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We develop in a companion paper the kinematics of three-dimensional loop quantum gravity in
Euclidean signature and with a negative cosmological constant, focusing in particular on the spinorial
representation that is well known at zero cosmological constant. In this paper, we put this formalism to the
test by quantizing the Hamiltonian constraint on the dual of a triangulation. The Hamiltonian constraints
are obtained by projecting the flatness constraints onto spinors, as done in the flat case by the first author
and Livine. Quantization then relies on q-deformed spinors. The quantum Hamiltonian constraint acts in
the q-deformed spin network basis as difference equations on physical states, which are thus the Wheeler-
DeWitt equations in this framework. Moreover, we study how physical states transform under Pachner
moves of the canonical surface. We find that those transformations are in fact q deformations of the
transition amplitudes of the flat case as found by Noui and Perez. Our quantum Hamiltonian constraints,
therefore, build a Turaev-Viro model at real q.
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I. INTRODUCTION

Three-dimensional gravity is often taken as a testing
ground for new approaches to quantum gravity as it is much
better understood compared to the four-dimensional case.
Here we consider 3D gravity as a topological model
(meaning the triad can degenerate) through the BF formu-
lation. A criterion for the validity of novel approaches to
their quantization is that they reproduce the results obtained
via previous approaches, such as its topological invariance.
In the absence of a cosmological constant, nonperturbative
quantization in the canonical approach, i.e., the loop
quantum gravity (LQG) based on the BF formulation of
gravity [1,2], and the covariant approach, based on spin
foams and more precisely the Ponzano-Regge model [3–7],
give consistent results. In particular, it has been shown by
Noui and Perez in [8] that the scalar products of physical
states defined in LQG are given by the Ponzano-Regge
amplitudes.
A more recent approach has emerged that aims at

quantizing the Hamiltonian constraint instead of the flat-
ness constraint derived from the BF formulation. In the
case of vanishing cosmological constant (which we will
often refer to as the flat case), the Hamiltonian constraint

translates in the spin network basis to difference equations
on the coefficients of the physical states. These difference
equations should really be seen as Wheeler-DeWitt equa-
tions for 3D LQG. In particular, they are solved by spin
network evaluations, as expected from the Ponzano-Regge
model [9,10].
When the cosmological constant is nonzero, the con-

nection between LQG and spin foams is less clear. On the
spin foam side, the Turaev-Viro model [11] is known to
provide the partition function of 3D gravity in Euclidean
signature with a positive cosmological constant [12]. It is a
sum of states in SUqð2Þ representation, with q a root of
unity encoding the cosmological constant. It is thus a q
deformation of the Ponzano-Regge model, further providing
a regularization through a natural cutoff on representations
when replacing SU(2) with SUqð2Þ. The large spin limit of
the q − 6j symbol matches Regge calculus for curved
tetrahedra [13]. The Turaev-Viro model thus provides an
example of the interplay between the cosmological constant,
curved geometries and the quantum group deformation of
Lie groups.
On the LQG side, the Hamiltonian takes a more

complicated form when the cosmological constant is
nonzero, so much so that even how to discretize it has
been unclear, and it seems to evade traditional LQG
methods. It has nevertheless been conjectured for a long
time that the quantum theory ought to be described
by quantum groups, as expected from the spin foam
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model [14–18]. One (indirect) way to relate 3D LQG
with a nonvanishing cosmological constant to the
Turaev-Viro model is to take the Chern-Simons formu-
lation of 3D gravity and consider the Witten-Reshetikhin-
Turaev path integral ZWRTðMÞ on a three-manifold M
with the Chern-Simons action with opposite levels, say k
and −k. It has been well known that the Turaev-Viro
state sum matches such path integral as ZTVðMÞ ¼
jZWRTðMÞj2 [19,20].
A more direct approach for bridging the two quantum

gravity approaches would be to work on the BF formulation
with a cosmological constant term itself. Canonical analysis
for the BF action written with the standard triad and
connection variables leads to a torsion equation independent
of the cosmological constant so that the kinematical Hilbert
space upon quantization is spanned by the SU(2) spin
network as in the case with a zero cosmological constant. In
this setting, one can expect, through the connection of
cosmological constant and quantum group deformation, that
the quantum group structure would only appear at the level
of the physical Hilbert space since only the curvature
equation depends on the cosmological constant. One
proposal to realize this and thereby connect LQG directly
to the Turaev-Viro model was given in [21–23]. There, a
new curvature constraint was defined via a new (Poisson
noncommutative) connection, leading to a redefinition of
the physical scalar product and recovering the Turaev-Viro
amplitude.
From the geometrical point of view, the nondeformed

kinematical structures given by imposing the torsion-free,
or Gauss, constraints represent discrete flat 2D geom-
etries. Then the deformed dynamical structures are
expected to describe the gluing of these flat 2D geom-
etries to approximate the curved 3D geometries, as a
deformed version of the case with a zero cosmological
constant [9]. Indeed, one can approximate a curved 3D
geometry by gluing flat 2D pieces and take the limit as
the sizes of these pieces approach zero. It was moreover
argued in [24–26] that the continuous symmetries survive
at the discrete level when one uses curved 2D pieces
instead of flat ones.
This suggests we rethink the definition of the kinematics

and dynamics in the BF formulation with a nonvanishing
cosmological constant. The kinematical phase space
defined with the Gauss constraint can in fact be deformed
so that its quantization naturally leads to a quantum group
deformation. In particular, this kinematical phase space
describes 2D curved geometries [27]. Then the physical
phase space, defined by imposing the flatness constraint,
describes the gluing of these 2D curved geometries into 3D
curved geometries. The gap between the discrete, classical
theory and the continuous action was further filled recently
in [28].
This program was carried out in [27,29] to a large degree.

There, the phase space is defined in terms of deformed

fluxes and holonomies and the Poisson structure is based on
the Heisenberg double of SU(2). In [29] we have inves-
tigated the quantization, using the same techniques as in [9],
i.e., by building a Hamiltonian constraint out of the flatness
constraints. It can be classically interpreted as generating
displacements of the vertices of the triangulation [30]. At the
quantum level, the Hamiltonian constraints give rise to
difference equations, which can therefore be considered as
the Wheeler-DeWitt equations in the spin network basis. We
considered in [29] the (simple) case of the boundary of the
tetrahedron and showed that the solution to those difference
equations is the q − 6j symbol.
Here we are interested in using the spinorial formalism

for LQG instead of holonomies and fluxes, and in further
extracting all building blocks for the transition amplitudes,
i.e., to go beyond the case of the tetrahedron from [29]. In a
companion paper [31], we revisit all kinematical aspects of
this q-deformed LQG model in more detail, and in the
spinor representation. (This was initiated in [32].) In
particular, the quantization of the deformed spinors can
be performed in terms of q bosons. We then use those q
bosons to define the invariant operators that are needed for
the quantization of the Hamiltonian constraint in spinor
variables.
In this paper, we describe the dynamics using the

deformed spinors and q bosons of [31]. The Hamiltonian
constraint built from the deformed spinors is a direct
generalization of the nondeformed version given in [10].
At the quantum level, the Hamiltonian constraints also give
rise to difference equations which are direct q-deformed
generalizations of those of [10]. Here we go further to
provide the transformations of the physical states (in the
spin network basis) under Pachner moves of the canonical
surface. This is equivalent to finding the building blocks for
spin foams, or for the transition amplitudes, as emphasized
by Noui and Perez [8]. In particular, we find that those
building blocks are exactly those of the Turaev-Viro model
in a version with q real (note that this version suffers from
the same finiteness issues as the Ponzano-Regge model).
This paper is organized as follows. In Sec. II, we concisely

recall the discrete classical phase space in terms of the
holonomies and (deformed) fluxes introduced in [27], as
well as the Gauss constraints (used to define the kinematical
phase space) and the flatness constraints (used to define the
dynamical phase spaces). In Sec. III we move on to the
construction of the deformed spinors, following [31], and of
the Hamiltonian constraints. The quantization is performed
in Sec. IV, again following the prescriptions of [31]. This is
where in particular we find the difference equations
encoding the Wheeler-DeWitt equations in the spin net-
work basis. Then in Sec. V, we study how solutions to the
difference equations are related under Pachner moves,
thereby providing the building blocks for the transition
amplitudes à la Noui-Perez.
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II. CLASSICAL PHASE SPACE
AND CONSTRAINTS

We start by recalling the main ingredients of the classical
phase space for 3D loop gravity with a negative cosmo-
logical constant Λ in the Euclidean signature. More details
for the mathematical setup can be found in [27,31]. The
phase space is associated to a graph Γ, which is dual to a
cellular decomposition of the canonical surface Σ. It has V
vertices, E edges and F faces (the connected components
of ΣnΓ).
Here and throughout the paper, we use κ ≔ G

ffiffiffiffiffi
−Λ

p
c , for a

cosmological constant Λ < 0. It is a parameter that deforms
the Poisson structure with respect to the case of vanishing
cosmological constant.

A. Phase space for a single edge

We first consider a single edge and associate to it a phase
space: the Heisenberg double ðDðSUð2ÞÞ; πHÞ of SU(2). It
is the group DðSUð2ÞÞ ¼ SLð2;CÞ ≅ SUð2Þ⋈ANð2Þ with
Poisson structure πH fully determined by a classical r
matrix r ∈ slð2;CÞ ⊗ slð2;CÞ. The Poisson brackets can
be compactly written as

fd1; d2g ¼ −r21d1d2 þ d1d2r ¼ rd1d2 − d1d2r21;

∀ d ∈ SLð2;CÞ; ð1Þ

where d1 ¼ d ⊗ I; d2 ¼ I ⊗ d. The r matrix is chosen as

r ¼ iκ
4

X3
i¼1

σi ⊗ ρi ¼
iκ
4

0
BBBB@

1 0 0 0

0 −1 4 0

0 0 −1 0

0 0 0 1

1
CCCCA: ð2Þ

Here σ1;2;3 are the Pauli matrices while ρi ¼ σi þ 1
2
½σ3; σi�.

Finally, r21 is given by the permutation of the two vector
space components of r (in the above 4 × 4 representation,
r21 is simply the matrix transpose of r). The equality of the
last two expressions in (1) is guaranteed by the property
that rs ≔ 1

2
ðrþ r21Þ is the Casimir thus ½rs; d1d2� ¼ 0.

It is important for loop gravity to split an SLð2;CÞ
element via the Iwasawa decomposition into the product of
an AN(2) element and an SU(2) element. One can write
d ∈ SLð2;CÞ in exactly two ways as

d ¼ lu ¼ ũ l̃; l; l̃ ∈ ANð2Þ; u; ũ ∈ SUð2Þ: ð3Þ

This phase space can be seen as a deformation of the
holonomy-flux phase space at Λ ¼ 0 [27,33]. In the flat/
nondeformed (Λ ¼ 0) case, the phase space of an edge
is described by ISU(2), the holonomies are described by
SU(2) and the fluxes are described by R3. Here, in the
deformed phase space SLð2;CÞ, we also let the SU(2)

subgroup describes the holonomies while the (deformed)
fluxes correspond to an AN(2) subgroup. That is, for each
phase space variable d, we perform the Iwasawa decom-
position (3) then u and ũ are holonomies, while l and l̃
are fluxes.
We call the constraint

C ¼ 1 ∈ SLð2;CÞ for C ≔ lul̃−1ũ−1 ð4Þ

the ribbon constraint, associated to every edge of Γ. It has
six real components and forms a set of second-class
constraints with respect to the Poisson brackets (1)
(meaning that the brackets between the components do
not close).
The ribbon constraint has a natural graphical interpreta-

tion. Since the edges of Γ are embedded in a surface, there is
a natural clockwise walk around each of them. It goes
(i) along the edge on one side, (ii) crosses it at its end,
(iii) goes back along the edge on its other side, and (iv) finally
crosses it again to close the walk. Equivalently, one thickens
the edge by taking a tubular neighborhood in Σ, as in Fig. 1.
The boundary has four pieces that naturally correspond to
the four parts of the walk above.
If e is an edge in Γ, then we denote RðeÞ its thickening,

called the “ribbon edge.” The boundary pieces parallel to e
will be called the “long edges” of RðeÞ and the boundary
pieces that cross e at its ends will be called the “short
edges” of RðeÞ. We can orient the long and short edges
clockwise around RðeÞ. The matrices u;l; ũ−1; l̃−1 are then
assigned in this order and as pictured in Fig. 1. In particular,
u and ũ are assigned to the long edges of RðeÞ, while l and
l̃ are assigned to its short edges. Equivalently, we can think
of u and ũ as associated to e itself and l and l̃ to each half
edge, i.e., a pair of an edge and an incident vertex.
To fix the position of the variables around the ribbon, one

can use the orientation on Γ and decide for instance that u is
oriented opposite to e. This is the convention we will use.
The ribbon constraint C ¼ lul̃−1ũ−1 ≅ I is then a flatness
constraint around RðeÞ.
The Poisson brackets (1) can be equivalently written as

brackets between holonomies and fluxes

FIG. 1. A ribbon edge RðeÞ. The variables l; u; l̃; ũ are
assigned to the four sides of the ribbon edge and they are subject
to the ribbon constraint lul̃−1ũ−1 represented as the trivialization
of the loop around RðeÞ. The positions of these variables are fixed
such that the directions of u and ũ are opposite to that of the edge
e (in gray).
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fl1;l2g ¼ −½r21;l1l2�; fl1; u2g ¼ −l1r21u2;

fu1;l2g ¼ l2ru1; fu1; u2g ¼ −½r; u1u2�;
fl̃1; l̃2g ¼ ½r21; l̃1l̃2�; fl̃1; ũ2g ¼ −ũ2r21l̃1;

fũ1; l̃2g ¼ ũ1rl̃2; fũ1; ũ2g ¼ ½r; ũ1ũ2�: ð5Þ

All other Poisson brackets, e.g., fl1; ũ2g can also be
obtained by combining (5) and (4).
The AN(2) elements l and l̃ can be parametrized as

2 × 2 lower triangular matrices

l¼
�
λ 0

z λ−1

�
; l̃¼

�
λ̃ 0

z̃ λ̃−1

�
; λ; λ̃ ∈ Rþ; z; z̃ ∈ C:

ð6Þ

By also writing the holonomies u and ũ in the fundamental
representation, one can write down all the Poisson brackets
between the matrix elements of u; ũ and λ; λ̃; z; z̃; z̄; ¯̃z
(see Refs. [27,31] for details).

B. Ribbon graph phase space

We extend the phase space defined above for a single
edge to the whole graph Γ, by taking the product of
SLð2;CÞ over the edges. Graphically, one thickens every
edge of Γ as before. However, this is not enough since there
will be interactions between the group elements of differ-
ent edges which meet at vertices of Γ. An advantageous
graphical representation is to thicken Γ itself. Each vertex
v of valency d is fattened to a ribbon vertex RðvÞ, i.e., a
d-gon whose boundary edges correspond to the edges
incident to v, and are glued to the short edges of the ribbon
edges [the boundary vertices of RðvÞ correspond to the
“corners” at v between adjacent edges]. In other words, a
ribbon vertex is a face whose boundary sides are dressed
with fluxes ls and l̃s.
Overall, the holonomies ue; ũe are labeled by the edges

of Γ and assigned to the long edges of the ribbon edges.
There are two fluxes associated to every edge of Γ, denoted
le ∈ ANð2Þ if e is outgoing at v, and l̃e ∈ ANð2Þ if e is
incoming at v. Since each is in fact assigned to a half edge
ðe; vÞ [equivalently a short edge of RðeÞ], we will use the
generic notation lev for either one of them.
Since there are also two holonomies along e, it is

tempting to distinguish them in terms of half edges. This
is possible using orientations. We denote uev the SU(2)
matrix, which points towards lev (so that if lev ¼ l̃−1

e then
uev ¼ ũ−1e and else lev ¼ le and uev ¼ ue).

C. Gauss and flatness constraints

The phase space for Γ described above is constrained by
the ribbon constraints Ce ¼ 1 on every edge. Gravity
further imposes two additional sets of constraints, namely
the Gauss and flatness constraints. Gauss constraints are

associated to vertices and impose that the ordered products
of the fluxes along the short edges of every RðvÞ are trivial.
Flatness constraints are associated to the faces and impose
that the ordered products of the holonomies along the long
edges that border every face is trivial. Those two sets of
constraints are first class.
To write the Gauss constraints explicitly, choose (ran-

domly) one edge of reference at each vertex of Γ and call it
e1, then order the edges from 1 to n, i.e., e1;…; en by going
counterclockwise around v. Notice that all the AN(2)
matrices leiv on the boundary of the ribbon vertex RðvÞ
are oriented counterclockwise, as shown in Fig. 2, for any
choice of orientations of the edges incident to v. The Gauss
constraint is then simply the flatness around RðvÞ. It reads

lenv � � �le1v ¼ 1: ð7Þ

We repeat this construction on faces instead of vertices:
choose a random edge of reference around each face f and
denote it e1, then e2;…; ed are the edges encountered
counterclockwise around f. For all possible orientations of
the edges e1;…; ed on the boundary of f are, the SU(2)
matrices ueiv are all counterclockwise. The flatness con-
straint on f reads

uedv1 � � � ue2v3ue1v2 ¼ 1; ð8Þ

as pictured in Fig. 3.
Gauss constraints generate local SU(2) transformations

through the Poisson brackets [27,31]. As usual in symplec-
tic geometry, first-class constraints are not only imposed but
one also needs to quotient out the phase space by the orbits
they generate. This is called the symplectic quotient. Here,
one obtains Pkin ¼ SLð2;CÞE==SUð2ÞV , which is called
the kinematical phase space, where E and V denote the
number of edges and vertices in Γ.
It was shown in [27] that the Gauss constraint for a

trivalent vertex geometrically represents the hyperbolic
cosine law, implying that the kinematical phase space
describes hyperbolic geometry (at least hyperbolic triangles
in that case).

FIG. 2. A vertex v on which edges meet becomes a ribbon
vertex RðvÞ incident to ribbon edges. The ribbon vertex is here
depicted with a dashed boundary. Due to the clockwise orienta-
tion of the short edges of every ribbon edge, the matrix lev
around RðvÞ are all oriented counterclockwise.
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On the other hand, flatness constraints generate
(deformed) translations [27]. The physical phase space is
then obtained via the symplectic quotient of the kinematical
phase space by the flatness constraints, Pphys ¼ Pkin==
ANð2ÞF with F as the number of the faces in Γ.
In the Λ → 0 limit, one recovers the Poincaré phase

space structure of first-order 3D gravity. In particular, the
flatness constraints generate an R3 action, i.e., translations.
Geometrically, those translations simply move the vertices
of the triangulation (dual to the faces of Γ) around (three
directions for the three components of the constraints). The
flatness constraints also enforce the dihedral angles to be
functions of the angles within triangles as in flat, Euclidean
geometry (recall that dihedral angles measure the extrinsic
curvature at the discrete level) [9]. This geometric picture
arises when the constraints are written on the basis
determined by the fluxes themselves. It is also possible
to describe them on a spinor basis [10], which is what we
will focus on in this paper.

III. SPINORIAL REPRESENTATION

In this section, we rewrite the q-deformed loop gravity
phase space structure described above in the spinor
representation. In particular, we define the deformed

spinors that can be naturally associated to the ribbon graph
and reproduce the SU(2) holonomies and the AN(2) fluxes.
We also define the scalar products of these deformed
spinors, living at the corners of the ribbon graph, which
are SU(2)-invariant quantities hence live in the kinematical
phase space. These scalar products are especially useful in
constructing the Hamiltonian.

A. Deformed spinors

Here we describe the κ-deformed spinors that can be
used to describe the phase space and the constraints in place
of the variables uev;lev. We will only give the main
ingredients needed to construct the Hamiltonian constraint.
The fully detailed construction appears in [31].
The building blocks are two independent pairs of

κ-deformed spinor variables ðζκ0; ζκ1Þ; ðζ̃κ0; ζ̃κ1Þ and their

complex conjugates ðζ̄κ0; ζ̄κ1Þ; ð ¯̃ζκ0; ¯̃ζκ1Þ. The norms of these

κ-deformed spinor variables are ζ̄κAζ
κ
A ¼ 2

κ sinh
�
κNA
2

�
;

¯̃ζ
κ
Aζ̃

κ
A ¼ 2

κ sinh
�
κÑA
2

�
; A ¼ 0, 1 where NA and ÑA are real

functions of the κ-deformed spinor variables.1 They satisfy
the Poisson brackets

fζκA; ζ̄κBg ¼ −iδAB cosh
�
κNA

2

�
; fNA; ζκBg ¼ iδABζκA; fNA; ζ̄κBg ¼ −iδABζ̄κA;

fζ̃κA; ¯̃ζκBg ¼ −iδAB cosh
�
κÑA

2

�
; fÑA; ζ̃

κ
Bg ¼ iδABζ̃

κ
A; fÑA;

¯̃ζ
κ
Bg ¼ −iδAB

¯̃ζ
κ
A; A;B ¼ 0;1; ð9Þ

and all other Poisson brackets vanish.

Let ϵ ¼
�
0 −1
1 0

�
. These κ-deformed spinor variables can be used to define two types of deformed spinors:

FIG. 3. When considering ribbon edges and ribbon vertices, the face on the left bounded by edges e1;…; e6 becomes bounded by long
edges on the right. All matrices ueiviþ1

; i ¼ 1;…; 6 are oriented counterclockwise around the face.

1NA (A ¼ 0, 1) is the norm of the κ spinors at κ → 0 thus the norm of the standard spinor variables and likewise for ÑA.
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(i) The SU(2)-covariant spinors, transforming under SU(2) gauge transformations in a covariant way. We denote them
as jti and jt̃i, and their duals as jt� and jt̃�,

jti ¼
�
t−
tþ

�
¼
 

e
κN1
4 ζκ0

e−
κN0
4 ζκ1

!
; jt� ¼ ϵjt̄i ¼

�−t̄þ
t̄−

�
¼
 
−e−

κN0
4 ζ̄κ1

e
κN1
4 ζ̄κ0

!
;

jt̃i ¼
�
t̃−
t̃þ

�
¼
 

e
κÑ1
4 ζ̃κ0

e−
κÑ0
4 ζ̃κ1

!
; jt̃� ¼ ϵj¯̃ti ¼

�
−¯̃tþ
¯̃t−

�
¼
 
−e−

κÑ0
4
¯̃ζ
κ
1

e
κÑ1
4
¯̃ζ
κ
0

!
: ð10Þ

(ii) The braided-covariant spinors, transforming in a braided-covariant way [31]. We denote them as jτi and jτ̃i and their
duals as jτ� and jτ̃�,

jτi ¼
�
τ−

τþ

�
¼
 
e−

κN1
4 ζκ0

e
κN0
4 ζκ1

!
; jτ� ¼ ϵjτ̄i ¼

�−τ̄þ
τ̄−

�
¼
 
−e

κN0
4 ζ̄κ1

e−
κN1
4 ζ̄κ0

!
;

jτ̃i ¼
�
τ̃−

τ̃þ

�
¼
 
e−

κÑ1
4 ζ̃κ0

e
κÑ0
4 ζ̃κ1

!
; jτ̃� ¼ ϵj ¯̃τi ¼

�
− ¯̃τþ
¯̃τ−

�
¼
 
−e

κÑ0
4
¯̃ζ
κ
1

e−
κÑ1
4
¯̃ζ
κ
0

!
: ð11Þ

The norms are htjti ¼ hτjτi ¼ 2
κ sinh

κ
2
ðN0 þ N1Þ, and similarly ht̃jt̃i ¼ hτ̃jτ̃i ¼ 2

κ sinh
κ
2
ðÑ0 þ Ñ1Þ (the norm of a dual is the

same since ϵ† ¼ ϵ−1). They match if the so-called norm matching condition holds, which is just N0 þ N1 ≅ Ñ0 þ Ñ1.
Holonomies and fluxes can be reconstructed as follows:

l ¼
 
expðκ

4
ðN1 − N0ÞÞ 0

−κζ̄κ0ζκ1 expðκ
4
ðN0 − N1ÞÞ

!
; l̃ ¼

 
expðκ

4
ðÑ0 − Ñ1ÞÞ 0

κ ¯̃ζ
κ
0ζ̃

κ
1 expðκ

4
ðÑ1 − Ñ0ÞÞ

!
;

u ¼ jτi½t̃j − jτ�ht̃jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihτjτiht̃jt̃ip ; ũ ¼ jti½τ̃j − jt�hτ̃jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihtjtihτ̃jτ̃ip ; ð12Þ

with N0 þ N1 ¼ Ñ0 þ Ñ1. It is straightforward to check that the deformed spinors are related to one another by parallel
transport via fluxes and holonomies.

jτi ¼ e−
κðN0þN1Þ

4 l−1jti; jτ̃� ¼ e
κðÑ0þÑ1Þ

4 l̃jt̃�; ujt̃� ¼ jτi; ũjτ̃� ¼ jti: ð13Þ

Those relations have a natural graphical interpretation: the
spinors can be assigned to the corners of the ribbon edge.
For instance, jt̃� is at the source end of the long edge
carrying u and jτi is at its target end. This is depicted in

Fig. 4 (we do not include the factors e−
κðN0þN1Þ

4 and e
κðÑ0þÑ1Þ

4 in
the graphical representation).

To avoid writing separate equations for jti and jt�, we
introduce the following notations:

t−A ≔ ð−1Þ12þAtA;

tþA ≔ t̄−A;
and

t̃−A ≔ ð−1Þ12þAt̃A;

t̃þA ≔ ¯̃t−A;
ð14Þ

for A ¼ �1=2. Similar but exchanged notations are used for
τ and τ̃,

τ−A ≔ τA;

τþA ≔ ð−1Þ12−Aτ̄−A;
and

τ̃−A ≔ τ̃A;

τ̃þA ≔ ð−1Þ12−A ¯̃τ−A:
ð15ÞFIG. 4. The ribbon edge with the holonomies on its long edges,

fluxes on its short edges and spinors on its corners.
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For reference, we explicitly write the spinors and dual spinors with those notations in a footnote.2 The norms read

htjti ¼ 1

2

X
ϵ¼�

X
A¼�1

2

ϵð−1Þ12þAtϵAt
−ϵ
−A; ht̃jt̃i ¼ 1

2

X
ϵ¼�

X
A¼�1

2

ϵð−1Þ12þAt̃ϵAt̃
−ϵ
−A;

hτjτi ¼ 1

2

X
ϵ¼�

X
A¼�1

2

ϵð−1Þ12þAτϵAτ
−ϵ
−A; hτ̃jτ̃i ¼ 1

2

X
ϵ¼�

X
A¼�1

2

ϵð−1Þ12þAτ̃ϵAτ̃
−ϵ
−A; ð17Þ

and the holonomies

uAB ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihτjτiht̃jt̃ip X

ϵ¼�
ϵτϵAt̃

ϵ
−B ũ−1AB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihτ̃jτ̃ihtjtip X

ϵ¼�
ϵτ̃ϵAt

ϵ
−B: ð18Þ

B. Gauge invariant quantities

We have described the spinors associated to an edge.
Consider now two edges e1, e2 meeting at a vertex v and
incident to the same corner of Γ. The ribbon edges Rðe1Þ
and Rðe2Þ share a corner where we have a spinor of e1 and a
spinor of e2. Their scalar product is gauge invariant. Given
fixed orientations of the edges, there are four possible
products (each spinor and its dual). There are moreover
four configurations of orientations, shown in Fig. 5. For
instance, the four scalar products for the bottom-right
configuration are ht2jτ1i, ht2jτ1�, ½t2jτ1i, and ½t2jτ1�.
Using the notations (14) and (15), we can give a uniform

expression to the four scalar products at fixed orientations.
For example, when both edges are outgoing,

Eϵ2;ϵ1
e2e1 ≔

X
A¼�1=2

τϵ22;−At
ϵ1
1;A ¼

8>>>><
>>>>:

ht2jτ1� for ϵ1 ¼ þ; ϵ2 ¼ þ
ht2jτ1i for ϵ1 ¼ −; ϵ2 ¼ þ
½t2jτ1� for ϵ1 ¼ þ; ϵ2 ¼ −
½t2jτ1i for ϵ1 ¼ −; ϵ2 ¼ −

:

ð19Þ

The other orientations are obtained by changing τ1 to τ̃1 and
t2 to t̃2 and the invariant is still denoted Eϵ2;ϵ1

e2;e1 .
It will be convenient to encode all the orientations and

have a fully uniform way of writing the invariant. We orient
the corner between e1 and e2 counterclockwise. We say that
the orientation oi of ei for i ¼ 1, 2 is positive if it matches
that of the corner, and negative otherwise. We denote the
spinors meeting there as te1v and te2v according to

te1v
o1 ¼ 1 τ̃1

o1 ¼ −1 τ1

te2v
o2 ¼ 1 t2
o2 ¼ −1 t̃2

ð20Þ

so that

Eϵ2;ϵ1
e2e1 ¼

8>>>><
>>>>:

hte2vjte1v� for ϵ1 ¼ þ; ϵ2 ¼ þ
hte2vjte1vi for ϵ1 ¼ −; ϵ2 ¼ þ
½te2vjte1v� for ϵ1 ¼ þ; ϵ2 ¼ −
½te2vjte1vi for ϵ1 ¼ −; ϵ2 ¼ −

: ð21Þ

FIG. 5. Two edges meet at a vertex and share a corner. There are
four configurations of orientations and we indicate the spinors at
the common corner.

2

jti¼
�

t−−

−t−þ

�
; jt� ¼

�−tþ−
tþþ

�
; jt̃i¼

�
t̃−−

−t̃−þ

�
; jt̃� ¼

�−t̃þ−
t̃þþ

�
;

htj ¼
�
tþþ; tþ−

�
; ½tj ¼

�
t−þ; t−−

�
; ht̃j ¼

�
t̃þþ; t̃þ−

�
; ½t̃j ¼

�
t̃−þ; t̃−−

�
;

jτi¼
�
τ−−

τ−þ

�
; jτ� ¼

�
τþ−
τþþ

�
; jτ̃i¼

�
τ̃−−

τ̃−þ

�
; jτ̃� ¼

�
τ̃þ−
τ̃þþ

�
;

hτj ¼
�
τþþ;−τþ−

�
; ½τj ¼

�
−τ−þ;τ−−

�
; hτ̃j ¼

�
τ̃þþ;−τ̃þ−

�
;

½τ̃j ¼
�
−τ̃−þ; τ̃−−

�
; ð16Þ

where the subscripts A ¼ � 1
2
have been notated as A ¼ � for

simplicity.
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C. Hamiltonian constraint

By plugging u and ũ from (12) into the flatness
constraint (8), one obtains a spinorial expression of the
constraint. By then taking the matrix elements of the
constraints between different spinors, we get some scalar
constraints that we call the Hamiltonian constraints. They
are the κ-deformed versions of [10].
We first write the Hamiltonian constraints generally, i.e.,

on faces of arbitrary lengths, then specialize them to the
case of faces of length 3.

1. The Hamiltonian on a face of arbitrary degree

Let f be a face of length d. We will introduce a
constraint, derived from the flatness constraint, for every
pair of edges ðe; e0Þ around f. Label the edges counter-
clockwise around f as e1;…; ed. Without loss of general-
ity, we set the pair ðe; e0Þ, which labels our function to
ðe1; ekÞ for k ∈ f2;…; dg. Label the vertices around f as
v1;…; vd counterclockwise, such that ei is incident to vi
and viþ1, for i ¼ 1;…; d mod d, as shown in Fig. 6. We
assume that f visits each vertex and edge exactly once (as
when Γ is dual to a simplicial complex), so that all eis and
vis are distinct.
By convention, we denote the orientation oi ¼ 1 if ei is

counterclockwise and oi ¼ −1 elsewise (this is the relative
orientation of the edge with respect to the counterclock-
wise orientation of f). With the notation uev introduced
earlier, the flatness constraint reads uedv1 � � � ue2v3ue1v2 ¼ 1

in SU(2). In order to simplify the notations a bit, we
will use

ueif ≔ ueiviþ1
¼
�
ũ−1ei ; if o1 ¼ 1

uei ; if o1 ¼ −1
: ð22Þ

Furthermore we denote teivi the spinor along the long edge
of RðeiÞ, which is incident to both f and vi. It is
determined by the orientation of ei,

oi ¼ 1 ⇒ teivi ¼ tei and teiviþ1
¼ τ̃ei ;

oi ¼ −1 ⇒ teivi ¼ t̃ei and teiviþ1
¼ τei : ð23Þ

Notice that we can combine the parallel transport
relations (13) with the notations (14), (15) to relate the
spinors which are on both ends of the long edge of ei
incident to f,

tϵieivi;−A ¼ −oi
X

B¼�1=2

t−ϵieiviþ1;−Bð−1Þ
1
2
þBueif;BA;

tϵieiviþ1;A
¼ oi

X
B¼�1=2

ueif;ABð−1Þ
1
2
þBt−ϵieivi;B

: ð24Þ

The flatness constraint on f is thus uedf � � � ue1f ¼ 1.
Assume momentarily that all edges are counterclockwise.
Then, ũ−1ed � � � ũ−1e1 ¼ 1 implies for all k

½tek jũ−1ek−1 � � � ũ−1e2 jτ̃e1i ¼ ½tek jũek ũekþ1
� � � ũed ũe1 jτ̃e1i

¼ hτ̃ek jũekþ1
� � � ũed jte1 �: ð25Þ

In the first equality, we have used the constraint itself, while
in the second equality we have used the parallel transport
relations on the edges e1 and ek. Then, by rewriting
ũ11 ;…; ũed with (12), one obtains the following result: a
constraint written as a sum of products of scalar invariants
living on the corners around the face. Obviously, one can
change ½tek j to htek j and jτ̃e1i to jτ̃e1 � without changing that
result (qualitatively). Similarly, one should be able to write
this function for arbitrarily chosen edge orientations. The
notations we have introduced will help us write it in the
most generic way.
Going back to arbitrary edge orientations around f, we

consider

Eϵ1;ϵk
e1→ek ¼

X
A;B¼�1=2

tϵkekvk;−Aðuek−1f � � � ue2fÞABt
ϵ1
e1v2;B

ð26Þ

as the generalization of the left-hand side of (25). Using the
parallel transport relations (24), it reads

Eϵ1;ϵk
e1→ek ¼ −o1ok

X
C;D¼�1=2

t−ϵkekvkþ1;−Cð−1Þ
1
2
−Cðuekfuek−1f � � � ue2fue1fÞCDð−1Þ

1
2
−Dt−ϵ1e1v1;D

: ð27Þ

FIG. 6. A sunny graph with edges e1;…; ed counterclockwise
oriented around the face f. Each triple of edges ðei; ei−1; e0iÞ are
incident to a vertex vi.
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If the flatness constraint holds, the holonomy going counterclockwise from e1 to ek can then be replaced with the holonomy
the other way around f, i.e., clockwise. We thus define

Eϵ1;ϵk
e1←ek ¼

X
A;B¼�1=2

t−ϵ1e1v1;−Aðuedf � � � uekþ1fÞABt−ϵkekvkþ1;B
: ð28Þ

So if the flatness constraint holds, then

Eϵ1;ϵk
e1→ek þ o1okE

ϵ1;ϵk
e1←ek ¼ 0: ð29Þ

Indeed, using the flatness constraint in (27) we get

Eϵ1;ϵk
e1→ek ¼ −o1ok

X
C;D¼�1=2

t−ϵkekvkþ1;−Cð−1Þ
1
2
−Cðuedf � � �uekþ1fÞ−1CDð−1Þ

1
2
−Dt−ϵ1e1v1;D

: ð30Þ

For any matrix g ∈ SUð2Þ, the matrix elements of the inverse can be written g−1CD ¼ ð−1Þ12−Dg−D−Cð−1Þ12−C. This can be used
to transform the above expression into o1okE

ϵ1;ϵk
e1←ek . The last step to define our Hamiltonian constraints is to rewrite Eϵ1;ϵk

e1→ek
and Eϵ1;ϵk

e1←ek in terms of scalars like (21). The matrix elements of the holonomies are indeed

ueif;Aiþ1Ai
¼ oi

1

Nei

X
ϵi¼�

ϵit
ϵi
eiviþ1;Aiþ1

tϵieivi;−Ai
; ð31Þ

with Nei ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ϵi;ϵ0i¼�

X
A;B¼�1=2

ϵϵ0ð−1Þ12−Að−1Þ12−Btϵiei;viþ1;A
t−ϵieiviþ1;−At

ϵ0i
ei;vi;B

t
−ϵ0i
eivi;−B

s
; ð32Þ

so that one can reorganize the products over the vertices instead of edges,

Eϵ1;ϵk
e1→ek ¼

X
ϵ2 ;…;ϵk−1¼�
A2 ;…;Ak¼�1=2

 Yk−1
i¼2

oiϵi
Nei

! Yk
i¼2

tϵieivi;−Ai
tϵi−1ei−1vi;Ai

!
; ð33Þ

Eϵ1;ϵk
e1←ek ¼ ð−1Þd−k

X
ϵkþ1 ;…;ϵd¼�

Akþ1;…;Adþ1¼�1=2

 Yd
i¼kþ1

oiϵi
Nei

! Ydþ1

i¼kþ1

t−ϵieivi;−Ai
t−ϵi−1ei−1vi;Ai

!
: ð34Þ

We can now use the quadratic invariants defined in (21), Eϵi;ϵi−1
eiei−1 ¼PA¼�1=2 t

ϵi
eivi;−At

ϵi−1
ei−1vi;A

, which encodes all four scalar
products of the two spinors meeting at vi, i.e.,

Eϵi;ϵi−1
eiei−1 ¼

8>>>><
>>>>:

hteivi jtei−1vi � for ϵi ¼ þ; ϵi−1 ¼ þ
hteivi jtei−1vii for ϵi ¼ þ; ϵi−1 ¼ −
½teivi jtei−1vi � for ϵi ¼ −; ϵi−1 ¼ þ
½teivi jtei−1vii for ϵi ¼ −; ϵi−1 ¼ −

; ð35Þ

where the spinors teivi and tei−1vi−1 are given by the rule (23) according to the orientations. This leads us to the following
definition of the Hamiltonian constraints.
Definition 3.1. Let f be a face of length d, with edges labeled by e1;…; ed counterclockwise around f. A Hamiltonian is

associated to f and a pair of edges along f with a sign attached to each of them. Without loss of generality, the pair can be
chosen to be ðe1; ekÞ with signs ðϵ1; ϵkÞ ∈ fþ;−g2, for k ∈ f2;…; dg, and the Hamiltonian is

hϵ1;ϵkf;e1;ek
¼

X
ϵ2;…;ϵk−1¼�

 Yk
i¼2

oiϵi
Nei

Eϵi;ϵi−1
eiei−1

!
þ ð−1Þd−kϵ1ϵk

Ne1

Nek

X
ϵkþ1;…;ϵd¼�

 Ydþ1

i¼kþ1

oiϵi
Nei

E−ϵi;−ϵi−1
eiei−1

!
: ð36Þ
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The Hamiltonian constraint (36) captures the flatness
constraint completely with all choices of pairs ðe1; ekÞ and
of signs ðϵ1; ϵkÞ. The proof is the same as in the vector case
at κ ¼ 0, see Ref. [9].

2. Application to faces of degree three

Let us discuss more explicitly the case of triangular
faces. We use the notations and orientations of Fig. 7 as an
example. In particular o1 ¼ o6 ¼ −1 and o2 ¼ 1. Here
there are three choices of pairs of edges [which label the
Hamiltonians (36)], which correspond to the three corners
of the face.
On a corner, say between the edges e2 and e6, there

are four invariant quantities quadratic in the spinors,
ht2jτ6i; ht2jτ6�; ½t2jτ6i; ½t2jτ6�, which are encoded in the
scalar product (21)

Eϵ2;ϵ6
26 ¼

X
A¼�1=2

tϵ22;−Aτ
ϵ6
6;A ¼

8>>>><
>>>>:

ht2jt6� for ϵ2 ¼ ϵ6 ¼ þ
ht2jt6i for ϵ2 ¼ −ϵ6 ¼ þ
½t2jt6i for ϵ2 ¼ −ϵ6 ¼ −
½t2jt6i for ϵ2 ¼ ϵ6 ¼ −

:

ð37Þ

Similarly at the corners between e1, e2 and e6, e1,

Eϵ1;ϵ2
12 ¼

X
A¼�1=2

t̃ϵ11;−Aτ̃
ϵ2
2;A; Eϵ6;ϵ1

61 ¼
X

A¼�1=2

t̃ϵ66;−Aτ
ϵ1
1;A: ð38Þ

The flatness constraint ũ2u−11 u−16 ¼ I implies that if jτ6i
and jτ6� are transported around the face via ũ2u−11 u−16 , the
above quadratic quantities are left unchanged, that is

ht2jũ2u−11 u−16 jτ6i ¼ ht2jτ6i; ht2jũ2u−11 u−16 jτ6� ¼ ht2jτ6�;
½t2jũ2u−11 u−16 jτ6i ¼ ½t2jτ6i; ½t2jũ2u−11 u−16 jτ6� ¼ ½t2jτ6�:

ð39Þ

Similarly at the corners where e1, e2 and e6, e1 meet,
respectively,

ht̃1ju−11 u−16 ũ2jτ̃2i ¼ ht̃1jτ̃2i; ht̃6ju−16 ũ2u−11 jτ1i ¼ ht̃6jτ1i;
ht̃1ju−11 u−16 ũ2jτ̃2� ¼ ht̃1jτ̃2�; ht̃6ju−16 ũ2u−11 jτ1� ¼ ht̃6jτ1�;
½t̃1ju−11 u−16 ũ2jτ̃2i ¼ ½t̃1jτ̃2i; ½t̃6ju−16 ũ2u−11 jτ1i ¼ ½t̃6jτ1i;
½t̃1ju−11 u−16 ũ2jτ̃2� ¼ ½t̃1jτ̃2�; ½t̃6ju−16 ũ2u−11 jτ1� ¼ ½t̃6jτ1�:

ð40Þ

In fact, this set of constraints simply amounts to rewriting
the constraint ũ2u−11 u−16 ¼ I in the coherent state basis.
Therefore, as long as those vectors are generic (hence
linearly independent), this whole set is equivalent to
ũ2u−11 u−16 ¼ I.
Let us consider the constraint ht2jũ2u−11 u−16 jτ6� − ht2jτ6�

and rewrite it like in (36). Use the parallel transport
relations u−16 jτ6� ¼ −jt̃6i and ht2jũ2 ¼ ½τ̃2j, which gives
ht2jũ2u−11 u−16 jτ6� ¼ −½τ̃2ju−11 jt̃6i ¼ ½t̃6ju1jτ̃2i. We then use
u1 ¼ 1

Ne1
ðjτ1i½t̃1j − jτ1�ht̃1jÞ so that the constraint becomes

ht2jũ2u−11 u−16 jτ6� − ht2jτ6�

¼ 1

Ne1

ð½t̃6jτ1i½t̃1jτ̃2i − ½t̃6jτ1�ht̃1jτ̃2iÞ − ht2jτ6�;

¼ −
1

Ne1

X
ϵ¼�

ϵE−;ϵ
61 E

ϵ;−
12 − Eþ;þ

26 ; ð41Þ

which is exactly the specialization of (36) to d ¼ 3, k ¼ 2,
o1 ¼ o6 ¼ −o2 ¼ −1, and ϵ2 ¼ ϵ6 ¼ þ,

hϵ2;ϵ6e2e6 ¼ Eϵ2;ϵ6
26 þ 1

Ne1

X
ϵ1¼�

ϵ1E
ϵ1;−ϵ2
12 E−ϵ6;ϵ1

61 ; ð42Þ

where we recall that Ne1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihτ1jτ1iht̃1jt̃1i

p
.

This way, the Hamiltonian constraint does not involve
holonomy variables anymore like in (39), but only the
quadratic invariants of spinors.

IV. QUANTUM HAMILTONIAN CONSTRAINT

We now proceed to the quantization of the system. The
aim is to quantize the Hamiltonian constraints (36) and

FIG. 7. On the left, a triangular face with its adjacent edges. On the right, the ribbon graph it gives rise to.
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solve them at the quantum level. This requires quantizing the quadratic invariant Eϵi;ϵi−1
eiei−1 . It has been constructed consistently

with the quantization of holonomies and fluxes in the companion paper [31]. Therefore, we start with recalling the main
ingredients before proceeding to the construction of the quantum Hamiltonian.

A. Quantum deformed spinors

Let q ≔ eℏκ and denote ½n� ≔ q
n
2−q−

n
2

q
1
2−q−

1
2

the q numbers. The κ-deformed spinors are quantized as q bosons (in the same way

they are at κ ¼ 0 [34]). Consider two independent pairs of q-boson operators ða; a†Þ and ðb; b†Þ satisfying the relations

aa† − q∓1
2a†a ¼ q�

Na
2 ; a†a − q�1

2aa† ¼ −q�
Naþ1

2 ; ½Na; a†� ¼ a†; ½Na; a� ¼ −a;

bb† − q∓1
2b†b ¼ q�

Nb
2 ; b†b − q�1

2bb† ¼ −q�
Nbþ1

2 ; ½Nb; b†� ¼ b†; ½Nb; b� ¼ −b; ð43Þ

with a†a ¼ ½Na�, aa† ¼ ½Na þ 1�, b†b ¼ ½Nb�, bb† ¼ ½Nb þ 1�. We furthermore introduce two other independent pairs of q
bosons denoted ðã; ã†Þ and ðb̃; b̃†Þ, and satisfying the same relations as above. The tilde and nontilde operators are chosen
to commute with each other.
We will then use the following quantization map

ðζκ0; ζκ1Þ → ða; bÞ; ðζ̄κ0; ζ̄κ1Þ → ða†; b†Þ; ðN0; N1Þ → ðNa; NbÞ;
ðζ̃κ0; ζ̃κ1Þ → ðã; b̃Þ; ð ¯̃ζκ0; ¯̃ζκ1Þ → ðã†; b̃†Þ; ðÑ0; Ñ1Þ → ðÑa; ÑbÞ: ð44Þ

In previous works by the first and second authors, the fluxes l and l̃ had been quantized in terms of the quantum algebra
Uqðsuð2ÞÞ. This can be replicated in a manner which is consistent with the q bosons. Indeed, the Jordan map builds
generators of Uqðsuð2ÞÞ out of the above q bosons,

Jþ ¼ a†b; J− ¼ ab†; K ¼ q
Jz
2 ¼ q

Na−Nb
4 ;

J̃þ ¼ ã†b̃; J̃− ¼ ãb̃†; K̃ ¼ q
J̃z
2 ¼ q

Ña−Ñb
4 ; ð45Þ

where J�; K ≡ q
Jz
2 and J̃�; K̃ ≡ q

J̃z
2 are two independent copies of the Uqðsuð2ÞÞ generators satisfying the relations

KJ�K−1 ¼ q�1
2J�; ½Jþ; J−� ¼ ½2Jz�; K̃J̃�K̃−1 ¼ q�1

2J̃�; ½J̃þ; J̃−� ¼ ½2J̃z�; ð46Þ

and others vanish. Performing the quantization as follows,

l ¼
 
expðκ

4
ðN1 − N0ÞÞ 0

−κζ̄κ0ζκ1 expðκ
4
ðN0 − N1ÞÞ

!
�! L ¼

�
K−1 0

−q1
4ðq1

2 − q−
1
2ÞJþ K

�
;

l̃ ¼
 
expðκ

4
ðÑ0 − Ñ1ÞÞ 0

κ ¯̃ζ
κ
0ζ̃

κ
1 expðκ

4
ðÑ1 − Ñ0ÞÞ

!
�! L̃ ¼

�
K̃ 0

q−
1
4ðq1

2 − q−
1
2ÞJ̃þ K̃−1

�
; ð47Þ

one finds, as in [31], that L ∈ Fq−1ðANð2ÞÞ ≅ Uq−1ðsuð2ÞÞ and L̃ ∈ FqðANð2ÞÞ ≅ Uqðsuð2ÞÞ [35].
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The map (44) quantizes the κ-deformed spinors (11) as follows:

jti ¼
 

e
κN1
4 ζκ0

e−
κN0
4 ζκ1

!
→ t− ¼

�
t−þ
t−−

�
¼
 

q
Nb
4 a

q−
Na
4 b

!
; jt� ¼

 
−e−

κN0
4 ζ̄κ1

e
κN1
4 ζ̄κ0

!
→ tþ ¼

�
tþþ
tþ−

�
¼
 
−b†q−

Naþ1
4

a†q
Nbþ1

4

!
;

jτi ¼
 
e−

κN1
4 ζκ0

e
κN0
4 ζκ1

!
→ τ− ¼

� τ−þ
τ−−

�
¼
 
q−

Nb
4 a

q
Na
4 b

!
; jτ� ¼

 
−e

κN0
4 ζ̄κ1

e−
κN1
4 ζ̄κ0

!
→ τþ ¼

� τþþ
τþ−

�
¼
 
−b†q

Naþ1
4

a†q−
Nbþ1

4

!
;

jt̃i ¼
 

e
κÑ1
4 ζ̃κ0

e−
κÑ0
4 ζ̃κ1

!
→ t̃− ¼

�
t̃−þ
t̃−−

�
¼
 

q
Ñb
4 ã

q−
Ña
4 b̃

!
; jt̃� ¼

 
−e−

κÑ0
4
¯̃ζ
κ
1

e
κÑ1
4
¯̃ζ
κ
0

!
→ t̃þ ¼

�
t̃þþ
t̃þ−

�
¼
 
−b̃†q−

Ñaþ1
4

ã†q
Ñbþ1

4

!
;

jτ̃i ¼
 
e−

κÑ1
4 ζ̃κ0

e
κÑ0
4 ζ̃κ1

!
→ τ̃− ¼

� τ̃−þ
τ̃−−

�
¼
 
q−

Ñb
4 ã

q
Ña
4 b̃

!
; jτ̃� ¼

 
−e

κÑ0
4
¯̃ζ
κ
1

e−
κÑ1
4
¯̃ζ
κ
0

!
→ τ̃þ ¼

� τ̃þþ
τ̃þ−

�
¼
 
−b̃†q

Ñaþ1
4

ã†q−
Ñbþ1

4

!
: ð48Þ

These objects are in fact really spinors for some Uqðsuð2ÞÞ actions: tϵ and t̃ϵ are spinors under the Uqðsuð2ÞÞ adjoint right
action, while τϵ and τ̃ϵ are spinors under the Uq−1ðsuð2ÞÞ adjoint right action [31].
Notice that the map q → q−1 exchanges tϵ with τϵ and t̃ϵ with τ̃ϵ [the operators a; b; ã; b̃ are invariant under

q → q−1 (43)].

B. Kinematical Hilbert space

The kinematical state space was defined in [31]. We here describe the corresponding spin network basis. Each edge e of Γ
carries an irreducible representation Vje of Uqðsuð2ÞÞ, characterized by its spin je ∈ N=2. The Gauss constraint then
projects the tensor product of the incident representations at each vertex onto the invariant subspace.
We consider the usual magnetic basis fjj; migm¼−j;…;j on each Vj, which diagonalizes K, i.e., Kjj; mi ¼ q

m
2 jj; mi. The q

bosons act on Vj as

a†jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½jþmþ 1�

p
jjþ 1

2
; mþ 1

2
i; ajj; mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½jþm�

p
jj − 1

2
; m −

1

2
i;

b†jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½j −mþ 1�

p
jjþ 1

2
; m −

1

2
i; bjj; mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½j −m�

p
jj − 1

2
; mþ 1

2
i;

Najj; mi ¼ ðjþmÞjj; mi; Nbjj;mi ¼ ðj −mÞjj; mi: ð49Þ

In particular a†, b† (a, b) map Vj to Vjþ1=2 (to Vj−1=2). The tilde q bosons ã; ã†; b̃; b̃† act on these basis in the same way by
definition. It leads to the Wigner-Eckart theorem for the quantum spinors (48):

hj1; m1jtϵmjj2; m2i ¼ δj1;j2þϵ=2

ffiffiffiffiffiffiffiffiffi
½dj1 �

q
q
C
j1

1
2
j2

m1−m m2
; ð50aÞ

hj1; m1jτϵmjj2; m2i ¼ δj1;j2þϵ=2

ffiffiffiffiffiffiffiffiffi
½dj1 �

q
q−1

C
j1

1
2

j2
m1 −m m2

; ð50bÞ

hj1; m1jt̃ϵmjj2; m2i ¼ δj1;j2þϵ=2

ffiffiffiffiffiffiffiffiffi
½dj1 �

q
q
C
j1

1
2
j2

m1 −m m2
; ð50cÞ

hj1; m1jτ̃ϵmjj2; m2i ¼ δj1;j2þϵ=2

ffiffiffiffiffiffiffiffiffi
½dj1 �

q
q−1

C
j1

1
2
j2

m1 −m m2
; ð50dÞ

where qC
j1
m1

j2
m2

j3
m3

is the Clebsch-Gordan coefficient for Uqðsuð2ÞÞ.
Before enforcing the Gauss constraints, the space of states is ⨁

fjeg
⊗
e
Vje ⊗ V�

je
, whereVje is associated to the target end of e

and V�
je
to its source. At each vertex v, the Gauss constraint enforces a projection of the tensor product of the vectors meeting

at v onto the trivial representation. If the edges meeting at v are denoted e1;…; en, we further denote Invðje1v ⊗ � � � ⊗ jenvÞ
the space of intertwiners, i.e., the invariant subspace of the tensor product Vje1

⊗ � � � ⊗ Vjen
if all eis are incoming at v, and

we dualize to V�
jei

if ei is outgoing at v. Therefore, the kinematical Hilbert space is given by
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Hkin ¼ ⨁
fje∈N=2g

⨂
v
Invðje1v ⊗ � � � ⊗ jenvÞ: ð51Þ

A basis is obtained at fixed spins fjeg by specifying a basis
of Invðje1v ⊗ � � � ⊗ jenvÞ for all v. We denote an element of
this space as ije1v���jenðvÞv (the letter i referring to intertwiner).

A kinematical state jψi thus admits the expansion

jψi ¼
X
fjeg

X
fivg

ψðfje; ivgÞjfje; ivgi; ð52Þ

with

jfje; ivgi ¼ ⊗
v
ije1v���jenðvÞv ; ð53Þ

where the sum over each iv runs over a basis of the invariant
space at v. The state jfje; ivgi is called a spin network state.
They form a basis of Hkin. In the case of trivalent vertices,
the invariant space Invðje1v ⊗ je2v ⊗ je3vÞ is one dimen-
sional. This is the case we are most interested in and will be
considered when constructing the quantum Hamiltonian.
Let us now give more details on the intertwiners in this case.

1. The q intertwiner for a three-valent vertex

As shown in [29], the order of the Uqðsuð2ÞÞ-invariant
spaces on different nodes is irrelevant (only the linear
order of the links incident to each node matters). In the
basis jj1; m1i ⊗ jj2; m2i ⊗ jj3; m3i, which diagonalizes
the Uqðsuð2ÞÞ generator K for each particle, the compo-
nents of the state (up to normalization) are the q-deformed
Clebsch-Gordan coefficients [29,31]. Explicitly, the inter-
twiner for a vertex with three incoming edges incident reads

ij1j2j3 ¼
X
mi

ð−1Þj3þm3ffiffiffiffiffiffiffiffiffi½dj3 �
p q−

m3
2 qC

j1
m1

j2
m2

j3−m3
jj1; m1i

⊗ jj2; m2i ⊗ jj3; m3i: ð54Þ

It solves the quantum Gauss constraint equation Ĝij1j2j3 ≔
△ð2ÞL̃ij1j2j3 ≡ L̃⊗ L̃⊗ L̃ij1j2j3 ¼ ij1j2j3 . Changing the ori-
entation of each edge, say ei, leads to the flipping of the
vector space Vji to the dual vector space V�

ji
. To write

down the expression of the corresponding intertwiner,
we make use of the Uqðsuð2ÞÞ-invariant bilinear form,
Bq∶Vj ⊗ Vj → C, which is defined with the q-WCG
coefficient projected on the trivial representation [36].
Explicitly, for two given vectors w ¼Pm wmjj;mi;
r ¼Pn rnjj; ni ∈ Vj,

Bqðw; rÞ ¼
X
m

qC
j−m j

m
0
0w−mrm ¼

X
m

ð−1Þjþmq−
m
2w−mrm:

ð55Þ

One can thus define the dual vector w� of w as

w� ≡X
m

hj; mjw�
m ≔

X
m

hj; mjq−m
2 ð−1Þjþmw−m

⇒ w�
m ¼ q−

m
2ð−1Þjþmw−m: ð56Þ

Apparently, this dual operation is not an involution.3

When the edge e2 is outgoing and e1, e3 incoming,
one needs to dualize the vector on e2, which is to
change qC

j1
m1

j2
m2

j3−m3
jj2; m2i → qC

j1j2j3
m1−m2−m3

hj2; m2j and

add ð−1Þj2þm2q−
m2
2 according to (56). Thus the corre-

spondent intertwiner is

ij1j�2j3 ¼
X
mi

ð−1Þj3þm3ffiffiffiffiffiffiffiffiffi½dj3 �
p q−

m3þm2
2 ð−1Þj2þm2

qC
j1
m1

j2−m2

j3−m3
jj1;m1i

⊗ hj2;m2j⊗ jj3;m3i; ð57Þ

which can be checked to be the eigenstate for the quantum
Gauss constraint Ĝ ¼ L̃ ⊗ L ⊗ L̃.
When edge e1 is outgoing and e2, e3 incoming, the

intertwiner is obtained using the same dualization as in (57)
but for j1 andm1. The last case of keeping the orientation of
e3 unchanged is to switch both e1 and e2 to be outgoing,
then the same dualization should be applied to both
ðj1; m1Þ and ðj2; m2Þ.
What needs special care is when one switches the

orientation of e3, i.e., when e3 is outgoing and e1, e2
incoming. In this case, one needs to dualize the vector on e3
with a different rule. This is because the q-WCG coefficient

qC
j1
m1

j2
m2

j3
m3

¼ hj1; m1; j2; m2jðj1j2Þj3; m3i can be viewed as
the coefficient wm1

(respectively, wm2
) of a vector in Vj1

(respectively, Vj2) or the coefficient w�
m3

of a dual vector in
Vj3 in the sense of the decomposition (56).
Note that the factor ð−1Þj3þm3q−

m3
2 in ij1j2j3 is the trans-

formation factor from the coefficient wm of a vector w to
the coefficient w�

m of a dual vector w� as shown in (56), thus
one needs to change ð−1Þj3þm3q−

m3
2 qC

j1
m1

j2
m2

j3−m3
jj3; m3i →

ð−1Þj3−m3q
m3
2 qC

j1
m1

j2
m2

j3
m3
hj3; m3j and add ð−1Þj3−m3q−

m3
2 ,

which is the factor of the inverse transformation of w�.
This leads to the intertwiner

ij1j2j�3 ¼
X
mi

1ffiffiffiffiffiffiffiffiffi½dj3 �
p qC

j1
m1

j2
m2

j3
m3
jj1; m1i ⊗ jj2; m2i

⊗ hj3; m3j; ð58Þ

3One can also define the dual vector with the Uq−1ðsuð2ÞÞ-
invariant bilinear form Bq−1 , which is to replace q with q−1

in (56).

SPINOR REPRESENTATION OF THE HAMILTONIAN … PHYS. REV. D 107, 026015 (2023)

026015-13



which is exactly the eigenstate for the quantum Gauss
constraint Ĝ ¼ L̃ ⊗ L̃ ⊗ L. Equation (58) can also be used
to define the q-WCG coefficient

qC
j1
m1

j2
m2

j3
m3

≔ hj1; m1j ⊗ hj2; m2jij1j2j�3 jj3; m3i: ð59Þ

Indeed, when we change the orientation of e3 again, we
recover the original intertwiner ij1j2j3 by adding the regular

factor ð−1Þj3þm3q−
m3
2 as in obtaining ij1j�2j3 from ij1j2j3 .

Given the explicit expressions of the intertwiners for a
three-valent vertex, our goal now is to construct the scalar
operators in terms of the quantum spinors (48), which act
on the intertwiner in a uniform way regardless of the
orientations of all the incident edges. This will largely
simplify the construction of the quantum Hamiltonian
constraint since we do not need to consider different
orientations of relevant edges separately.4

C. Scalar operators

We proceed to the quantization of the quadratic
invariant (21), Eϵ2;ϵ1

e2e1 . The quantization of the spinors
te1v; te2v themselves is given by (48). As can be seen from
IV B, the operators tϵ; τϵ; t̃ϵ; τ̃ϵ transform as spinors under
Uqðsuð2ÞÞ or Uq−1ðsuð2ÞÞ. Therefore to ensure that Eϵ2;ϵ1

e2e1

is quantized as a quantum group invariant, one needs to
contract the two spinor operators via some q-Clebsh-

Gordan coefficients, qC
1
2
1
2
0

AB0¼ð−1Þ12−AqA
2δB;−A or q−1C

1
2
1
2
0

AB0
¼

ð−1Þ12−Aq−A
2δB;−A.

Since changing the orientation of an edge exchanges
tϵ with t̃ϵ, and τϵ with τ̃ϵ, and since tϵ and t̃ϵ are in fact
the same operator (and also τϵ and τ̃ϵ), one would expect
the quantum operator for Eϵ2;ϵ1

e2e1 to be independent of the
orientations of e1 and e2. It is entirely possible to proceed
this way.
We will however not do so. Our motivation is that while

Eϵ2;ϵ1
e2e1 would be independent of orientations, the vector

space on which it acts does depend on orientations (V�
j

versus Vj). Therefore the action on an intertwiner would in
fact depend explicitly on the orientations. Instead, we
decide to perform the quantization so that its action on
intertwiners is independent of orientations.
This requires changing the spinor operator to its q−1

version when flipping the orientation. Obviously, this
exchanges the ts with the τs. However, we prefer to keep
the same letter for the spinor operator because we think
exchanging ts with τs could be confusing in the ribbon
picture. We therefore define t̄ϵ ≔ τϵ and same with the
tildes, and eventually5

Eϵ2;ϵ1
e2e1 ¼ −o1

ffiffiffiffiffiffi
½2�

p
ð−1Þ1−o12

1þϵ1
2 ð−1Þ1−o22

1þϵ2
2

X
A¼�1

2

qo1C
1
2
1
2
0

A−A0T
o1ϵ1
e1v;A

⊗ T−o2ϵ2
e2v;−A

¼

8>>>>>>>><
>>>>>>>>:

P
A¼�1

2
ð−1Þ12−AqA

2ϵ2t̃
ϵ1
A ⊗ τ̃ϵ2−A for − o1 ¼ o2 ¼ −1P

A¼�1
2
ð−1Þ12þAq

A
2 t̃ϵ1A ⊗ τ−ϵ2−A for o1 ¼ o2 ¼ 1P

A¼�1
2
ð−1Þ12−Aq−A

2ϵ1ϵ2t
−ϵ1
A ⊗ τ̃ϵ2−A for − o1 ¼ −o2 ¼ 1P

A¼�1
2
ð−1Þ12þAq−

A
2ϵ1t

−ϵ1
A ⊗ τ−ϵ2−A for − o1 ¼ o2 ¼ 1

; ð60Þ

where T−o2ϵ2
e2v;A

¼ tϵ2e2v;A if o2 ¼ −1 while T−o2ϵ2
e2v;A

¼ t−ϵ2e2v;A
if o2 ¼ 1, and similarly for To1ϵ1

e1v;A
. We then extend this definition to

the space Invðje1v ⊗ � � � ⊗ jenvÞ of invariant vectors at v by tensoring with the identity as necessary. It comes

Eϵ2;ϵ1
e2e1 ij1j2k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dj1 �½dj2 �½dl1 �½dl2 �

q
δl1;j1þϵ1

2
δl2;j2þϵ2

2

�
l1 j1

1
2

j2 l2 k

	
q

ð−1Þl1þl2þkil1l2k: ð61Þ

It thus maps the intertwiner space Invðj1 ⊗ j2 ⊗ kÞ to Invðl1 ⊗ l2 ⊗ kÞ.

4However, in [31], we define the scalar operators differently so that the algebras they form have the same expression. The different
forms of the scalar operators in this paper and in [31] should be viewed as the same object represented in different bases.

5Note that the definition of o1 is opposite to that in [31] which leads to a slight difference for the definition of the scalar operator (60)
compared to that in [31]. This is because, in [31], o1 and o2 are considered to be the orientation of edges relative to vertex v and þ1
(respectively, −1) denotes outgoing (respectively, incoming). Here, in contrast, o1 and o2 are considered to be the orientation of edges
relative to the orientation of the face f. As an example, when edges e2 and e1 are both outgoing to v, e2 is counterclockwise while e1 is
clockwise relative to f.
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This definition also works for two edges ei; eiþ1 sharing
a corner in Invðje1v ⊗ � � � ⊗ jenvÞ, for i ¼ 1;…; n − 1. In
the trivalent case, this gives Eϵ3;ϵ2

e3e2 ij1j2j3 exactly as in (61)
with e1 → e2; e2 → e3; e3 → e1

Eϵ3;ϵ2
e3e2 ij1j2j3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dj2 �½dj3 �½dl2 �½dl3 �

q
δl2;j2þϵ2

2
δl3;j3þϵ3

2

×

�
l2 j2

1
2

j3 l3 j1

	
q

ð−1Þl2þl3þj1ij1l2l3 : ð62Þ

For the case i ¼ n, i.e., Eϵ1;ϵn
e1en , the definition has to be

amended to obtain an invariant operator [31] and eventually
one finds the same expression for Eϵ1;ϵ3

e1e3 ij1j2j3 as (61) with
the appropriate permutation of the indices, i.e.,

Eϵ1;ϵ3
e1e3 ij1j2j3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dj3 �½dj1 �½dl3 �½dl1 �

q
δl3;j3þϵ3

2
δl1;j1þϵ1

2

×

�
l3 j3

1
2

j1 l1 j2

	
q

ð−1Þl3þl1þj2il1j2l3 : ð63Þ

D. Quantum Hamiltonian constraint

We now need to quantize the classical Hamiltonian (36)
as a well-defined operator on Hkin [defined in (51)].
The first step is obviously to use the quantization map
described in the previous section to turn the observables
Eϵi;ϵi−1
eiei−1 into operators Eϵi;ϵi−1

eiei−1 . The second step is concerned
with quantization ambiguities. Indeed, factors Nei appear
in (36) and they are expected to be diagonal on the spin
network basis, as a function of jei only in fact. Notice
however that the operator Eϵ2;ϵ1

e2e1 changes the spins of the
edges e1, e2 by ϵ1=2 and ϵ2=2. There are therefore ordering
ambiguities. The results differ according to whether Nei is
before or after some operators E, which changes jei . We
found an ordering, see below, that ultimately leads to a
topological model, which would presumably not be true
for other orderings.
Let us introduce

h
ϵ1;ϵp
f;e1;ep

¼ 1

Ne1v2

 X
ϵ2;…;ϵp−1¼�

Yp
i¼2

Eϵi;ϵi−1
eiei−1

oiϵi
Neivi

!

þ ð−1Þd−pϵ1ϵp
1

Nepvpþ1

×

 X
ϵpþ1;…;ϵd¼�

Ydþ1

i¼pþ1

E−ϵi;−ϵi−1
eiei−1

oiϵi
Neivi

!
; ð64Þ

whereNeivi is diagonal on Vjei
(or its dual),Neivi jjei ; meii ¼

½djei �jjei ; meii. We include the vertex vi in the notation

because here Neivi only acts on the space of intertwiners at
vi, where ei and ei−1 meet. As already discussed, the
ordering is important because ½Neivi ; E

ϵi−1;ϵi
ei−1ei � ≠ 0. However

½Neivi ; E
ϵi;ϵiþ1
eieiþ1

� ¼ 0 by definition, so that the operators
Eϵi;ϵi−1

eiei−1
oiϵi
Neivi

that act on the space of intertwiners at vi
commute with one another. Here Neivi is placed to the right
of Eϵi;ϵi−1

eiei−1 , which is also the case if one reconstructs the
quantum holonomies (i.e., the quantization of u and ũ−1)
from the quantum spinors [31].
However, the operator h

ϵ1;ϵp
f;e1;ep

as such is not defined on
Hkin. Indeed, a state in Hkin is a superposition of spin
network states that assigns a spin to each edge along with
the space Vj to the target end and V�

j to the source end. Say
the edge e1 gets the spin j1. Then the first term of the above
operator acts on e1 with Eϵ2;ϵ1

e2e1 which shifts the spin j1 to
j1 þ ϵ1=2, on the intertwiner that sits at the vertex where e1
and e2 meet. It thus maps Vj1 to Vj1þϵ1=2 or V

�
j1
to V�

j1þϵ1=2

depending on orientations but not both; i.e., it does not shift
j1 at the vertex where ed and e1 meet. Therefore the
operator brings the state out of Hkin.
Similarly, the second term of h

ϵ1;ϵp
f;e1;ep

acts on e1 through
E−ϵ1;−ϵd

e1ed . This shifts j1 to j1 − ϵ1=2 at the vertex where ed
and e1 meet. If Eϵ2;ϵ1

e2e1 in the first term acted on Vj1 , then this
operator acts on V�

j1
(or the other way around).

We thus turn h
ϵ1;ϵp
f;e1;ep

into a well-defined operator onHkin

by multiplying it by a product of operators Eϵi;ϵi−1
eiei−1 so that

the intertwiners of both ends of the same edge have the
same spin. Notice that the first term in (64) only contains
the shift operators for i ¼ 2;…; p, one can add Eϵi;ϵi−1

eiei−1 for
all the remaining vertices, i.e., i ¼ pþ 1;…; dþ 1, so that
the change of spins for both ends of each edge are the same.
For the second term in (64), adding these shift operators
also shift all the spins ji − ϵi=2 to ji thus drags the state
back in Hkin. This is the method which was already used
in [10] to construct the quantum Hamiltonian in the spinor
representation in the flat case.
Definition 4.1. We define the quantum Hamiltonian on

the face f, labeled by the pair of edges ðe1; epÞ, to be

H
ϵ1;ϵp;ϵpþ1;…;ϵd
f;e1;ep

¼
" Ydþ1

i¼pþ1

Eϵi;ϵi−1
eiei−1

#
h
ϵ1;ϵp
f;e1;ep

: ð65Þ

Compared to the operator (64), the quantum Hamiltonian
defined as such not only depends on ϵ1 and ϵp but also
ϵpþ1;…; ϵdþ1. The physical Hilbert space is spanned by
the physical states that are solutions to the quantum
Hamiltonian. In the spin representation, the coefficients of
these physical spin network states satisfy a set of difference
equations, which is stated in the following theorem.
Theorem 4.2. The constraint

∀ ke hfkegjHϵ1;ϵp;ϵpþ1;…;ϵd
f;e1;ep

jψi ¼ 0; ð66Þ
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is equivalent to the following set of difference equations on the spin network coefficients ψðk1; k2;…; kd; fkege∉∂fÞ of jψi,

X
ϵ̃2;…;ϵ̃p−1¼�

 Yp
i¼2

Aϵ̃i;ϵ̃i−1
oi ðki; ki−1; li

!!
ψ

�
k1 −

ϵ1
2
; k2 −

ϵ̃2
2
;…; kp−1 −

ϵ̃p−1
2

; kp −
ϵp
2
;…; kd −

ϵd
2
; fkege∉∂f

!

þ ð−1Þd−pαϵ1;ϵpðk1; kpÞ
X

ϵ̃pþ1;…;ϵ̃d¼�

 Ydþ1

i¼pþ1

Bϵ̃i;ϵ̃i−1
oi

 
ki −

ϵi
2
; ki−1 −

ϵi−1
2

; li

!!

ψ

�
k1;…; kp; kpþ1 −

ϵpþ1

2
þ ϵ̃pþ1

2
;…; kd −

ϵd
2
þ ϵ̃d

2
; fkege∉∂f

�
¼ 0: ð67Þ

Here
(i) l1;…; ld are the spins carried by the edges e01;…; e0d incident to f, see Fig. 6.
(ii) By definition, ϵ̃1 ¼ ϵ1; ϵ̃p ¼ ϵp, while ϵpþ1;…; ϵd are fixed.
(iii) The coefficients are

Aϵ̃i;ϵ̃i−1
oi ðki; ki−1; liÞ ¼ oiϵ̃i½dki �ð−1Þkiþki−1þli

�
ki ki −

ϵ̃i
2

1
2

ki−1 −
ϵ̃i−1
2

ki−1 li

	
q

; ð68Þ

Bϵ̃i;ϵ̃i−1
oi ðki; ki−1; liÞ ¼ oiϵ̃i½dki �ð−1Þkiþki−1þli

�
ki ki þ ϵ̃i

2
1
2

ki−1 þ ϵ̃i−1
2

ki−1 li

	
q

; ð69Þ

αϵ1;ϵpðk1; kpÞ ¼ ϵ1ϵp
½dkp �
½dk1−ϵ1

2
� : ð70Þ

Those constraints are recursions on the physical states. They generalize the one found in [10] for a triangular face.
Improving on [9], the differences are shifts of the spins by 1=2 instead of 1. Moreover, edge orientations are kept arbitrary.
Those constraints have two types of contributions: the A terms and the B terms. Notice that h

ϵ1;ϵp
f;e1;ep

contains all the
operators Eϵ̃i;ϵ̃i−1

eiei−1 exactly once, for i ¼ 1;…; d. Whether an operator Eϵ̃i;ϵ̃i−1
eiei−1 gives rise to an A term or a B term depends on

the choice of the reference edges e1 and ep around f. It is important that the coefficients Aϵ̃i;ϵ̃i−1
oi ðki; ki−1; liÞ and

Bϵ̃i;ϵ̃i−1
oi ðki; ki−1; liÞ are local: they only depend on the spins incident to the vertex and are determined by the choice of a

corner on that vertex. As a consequence, for example, if one considers another constraint on the same face with eq, q < p,

choosing e1 as reference edge, then the coefficients A
ϵ̃i;ϵ̃i−1
oi ðki; ki−1; liÞ for i ¼ 1;…; qwould be the same as those appearing

above, and similarly for the B terms. The structure of the constraint is schematically pictured in Fig. 8.
By exchanging the role of e1 with ep, the A terms become the B terms and vice versa. The constraint obtained this way is

equivalent to (67), as we now show. First, evaluate (67) on k1 þ ϵ1=2;…; kd þ ϵd=2, and then flip the signs of all the ϵi and
ϵ̃i. That gives the constraint

X
ϵ̃2;…;ϵ̃p−1¼�

 Yp
i¼2

A−ϵ̃i;−ϵ̃i−1
oi

 
ki −

ϵi
2
; ki−1 −

ϵi−1
2

; li

!!
ψ

 
k1; k2 −

ϵ2
2
þ ϵ̃2

2
;…; kp−1 −

ϵp−1
2

þ ϵ̃p−1
2

; kp;…; kd; fkege=∈∂f
!

þ ð−1Þd−pαϵ1;ϵp
�
k1 −

ϵ1
2
; kp −

ϵp
2

� X
ϵ̃pþ1;…;ϵ̃d¼�

 Ydþ1

i¼pþ1

B−ϵ̃i;−ϵ̃i−1
oi ðki; ki−1; liÞ

!

ψ

�
k1 −

ϵ1
2
;…; kp −

ϵp
2
; kpþ1 −

ϵ̃pþ1

2
;…; kd −

ϵ̃d
2
; fkege=∈∂f

�
¼ 0: ð71Þ

We then use the key relation between the coefficients A and B,

Bϵ̃i;ϵ̃i−1
oi ðki; ki−1; liÞ ¼ −A−ϵ̃i;−ϵ̃i−1

oi ðki; ki−1; liÞ ð72Þ

to get
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ð−1Þp
X

ϵ̃2;…;ϵ̃p−1¼�

�Yp
i¼2

Bϵ̃i;ϵ̃i−1
oi

�
ki −

ϵi
2
; ki−1 −

ϵi−1
2

; li

��
ψ

�
k1; k2 −

ϵ2
2
þ ϵ̃2

2
;…; kp−1 −

ϵp−1
2

þ ϵ̃p−1
2

; kp;…; kd; fkege=∈∂f
�

þ αϵ1;ϵp
�
k1 −

ϵ1
2
; kp −

ϵp
2

� X
ϵ̃pþ1;…;ϵ̃d¼�

� Ydþ1

i¼pþ1

Aϵ̃i;ϵ̃i−1
oi ðki; ki−1; liÞ

�

ψ

�
k1 −

ϵ1
2
;…; kp −

ϵp
2
; kpþ1 −

ϵ̃pþ1

2
;…; kd −

ϵ̃d
2
; fkege=∈∂f

�
¼ 0; ð73Þ

where we recognize the matrix element hfkegjHϵ1;ϵ2;…;ϵp
f;ep;e1

jψi and have shown the equivalence

hfkegjHϵp;ϵ1;ϵ2;…;ϵp−1
f;ep;e1

jψi ¼ 0 ⇔ hfkegjHϵ1;ϵp;ϵpþ1;…;ϵd
f;e1;ep

jψi ¼ 0: ð74Þ

Proof of Theorem 4.2.—There are two types of terms in (65), whose action on spin network states is now presented. First,

Ydþ1

i¼pþ1

Eϵi;ϵi−1
eiei−1

1

Ne1v2

�Yp
i¼2

Eϵi; ϵi−1
eiei−1

oiϵi
Neivi

�
jfjegi ¼

1

½dk1 �
Yp
i¼2

oiϵi
½dji �

Ydþ1

i¼2

δki;jiþϵi
2
½dki �½dji �ð−1Þkiþki−1þli

×

�
ki ki −

ϵi
2

1
2

ki−1 −
ϵi−1
2

ki−1 li

	
q

jfkigi¼1;…;d; fjege=∈∂fi; ð75Þ

where we have applied the action (61) of Eϵi;ϵi−1
eiei−1 on the intertwiner iji−1jili at the vertex where ei−1; ei, and e0i meet for all

i ¼ 1;…; d. Each operator 1=Neivi acts before the shift operator Eϵi;ϵi−1
eiei−1 ; thus the result picks up a factor 1=½dji �. For

i ¼ 1;…; d, the spin ji is shifted to ji þ ϵi
2
after the action ofEϵi;ϵi−1

eiei−1 . The spins lis of the edges e
0
is not on the boundary of the

face f remain unchanged. In addition, 1
Ne1v2

acts after Eϵ2;ϵ1
e2e1 thus the result picks up the factor 1=½dk1 �. As each edge is

incident to two vertices, the assigned spin shows up in two intertwiners; thus the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½dki �½dji �

p
appears twice in the result,

which gives the factor ½dki �½dji �. The q − 6j symbols and the sign factors naturally follow from (61).
Second,

Ydþ1

i¼pþ1

Eϵi;ϵi−1
eiei−1

1

Nepvpþ1

� Ydþ1

i¼pþ1

E−ϵ̃i;−ϵ̃i−1
eiei−1

oiϵi
Neivi

�
jfjegi

¼ 1

½d
jp−

ϵ̃p
2

�
Ydþ1

i¼pþ1

oiϵi
½dji �

δki;ji−
ϵ̃i
2
þϵi

2

ð−1Þki−ϵi
2
þki−1−

ϵi−1
2
þlið−1Þkiþki−1þli ½dji−ϵ̃i

2

�½dji−1−ϵ̃i−1
2

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dji �½dki �½dji−1 �½dki−1 �

q �
ki −

ϵi
2

ji 1
2

ji−1 ki−1 −
ϵi−1
2

li

	
q

�
ki −

ϵi
2

ki 1
2

ki−1 ki−1 −
ϵi−1
2

li

	
q

jfjigi¼1;…;p; fkigi¼pþ1;…;d; fjege=∈∂fi;

¼ ½dkp �
½dk1 �½dk1−ϵ1

2
�
Ydþ1

i¼pþ1

oiϵiδki;ji−ϵ̃i
2
þϵi

2

ð−1Þki−ϵi
2
þki−1−

ϵi−1
2
þlið−1Þkiþki−1þli ½dki−ϵi

2
�2½dki �

×

�
ki −

ϵi
2

ji
1
2

ji−1 ki−1 −
ϵi−1
2

li

	
q

�
ki −

ϵi
2

ki
1
2

ki−1 ki−1 −
ϵi−1
2

li

	
q

jfjigi¼1;…;p; fkigi¼pþ1;…;d; fjege=∈∂fi: ð76Þ

Here, two shift operators act on each site for i ¼ pþ 1;…; dþ 1 and we denote ki ¼ ji −
ϵ̃i
2
þ ϵi

2
. The first shift operator

E−ϵ̃i;−ϵ̃i−1
eiei−1 (in the bracket) acts on the spin network state and shifts ji and ji−1 to ji − ϵ̃i=2 and ji−1 − ϵ̃i−1=2, respectively. It

also gives the first q − 6j symbol in the third line and the term ð−1Þki−ϵi
2
þki−1−

ϵi−1
2
þli

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dji �½dji−1 �½dji−ϵ̃i

2

�½dji−1−ϵ̃i−1
2

�
q

. The result

picks up a factor 1=½dji � by the action of 1=Neivi before the shift operator. In addition, 1=Nepvpþ1
acts on the spin network

state after E
−ϵ̃pþ1;−ϵ̃p
epþ1ep and thus brings a factor 1=½d

jp−
ϵ̃p
2

�. The action of the second shift operator Eϵi;ϵi−1
eiei−1 shifts the spins
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ji − ϵ̃i=2 and ji−1 − ϵ̃i−1=2 to ki and ki−1, respectively, and
brings the second q − 6j symbol in the third line as well as

the term ð−1Þkiþki−1þli
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dki �½dki−1 �½dki−ϵi

2
�½dki−1−ϵi−1

2
�

q
. Note

that the spin j1 ¼ k1 and jp ¼ kp are kept unchanged in
the result as ϵ1 ¼ ϵ̃1 and ϵp ¼ ϵ̃p. The last equality is the
rearrangement of the result.
Putting them together, using the orthogonality of the spin

network states, hfkegjfjegi ∝
Q

e δke;je and eliminating
the common terms 1

½dk1 �
Qdþ1

i¼pþ1½dki−ϵi
2
�½dki �ð−1Þkiþki−1þlin ki ki −

ϵi
2

1
2

ki−1 −
ϵi−1
2

ki−1 li

o
q
leads to the expected difference

equations. ▪
The dependence of ψ on the orientations is given by the

following lemma.
Lemma 4.3. If jψi, with spin network coefficients

ψðfjegÞ, satisfies all the constraints (67) for given edge
orientations foeg, then ð−1Þ2j�ψðfjegÞ satisfies all the
constraints on the same graph with reversed orientation
−oe� on the edge e�. ▪
Proof.—Consider the constraint (67) on the fixed face f.

If e� ∉ ∂f, then multiplication by ð−1Þ2j� does not change
anything. If e� ≡ es ∈ fe2;…; ep−1g, then the coefficient

Aϵ̃s;ϵ̃s−1
os ðks; ks−1; lsÞ changes sign. Moreover, it is the only

one that depends on os. The state coefficient on the first
line of (67) changes from ψðk1 − ϵ1;…; kep − ϵ̃p;…Þ to

ð−1Þ2ksþ1ψðk1 − ϵ1;…; kp − ϵ̃p;…Þ since ð−1Þϵ̃s ¼ −1.
Moreover, the coefficients Bs are independent of the
orientation os and the state coefficient on the second line
changes from ψðk1;…; kp;…Þ to ð−1Þ2ksψðk1;…; kp;…Þ.
Factorizing ð−1Þ2ks from the equation reveals that only the
first line is modified, by −os × ð−1Þ ¼ os. The constraint
therefore still holds. If e� ≡ es ∈ fepþ1;…; edþ1g, then the
coefficient Bϵ̃s;ϵ̃s−1

os ðks − ϵs
2
; ks−1 −

ϵs−1
2
; lsÞ changes sign

while the coefficients As remain unchanged. The same
analysis leads to the same conclusion.

The argument is the same for all edges in the boundary of
f, since the orientation of any of those edges appears in a
single coefficient of the equation. ▪
In this section, we have quantized the four deformed

spinors on each ribbon to q-deformed quantum spinors as
given explicitly in (48) and constructed the quantum
Hamiltonian constraint of the q-deformed LQG model
purely in terms of (the scalar products of) these q-deformed
quantum spinors. Section IV 2 is the main result of the
current paper. It gives rise to the difference equations that
the physical states satisfy. To verify that the Hamiltonian
constraint we construct is the correct one, one can justify
the topological invariance of the solutions to the constraint.
That is, the solutions to the Hamiltonian constraints for
graphs related by a series of Pachner moves are the same
(up to normalization). This is what we will illustrate in the
next section. The difference equations we derived in
Sec. IV 2 will turn out to play a key role in the analysis.

V. PACHNER MOVES

We now show how to relate the physical states on
triangulations which are related by Pachner moves. This is
an extension of [8] to q real (using Hamiltonian constraints
instead of projection on flat connections). In two dimen-
sions, there are two types of Pachner moves, the 3-1 moves
and the 2-2 moves (as well as their inverses). In this section,
we will first analyze the case of the 2-2 moves. The 3-1
moves result naturally and follow the analysis of removing
an edge of a triangle since, in this case, two out of the three
vertices of the triangle are removed due to gauge invariance
on the bivalent vertices.

A. 2-2 Pachner move

The 2-2 Pachner move changes a portion of the graph
into another one as follows:

ð77Þ

We denote the initial graph which contains the left-hand
side as Γi, and the final graph which contains the right-hand
side as Γf. The orientations of all edges are left arbitrary.
Theorem 5.1. Let jψfi on Γf be defined in the spin

network basis by

ψfðj1; j2; j3; j4; j0;…Þ ¼ ð−1Þj1þj2þj3þj4 ½dj0 �
X
j5

ð−1Þð1−o5Þj5þð1−o0Þj0
�
j1 j2 j0
j3 j4 j5

	
q

ψ iðj1; j2; j3; j4; j5;…Þ; ð78Þ

FIG. 8. The schematic representation of the quantum constraint
(67) with its A terms and B terms associated to the corners around
the face.

BONZOM, DUPUIS, and PAN PHYS. REV. D 107, 026015 (2023)

026015-18



where the ellipses denote spins which are the same on both sides (for edges that are not affected by the move). Then jψ ii is a
state which satisfies all the constraints on Γi if and only if jψfi satisfies all the constraints on Γf.
Since the 2-2 move is its own inverse, there is symmetry between both sides of the move. This must translate into a

symmetry that exchanges the role of jψ ii and jψfi in (78). This is indeed true thanks to the orthonormality of the q − 6j
symbols,

X
j5

½dj5 �½dj0 �
�
j1 j2 j0
j3 j4 j5

	
q

�
j1 j2 j00
j3 j4 j5

	
q

¼ δj0;j00 ; ð79Þ

which transforms (78) into

ψ iðj1; j2; j3; j4; j5;…Þ ¼ ð−1Þj1þj2þj3þj4 ½dj5 �
X
j0
0

ð−1Þð1−o5Þj5þð1−o0Þj00
�
j1 j2 j00
j3 j4 j5

	
q

ψfðj1; j2; j3; j4; j00;…Þ: ð80Þ

Proof of Theorem 5.1.—There are four faces involved in the move on each side. Clearly, jψ ii and jψfi satisfy the same
constraints associated to faces that are not among those four. Therefore, we can focus on the four faces involved in the move,
and for symmetry reasons, we can simply look at the constraints on two faces: the face f12, which has e1, e2 in its boundary,
and the face f14, which has e1, e4 in its boundary.

1. Face f 12
It has a different boundary on Γf and Γi, due to the disappearance of e5. On Γi, there are constraints where E

ϵ5;ϵ1
e5e1 and

Eϵ2;ϵ5
e2e5 are both among the A terms of the constraint (67). Let us denote the two reference edges [e1 and ek in (67)] as e and e0,

which may be e1 and/or e2. Then the difference equations (67) read

X
fϵ̃g

�Y
e→e0
c:c:

A

�X
ϵ̃5¼�

Aϵ̃5;ϵ̃1
o5 ðk5; k1; k4ÞAϵ̃2;ϵ̃5

o2 ðk2; k5; k3Þψ i

�
k1 −

ϵ̃1
2
; k2 −

ϵ̃2
2
; k3; k4; k5 −

ϵ̃5
2
;…

�

þ ð−1Þd12;i−dee0αϵe;ϵe0 ðke; ke0 Þ
X
fϵ̃g

�Y
e0→e
c:c:

B
�
ψ iðk1; k2; k3; k4; k5;…Þ ¼ 0; ð81Þ

where d12;i denotes the number of boundary edges of f12 in Γi and dee0 the number of edges from e to e0 counterclockwise.
Notice that ϵ̃1 (respectively, ϵ̃2) is fixed if e ¼ e1 (respectively, if e0 ¼ e2) and summed over otherwise. We have indicated in
ψ i only the spins which are involved in the move.
We have written

P
fϵ̃gð
Q

e→e0
c:c:

AÞ andPfϵ̃gð
Q

e0→e
c:c:

BÞ schematically the coefficients of the equation which are associated to

corners not involved in the move. Here
P

fϵ̃gð
Q

e→e0
c:c:

AÞ is the product of the A terms over the corners from e to e0 going
counterclockwise, except for the two corners with e5, whose A terms are distinguished. Then

P
fϵ̃gð
Q

e0→e
c:c:

BÞ is the product
of the B terms over the corners from e0 to e counterclockwise. This is depicted in the Fig. 9.
On the other hand, a state on Γf must also satisfy a constraint along the face f12 with the two reference edges e and e0.

It reads

hfkegΓf
jHf12;e;e0 jψfi ∝

X
fϵ̃g

�Y
e→e0
c:c:

A

�
Aϵ2;ϵ1
o2 ðk2; k1; k0Þψf

�
k1 −

ϵ̃1
2
; k2 −

ϵ̃2
2
; k3; k4; k0;…

�

þ ð−1Þd12;i−dee0þ1αϵe;ϵe0 ðke; ke0 Þ
X
fϵ̃g

�Y
e0→e
c:c:

B

�
ψfðk1; k2; k3; k4; k0;…Þ: ð82Þ

There is also a constraint whereEϵ̃1;ϵ̃2
e1e2 gives rise to a B term, but as we have shown this is equivalent to the above constraint.

Here it is important that the products of the A terms and B terms over all corners except the one where e1 and e2 meet are
the same as in (81). The reason is obviously that those terms are local and the 2-2 move does not involve their corners.
As in (81), ϵ̃1 and ϵ̃2 may be fixed or summed over.
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We now plug (78) into (82) to check that it vanishes, provided the constraint (81) holds. First compute, with
j1;2 ≔ k1;2 −

ϵ̃1;2
2
,

Aϵ̃2;ϵ̃1
o2 ðk2; k1; k0Þψfðj1; j2; k3; k4; k0;…Þ ¼ o2ϵ̃2½dk2 �½dk0 �

X
j5

ð−1Þð1−o5Þj5þð1−o0Þk0ð−1Þj1þj2þk3þk4ð−1Þk0þk1þk2

×

�
k1 j1

1
2

j2 k2 k0

	
q

�
j1 j2 k0
k3 k4 j5

	
q

ψ iðj1; j2; k3; k4; j5;…Þ: ð83Þ

The Biedenharn-Elliott identity on q − 6j symbols gives precisely

ð−1Þj1þj2þk3þk4ð−1Þk0þk1þk2

�
k1 j1

1
2

j2 k2 k0

	
q

�
j1 j2 k0
k3 k4 j5

	
q

¼
X
k5

½dk5 �ð−1Þk5þj5þ1
2

�
k1 k2 k0
k3 k4 k5

	
q

�
k1 j1 1

2

j5 k5 k4

	
q

�
k5 j5 1

2

j2 k2 k3

	
q

: ð84Þ

Setting j5 ¼ k5 −
ϵ̃5
2
to change the summation over j5 to one over ϵ̃5 (there are no other values of j5 allowed by the triangular

inequalities on the q − 6j symbol), we get

Aϵ2;ϵ1
o2 ðk2; k1; k0Þψfðj1; j2; k3; k4; k0;…Þ ¼ o2ϵ2½dk2 �½dk0 �

X
k5;ϵ̃5

ð−1Þð1−o5Þj5þð1−o0Þk0ð−1Þk5þj5þ1
2

× ½dk5 �
�
k1 k2 k0
k3 k4 k5

	
q

�
k1 j1 1

2

j5 k5 k4

	
q

�
k5 j5 1

2

j2 k2 k3

	
q

ψ iðj1; j2; k3; k4; j5;…Þ:

ð85Þ

Using ϵ5 ¼ ð−1Þ12þj5−k5 , we find ð−1Þk5þj5þ1
2 ¼ ϵ5ð−1Þ2k5 . We also use ð−1Þð1−o5Þj5 ¼ o5ð−1Þð1−o5Þk5 and notice that a

q − 6j symbol can be factored. Thus,

FIG. 9. A graphical representation of Eq. (81) on the lhs and (82) on the rhs.
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hfkegΓf
jHf12;e;e0 jψfi∝

X
k5;ϵ̃5

ð−1Þð1−o5Þk5þð1−o0Þk0ð−1Þk1þk2þk3þk4

�
k1 k2 k0
k3 k4 k5

	
q

½dk0 �

×

�X
fϵ̃g

�Y
e→e0
c:c:

A

�
o5ϵ5½dk5 �ð−1Þ2k5ð−1Þk1þk2þk3þk4o2ϵ2½dk2 �

×

�
k1 j1 1

2

j5 k5 k4

	
q

�
k5 j5 1

2

j2 k2 k3

	
q

ψ iðj1;j2;k3;k4;j5;…Þ

þð−1Þd12;i−dee0αϵe;ϵe0 ðke;ke0 Þ
X
fϵ̃g

�Y
e0→e
c:c:

B

�
ψ iðk1;k2;k3;k4;k5;…Þ

�
: ð86Þ

We now recognize the coefficients in (81),

hfkegΓf
jHf12;e;e0 jψfi ∝

X
k5

ð−1Þð1−o5Þk5þð1−o0Þk0ð−1Þk1þk2þk3þk4

�
k1 k2 k0
k3 k4 k5

	
q

½dk0 �

×

�X
fϵ̃g

�Y
e→e0
c:c:

A

�X
ϵ̃5¼�

Aϵ̃5;ϵ̃1
o5 ðk5; k1; k4ÞAϵ̃2;ϵ̃5

o2 ðk2; k5; k3Þψ iðj1; j2; k3; k4; j5;…Þ

þ ð−1Þd12;i−dee0αϵe;ϵe0 ðke; ke0 Þ
X
fϵ̃g

�Y
e0→e
c:c:

B

�
ψ iðk1; k2; k3; k4; k5;…Þ

�
; ð87Þ

and conclude that (82) vanished provided (81) and (78).

2. Face f 14
We now perform the same analysis on the constraints which act on the face f14. We use the same notation as for the face

f12, i.e., let e and e0 be two reference edges around f14 and consider the Hamiltonian constraints associated to them on Γi

and Γf. On Γi, the Hamiltonians contain the operatorEϵ1;ϵ4
e1e4 , which, without loss of generality, can be considered to give rise

to an A term. The constraints on the spin network coefficients of jψ ii read

X
fϵ̃g

�Y
e→e0
c:c:

A

�
Aϵ̃1;ϵ̃4
o1 ðk1; k4; k5Þψ iðj1; k2; k3; j4; k5;…Þ þ ð−1Þd14;i−dee0αϵe;ϵe0 ðke; ke0 Þ

X
fϵ̃g

�Y
e0→e
c:c:

B

�
ψ iðk1; k2; k3; k4; k5;…Þ ¼ 0;

ð88Þ

with j1 ¼ k1 − ϵ̃1=2; j4 ¼ k4 − ϵ̃4=2. The sign ϵ̃1 (respectively, ϵ̃4) is fixed if e ¼ e1 (respectively, if e0 ¼ e4) and summed
over otherwise. Here,

Q
e→e0
c:c:

A is the product of the A terms from e to e0 counterclockwise, except for the one on the corner of
e1, e4 which has been singled out. As for

Q
e0→e
c:c:

B, it is the product of the B terms going counterclockwise from e0 to e.

On Γf, we need to look at two types of constraints. Either the operatorsE
ϵ̃0;ϵ̃4
e0e4 andE

ϵ̃1;ϵ̃0
e1e0 , which enterHf14;e;e0 on Γf, both

contribute to A terms of the constraint (or both to B terms but this is the same), or one gives rise to an A-term and the other
one to a B term.
In the case that they both give rise to A terms, we are in the same situation as in our previous analysis on the face f12, with

the role of Γi and Γf exchanged. Since the relation (78) between jψfi and jψ ii can be inverted with the same form, we have
nothing to prove.
IfEϵ̃0;ϵ̃4

e0e4 contributes to a B term, andEϵ̃1;ϵ̃0
e1e0 contributes to an A term, then this means that e0 ¼ e is a reference edge chosen

for the constraint. The Hamiltonians of this type on Γf areH
ϵ0;ϵe0 ;…;ϵ4
f14;e0;e0

and they are labeled by signs for all the edges from e0

to e0 counterclockwise. The matrix elements read
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hfkegΓf
jHϵ0;ϵe0 ;…;ϵ4

f14;e0;e0
jψfi ∝

X
fϵ̃g

�Y
e1→e0
c:c:

A

�
Aϵ̃1;ϵ0
o1 ðk1; k0; k2Þψfðj1; k2; k3; j4; j0;…Þ

þ ð−1Þd14;f−de0e0αϵ0;ϵe0 ðk0; ke0 Þ
X
fϵ̃g

�Y
e0→e4
c:c:

B

�
Bϵ0;ϵ̃4
o0 ðj0; j4; k3Þψfðk1; k2; k3; l4; k0;…Þ; ð89Þ

where ϵ0 is fixed (but ϵ̃4 only is if e0 ¼ e4) and j0;4 ¼ k0;4 − ϵ0;4=2, and l4 ¼ j4 þ ϵ̃4=2.
We now plug (78) into the above matrix elements. We first look at the A term,

Aϵ1;ϵ0
o1 ðk1; k0; k2Þψfðj1; k2; k3; j4; j0;…Þ ¼ ½dj0 �

X
k5

o1ϵ1½dk1 �ð−1Þk0þk1þk2ð−1Þð1−o5Þk5þð1−o0Þj0ð−1Þj1þk2þk3þj4

×

�
j1 k2 j0
k3 j4 k5

	
q

�
k1 j1

1
2

j0 k0 k2

	
q

ψ iðj1; k2; k3; j4; k5;…Þ: ð90Þ

The relevant Biedenharn-Elliott identity is

ð−1Þk0þk1þk2þj0þj1þk3þk5

�
j1 k2 j0
k3 j4 k5

	
q

�
k1 j1 1

2

j0 k0 k2

	
q

¼
X
l4

½dl4 �ð−1Þj4þl4þ1
2

�
j4 l4 1

2

k1 j1 k5

	
q

�
j4 l4 1

2

k0 j0 k3

	
q

�
k1 k2 k0
k3 l4 k5

	
q

: ð91Þ

As for the B term,

X
l4

Bϵ0;ϵ̃4
o0 ðj0; j4; k3Þψfðk1; k2; k3; l4; k0;…Þ ¼

X
k5;l4

o0ϵ0½dj0 �½dk0 �ð−1Þj0þk3þj4ð−1Þð1−o5Þk5þð1−o0Þk0ð−1Þk1þk2þk3þl4

×

�
j4 l4 1

2

k0 j0 k3

�
q

�
k1 k2 k0
k3 l4 k5

	
q

ψ iðk1; k2; k3; l4; k5;…Þ: ð92Þ

We recognize the two same q − 6j symbols as in the Biendenharn-Elliott identity above. We can thus factor them out, so
that the matrix elements of the Hamiltonian are proportional to

hfkegΓf
jHϵ0;ϵe0 ;…;ϵ4

f14;e0;e0
jψfi

∝
X
k5;l4

ð−1Þj0þk3þj4ð−1Þð1−o5Þk5þð1−o0Þk0ð−1Þk1þk2þk3þl4

�
j4 l4 1

2

k0 j0 k3

	
q

�
k1 k2 k0
k3 l4 k5

	
q

½dj0 �

×

�X
fϵ̃g

�Y
e1→e0
c:c:

A

�
o0o1ϵ1½dk1 �½dl4 �ð−1Þk2þj4−j0−k5ð−1Þj4þl4þ1

2ð−1Þj0þk3þj4ð−1Þk1þk2þk3þl4

�
j4 l4

1
2

k1 j1 k5

	
q

× ψ iðj1; k2; k3; j4; k5;…Þ þ ð−1Þd14;f−de0e0αϵ0;ϵe0 ðk0; ke0 Þ
X
fϵ̃g

�Y
e0→e4
c:c:

B
�
o0ϵ0½dk0 �ψ iðk1; k2; k3; l4; k5;…Þ

�
: ð93Þ

It now suffices us to show that the expression into brackets vanishes thanks to (88). Let us take care of the following signs:

ð−1Þk2þj4−j0−k5ð−1Þj4þl4þ1
2ð−1Þj0þk3þj4ð−1Þk1þk2þk3þl4 ¼ ð−1Þ2ðk2−k5þk3Þð−1Þ4j4ð−1Þ1þϵ̃4

2 ð−1Þk1þl4þk5 ¼ −ϵ̃4ð−1Þk1þl4þk5 .
Replacing the sign factor in the bracket, we get
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−
X
fϵ̃g

�Y
e1→e0
c:c:

A
�
o0o1ϵ1½dk1 �½dl4 �ð−1Þj1−k1þj4−l4ð−1Þj1þl4þk5þ1

2

�
j4 l4

1
2

k1 j1 k5

	
q

ψ iðj1; k2; k3; j4; k5;…Þ

þ ð−1Þd14;f−de0e0αϵ0;ϵe0 ðk0; ke0 Þ
X
fϵ̃g

�Y
e0→e4
c:c:

B

�
o0ϵ0½dk0 �ψ iðk1; k2; k3; l4; k5;…Þ

¼ −o0ϵ̃4½dl4 �
�X

fϵ̃g

�Y
e1→e0
c:c:

A

�
Aϵ1;ϵ̃4
o1 ðk1; l4; k5Þψ iðj1; k2; k3; j4; k5;…Þ

þ ð−1Þd14;i−de4e0αϵ̃4;ϵe0 ðl4; ke0 Þ
X
fϵ̃g

�Y
e0→e4
c:c:

B

�
ψ iðk1; k2; k3; l4; k5;…Þ

�
: ð94Þ

The expression into brackets on the rhs is exactly the constraint (88) on Γi with the choice e ¼ e4 of reference edge and
arbitrary ϵ̃4 fixed.

B. Removing an edge

Consider two adjacent faces F and f, separated by an edge e0. We consider the move which consists in removing e0 (as
well as its two end vertices). By performing a series of 2-2 Pachner moves (described in Sec. VA), we can always assume
that f is triangular,

ð95Þ

If jψ ii is a state that satisfies all the constraints before the edge removal, then we want to describe how it transforms
through the move.
Theorem5.2. jψfi with spin network coefficients

ψfðj1; j2;…Þ ¼ ð−1Þð1þo1Þj1þð1þo2Þj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dj1 �½dj2 �

q
ψ ið0; j1; j2; j2; j1;…Þ ð96Þ

is a solution of the constraints on the graph after the edge removal. Here o1, o2 are the orientations of the edges e1, e2 with
respect to f (counterclockwise oriented) and ψðj0; j1; j2; j3; j4;…Þ is the spin network coefficient of jψ ii.
In other words, jψ ii gives rise to a solution of the constraints on Γf, obtained by keeping only its j0 ¼ 0 components. We

will use this relation to study the 3-1 Pachner move.
Proof.—Consider two reference edges e, e0 in F ∪ f, and the associated constraint such that Eϵ̃1;ϵ̃2

e1e2 is an A term (without
loss of generality since A and B terms can be exchanged). Its matrix elements hfkegjHF∪f;e;e0 jψfi read

hfkegjHF∪f;e;e0 jψfi∝
X
fϵ̃g

�Y
e→e0
c:c:

A

�
Aϵ̃2;ϵ̃1
o2 ðk2;k1; l2Þψfðj1;j2;…Þþð−1Þdf−dee0αϵe;ϵe0 ðke;ke0 Þ

X
fϵ̃g

�Y
e0→e
c:c:

B

�
ψfðk1;k2;…Þ; ð97Þ

with j1;2 ¼ k1;2 − ϵ̃1;2=2, and df denotes the number of boundary edges surrounding F ∪ f. Here,
Q

e→e0
c:c:

A is the product of

the A terms from e to e0 counterclockwise, except for the one on the corner of e1, e2, which has been singled out. We will
show those matrix elements vanish as soon as the constraints on f and on F are both satisfied on jψ ii, given (96).
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On f, we have the constraint, for fixed ϵ1, ϵ2, and j1;2 ¼ k1;2 − ϵ1;2=2,

B−ϵ2;−ϵ1
o2 ðk2; k1; l2Þψ iðk0; j1; j2; k3; k4;…Þ ¼ αϵ1;ϵ2ðk1; k2Þ

X
ϵ0¼�

Aϵ0;−ϵ2
o0;f ðk0; j2; k3ÞA−ϵ1;ϵ0

o1 ðj1; k0; k4Þ

× ψ i

�
k0 −

ϵ0
2
; k1; k2; k3; k4;…

�
; ð98Þ

where o0;f is the orientation of e0 relative to f. On F there is a constraint similar to (97), from the HamiltoniansHF;e;e0 with
the same signs ϵs. It reads,

X
fϵ̃g

�Y
e→e0
c:c:

A

�X
ϵ̃0¼�

Aϵ̃0;ϵ̃4
o0;F

�
k0; k4 þ

ϵ̃4
2
; k1

�
Aϵ̃3;ϵ̃0
o3

�
k3 þ

ϵ̃3
2
; k0; k2

�
ψ i

�
k0 −

ϵ̃0
2
; k1; k2; k3 −

ϵ̃3
2
; k4 −

ϵ̃4
2
;…

�

þ ð−1Þdf−dee0αϵe;ϵe0 ðke; ke0 Þ
X
fϵ̃g

�Y
e0→e
c:c:

B

�
ψ iðk0; k1; k2; k3; k4;…Þ ¼ 0; ð99Þ

where o0;F is the orientation of e0 as the boundary of F, which is opposite to o0;f. Here ϵ̃4 (respectively, ϵ̃3) is fixed if e ¼ e4
(respectively, if e0 ¼ e3) and summed over otherwise.
We now specialize (98) and (99) to k0 ¼ 0, where they simplify a lot. First, that enforces ϵ0 ¼ − in (98) and ϵ̃0 ¼ −

in (99), so that those sums reduce to a single term. In (99) we further take k3 ¼ k2 and k4 ¼ k1. All q − 6j symbols with a

spin equal to 0 can be evaluated as
�

j1 k1 1
2

1
2

0 k4

	
q
¼ δj1;k4ð−1Þj1þk1þ1

2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi½2�½dj1 �

p
.

As a consequence, (98) gives

B−ϵ2;−ϵ1
o2 ðk2; k1; l2Þψ ið0; j1; j2; j2; j1;…Þ ¼ −αϵ1;ϵ2ðk1; k2Þo0;fo1ϵ2

½dj1 �
½2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½dj1 �½dj2 �
p ψ i

�
1

2
; k1; k2; j2; j1;…

�
; ð100Þ

where k3 ¼ j2 and k4 ¼ j1 on the last term are enforced by the special evaluations of the q − 6j symbols with a spin 0.
Equation (99) gives

X
fϵ̃g

�Y
e→e0
c:c:

A

�
o0;fo3ϵ1

½dk2 �
½2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½dk1 �½dk2 �
p ψ i

�
1

2
; k1; k2; j2; j1;…

�

þ ð−1Þdf−dee0αϵe;ϵe0 ðke; ke0 Þ
X
fϵ̃g

�Y
e0→e
c:c:

B

�
ψ ið0; k1; k2; k2; k1;…Þ ¼ 0: ð101Þ

The term ψ ið12 ; k1; k2; j2; j1;…Þ can be eliminated using (100). Moreover we turn the B coefficient of this equation into an
A coefficient using −Aϵ2;ϵ1

o2 ðk2; k1; l2Þ ¼ B−ϵ2;−ϵ1
o2 ðk2; k1; l2Þ. It is then enough to recognize ψf as given in (96) to obtain

that (97) vanishes. ▪

C. 3-1 Pachner move

The 3-1 Pachner move removes a triangular face from the graph and replaces it with a vertex. The edges incident to the
face become incident to the vertex,

ð102Þ

The orientations of all the edges are left arbitrary.
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Theorem 5.3. If jψ ii is a state on the initial graph Γi that satisfies all the constraints, then its spin network coefficients
can be written

ψ iðj1; j2; j3; j4; j5; j6;…Þ ¼ ð−1Þð1þo1Þj1þð1þo2Þj2þð1þo6Þj6ð−1Þj3þj4þj5

�
j1 j2 j3
j4 j5 j6

	
q

ψfðj3; j4; j5;…Þ; ð103Þ

where ψfðj3; j4; j5;…Þ are the spin network coefficients of a state jψfi, which satisfies all the constraints on the final
graph Γf.
Proof.—Let us write the constraints on the triangular face. There is one constraint for each pair of edges of the boundary.

For the pair ðe2; e6Þ, for instance, one gets

X
ϵ1¼�

Aϵ1;ϵ2
o1 ðk1; k2; k3ÞAϵ6;ϵ1

o6 ðk6; k1; k5Þψ iðj1; j2; k3; k4; k5; j6;…Þ

þ αϵ2;ϵ6ðk2; k6ÞBϵ2;ϵ6
o2 ðj2; j6; k4Þψ iðk1; k2; k3; k4; k5; k6;…Þ ¼ 0: ð104Þ

Here ji ¼ ki − ϵi=2, for i ¼ 1, 2, 6. The coefficients are

Aϵ1;ϵ2
o1 ðk1; k2; k3Þ ¼ o1ϵ1½dk1 �ð−1Þk1þk2þk3

�
k1 j1

1
2

j2 k2 k3

	
q

;

Aϵ6;ϵ1
o6 ðk6; k1; k5Þ ¼ o6ϵ6½dk6 �ð−1Þk1þk5þk6

�
k6 j6 1

2

j1 k1 k5

	
q

;

Bϵ2;ϵ6
o2 ðj2; j6; k4Þ ¼ o2ϵ2½dj2 �ð−1Þj2þk4þj6

�
k6 j6 1

2

j2 k2 k4

	
q

: ð105Þ

We thus have the recursion

X
ϵ1¼�

o1o2o6½dk1 �ð−1Þ2k1þk2þk3þk5þk6þ1−ϵ1
2
þϵ2

2
þϵ6

2

�
k1 j1 1

2

j2 k2 k3

	
q

�
k6 j6 1

2

j1 k1 k5

	
q

ψ iðj1; j2; k3; k4; k5; j6;…Þ

þ ð−1Þk2þk4þk6

�
k6 j6

1
2

j2 k2 k4

	
q

ψ iðk1; k2; k3; k4; k5; k6;…Þ ¼ 0; ð106Þ

and similarly for the pairs ðe1; e2Þ, ðe6; e1Þ. A similar result for the flat case was found in [10], where q is set to 1.
Those recursions determine the dependence of ψ i on j1, j2, j6 up to a single initial condition. As the recursion involves
three terms, it may seem like several initial conditions are required. However, at k1 ¼ 0, only two terms are left in
the recursion, as shown in Eq. (100). This means that from the initial condition ψ ið0; k3; k3; k4; k5; k5Þ, one gets
ψ ið12 ; k3 − ϵ2=2; k3; k4; k5; k5 − ϵ6=2Þ. Then this determines ψ i for arbitrary k1, k2, k6. The result is known to be

ψ iðk1; k2; k3; k4; k5; k6;…Þ ¼
�
k1 k2 k3
k4 k5 k6

	
q

ϕðk3; k4; k5;…Þ; ð107Þ

where ϕðk3; k4; k5;…Þ is independent of k1, k2, k6. To determine ϕ, we set k1 ¼ 0,

ϕðk3; k4; k5;…Þ ¼
�

0 k3 k3
k4 k5 k5

	−1

q

ψ ið0;k3; k3; k4;k5; k5;…Þ ¼ ð−1Þk3þk4þk5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dk3 �½dk5 �

q
ψ ið0;k3; k3; k4;k5; k5;…Þ: ð108Þ

We conclude with Theorem 5.2. ▪
The relation between the physical states before and after the 3-1 Pachner move provides a way to relate the q-deformed

LQG to the Turaev-Viro model with q real. Consider the graphs on two adjacent time slices in a spin foam different by a
3 − 1 move. This part of the spin foam gives a Turaev-Viro vertex amplitude, which is simply a q − 6j symbol. We have
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reproduced this vertex amplitude in (107) by relating the
coefficients of the physical states before and after the
Pachner move. This is also consistent with the method to
relate LQG to the spin foam model by considering the
physical scalar product of states introduced in [8].
In this section, we have proved that the physical states for

graphs related by a Pachner move, either 2-2 move or 3-1
move, are equivalent hence the physical states are topo-
logical states. The equivalence is shown by the exact
relation between the coefficients of the spin network basis
for physical states before and after the Pachner move as
shown in (78) and (103). This also justifies the validity of
the Hamiltonian expression (65) from the direct quantiza-
tion of the scalar products of deformed spinors in the
classical Hamiltonian (36).

VI. CONCLUSION

In this paper, we have given a realization of the interplay
between the cosmological constant, curved geometries and
quantum group structure in the 3D loop quantum gravity
framework in Euclidean signature with a negative cosmo-
logical constant, which we call the q-deformed LQGmodel.
In particular, the deformed constraints at the classical level
represent discrete hyperbolic geometries, as shown in [27].
Upon the standard quantization procedure, these deformed
constraints become quantum constraints with a quantum
group structure.
We have focused on the Hamiltonian constraints,

obtained from the flatness constraints. We have written
them with the deformed spinors and performed the quan-
tization following the companion paper [31]. The result is a
generalization of the quantum Hamiltonian constraints
derived in [10] for flat space. By studying the way the
solutions to the quantum constraints change under Pachner
moves, we provide a generalization of the Noui-Perez
transition amplitudes [8] to q ≠ 1 real: the transition
amplitudes are the coefficients relating the physical states

in the spin network basis under Pachner moves. Here, they
clearly lead to a Turaev-Viro model for q real. It is a
topological model (with the same finiteness issues as the
q ¼ 1 version, the Ponzano-Regge model).
Our method is radically different from [8], however,

and maybe more in the spirit of LQG. On its way to
linking q-deformed LQG to spin foams, our method
derives the Wheeler-DeWitt equations as difference equa-
tions on the spin network coefficients of the states, see
Eq. (67). In the flat case, the Hamiltonian constraint can be
interpreted as displacements of the vertices of the triangu-
lation [30]. Our difference equations (67) are quantum
implementations of those symmetries.
Although our constraints are in fact derived from the

flatness constraints, we believe that this approach is
promising to study both how to incorporate the cosmo-
logical constant in 4D and how to write interesting
dynamics for curved 4D geometries. A first step in the
continuous theory has been initiated in [37].
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