives the entanglement entropy

S ¼ AdS

4GN
; ð6:48Þ

where AdS is the area of the de Sitter horizon, which is
consistent with the picture that the evolution of the system is
unitary. This seems to be what is proposed in Refs. [45,46]

FIG. 18. The holographic theory based on static patches consists
of two weakly interacting systems located on the stretched
horizons of two static patches, with the simply reconstructed
region staying within the two patches (red). In the DS/dS
correspondence, each of the holographic systems is located by
itself on de Sitter spacetimewith one lower dimensions, leading to
the simply reconstructed region called theDS/dS patch (blue). The
structures of the two theories are similar at t ¼ 0.

time time

FIG. 19. Holographic theory placed on the de Sitter horizons of
two static patches can describe the region outside the horizons (as
viewed by polar observers). Entanglement entropy between the
two sides is computed by finding the maximin surface, which is
nothing other than one of the horizons (blue dot). The entangle-
ment entropy, therefore, is given by the Gibbons-Hawking
entropy.
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as a holographic theory of de Sitter spacetime (referred to
as the monolayer proposal in Ref. [48]), although our
interpretation here says that the theory describes only the
shaded region in Fig. 19; in particular, it does not describe
the regions inside the two static patches.
In our picture, the degrees of freedom used for the theory

described above are a subset of the degrees of freedom of
holographic theories describing the static patches.
Therefore, the former are not really independent of the
latter at the microscopic level. However, we may treat them
independent for the purpose of describing semiclassical
physics in the bulk. If this is the case, we can regard the
holographic theory as consisting of two layers of degrees of
freedom on the horizons, one describing the outside and the
other describing the interiors of the horizons. This seems to
be the proposal of Ref. [47], called the bilayer proposal
in Ref. [48].

VII. GRAVITATIONAL PATH INTEGRAL

The approach we have described so far is based on the
canonical formalism of quantum mechanics. In particular,
we have assumed the existence of a Hilbert space factor
representing states of the horizon degrees of freedom, with
which we could construct an effective theory describing a
spacetime region behind the horizon—the interior in the
case of a black hole—using only the low energy input that
the dynamics of these degrees of freedom is maximally
chaotic (and fast scrambling).
Quantum mechanics, however, can also be formulated

using path integrals, and we expect that the same physical
conclusions would be obtained from this formalism. In this
section, we discuss what the picture looks like in this case.
We will see that the corresponding picture is that of
Refs. [36,37], in which aspects of unitary evolution can
be reproduced by gravitational path integral that fixes the
“boundary condition” based on the quantity of interest and
then integrates over all possible semiclassical geometries
consistent with it, including those with nontrivial topol-
ogies (in particular, replica wormholes). This allows us to
relate the framework described so far to the treatment based
on the quantum extremal surface prescription [33–35].
While we focus on the case of a black hole here, we suspect
that a similar story can be developed for de Sitter spacetime
as well.
The picture presented here was outlined in Refs. [24,38].

The ensemble nature of the semiclassical description
arising from an ensemble of microstates was also discussed
in Refs. [60–64]. The understanding of the Page curve
presented here is based on the picture developed in
Refs. [65–71].

A. Ensemble from coarse graining

The starting point for the path integral formalism is very
different from that of the canonical formalism. Specifically,

in the present context it should start from a collection of
classical field configurations on classical geometries, which
will then be integrated over. We are interested in a “low
energy” framework in which the detailed microscopic
knowledge is not necessary to understand the physics.
This implies that a black hole must be treated as a (semi)
classical object in which the detailed microscopic structure
cannot be discriminated.
This treatment, in fact, is required by quantum mechan-

ics. As we have argued in Secs. II and III, microstates of a
black hole can be regarded as independent quantum states
arising from superposing energy eigenstates in a small
energy window, e.g., of order TH, around M. Thus, to
discriminate these microstates, one would need an expo-
nentially long measurement time∼eSbh=TH. The black hole,
however, would already have evaporated by the time such a
measurement would be completed (or the state of the black
hole will be altered significantly for a large AdS black hole
thermalized with the environment). One therefore cannot
operationally discriminate different microstates by per-
forming a measurement on the black hole.57

We thus have to regard a black hole spacetime appearing
in gravitational path integral as representing a maximally
mixed ensemble of the microstates consistent with the
classical specification of the black hole [24,38]. Note that
this picture is associated with a single-sided (or a single-
sided description) of a black hole. To see this, one can
imagine preparing a black hole state using Euclidean path
integral in the approximation that the black hole is static.
As represented in Fig. 20, the “ψþ − ψ− component” of the
density matrix of the exterior region can then be obtained
by the path integral in which the spatial field configurations
are fixed to be ψþ and ψ− above and below the cut
corresponding to the exterior region of the black hole.
At the semiclassical level, this simply gives the thermal

density matrix which we regard as the semiclassical black
hole vacuum state. We can, however, imagine following the
same procedure at the microscopic level to get the corre-
sponding density matrix

ρmicro ∝
X
n

e−
β
2
ΔHjnihnje−β

2
ΔH; ð7:1Þ

where fjnig is a complete set of black hole vacuum
microstates consistent with the background used in the
semiclassical path integral, β ¼ 1=TH is the periodicity of
Euclidean time in the angular direction, and ΔH is the
microscopic exterior (boost) Hamiltonian. Here, the zero of
ΔH is chosen to be a typical energy associated with the
space Hvac spanned by jni’s.58

57One can, of course, infer the microstate of the black hole if
we prepare a specific state of initial collapsing matter and then
use the microscopic theory to simulate its time evolution.

58The index n here corresponds to the index A in the notation
in Secs. III and V.
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Since the matrix elements of the βΔH=2 operator inHvac
are of order or smaller than 1, we find that many micro-
states contribute to ρmicro. In particular, there are exponen-
tially many microstates that contribute dominantly and
almost equally; these are the microstates among which the
matrix elements βΔH=2 is much smaller than 1. The fact
that semiclassical theory cannot resolve the detailed struc-
ture of microstates implies that it perceives ρmicro to be the
maximally mixed state59

ρsc ∝
XeSbh
n¼1

jnihnj; ð7:2Þ

where the sum runs over a sufficiently large set of vacuum
microstates jni, whose precise specification is not impor-
tant as discussed in Sec. III (or as in standard statistical
mechanics). The number of elements of this set is of order
eSbh , which we have already indicated in Eq. (7.2).
This interpretation indeed reproduces many features

which are attributed to the ensemble nature of holographic
theories in lower dimensional quantum gravity [36] in
terms of an ensemble of microscopic states [24] (see also
Refs. [60–64]). Incidentally, this should be contrasted with
the situation in which a global (two-sided) state is prepared
by Euclidean path integral. In this case, the generated state
is a pure state

jΨmicroi ∝ lim
τ→∞

e−ΔH̃τjii ð7:3Þ

obtained by evolving some initial state jii at τ ¼ −∞ to
τ ¼ 0. Here, jii is chosen in the space of black hole (not
necessarily vacuum) microstates Hbh, and ΔH̃ is the
microscopic “infalling” (inertial) Hamiltonian with its zero
chosen to be a typical energy of vacuum microstates. This
leads to the unique, lowest energy eigenstate, determined
by the choice of Hbh; see also discussion around Eq. (6.1).

B. Replica method, entanglement island,
and the Page curve

With the understanding that the black hole spacetime
appearing in gravitational path integral represents the
(maximally mixed) ensemble of black hole microstates,
the results of Refs. [36,37] can be understood in a simple
manner.

1. Euclidean gravitational path integral

Let us first consider a setup similar to Ref. [37] in which
a black hole living in a gravitational region is coupled to a
nongravitational region.60 The black hole then radiates into
the nongravitational region. Our interest is to compute the
von Neumann entropy of the emitted radiation.
Since the radiation lives in a nongravitational region, we

must be able to describe its state semiclassically. In
particular, assuming that the system can be viewed as
quasistatic at each instance of time, we expect that the
density matrix of the radiation in a region R can be
calculated using a Euclidean path integral by specifying
its element by spatial configurations of the radiation field
above and below the cut on R; see Fig. 21(a). The obtained
density matrix is not normalized, which we denote by ρ̂R
with the hat over ρR indicating that the density matrix is not
normalized.61

The path integral performed, however, includes the
gravitational region in which a black hole resides. Thus,
the obtained density matrix, in fact, involves an ensemble
average over the black hole microstates in the sense of
Eq. (7.2)

FIG. 20. The density matrix of the exterior region, whose
element is specified by the field configurations ψþ and ψ−, can be
computed by Euclidean path integral, which can be interpreted to
receive equal contributions from all the black hole microstates.
Euclidean path integral can also be used to prepare a two-sided
state Ψ, which is pure and unique.

59The contributions to ρmicro from states with jβΔHj ≫ 1 are
negligible either because of the Boltzmann suppression (for
ΔH > 0) or because the number of states is too small (for
ΔH < 0). The chaotic nature of the black hole dynamics then
implies that the remaining contribution can be well approximated
to come from the maximally mixed ensemble of microstates with
jβΔHj≲ 1.

60The nongravitational region is a proxy for a weakly gravi-
tational region. The distinction between gravitational and
nongravitational regions is necessary to correctly identify semi-
classical degrees of freedom in the latter region, in particular
Hawking radiation quanta, of which the von Neumann entropy is
calculated. Without this separation, the Page curve of our interest
cannot be computed using the method adopted here [183],
although we expect that there is a way to reproduce the same
result without involving an artificial separation of regions, at
least in principle.

61The density matrix ρR here refers to the fine-grained
(reduced) density matrix of fields in R. In the language of
Ref. [165], the radiation here is the “radiation in boldface.”
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cρR ¼ 1

eSbh

XeSbh
n¼1

ρ̂R;n; ð7:4Þ

where ρ̂R;n ¼ TrRc jnihnj represents the (non-normalized)
density matrix of R for the microstate jni with Rc being
the complement of R. Defining the normalized density
matrix by

ρR ¼ cρR
TrcρR ; ð7:5Þ

we can compute the von Neumann entropy of R as

SðscÞR ¼ −Tr½ρR ln ρR�: ð7:6Þ

Since this involves coarse-graining, i.e., the ensemble

average over microstates, the quantity SðscÞR is well approxi-
mated by the thermal entropy of the radiation, which
increases monotonically in time (until the black hole is
fully evaporated, if it is not eternal). This is Hawking’s
result [1] showing the apparent violation of unitarity in the
black hole evaporation process.
However, what we really want to understand is the

behavior of

SðmicroÞ
R ¼ −Tr½ρR;n ln ρR;n� ð7:7Þ

(for each microstate jni), which must show the Page
behavior [20] if the evolution of the system is unitary.

In particular, SðmicroÞ
R must go down to zero when the black

hole is fully evaporated and all the emitted radiation is
included in R. A question is how (or if) we can see this
behavior in a semiclassical analysis.
The idea is that while the semiclassical description

necessarily involves the ensemble average over black hole
microstates, it still allows for calculating the ensemble
average of many different quantities. For example, we
can calculate the ensemble average of the square of the
density matrix for the radiation using the replica method
[89,184,185], i.e., by replicating the spacetime into two
copies and imposing the boundary condition for the path
integral such that (one side of) the cuts along R on two
sheets are appropriately sewn together; see Fig. 21(b).
Performing path integral with this boundary condition gives

ρ̂2R ¼ 1

eSbh

XeSbh
n¼1

ρ̂2R;n: ð7:8Þ

An important point is that the performed path integral must
involve all possible geometries in the gravitational region,
including those having a topology that geometrically
connects the two sheets (the replica wormhole) [36,37].
This is because the gravitational path integral should not
predetermine the geometry on which quantum fields are
integrated over.62 In general, the inclusion of geometries
with nontrivial topologies makes Eq. (7.8) different from

the square of Eq. (7.4): ρ̂2R ≠ ðρ̂RÞ2.
In Fig. 22, we illustrate the calculation of the trace of the

square of the non-normalized density matrix ρ̂R, which we

denote by Z2 ¼ Trρ̂2R. As found in Refs. [36,37], there are
two contributions to this. The first is the one in which the
gravitational region is filled separately for two sheets;
Fig. 22(a). Restricting the radiation configuration to those
resembling the emitted Hawking radiation at a coarse-
grained level, the integral of semiclassical fields provides a
factor of eSrad , since the relevant four spatial configurations
of the fields (both sides of the two cuts) are all related by
Euclidean evolution as indicated by the red arrows in
the figure. On the other hand, the gravitational path integral
gives eSbh for each sheet, so that this contribution is given by

ZðdisconnectedÞ
2 ∼ e2SbhþSrad : ð7:9Þ

FIG. 21. (a) The (non-normalized) densitymatrix ρ̂R of radiation
in nongravitational region R can be calculated by performing path
integral with the boundary condition fixing the spatial field
configurations above and below the cut along R. (b) The square
of the density matrix, ρ̂2R is calculated using the replica method,
which replicates the spacetime into two and imposes the boundary
condition such that one side of the cuts along R on the two sheets
are appropriately sewn together (as represented by blue arrows).

62As elucidated, e.g., in Ref. [70], this prescription calculates
ρ̂2R with exponential accuracy, taking into account the detailed
microscopic structure of radiation (radiation in boldface in the
language of Ref. [165]). If we instead calculate ρ̂2R including only
trivial topology, i.e., the disconnected contribution, then we
would fail to capture the effect from the exponentially complex
microscopic structure, yielding ρ̂2R as computed in the semi-
classical theory (i.e., the squared density matrix of nonboldface
radiation). This latter prescription would lead to Hawking’s
result [1] when we compute the von Neumann entropy using
SR ¼ −limn→1∂ðTrρnRÞ=∂n, where ρnR ¼ ρ̂nR=ðTrρ̂RÞn.
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The other contribution is the one coming from a replica
wormhole; Fig. 22(b). In this case, the radiation contribu-
tion is e2Srad , since we now have two independent cycles for
the evolution, so that the four relevant configurations are
related only pairwise (the red and blue arrows). On the
other hand, the gravitational contribution is now eSbh
because it comes from a single, connected component.
This therefore gives

ZðwormholeÞ
2 ∼ eSbhþ2Srad : ð7:10Þ

Adding the two contributions together, we find that
Z2 ∼maxfe2SbhþSrad ; eSbhþ2Sradg.
A similar analysis can be performed for Zn for n ∈ N.

Assuming that the replica symmetric wormhole connecting
all n sheets dominates for Srad > Sbh, we find

Zn ∼
�
enSbhþSrad for Sbh > Srad
eSbhþnSrad for Srad > Sbh:

ð7:11Þ

This is illustrated in Fig. 23. Since the density matrix ρR is
given by ρ̂R=Trρ̂R, we thus find

TrρnR ¼
�

Trρ̂nR
ðTrρ̂RÞn

�
≈

Trρ̂nR
ðTrρ̂RÞn

¼ Zn

Zn
1

∼
�
eð1−nÞSrad for Sbh > Srad
eð1−nÞSbh for Srad > Sbh;

ð7:12Þ

where in the second equation we have used the fact that the
standard deviation of Trρ̂nR is smaller than its typical size in
the ensemble, which we can easily be convinced. By
analytically continuing this result in n, we can now obtain

the ensemble average of the von Neumann entropy of the
radiation

SR ¼ −lim
n→1

∂

∂n
TrρnR ∼

�
Srad for Sbh > Srad
Sbh for Srad > Sbh;

ð7:13Þ

which reproduces the Page curve. This is because we have
calculated the ensemble average of the von Neumann
entropy (which obeys the Page curve for all members of
the ensemble), and not the von Neumann entropy of the
averaged density matrix as in Eq. (7.6).
Note that this observation is similar to that in Ref. [65],

but here we do not consider any ensemble of holographic
theories. Instead, the relevant ensemble arises from the
coarse graining of black hole microstates, which is forced
on us if we adopt any formalism involving the semiclassical
picture of the black hole, such as gravitational path integral.
See also Refs. [70,71] for related discussion.

2. Entanglement island and the Lorentzian picture

It was shown in Ref. [37], building on the technique
developed in Refs. [89,92,186], that the prescription
using the replica method in gravitational path integral is
equivalent to the quantum extremal surface prescription
[91] in the original unreplicated spacetime.63 Going to the
Lorentzian signature, this therefore leads to the following
picture [33–35].

fi(x)

fi(x)

fi(x)

fi(x)
fi(x)

fi(x)
gi(x)

gi(x)

Disconnected contribution  Replica wormhole

FIG. 22. Two contributions to replica method calculation of Trρ̂2R. (a) The normal contribution in which the gravitational region is
filled separately on each sheet. Integration of semiclassical matter gives eSrad coming from Euclidean evolution relating all 4 field
configurations above and below the cuts on two sheets (red arrows), while gravitational path integral gives the eSbh factor for each sheet.
(b) For the replica wormhole configuration, the gravitational regions on two sheets are geometrically connected. The contribution from
gravitation path integral is thus only eSbh, while the contribution from matter integration gives e2Srad since there are two independent
cycles for evolution (red and blue arrows).

63Strictly speaking, this was shown only in the limit that the
contribution from the graviton to the semiclassical field integra-
tion is negligible compared with those from other quantum fields.
Below we assume that the equivalence of the two prescriptions
persists beyond this limit.
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In order to calculate the von Neumann entropy of
radiation Srad in some region R, we need to find an
entanglement island I which extremizes the following
quantity64

SgenðR; IÞ ¼
Að∂IÞ
4GN

− Tr½ρscðR ∪ IÞ ln ρscðR ∪ IÞ�; ð7:14Þ

where Að∂IÞ is the area of the boundary of I, and ρscðXÞ is
the reduced density matrix of the region X in the semi-
classical theory. Note that I can be a null region. In general,
there can be multiple such I’s, and the entropy Srad is given
by the minimum of SgenðR; IÞ’s associated with all such I’s:

Srad ¼ min ext
I
SgenðR; IÞ: ð7:15Þ

This entropy is the same as that calculated by the replica
method in path integral

Srad ¼ SR; ð7:16Þ

so that it obeys the Page curve.
It is important that this extremization procedure is per-

formed on a global spacetime of general relativity. In
particular, for a black hole spacetime, it must be performed
on the whole spacetime including the interior of the black
hole. This, therefore, gives a complementary picture to that
described in Secs. II–VI. In the picture described here, the
existence of the black hole interior is obvious—in fact, the
framework assumes it—while to understand the unitary
nature of black hole evolution, one needs to resort to a

method that appropriately incorporates nonperturbative
effects of quantum gravity, such as replica wormholes. On
the other hand, in the framework of Secs. II–VI, the unitarity
of the evolution is an assumption and, as a consequence, the
existence of the interior is notmanifest—the interior emerges
only effectively as a collective phenomenon involving
horizon degrees of freedom, which are subject to universally
chaotic and fast-scrambling dynamics.

3. Manifestly unitary vs global spacetime descriptions

We can, in fact, understand the existence of the two
frameworks discussed above—based on the manifestly
unitary and global spacetime pictures, respectively—from
the viewpoint of gauge symmetries of the underlying
theory [24,38]. As emphasized in Ref. [187], a theory of
quantum gravity has nonperturbative gauge redundancies
much larger than the standard diffeomorphism. A particular
manifestation of this is the apparent violation of the
Bekenstein-Hawking entropy bound in the semiclassical
description of a black hole [24,38,188]. This violation
arises from huge spatial volume inside the black hole
[189,190] (including the so-called bags-of-gold configura-
tions), which leads to the number of independent quantum
states exceeding the Bekenstein-Hawking bound. Many of
these semiclassically independent states, however, are
equivalent under the nonperturbative gauge symmetries,
making the number of truly independent states satisfy the
Bekenstein-Hawking bound.
The two frameworks describe this phenomenon in very

different, though equivalent, ways. In the framework
discussed in Secs. II–VI, the nonperturbative gauge redun-
dancies (as well as a part of the standard diffeomorphism)
are explicitly fixed by employing a Schwarzschild-like time
foliation, which is motivated by holography. In this
framework, making unitarity manifest, the number of

1

2

3

n

•

•

•
•

•

R

RR

R

R

1

2

3

n

•

•

•
•

•

R

R

R

R

R

FIG. 23. (a) The contribution to Zn with the gravitational region filled separately (light blue) on each sheet. All semiclassical matter
configurations above and below the cuts R (green dashed) are related by Euclidean evolution (red arrow), giving the factor of eSrad .
(b) For the replica symmetric wormhole configuration, the gravitational regions on n sheets are geometrically connected. This allows for
n independent cycles for evolution (red arrows), giving the contribution from matter integration of order enSrad.

64The regions R and I can be viewed either as spatial regions or
causal regions associated with them.
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independent black hole states is simply eSBH, and the
apparently much larger number of independent interior
states in semiclassical theory comes from the fact that the
Hilbert space spanned by the eSBH states admit ee

SBH

approximately orthogonal states, between which inner
products are of order e−SBH=2 or smaller. Since the semi-
classical theory cannot detect such small inner products, it
appears to accommodate independent quantum states larger
than the Bekenstein-Hawking bound in the interior of a
black hole.
On the other hand, in the framework making the interior

manifest, the argument runs in the other direction. In this
case, the starting point is the global spacetime picture,
which is highly redundant. In the canonical formulation of
quantum mechanics, this implies the existence of over-
entropic semiclassical interior states jψ ii. After including
nonperturbative effects of gravity, however, these semi-
classically orthogonal states develop small overlaps,
hψ ijψ ji ∼ e−SBH=2, in a such way that the rank of the matrix
Mij ≡ hψ ijψ ji is reduced drastically to eSBH . Such a large
number of null states are a manifestation of the large
nonperturbative gauge redundancies [187,191], which
relate even spaces with different topologies [187,192]. In
the path integral formulation, this reduction of the semi-
classical Hilbert space to the physical one is achieved by
including additional contributions to the path integral (e.g.,
replica wormholes) which projects states onto those invari-
ant under the relevant gauge symmetries as we have seen in
this section.

VIII. CONCLUSION

In quantum gravity, there has been a difficulty in
reconciling fundamental principles of physics in the pres-
ence of a black hole (or other) horizon, particularly the
unitarity of quantum mechanics and the equivalence
principle of general relativity [1]. This difficulty is, in fact,
an avatar of the conventional difficulty of describing UV
physics at the Planck scale, albeit in a redshifted form.
Because of a huge gravitational redshift between the
horizon and asymptotic regions, the degrees of freedom
represented by the Bekenstein-Hawking entropy [4,5],
which obey an intrinsically “stringy” dynamics, appear
to have exponentially degenerate states that cannot be
discriminated operationally by performing a measurement
on the black hole. A low energy description of quantum
gravity treats these states in a thermal way, so that unitarity
appears to be lost.
While a semiclassical theory, as a low energy description

of quantum gravity, cannot describe all the microscopic
dynamics of the fundamental theory, it can still be used to
obtain a coarse-grained understanding of how unitarity and
the equivalence principle can coexist in a black hole
system, with only a few inputs from the UV theory.
This is what we have explored in this paper.

One way of doing this is simply to postulate that the
evolution of a black hole is unitary when viewed from the
exterior [17–20]. This is a view motivated by holography
[6]. In this case, the existence of the black hole interior
appears to be in jeopardy [3]. We have seen, however, that
with the assumption that the dynamics of horizon degrees
of freedom is chaotic and fast scrambling across all low
energy species, the interior emerges at a semiclassical level
as a collective phenomenon involving the horizon, and
possibly other, degrees of freedom [21–25]. An important
point is that for a black hole with minimal uncertainties
(i.e., a specific black hole at the semiclassical level), the
assumption of Gaussian randomness of the coefficients for
microstates allows us to learn many features associated
with the construction of the effective theory of the interior.
We do not need any further details about the microscopic
theory to figure these things out. A similar construction
applies to de Sitter spacetime, which we have also
elaborated in this paper.
The compatibility between unitarity and the equivalence

principle can alternatively be seen by starting from the
global spacetime of general relativity. In this case, the
existence of the interior is manifest, but at the apparent
expense of unitarity as Hawking’s original calculation
indicates [1]. However, while a semiclassical picture
necessarily involves an average over microstates, we can
directly calculate the average of the quantity we are
interested in, e.g., the von Neumann entropy of emitted
Hawking radiation, rather than the quantity in the averaged
state. This is what is done in Refs. [33–37] by employing
the replica method in gravitational path integral, or equiv-
alently the quantum extremal surface prescription. In this
way, one can see the unitarity of the underlying theory
without knowing its detailed dynamics.
Despite the fact that the two frameworks described above

appear very different, they give the same physical con-
clusions. In particular, a black hole evolves unitarily and
has a smooth horizon. Viewed in this way, one can
conclude that historical confusions about black hole phys-
ics come from the fact that only one of these features can be
made manifest in a given low energy description; the other
one appears in a highly nontrivial manner. We have seen
that the description making unitarity (quantum mechanics)
manifest comes more naturally with the canonical/
Hamiltonian formulation of quantum mechanics, while
the one making the interior (general relativity) manifest
is associated with the path integral/Lagrangian formulation.
It remains to be seen if there is a microscopic formulation of
quantum gravity in which both these features are manifest
at the same time.
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