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We consider a deformation of 3D lattice gauge theory in the canonical picture, first classically, based on
the Heisenberg double of SUð2Þ, then at the quantum level. We show that classical spinors can be used to
define a fundamental set of local observables. They are invariant quantities that live on the vertices of the
lattice and are labeled by pairs of incident edges. Any function on the classical phase space, e.g., Wilson
loops, can be rewritten in terms of these observables. At the quantum level, we show that spinors become
spinor operators. The quantization of the local observables then requires the use of the quantum R matrix,
which we prove to be equivalent to a specific parallel transport around the vertex. We provide the algebra of
the local observables, as a Poisson algebra classically, then as a q deformation of so�ð2nÞ at the quantum
level. This formalism can be relevant to any theory relying on lattice gauge theory techniques such as
topological models, loop quantum gravity or of course lattice gauge theory itself.
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I. INTRODUCTION

The Hamiltonian picture of a lattice gauge theory is
specified by the phase space T�G of a rotator associated to
each edge of a lattice [1], for a Lie group G. At the vertices,
local gauge transformations are generated by the Gauss
constraint, which encodes the conservation of the angular
momentum of the different rotators meeting at the vertex.
This structure, called kinematical, is relevant not only to the
discretization of Yang-Mills theory but also for example to
loop quantum gravity. The latter aims at describing the
quantum nature of space-time using gauge theory techniques
[2], and some class of specific topological models. All those
models are based on the same kinematical structure of lattice
gauge theory, and they differ in their dynamical aspects.
Instead of a Lie group G, one can generalize the

construction by using a Hopf algebra H (also known as
a quantum group) [3,4]. At the classical level, this corre-
sponds to replacing the cotangent bundle T�G with a
Heisenberg double [5–7]. The Hamiltonian picture of
Hopf algebra lattice gauge theory is relevant to the

construction of topological models which are in particular
used to define some quantum computing models [8,9], or to
define (loop) quantum gravity models [10–13] with a
nonvanishing cosmological constant.
The symmetry algebra becomes the Drinfeld double

H� ⋈ H of a given Hopf algebra H, whose elements
decorate the lattice (see also [14] where instead of the
Drinfeld double one uses a bicrossproduct Hopf algebra).
Recent developments [15,16] have shown that a clean way
to use quantum groups on the lattice is to replace the edges
of the lattice with ribbons. As a consequence, the local
gauge invariance is then expressed in terms of a constraint
on elements ofH� instead of T�G, which can be interpreted
geometrically as a holonomy constrained to be flat. This is
therefore a deformed Gauss constraint.
In any theory, the construction of observables is of

course fundamental. While the notion of observables in the
gravity case is more subtle than in the Yang-Mills case
[17,18], it is customary to call (abusing the terminology)
the quantities that are locally gauge invariant, observables
(so strictly speaking they could be called more appropri-
ately, kinematical observables). Mathematically these
quantities are invariant (i.e., transforms as scalars) under
infinitesimal gauge transformations (which are deformed in
the case of quantum groups).
Wilson loops are well-known and natural observables of

this type in any gauge theory. They are also extended
objects. In the context of loop quantum gravity, it was
realized that there are other observables that are more local
in nature. Instead of being extended as Wilson lines, they
are associated to the vertices of the lattice [19–23].
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Consider G ¼ SUð2Þ as the gauge group (corresponding
for instance to both 3D and 4D loop quantum gravity with
no cosmological constant). The fundamental degrees of
freedom can be taken to be spinors (i.e., living in the
fundamental representation of SU(2); they have nothing to
do with matter degrees of freedom) living on the ends of the
lattice edges. The spinors that meet at an n-valent vertex
can then be used to define observables labeled by pairs of
incident edges, which moreover form a uðnÞ algebra. The
framework passes on to the quantum level, where spinors
become spinor operators (i.e., tensor operators in the
fundamental representation) and give rise to a uðnÞ algebra
of operators at each n-valent vertex.
Later on in [24], the larger algebra so�ð2nÞwas identified

as the full algebra of observables associated to n-valent
vertices. These observables are the most fundamental ones
since any other observable in the holonomy and flux
variables, such asWilson loops, can be rewritten as a function
of those fundamental observables [25]. In other words, they
parametrize the invariant subspace of the phase space.
In this paper we work out the generalization to the case of

the quantum group SUqð2Þ (with q being real). We start with
a plain lattice gauge theory based on a ribbon structure, using
the classical group SLð2;CÞ but equipped with a nontrivial,
deformed, Poisson structure of the Heisenberg double
DðSUð2ÞÞ. We consider the deformed spinor variables that
parametrize this phase space, already introduced in [13]. We
show that it is then possible to generalize the construction of
the local observables of [24] to the deformed case.We obtain
invariants for the deformed action of SU(2).
We then proceed to the quantization. The quantization of

the holonomy-flux algebra was already performed in [26],
which involved tensor operators of spin 1. Here we
quantize the spinors directly, which give rise to spinor
operators. Those objects have already been developed quite
extensively using the full algebraic apparatus of quantum
groups [27,28], such as the notion of braiding, induced by
the quantumR matrix. Those algebraic considerations thus
provide the guide lines to actually build local observables
directly at the quantum level [12,29]. However, since we
are in the world of lattice gauge theory, it is also natural to
use the geometric picture to construct the observables in
terms of quantum parallel transport. Note that in the
nondeformed case, no parallel transport is involved in
these local observables. However, in the deformed case,
AN(2) elements play the role of holonomies to transport
spinors around the ribbon structure of vertices. It was
already noticed in [26] that one can find quantum invariants
without using the braiding provided by theR matrix. Here,
we clarify this aspect and show that these two different
approaches, algebra versus geometry, actually coincide
beautifully. Indeed, the notion of braided permutation used
to construct the tensor operators can be understood as a
specific parallel transport along the ribbons. While this
might not come as a surprise to experts in integrable

systems, this interpretation in the context of lattice gauge
theory is new to the best of our knowledge.
Quantizing the spinors leads to the quantization of the

local observables which are build with them. The algebra of
those observables around a vertex of valence n is shown to
be a q deformation of so�ð2nÞ from [24], with a UqðuðnÞÞ
subalgebra. This is proved by reproducing the Serre-
Chevalley relations from our quantized observables.
The setup we have just described corresponds to the

kinematical structure of several models. Specifying the
dynamics then specializes the model. One can, e.g.,
construct a Hamiltonian to deal with a (deformed) Yang-
Mills type theory [6], or a Kitaev-like model [16].
In a companion paper [30], we have considered the

dynamics of 3D quantum gravity with a cosmological
constant using the present framework. As previously done
in the flat case [31], and in the deformed case using spin 1
operators [26], wewere able towriteHamiltonian constraints
in terms of the local observables. Their quantization then
leads to quantum Hamiltonian constraints, which in the
invariant spin network basis give rise to difference equations.
We were then able to show that changes of triangulations
under Pachner moves change the coefficients in the spin
network basiswith the same amplitudes as in theTuraev-Viro
model. It therefore derives the path integral approach (the
Turaev-Viro model) from the Hamiltonian approach.
The article is organized as follows. In Sec. II, we recall

the phase space structure of a deformed SU(2) lattice gauge
theory. In particular the phase space is defined in terms of
fluxes and holonomies. The basic building block is the
phase space of a deformed rotator. In Sec. III, we revisit this
phase space and parametrize it in terms of spinors. We then
proceed to the construction of the local observables
associated to the vertices of the lattice.
In Sec. V, as a preparation for the quantization of the

spinors, we recall the quantization of the phase space of the
deformed rotator and highlight that the R matrix contains
information on the quantum fluxes and holonomies.
In Sec. VI, we quantize the spinors and obtain explicitly

spinor operators. We show that the conjugation by the R
matrix that is used to build the observables at the quantum
level can be interpreted as a parallel transport around the
ribbon structure of vertices. Finally, we obtain the quan-
tization of the local observables and prove that they form a
deformation of so�ð2nÞ in terms of the Serre-Chevalley
relations.

II. HOLONOMY-FLUX PHASE SPACE

As is well known, the phase space of lattice gauge theory
is the phase space of a rotator, or spinning top [1], given in
terms of the cotangent bundle T�G where G is the gauge
group. In the deformed case, the phase space is deformed, it
is not a cotangent bundle anymore. The general notion
replacing the cotangent bundle is the Heisenberg double
[32,33]. The configuration and momentum variables are
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typically called holonomies and fluxes, so that we call the
usual lattice gauge theory phase space the holonomy-flux
phase space. This is in contrast with the spinorial phase
space that we will introduce in Sec. III.
In this section, we review the phase space structure of a

lattice gauge theory based on the specific example of the
Heisenberg double of SU(2),DðSUð2ÞÞ≅SUð2Þ⋈ANð2Þ,
which we will work with all along. This can be viewed as
the deformed version of an SU(2) lattice gauge theory. The
deformation parameter is κ ∈ Rþ. The standard phase
space T�SUð2Þ of an (undeformed) SU(2) lattice gauge
theory is recovered in the limit κ → 0.

A. Phase space: Ribbon and Heisenberg double

We are interested in graphs embedded in a 2D canonical
surface Σ. We first consider a single edge for which the
phase space is the Heisenberg double DðSUð2ÞÞ of SU(2)
with the dual group AN(2). ANð2Þ is isomorphic to
SBð2;CÞ, the special Borel group, which is the group of
2 × 2 lower triangular matrices with positive real diagonal
entries and determinant 1. We parametrize an AN(2)
element l as

l ¼
�
λ 0

z λ−1

�
; λ ∈ Rþ; z ∈ C: ð1Þ

Note also thatDðSUð2ÞÞ ≅ SLð2;CÞ.WewriteDðSUð2ÞÞ ≅
SUð2Þ ⋈ ANð2Þ with⋈ encoding the mutual action of the
two subgroups.This phase space can in fact be derived froma
proper discretization [34] of 3D Euclidean gravity with a
negative cosmological constant. A similar derivation can
probably be used for other gauge theories.

1. Poisson structure

The Poisson structure of the Heisenberg double is fully
determined by the r matrix. Explicitly, the Poisson bracket
is given by

fd1; d2g ¼ −r21d1d2 þ d1d2r ¼ rd1d2 − d1d2r21;

∀ d ∈ SLð2;CÞ; ð2Þ

where we used the standard notation d1 ¼ d ⊗ I, d2 ¼
I ⊗ d, and r≡ r12 ¼

P
r½1� ⊗ r½2�, r21 ≔

P
r½2� ⊗ r½1�.

The last equality is guaranteed by the fact that ðrþ r21Þ
is the Casimir of DðSUð2ÞÞ. In the fundamental represen-
tation, the r matrix can be written as a 4 × 4 matrix

r ¼ 1

4

X
i

σi ⊗ ρi ¼ iκ
4

0BBB@
1 0 0 0

0 −1 4 0

0 0 −1 0

0 0 0 1

1CCCA
∈ suð2Þ ⊗ anð2Þ; ð3Þ

where σi; i ¼ 1, 2, 3 are the Pauli matrices, ρi (i ¼ 1, 2, 3)
are Lie algebra generators of the Lie algebra anð2Þ, which
can be written in terms of the Pauli matrices as

ρj ¼ iκ

�
σj −

1

2
½σ3; σj�

�
¼ κðiσj þ ϵ3jkσkÞ ð4Þ

and the Lie algebra of anð2Þ is

½ρi; ρj� ¼ 2iκðδikδj3 − δi3δ
j
kÞρk: ð5Þ

Note that the two subgroups SU(2) and AN(2) can be
treated on the same footing. The phase space SLð2;CÞ
can be equivalently described as the Heisenberg double
DðANð2ÞÞ of AN(2) with the r matrix r̃ ∈ anð2Þ ⊗ suð2Þ
where we simply have that r̃ ¼ r21; r̃21 ¼ r since it
amounts to exchanging the generators of the two sub-
spaces in (3). The two equivalent descriptions of the phase
space SLð2;CÞ corresponds to the two (and only two
possible) Iwasawa decompositions of a given SLð2;CÞ
element d. We denote by l ∈ ANð2Þ; u ∈ SUð2Þ the
elements of the left Iwasawa decomposition d ¼ lu and
by l̃ ∈ ANð2Þ; ũ ∈ SUð2Þ the elements of the right
Iwasawa decomposition d ¼ ũ l̃. Then (2) can be decom-
posed into the Poisson brackets between l and u:

fl1;l2g ¼ −½r21;l1l2�; fl1; u2g ¼ −l1r21u2;

fu1;l2g ¼ l2ru1; fu1; u2g ¼ −½r; u1u2�; ð6Þ

or into the Poisson brackets between l̃ and ũ:

fl̃1; l̃2g ¼ ½r21; l̃1l̃2�; fl̃1; ũ2g ¼ −ũ2r21l̃1;

fũ1; l̃2g ¼ ũ1rl̃2; fũ1; ũ2g ¼ ½r; ũ1ũ2�: ð7Þ

2. Ribbon constraint

The equivalence between the left and right Iwasawa
decompositions defines a constraint, which we call the
ribbon constraint

C ¼ lul̃−1ũ−1: ð8Þ

It is easy to check that this is a system of second-class
constraints (meaning that they do not close under
Poisson brackets). The name “ribbon” will become clear
when we represent graphically these two equal Iwasawa
decompositions. Concretely, an edge e is thickened into a
ribbon RðeÞ with

(i) Long sides, parallel to e, carrying the SU(2) ele-
ments u; ũ called holonomies.

(ii) Short sides carrying the AN(2) elements l; l̃ and
called fluxes [15].

This is represented in Fig. 1 together with a choice of
orientations (detailed below). We have fixed the orientation
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of the long sides decorated with u and ũ to be opposite to
that of the edge, which automatically fixes the orientation
of the two short sides of a ribbon, so that the ribbon
constraint (8) is satisfied.
All SU(2) and AN(2) subgroup elements are associated

to sides of the ribbon and can thus be viewed as holon-
omies. The ribbon constraint is then interpreted as a
trivialization of the path-ordered product of holonomies
on the loop surrounding the ribbon. To emphasize that the
phase space we describe here is the deformation of that of
the Λ ¼ 0 loop gravity, we use the same terminology and
call l; l̃ fluxes and u; ũ holonomies in the rest of the article.
This terminology is consistent with that in [15].
By solving the ribbon constraint, we obtain the Poisson

brackets between ðl̃; ũÞ and ðl; uÞ:

fl1; ũ2g ¼ −r21l1ũ2; fl̃1; u2g ¼ −l̃1u2r21;

fu1; l̃2g ¼ l̃2u1r; fũ1;l2g ¼ rũ1l2;

fl̃1;l2g ¼ 0; fũ1; u2g ¼ 0: ð9Þ
The explicit Poisson brackets between the matrix elements
of l; u; l̃, and ũ can be found in Appendix A. The
dimension of the phase space for a ribbon is 12 − 6 ¼ 6
upon imposing the ribbon constraint, and thus is consistent
with the dimension of SLð2;CÞ.

3. SU(2) transformations

Let us define X ≔ ll† and write w ¼ I þ iϵ⃗ · σ⃗ an
infinitesimal SU(2) group element. Then, the variation of
a phase space function h under a left infinitesimal SU(2)
transformation is given by [15]

δϵh ¼ −λ−2κ−1fTrWX; hg
¼ −λ−2κ−1f2ϵzλ2 þ ϵ−λzþ ϵþλz̄; hg;

with W ¼
�
2ϵz ϵ−

ϵþ 0

�
: ð10Þ

4. Change of edge orientations

The way we associate variables to the sides of a ribbon
has been described above, as in Fig. 1. Changing the
orientation of an edge is an involution { that has the
following effects on the variables:

{∶ u ↦ ũ−1

l ↦ l̃−1 ð11Þ

and since it is an involution, {ðũÞ ¼ u−1 and {ðl̃Þ ¼ l−1.

B. Ribbon graph and Gauss constraint

Let Γ be a graph embedded in Σ. We start with the phase
space

Q
e DðSUð2ÞÞ where the product is over the edges of

Γ. As we thickened an edge into a ribbon, we now thicken Γ
into a ribbon graph Γrib by

(i) Thickening every edge into a ribbon in the same way
as in Fig. 1, where all ribbons are embedded in Σ.

(ii) Thickening every n-valent vertex of Γ into an n-gon.
An example is given in Fig. 2, with three 3-valent vertices
and one internal face.
As such, a ribbon graph contains three types of faces:
(i) Faces within ribbon edges, for which the ribbon

constraint is imposed—these are the faces in gray
in Fig. 2.

(ii) Faces surrounded by the short sides of the ribbons.
They correspond to the thickened vertices and we
call them ribbon vertices. In Fig. 2, these are the
three triangular faces Rðv1Þ; Rðv2Þ, and Rðv3Þ.
Notice that they are bounded by fluxes only.

(iii) Faces surrounded by the long sides of the ribbons—
these are the faces of the original graph. They are
bounded by SU(2) holonomies only.

To finish the combinatorial description of Γrib, notice that
the corners of Γ, i.e., the portions of Σ between pairs of
edges incident to a vertex, give rise in Γrib to vertices (the
ends of the long and short sides, and not to be confused
with ribbon vertices).
Each ribbon edge thus carries variables le; ue; l̃e; ũe,

which satisfy the ribbon constraint Ce ¼ leuel̃
−1
e ũ−1e . In

addition we introduce the Gauss constraints. The Gauss
constraint associated to an n-valent vertex v imposes that
the ordered product of the fluxes around the ribbon vertex
RðvÞ is trivial. Explicitly, the Gauss constraint reads

Gv ¼
Y�!n

i¼1
lei;v; lei;v ¼

�
li if oi ¼ 1

l̃−1
i if oi ¼ −1

; ð12Þ

where oi ¼ 1 corresponds to an outgoing edge and oi ¼ −1
corresponds to an incoming edge.
The Gauss constraint generates SU(2) transformations. A

phase space function h transforms under the infinitesimal
rotation parametrized by a infinitesimal vector ϵ⃗ as [15]

δϵh ¼ −κ−1
Yn
i¼1

Λ−2
i fTrðWGvG

†
vÞ; hg;

with W ¼
�
2ϵz ϵ−

ϵþ 0

�
; ð13Þ

FIG. 1. The ribbon graph associated to the ribbon constraint.
The ribbon carries two pairs of variables ðl; uÞ and ðl̃; ũÞ.
The ribbon constraint is the trivialization of the ribbon
loop lul̃−1ũ−1.
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where Λi is the first diagonal element of the matrix (1) of
the ith flux, lei;v, in Gv, that is λi or λ̃

−1
i .

The subspace satisfying the Gauss constraint at every
vertex of Γ is called the kinematical phase space. Its
parametrization using observables in terms of spinors
and their quantization will be the focus of the present
article.
Beyond the kinematical aspects, several choices of

dynamics are possible, such as lattice Hamiltonians for
Yang-Mills theory. There is also a topological model called
BF, which corresponds to 3D gravity, where the
Hamiltonian is a constraint, just like the Gauss constraint.
It is called the flatness constraint, and it imposes the
holonomies around all faces to be trivial. The classical
setup and the quantization of this flatness constraint was
initiated in [26] and the extension to spinors has been
developed in the companion article [30].

C. Adjoint ribbon parametrization

We have been working with the ribbon constraint (8), but
there is another version available. Indeed, we have worked
with AN(2) in terms of lower triangular matrices. But
instead, we could use upper triangular matrices. The
equivalence between the two formulations can be seen
by using the adjoint on C. It is also convenient to take the
inverse, so that SU(2) elements are left invariant. This gives
the following adjoint ribbon constraint:

C ¼ lul̃−1ũ−1 → C−1† ¼ l−1†ul̃†ũ−1: ð14Þ

It amounts to replacing l and l̃ with, respectively, l−1† and
l̃−1† [and similarly with u; ũ but obviously u−1† ¼ u for
any u ∈ SUð2Þ]. Therefore, only the short side structure is
changed, as in Fig. 3. The associated transformation

preserving the Lie algebra anð2Þ is given by ρi → −ρi†.
As a consequence, one switches the r matrix by
r → r† ¼ −r21. All Poisson brackets are given in
Appendix A.
Under this parametrization, the Gauss constraint is

transformed accordingly as Gv → G†−1
v , which transforms

GvG
†
v → ðGvG

†
vÞ−1. We thus have the same action on phase

space functions as with the previous generators of gauge
transformations if we consider

δϵh ¼ −
1

κ

Yn
i¼1

Λ−2
i fTrW̃ðGvG

†
vÞ−1; hg;

with W̃ ¼
�

0 −ϵ−
−ϵþ 2ϵz

�
; ð15Þ

where Λi is still λi or λ̃
−1
i according to the orientation of the

edge ei.
In fact, this adjoint parametrization is not only an

alternative one but a necessary piece to construct the
complete kinematical phase space because l and l̃ only
contain, respectively, z and z̃ in their matrix elements, but
neither z̄ nor ¯̃z. We will see in Sec. V that both z and z̄ (as
well as z̃ and ¯̃z) are needed to construct the Uqðsuð2ÞÞ
generators upon quantization.

FIG. 2. A piece of a graph Γ on the left and the corresponding piece of the ribbon graph Γrib on the right.

FIG. 3. The conjugate ribbon structure defined in terms of
upper triangular matrices.

LOCAL OBSERVABLES IN SUqð2Þ LATTICE GAUGE … PHYS. REV. D 107, 026014 (2023)

026014-5



III. SPINORIAL PHASE SPACE FORADEFORMED
LATTICE GAUGE THEORY

We have just described above the kinematical phase
space using the holonomy-flux variables. We now describe
the same space in terms of spinors. They live on the half
edges of the lattice and will make it easier to construct
local, gauge invariant quantities, i.e., observables. Indeed,
invariant functions of fluxes, for example, do not Poisson
close [19]. The right variables to build a (Poisson) closed
algebra of observables are the spinors.
To avoid confusion, we emphasize that they do not

encode matter degrees of freedom, they are just a different
parametrization of the phase space. They were initially
introduced in the loop quantum gravity formalism as a para-
metrization of the T�SUð2Þ phase space [19,21,31,35–38].
We intend here to construct thedeformed spinors that provide
an alternative parametrization of the deformed holonomy-
flux phase space, which will allow us to construct the
(deformed) notion of observables for this setup.
We start with some deformed spinors that allow us to

parametrize the AN(2) elements. We will then use them to
define SU(2)-covariant spinors which are the key objects
of this section. In Sec. VI, they will be quantized as
spinor operators, which are spin-1=2 tensor operators for
Uqðsuð2ÞÞ or Uq−1ðsuð2ÞÞ [27]. Graphically, they can be
naturally associated to the four corners of the ribbon, see
Fig. 4, which will be clear by the end of Sec. III C.

A. Basic variables

Our building blocks are two independent spinors
jζi; jζ̃i ∈ C2 and their conjugate hζj ∈ C2 and hζ̃j ∈ C2,

jζi ¼
�
ζ0

ζ1

�
; hζj ¼ ðζ̄0; ζ̄1Þ;

jζ̃i ¼
�
ζ̃0

ζ̃1

�
; hζ̃j ¼ ð ¯̃ζ0; ¯̃ζ1Þ; ð16Þ

such that

fζA; ζ̄Bg ¼ −iδAB;

fζA; ζ̃Bg ¼ fζ̄A; ¯̃ζBg ¼ fζA; ¯̃ζBg ¼ fζ̄A; ζ̃Bg ¼ 0;

∀A;B ¼ 0; 1:

We also introduce the dual spinor

jζ� ¼
�
−ζ̄1
ζ̄0

�
¼
�
0 −1
1 0

�
jζ̄i; ½ζj ¼ ð−ζ1 ζ0 Þ;

ð17Þ

which is orthogonal to jζi, hζjζ� ¼ 0. Similarly, one defines
the dual of the tilde spinor jζ̃�. We denote NA ¼ ζAζ̄A, the
modulus of the spinor components for A ¼ 0, 1 and N ¼
N0 þ N1 for their norm. A spinor and its dual have the
same norm hζjζi ¼ ½ζjζ� ¼ N. The modulus generates
dilation on the complex variables:

fNA; ζBg ¼ iδABζA; fNA; ζ̄Bg ¼ −iδABζ̄B: ð18Þ

Let us now define the deformed variables jζκi from jζi,
with its dual hζκj and norm hζκjζκi as in [13]

ζκA ≡ ζA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðκ

2
NAÞ

κ
2
NA

s
; ζ̄κA ≡ ζκA; ð19Þ

hζκjζκi ¼
X
A

ζκAζ
κ
A ¼

X
A

2

κ
sinh

�
κNA

2

�
¼ 1

κ

X
A

�
e
κNA
2 − e

−κNA
2

�
≥ 0; with NA ¼ ζ̄AζA:

ð20Þ

They satisfy the following Poisson brackets

fζκA; ζ̄κBg ¼ −iδAB cosh
�
κNA

2

�
; fNA; ζκBg ¼ iδABζκA;

fNA; ζ̄κBg ¼ −iδABζ̄κA: ð21Þ

It is easy to check that we recover the undeformed Poisson
brackets (18) when κ → 0. The deformed variable jζ̃κi is
defined from jζ̃i by (19) and (20) where all ζA are replaced
by ζ̃A.

1. Change of edge orientations

Since there are no differences between jζκi and jζ̃κi, and
since changing the orientation of an edge exchanges the
two sectors, it is natural to lift the involution { to the spinor
space as follows:

{ðζκAÞ ¼ ζ̃κA; {ðζ̃κAÞ ¼ ζκA; for A ¼ 0; 1: ð22Þ

2. Recontructing the fluxes

Wewill use ζκ0;1 to reconstruct l and ζ̃κ0;1 to reconstruct l̃.
Since the spinors in the tilde and nontilde sectors are

FIG. 4. SU(2)-covariant spinors in the ribbon picture. Note that
we can replace l and l̃, respectively, by l−1† and l̃−1†.
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identical whereas {ðlÞ ≠ l̃, l can not be the same function
of ζκ0;1 as l̃ is of ζ̃κ0;1. We use

λ≡ exp

�
κ

4
ðN1 − N0Þ

�
; z≡ −κζ̄κ0ζκ1;

λ̃≡ exp
�
κ

4
ðÑ0 − Ñ1Þ

�
; z̃≡ κ ¯̃ζ

κ
0ζ̃

κ
1: ð23Þ

By applying { to (23), we recover as expected that {ðλÞ ¼
λ̃−1 and {ðzÞ ¼ −z̃. The AN(2) matrices l and l̃ become
functions of the spinors,

lðζκ0;1; ζ̄κ0;1Þ ¼
�
λ 0

z λ−1

�
; l̃ðζ̃κ0;1; ¯̃ζκ0;1Þ ¼

�
λ̃ 0

z̃ λ̃−1

�
;

ð24Þ

and {ðlÞ ¼ l̃−1. It is easy to check that these AN(2) matrix
elements do satisfy the expected Poisson brackets (A4).
Let us point out that z, z̄, λ all commute with
N ¼ N0 þ N1, fN; z̄g ¼ fN; λg ¼ fN; zg ¼ 0.
While the deformed variables jζκi and jζ̃κi are important

in parametrizing the AN(2) elements and generating the
(infinitesimal) rotation transformations [15], they are not

yet the spinors we will use to reconstruct the holonomy-
flux phase space, because they do not transform covariantly
under the SU(2) action.

B. Covariant spinors

Let us now define the variables which transform cova-
riantly as spin 1=2 under SU(2), i.e., either (13) or (15),
depending on if we consider the ribbon variable l or l−1†.
We consider the first case, where we deal with l. We recall
that X ¼ ll† with l an AN(2) element now parametrized
as in (24) whose entries are defined in terms of the spinor
variables given in (23).

1. Covariant spinor

An SU(2)-covariant spinor (henceforth spinor) jTi is
defined by the transformation law

δϵjTi≡ ðw − IÞjTi ¼ i

�
ϵz ϵ−

ϵþ −ϵz

�
jTi; ð25Þ

where we recall that w ¼ I þ iϵ⃗ · σ⃗ is an infinitesimal SU(2)
group element. As shown in [13], the only two independent
solutions (up to normalization) to equate the rhs of (25)
with the rhs of (10) are jti and its dual jt� defined as

jti ¼
�
t−
tþ

�
¼
 

e
κN1
4 ζκ0

e−
κN0
4 ζκ1

!
; jt� ¼

�
0 −1
1 0

�
jt̄i ¼

�−t̄þ
t̄−

�
¼
 
−e−

κN0
4 ζ̄κ1

e
κN1
4 ζ̄κ0

!
: ð26Þ

The norm is a function of the nondeformed norm N,

htjti ¼ ½tjt� ¼ 2

κ
sinh

�
κ

2
N

�
:

The Poisson brackets of the components are

ft−; tþg ¼ iκ
2
t−tþ;

ft̄−; t̄þg ¼ − iκ
2
t̄−t̄þ;

ft−; t̄−g ¼ iκ
2
ðt− t̄− − 2

κ e
κ
2
NÞ;

ftþ; t̄þg ¼ − iκ
2
ðtþt̄þ þ 2

κ e
−κ
2
NÞ; ft−; t̄þg ¼ ftþ; t̄−g ¼ 0: ð27Þ

2. Braided covariant spinor

The spinor jti can be “parallelly transported” by l−1,
which produces another spinor, whose transformation law
under SU(2) is called braided. Explicitly, using (23), we have

l−1jti ¼
�
λ−1 0

−z λ

� 
e
κN1
4 ζκ0

e−
κN0
4 ζκ1

!
¼ e

κN
4

 
e−

κN1
4 ζκ0

e
κN0
4 ζκ1

!
; ð28Þ

which prompts the definition of the following spinor1:

jτi≡ e−
κN
4 l−1jti: ð29Þ

The dual of jτi is

jτ� ¼
�
0 −1
1 0

�
jτ̄i ¼

�−τ̄þ
τ̄−

�
¼
 
−e

κN0
4 ζ̄κ1

e−
κN1
4 ζ̄κ0

!
¼ e

κ
4
Nl−1jt�:

On the other hand, as the ribbon structure can be
equivalently represented by either l or l−1† as shown in
(14), one expects that jτi can also be defined by a parallel
transport of jti with l†. This is indeed the case,1It differs from the spinor jτi of [13] by its normalization.
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jτi ¼ e
κN
4 l†jti; jτ� ¼ e−

κN
4 l†jt�: ð30Þ

Hence whether we use l or l−1† we get essentially the same object.
The Poisson brackets of the components of jτi are the same as those of jti and jt� with τA replacing t−A and τ̄A replacing

t̄−A, i.e.,

fτ−; τþg ¼ − iκ
2
τ−τþ;

fτ̄−; τ̄þg ¼ iκ
2
τ̄−τ̄þ;

fτ−; τ̄−g ¼ − iκ
2
ðτ−τ̄− þ 2

κ e
−κ
2
NÞ;

fτþ; τ̄þg ¼ iκ
2
ðτþτ̄þ − 2

κ e
κ
2
NÞ; fτ−; τ̄þg ¼ fτ̄−; τþg ¼ 0: ð31Þ

It will also be useful to compute the Poisson brackets between ftA; b̃Ag and fτA; τ̄Ag. They give

ft−; τ̄−g ¼ −i cosh
κN0

2
; ft−; τ̄þg ¼ −

iκ
2
t−τ̄þ; ftþ; τ̄−g ¼ iκ

2
tþτ̄−; ftþ; τ̄þg ¼ −i cosh

κN1

2
;

ft̄−; τ−g ¼ i cosh
κN0

2
; ft̄−; τþg ¼ iκ

2
t̄−τþ; ft̄þ; τ−g ¼ −

iκ
2
t̄þτ−; ft̄þ; τþg ¼ i cosh

κN1

2
;

ftA; τBg ¼ 0; ft̄A; τ̄Bg ¼ 0: ð32Þ

jτi defines what we call a braided spinor. Indeed, it
transforms as a spinor under the SU(2) transformations
generated by (10), but with a group element w0 related to w
through l. Since triangular matrices are not stable under
conjugation by SU(2) group elements, we need to introduce
another SU(2) group element to stabilize the transforma-
tion. Let ðwÞl ∈ ANð2Þ and w0 ∈ SUð2Þ be defined by the
Iwasawa decomposition

wl ¼ ðwÞlw0: ð33Þ

Then we say that l transforms as

l ⟶
w∈SUð2Þ ðwÞl ¼ wlw0−1 ∈ ANð2Þ: ð34Þ

Going at the infinitesimal level [15],

w ∼ I þ iϵ⃗ · σ⃗ ¼ I þ i

�
ϵz ϵ−

ϵþ −ϵz

�
; w0 ∼ I þ iϵ⃗0 · σ⃗ ¼ I þ i

�
ϵ0z ϵ0−
ϵ0þ −ϵ0z

�
; ð35Þ

the relation between ϵ⃗ and ϵ⃗0 is given by

ϵ0� ¼ λ−2ϵ�;

ϵ0z ¼ ϵz þ
1

2
ðλ−1zϵ− þ λ−1zϵþÞ: ð36Þ

One can then check that, remarkably, the transformation generated by (10) is a rotation of (the infinitesimal version of) w0

δϵjτi ¼ −λ−2κ−1fTrWX; jτig ¼ −λ−2κ−1f2ϵzλ2 þ ϵ−λzþ ϵþλz̄; jτig ¼ i
�
ϵ0zτ− þ ϵ0−τþ
ϵ0þτ− − ϵ0zτþ

�
∼ ðw0 − IÞjτi; ð37Þ

jτ� is also a braided covariant spinor. The transformation (37) can also be written as a nonbraided one, but generated with
Xop ≔ l†l instead of X,

δϵjτi ¼ λ2κ−1fTrW0ðXopÞ−1; jτig ¼ λ2κ−1f2ϵ0zλ−2 − ϵ0−λ−1z − ϵ0þλ−1z̄; jτig ¼ ðw0 − IÞjτi; ð38Þ

with W0 ¼ ϵ0zðI þ σzÞ þ ϵ0−σþ þ ϵ0þσ−. fjti; jt�g and fjτi; jτ�g can viewed as two orthogonal complete basis of the space
C2 ⊗ C2. We have seen the orthogonality ½tjti ¼ ½τjτi ¼ 0 above. Their completeness is guaranteed by the fact that

jtihtj þ jt�½tj ¼ htjti
�
1 0

0 1

�
≡ hτjτi

�
1 0

0 1

�
¼ jτihτj þ jτ�½τj: ð39Þ
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C. The tilde spinors

Covariant spinors and braided covariant spinors for the tilde sector, the “tilde covariant spinors,” are defined in a similar
way as the nontilde ones. We have

jt̃i ¼ {ðjtiÞ ¼
�

t̃

t̃þ

�
¼
 

e
κÑ1
4 ζ̃κ0

e−
κÑ0
4 ζ̃κ1

!
; jt̃� ¼

�
0 −1
1 0

�
j¯̃ti ¼

�
−¯̃tþ
¯̃t−

�
¼
 
−e−

κÑ0
4
¯̃ζ
κ
1

e
κÑ1
4
¯̃ζ
κ
0

!
;

jτ̃i ¼ {ðjτiÞ ¼
�
τ̃−

τ̃þ

�
¼
 
e−

κÑ1
4 ζ̃κ0

e
κÑ0
4 ζ̃κ1

!
; jτ̃� ¼

�
0 −1
1 0

�
j ¯̃τi ¼

�
− ¯̃τþ
¯̃τ−

�
¼
 
−e

κÑ0
4
¯̃ζ
κ
1

e−
κÑ1
4
¯̃ζ
κ
0

!
; ð40Þ

whose norms are given by

ht̃jt̃i ¼ ½t̃jt̃� ¼ hτ̃jτ̃i ¼ ½τ̃jτ̃� ¼ 2

κ
sinh

�
κ

2
Ñ

�
: ð41Þ

They are independent of the nontilde spinors, i.e., all the components Poisson commute with those of the nontilde spinors.
The Poisson brackets of the tilde spinor components are the same as the nontilde ones:

ft̃−; t̃þg ¼ iκ
2
t̃−t̃þ;

f¯̃t−; ¯̃tþg ¼ − iκ
2
¯̃t−¯̃tþ;

ft̃−; ¯̃t−g ¼ iκ
2
ðt̃− ¯̃t− − 2

κ e
κ
2
NÞ;

ft̃þ; ¯̃tþg ¼ − iκ
2
ðt̃þ¯̃tþ þ 2

κ e
−κ
2
NÞ;

ft̃−; ¯̃tþg ¼ f¯̃t−; t̃þg ¼ 0; ð42Þ

fτ̃−; τ̃þg ¼ − iκ
2
τ̃−τ̃þ;

f ¯̃τ−; ¯̃τþg ¼ iκ
2
¯̃τ− ¯̃τþ;

fτ̃−; ¯̃τ−g ¼ − iκ
2
ðτ̃− ¯̃τ− þ 2

κ e
−κ
2
ÑÞ;

fτ̃þ; ¯̃τþg ¼ iκ
2
ðτ̃þ ¯̃τþ − 2

κ e
κ
2
ÑÞ;

fτ̃−; ¯̃τþg ¼ f ¯̃τ−; τ̃þg ¼ 0: ð43Þ

Note however that l̃ is not the same function of ζ̃κ0; ζ̃
κ
1 as

l is of ζκ0; ζ
κ
1, see (23), (24). In fact, we have {ðlÞ ¼ l̃−1

where we recall that { defined in (22) is an operator that
adds tildes to ζκ0;1 and their complex conjugates. As a
consequence, the relation between jt̃i and jτ̃i is not
obtained by adding tildes to jτi ¼ e−

κN
4 l−1jti ¼ e

κN
4 l†jti.

Instead we act with { to get

jτ̃i ¼ e−
κÑ
4 l̃jt̃i ¼ e

κÑ
4 l̃−1†jt̃i: ð44Þ

Since the Poisson brackets of the tilde spinors are the
same (with tildes) as the nontilde ones, the generator of
SU(2) transformations for the tilde spinors is given by

{ð−λ−2κ−1TrðWXÞÞ ¼ −λ̃2κ−1TrWðX̃opÞ−1; ð45Þ

where X̃op ¼ l̃†l̃. This is consistent with the Gauss
constraint (12), which is a product of l and l̃−1 depending
on the orientations of the ribbons. Explicitly, we can
expand TrWðX̃opÞ−1 as

TrWðX̃opÞ−1 ¼ 2ϵzλ̃
−2 − ϵ−λ̃

−1z̃ − ϵþλ̃−1 ¯̃z: ð46Þ

It is straightforward then using the Poisson brackets from
Appendix A to show that the tilde spinors (40) satisfy the
following equations

δϵjt̃i ¼ −λ̃2κ−1fTrWðX̃opÞ−1; jt̃ig ¼ ðw − IÞjt̃i; δϵjt̃� ¼ −λ̃2κ−1fTrWðX̃opÞ−1; jt̃�g ¼ ðw − IÞjt̃�; ð47Þ

δϵjτ̃i ¼ −λ̃2κ−1fTrWðX̃opÞ−1; jτ̃ig ¼ ðw00 − IÞjτ̃i; δϵjτ̃� ¼ −λ̃2κ−1fTrWðX̃opÞ−1; jτ̃�g ¼ ðw00 − IÞjτ̃�; ð48Þ

where the infinitesimal SU(2) elements w ¼ I þ iϵ⃗ · σ⃗ and w00 ¼ I þ iϵ⃗00 · σ⃗ are related by the right SU(2) transformation
of l̃, i.e.,

l̃⟶
w∈SUð2Þ

l̃ðwÞ ¼ w00−1l̃w ∈ ANð2Þ; w ¼ I þ iϵ⃗ · σ⃗ ¼ I þ i

�
ϵz ϵ−

ϵþ −ϵz

�
; w00 ¼ I þ iϵ⃗00 · σ⃗ ¼ I þ i

�
ϵ00z ϵ00−
ϵ00þ −ϵ00z

�
:

ð49Þ
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Thus the two infinitesimal parameters ϵ⃗ and ϵ⃗00 are related by

ϵ00� ¼ λ̃2ϵ�;

ϵ00z ¼ ϵz − 1=2ðλ̃zϵ− þ λ ¯̃zϵþÞ: ð50Þ
Just like there are two ways to write the transformations of jτi and jτ�, there are also two for jτ̃i and jτ̃�. While we have

seen above the equivalent of (37), the equivalent of (38) is

δϵjτ̃i ¼ {ðλ2κ−1ÞfTrW00{ðXop−1Þ; jτ̃ig ¼ λ̃−2κ−1fTrW00X̃; jτ̃ig; δϵjτ̃� ¼ λ̃−2κ−1fTrW00X̃; jτ̃�g; ð51Þ

and it is clear that jτ̃i and jτ̃� are braided spinors in the same
sense as jτi; jτ�.
There is a nice geometric interpretation of the relations

(29) and (44) which define the braided covariant spinors.
If we consider jti to sit at a vertex of Γrib, which is the
target of the short side carrying l, then jτi ¼ e−

κN
4 l−1jti

sits on the vertex of Γrib at the source of the short side
carrying l. In other words, jτi results from the parallel
transportation of jti by l−1. Similarly jτ̃i is the result of
the parallel transportation of jt̃i by l̃. This is represented
in Fig. 4.

D. Recovering the holonomy-flux variables
from the spinors

We assign the four spinors jti, jτi, jτ̃�, jt̃� to the corners of
the ribbon edge as in Fig. 4. We assume the norm matching
condition N ¼ Ñ so that the tilde spinors and their
corresponding nontilde spinors have the same norm:

htjti ¼ ½τ̃jτ̃� ¼ 2

κ
sinh

κN
2

: ð52Þ

The holonomies u; ũ ∈ SUð2Þ can be parametrized in terms
of these spinors

u ¼ jτi½t̃j − jτ�ht̃jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihτjτiht̃jt̃ip ; ũ ¼ jti½τ̃j − jt�hτ̃jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihtjtihτ̃jτ̃ip ; with N ¼ Ñ; ð53Þ

so that the following parallel transport relations along the long sides of the ribbon are satisfied,

ujt̃� ¼ jτi; ujt̃i ¼ −jτ�; u−1jτi ¼ jt̃�; u−1jτ� ¼ −jt̃i;
ũjτ̃i ¼ −jt�; ũjτ̃� ¼ jti; ũ−1jt� ¼ −jτ̃i; ũ−1jti ¼ jτ̃�: ð54Þ

On the other hand, the fluxes l; l̃ ∈ ANð2Þ can also be reconstructed by the deformed spinors as

l ¼ e−
κN
4 jtihτj þ e

κN
4 jt�½τjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihtjtihτjτip ; l̃ ¼ e

κÑ
4 jτ̃iht̃j þ e−

κÑ
4 jτ̃�½t̃jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiht̃jt̃ihτ̃jτ̃ip : ð55Þ

Their inverses

l−1 ¼ e
κN
4 jτihtj þ e−

κN
4 jτ�½tjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihtjtihτjτip ; l̃−1 ¼ e−

κÑ
4 jt̃ihτ̃j þ e

κÑ
4 jt̃�½τ̃jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiht̃jt̃ihτ̃jτ̃ip ð56Þ

can be checked by the orthogonality and completeness (39) of the two bases fjti; jt�g and fjτi; jτ�g. Likewise for the tilde
sectors. The parallel transport relations between the spinors and braided spinors by the fluxes can be perfectly reflected by
(55) and (56).
Therefore, the spinor assignment of Fig. 4 fully illustrates the parallel transport relations of the four spinors. Finally, they

solve the ribbon constraint:

�
lujt̃� ¼ ljτi ¼ e−

κN
4 jti

ũ l̃ jt̃� ¼ e−
κN
4 ũjτ̃� ¼ e−

κN
4 jti

⇒ C≡ lul̃−1ũ−1 ¼ I; ð57Þ

and the same can be done with the equivalent ribbon constraint l−1†ul̃†ũ−1 ¼ I. These spinors thus live on the constraint
surface generated by the ribbon constraint C. The matrix components defined in (53) also satisfy the desired Poisson
brackets [see (A4)].
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As shown in [13], the phase space SLð2;CÞ with the
Poisson structure (2) for one ribbon is equivalent to
Sκ × S̃κ==M, with Sκ ¼ fjti ∈ C2nfhtjti ¼ 0gg the
spinor phase space with the Poisson structure (27),
S̃κ ¼ fjt̃i ∈ C2nfht̃jt̃i ¼ 0gg as the phase space with
the Poisson structure (42), and M ≔ N − Ñ the norm
matching constraint. It is a simple check that the
dimension of such a phase space is 8 − 2 ¼ 6, matching

that of the holonomy-flux phase space constructed
in Sec. II.

E. κ → 0 limit: The nondeformed phase space

We furthermore write the fluxes in terms of the spinors.
Consider the Hermitian matrices ll† ¼ X ≡ κX0I − κX⃗ · σ⃗
and l†l≡ Xop ¼ κXop

0 I − κX⃗op · σ⃗. Their components can
be represented in term of the spinors jti and jτi,

X0 ¼
1

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

4
htjti2

r
¼ Xop

0 ¼ 1

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

4
hτjτi2

r
; X⃗ ¼ 1

2
htjσ⃗jti; X⃗op ¼ 1

2
hτjσ⃗jτi: ð58Þ

Similarly, l̃l̃† ≡ X̃ ¼ κX̃0I − κ ⃗X̃ · σ⃗ and l̃†l̃≡ X̃op ¼ κX̃op
0 I − κ ⃗X̃

op
· σ⃗ can be written with the tilde spinors. Explicitly,

X̃0 ¼
1

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

4
½τ̃jτ̃�2

r
¼ X̃op

0 ¼ 1

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

4
½t̃jt̃�2

r
; ⃗X̃ ¼ 1

2
½τ̃jσ⃗jτ̃�; ⃗X̃

op ¼ 1

2
½t̃jσ⃗jt̃�: ð59Þ

These objects transform as vectors under the SU(2)
transformation as X̃ ¼ ũ−1Xũ and u−1Xopu ¼ X̃op, con-
sistently with (54), and as such can be seen as the
deformation of the flat flux vectors. They capture the
hyperbolic geometry of the discretization of Σ [15]. In
particular, the Gauss constraint for a three-valent node
encodes the closure of a hyperbolic triangle, whose side
lengths and angles can be fully characterized in terms of
the vectors Xs or Xops associated to the corresponding
sides (see Ref. [15]).

When κ → 0, jti; jt̃� is identical to jτi; jτ̃�, respectively, as
it can be directly seen from their definition (26), (29), and
(29). We recover then the flat case where there is only one
pair of spinors associated to each edge. The flux vectors X⃗

and ⃗X̃ become the standard flat flux vectors that we denote
x⃗ and ⃗x̃, respectively. As a consistency check, one can take
the κ → 0 limit for X (58) and X̃ (59) defined in terms of the
spinors, or more explicitly in terms of the κ-deformed
spinor variables as in (23). Let us rewrite

X ¼
�
λ2 λz

λz λ−2 þ jzj2
�

¼
 

e
κðN1−N0Þ

2 −κe
κðN1−N0Þ

4 ζκ0ζ̄
κ
1

−κe
κðN1−N0Þ

4 ζκ1ζ̄
κ
0 e

κðN0−N1Þ
2 þ 4 sinh κN1

2
sinh κN0

2

!

!κ→0

 
1þ κðN1−N0Þ

2
−κζ0ζ̄1

−κζ1ζ̄0 1þ κðN0−N1Þ
2

!
¼
�
1þ κN

2

�
I − κx⃗ · σ⃗;

X̃ ¼
�
λ̃2 λ̃ ¯̃z

λ̃ z̃ λ̃−2 þ jz̃j2
�

¼
 

e
κðÑ0−Ñ1Þ

2 κe
κðÑ0−Ñ1Þ

4 ζ̃κ0
¯̃ζ
κ
1

κe
κðÑ0−Ñ1Þ

4 ζ̃κ1
¯̃ζ
κ
0 e

κðÑ1−Ñ0Þ
2 þ 4 sinh κÑ1

2
sinh κÑ0

2

!

⟶
κ→0

 
1þ κðÑ0−Ñ1Þ

2
κζ̃0

¯̃ζ1

κζ̃1
¯̃ζ0 1þ κðÑ1−Ñ0Þ

2

!
¼
�
1þ κÑ

2

�
I − κ ⃗x̃ · σ⃗; ð60Þ

where x⃗ ≔ 1
2
hζjσ⃗jζi and ⃗x̃ ≔ 1

2
½ζ̃jσ⃗jζ̃�. On the other hand, u ≃N¼Ñ

ũ≡g. The flat limit of the holonomy and the flux vector
components can be checked to satisfy the Poisson brackets [39]

fxi; gg ¼ i
2
σig; fxi; xjg ¼ ϵijkxk; fg; gg ≃N¼Ñ

0;

fx̃i; gg ¼ i
2
gσi; fx̃i; x̃jg ¼ −ϵijkx̃k; fxi; x̃jg ¼ 0: ð61Þ

Therefore, the κ → 0 limit of the flux vectors X⃗ and ⃗X̃ (58) recover the flat fluxes
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X⃗ ¼ −
1

2κ
TrðXσ⃗Þ⟶κ→0

x⃗; ⃗X̃ ¼ −
1

2κ
TrðX̃ σ⃗Þ⟶κ→0 ⃗x̃ : ð62Þ

The same limit can be achieved for X⃗op and ⃗X̃
op
as jti⟷κ→0 jτi

and jt̃�⟷κ→0 jτ̃�.

IV. SPINORIAL OBSERVABLES

A. The spinorial phase space

For a given graph Γ, we take the Cartesian product of the
spinor phase spaces over all edges of Γ. An edge e carries
the spinors jtei; jτei; jt̃ei; jτ̃ei and their duals. We have
already seen in Sec. III D that those variables reconstruct
the holonomy-flux variables in a way that automatically
solves the ribbon constraint in each ribbon. We are thus left
with imposing the Gauss constraint at each vertex of Γ.

Let us consider an n-valent vertex v of Γ. We then pick
an arbitrary edge incident to it, which we denote by e1, and
then going counterclockwise starting from e1, we label the
other incident edges by e2;…; en and identify enþ1 ≡ e1. In
the ribbon graph Γrib, v gives rise to an n-gon RðvÞ and
each edge ei to a ribbon edge RðeiÞ. Each of them shares a
vertex with its two neighbor ribbons, one clockwise and
one counterclockwise.
It is convenient to unify the notation for spinors as

follows:

t− ¼ jti; tþ ¼ jt�; τ− ¼ jτi; τþ ¼ jτ�;
t̃− ¼ jt̃i; t̃þ ¼ jt̃�; τ̃− ¼ jτ̃i; τ̃þ ¼ jτ̃�; ð63Þ

or component wise

t−A ¼ tA; tþA ¼ ð−1Þ12−At̄−A; τ−A ¼ τA; τþA ¼ ð−1Þ12−Aτ̄−A;

t̃−A ¼ t̃A; t̃þA ¼ ð−1Þ12−A¯̃t−A; τ̃−A ¼ τ̃A; τ̃þA ¼ ð−1Þ12−A ¯̃τ−A; A ¼ � 1

2
: ð64Þ

We use the same notation as in (12) to denote the fluxes on the boundary edges of RðvÞ as lei;v. Denote the spinor sitting at
the source vertex of lei;v to be tϵeiv and that sitting at its target is τϵeiv. Referring to Fig. 4, they are explicitly				 tϵeiv ¼ tϵi

τϵeiv ¼ τϵi
if oi ¼ þ;

				 tϵeiv ¼ t̃ϵi
τϵeiv ¼ τ̃ϵi

if oi ¼ −: ð65Þ

Indeed, each vertex in Γrib is assigned two spinors from two
different ribbons. For instance, the spinors τϵeiþ1v and t

ϵ
eiv sit at

the vertex where lei;v and leiþ1;v intersect. We now show in
the following proposition that these two spinors, except tϵen
sitting at the base vertex, are all braided covariant under the
SU(2) transformation generated by the Gauss constraint.
Proposition 1. The spinors τϵiþ1

eiþ1;v and t
ϵi
ei;v ði ¼ 1;…; nÞ

which sit on the same vertex of Γrib are braided-covariant
under the SU(2) transformation defined in (13) by the
braided infinitesimal SU(2) parameter denoted by wðiÞ ¼
I þ i

�
ϵðiÞz
ϵ ðiÞ
þ

ϵðiÞ−
ϵðiÞz

�
. If we parametrize lei;v ¼ ðΛi

zi
0

Λ−1
i
Þ, then the

transformation reads

δϵtϵeiv ¼ −κ−1
�Yn

k¼1

Λ−2
k

�
fTrWGG†; tϵeivg ¼ ðwðiþ1Þ − IÞtϵeiv;

ð66aÞ

δϵτ
ϵ
eiv ¼ −κ−1

�Yn
k¼1

Λ−2
k

�
fTrWGG†; τϵeivg ¼ ðwðiÞ − IÞτϵeiv;

ð66bÞ

where parameters in wðiÞ are defined by induction as

				 ϵðiÞ� ¼ Λ−2
i ϵðiþ1Þ

�

ϵðiÞz ¼ ϵðiþ1Þ
z þ 1

2
ðΛ−1

i ziϵðiþ1Þ
− þ Λ−1

i z̄iϵ
ðiþ1Þ
þ Þ

; and

				 ϵðnþ1Þ
� ≡ ϵ�

ϵðnþ1Þ
z ≡ ϵz

; i ¼ 1;…; n: ð67Þ

Proof.—We prove this proposition using the following induction result of the SU(2) transformation for any function f
from [15]2:

2We use different conventions from [15], hence why the expressions look different.
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−κ−1
�Yn

k¼1

Λ−2
k

�
fTrWGG†; fg≡ −κ−1

Xn
k¼1

Λ−2
k TrWðkþ1Þflek;vl

†
ek;v; fg; with

						
WðkÞ ¼ −Λ−2

k l†
ek;vW

ðkþ1Þlek;v

Wðnþ1Þ ≡W ¼
�
2ϵz ϵ−

ϵþ 0

� ; ð68Þ

and the Poisson brackets fΛ2
i ; t

ϵ
eiv;A

g ¼ ð−1Þ12−A iκ
2
Λ2
i t

ϵ
eiv;A

, fΛ2
i ; τ

ϵ
eiv;A

g ¼ ð−1Þ12−A iκ
2
Λ2
i τ

ϵ
eiv;A

and				 fΛizi; tϵeiv;−g ¼ −iκΛ2
i t

ϵ
eiv;þ;

fΛizi; tϵeiv;þg ¼ 0;				 fΛizi; τϵeiv;−g ¼ − iκ
2
Λiziτϵeiv;− − iκτϵþ;

fΛizi; τϵeiv;þg ¼ iκ
2
Λiziτϵeiv;þ;

				 fΛiz̄i; tϵeiv;−g ¼ 0

fΛiz̄i; tϵeiv;þg ¼ −iκΛ2
i t

ϵ
eiv;−;				 fΛiz̄i; τϵeiv;−g ¼ − iκ

2
Λiz̄iτϵeiv;−;

fΛiz̄i; τϵeiv;þg ¼ iκ
2
Λiz̄iτϵeiv;þ − iκτϵeiv;−:

ð69Þ

The braided matrix WðkÞ reads explicitly

WðkÞ ¼
�
2ϵðkÞz ϵðkÞ−

ϵðkÞþ 0

�
; ð70Þ

where the vector components of ϵ⃗ðkÞ are defined inductively in (67) or explicitly

ϵðkÞ� ¼
�Yn

i¼k

Λ−2
i

�
ϵ�; ϵðkÞz ¼ ϵz þ

1

2

Xn
i¼k

�Yn
j¼i

Λ−2
j

�
ðϵ−Λizi þ ϵþΛiz̄iÞ: ð71Þ

Expanding the right-hand side of (68), the SU(2) transformation for tϵeiv;A is

δϵtϵeiv ¼ −κ−1Λ−2
i ð2ϵði−1Þz fΛ2

i ; t
ϵ
eivg þ ϵðiþ1Þ

− fΛizi; tϵeivg þ ϵðiþ1Þ
þ fΛiz̄i; tϵeivgÞ ¼

�
ϵðiþ1Þ
z ϵðiþ1Þ

−

ϵðiþ1Þ
þ −ϵðiþ1Þ

z

�
tϵeiv; ð72Þ

δϵτ
ϵ
eiv ¼ −κ−1Λ−2

i ð2ϵðiþ1Þ
z fΛ2

i ; τ
ϵ
eivg þ ϵðiþ1Þ

− fΛizi; τϵeivg þ ϵðiþ1Þ
þ fΛiz̄i; τϵeivgÞ ¼

�
ϵðiÞz ϵðiÞ−

ϵðiÞþ −ϵðiÞz

�
τϵeiv; ð73Þ

where the right-hand sides of both equations above are
calculated via (67) and (69). This proves (66). ▪
We will build local invariant quantities by taking scalar

products between spinors from different edges that meet at
the same vertex of Γ. Due to the ribbon structure, they
might meet at the same vertex of Γrib or at different vertices
of Γrib. In the latter case, parallel transport around the
ribbon vertex is required to evaluate the scalar product at a
common vertex in Γrib. An example of the situation is given
for a three-valent vertex in Fig. 5. One can form (quadratic)
scalar products of spinors from two adjacent links ei and
eiþ1. The symmetry transformation is induced at the vertex

where the ribbons meet and, if they sit at the same vertex,
this ensures that the scalar product is invariant. One can
also define observables for spinors not sitting at the same
vertex. But in this case, it is necessary to parallel transport
one spinor to the other in order to ensure invariance.

B. Invariants from spinors sitting
at the same vertex in Γrib

The spinors tϵieiv and τ
ϵiþ1
eiþ1v sit at the samevertex inΓrib. One

can build directly quadratic observables denotedEϵi;ϵiþ1

i;iþ1 with
these two spinors by forming their scalar products:
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Eϵi;ϵiþ1

i;iþ1 ¼ ϵi
X

A¼�1=2

ð−1Þ12þAtϵieiv;−Aτ
ϵiþ1

eiþ1v;A
¼

8>>>>>>>>>>><>>>>>>>>>>>:

ϵi
P

A¼�1=2
ð−1Þ12þAtϵii;−Aτ

ϵiþ1

iþ1;A; for oi ¼ oiþ1 ¼ 1

ϵi
P

A¼�1=2
ð−1Þ12þAtϵii;−Aτ̃

ϵiþ1

iþ1;A; for oi ¼ −oiþ1 ¼ 1

ϵi
P

A¼�1=2
ð−1Þ12þAt̃ϵii;−Aτ

ϵiþ1

iþ1;A; for − oi ¼ oiþ1 ¼ 1

ϵi
P

A¼�1=2
ð−1Þ12þAt̃ϵii;−Aτ̃

ϵiþ1

iþ1;A; for oi ¼ oiþ1 ¼ −1

: ð74Þ

Consider for instance oi ¼ oiþ1 ¼ 1, Eϵi;ϵiþ1

i;iþ1 encodes four possible options of scalar products depending on the signs of
ϵi ¼ � and ϵiþ1 ¼ �.

ϵi
X

A¼�1=2

ð−1Þ12þAtϵii;−Aτ
ϵiþ1

iþ1;A ¼

8>>><>>>:
½tϵi jτϵiþ1i for ϵi ¼ ϵiþ1 ¼ −
½tϵi jτϵiþ1 � for ϵi ¼ −; ϵiþ1 ¼ þ
htϵi jτϵiþ1i for ϵi ¼ þ; ϵiþ1 ¼ −
htϵi jτϵiþ1 � for ϵi ¼ ϵiþ1 ¼ þ

: ð75Þ

They are by definition invariant under the SU(2) transformation acting on thevertex ofΓrib where the two spinorsmeet. Indeed,
under an SU(2) transformation with g ∈ SUð2Þ, ½tϵi j→ ½tϵi jg−1;htϵi j→ htϵi jg−1; jτϵiþ1i→gjτϵiþ1i; jτϵiþ1 �→gjτϵiþ1 � and so clearly
all Eϵi;ϵiþ1

i;iþ1 defined in (75) are invariant under SU(2) transformations. Since those transformations are generated by the Gauss
constraint as shown in Proposition 1, we find directly the following corollary.

(a) (b)

(c) (d)

FIG. 5. A node with three incident edges e1, e2, e3 (in gray) and the correspondent ribbon graph. The four possible orientations for e1
and e2 with a fix orientation o3 ¼ −1 for e3 are illustrated separately. The spinors defining the scalar product Eϵ1;ϵ2

12 can be read at the
common vertex (in red) of the ribbons associated to e1 and e2.
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Corollary 1. The scalar product Eϵi;ϵiþ1

i;iþ1 defined in (74)
is invariant under the infinitesimal gauge transformation δϵ
generated by the Gauss constraint defined in (13), i.e.,

δϵE
ϵi;ϵiþ1

i;iþ1 ¼ 0: ð76Þ

C. Invariants from spinors sitting
at different vertices in Γrib

We now explain how to build invariants for an arbitrary
pair of edges i; j ¼ 1;…; n incident to an n-valent vertex.
As before, we can work with the ribbon decorated with l; l̃

or l−1†; l̃−1†. We choose to explicit the case where we use
l; l̃, the other case is obtained in a similar way.
Consider first j ¼ iþ 1 so that the edges share a vertex

in Γrib. Then we know of the invariant Eϵi;ϵiþ1

i;iþ1 . We can also
try to define an observable in terms of τi and τiþ1. We have
showed that the scalar product of ti and τiþ1 is an
observable. On the other hand, we know that ti is the
result of transporting τi by leiv, see (29), (44) [leiv is
defined in (12)]. Therefore we can in fact transport τiþ1 by
leiv so that it sits at the same vertex as τi in Γrib. Obviously
one gets the same invariant as in (74).
Proposition 2. Up to coefficients e�

κNi
4 , we have that

Eϵi;ϵiþ1

i;iþ1 ∝

8>>>>>>>>>>><>>>>>>>>>>>:

ϵi
P

A¼�1=2
ð−1Þ12þAτϵii;−Aðl−1

i τϵiþ1

iþ1ÞA ∼ ϵi
P

A¼�1=2
ð−1Þ12þAτϵii;−Aðl†

i τ
ϵiþ1

iþ1ÞA; for oi ¼ oiþ1 ¼ 1

ϵi
P

A¼�1=2
ð−1Þ12þAτϵii;−Aðl−1

i τ̃ϵiþ1

iþ1ÞA ∼ ϵi
P

A¼�1=2
ð−1Þ12þAτϵii;−Aðl†

i τ̃
ϵiþ1

iþ1ÞA; for oi ¼ −oiþ1 ¼ 1

ϵi
P

A¼�1=2
ð−1Þ12þAτ̃ϵii;−Aðl̃iτ

ϵiþ1

iþ1ÞA ∼ ϵi
P

A¼�1=2
ð−1Þ12þAτ̃ϵii;−Aðl̃−1†

i τϵiþ1

iþ1ÞA; for − oi ¼ oiþ1 ¼ 1

ϵi
P

A¼�1=2
ð−1Þ12þAτ̃ϵii;−Aðl̃iτ̃

ϵiþ1

iþ1ÞA ∼ ϵi
P

A¼�1=2
ð−1Þ12þAτ̃ϵii;−Aðl̃−1†

i τ̃ϵiþ1

iþ1ÞA; for oi ¼ oiþ1 ¼ −1

: ð77Þ

Proof.—Consider the definition (74) and focus on the
first case, with oi ¼ oiþ1 ¼ 1. Then, we apply (29),
ðliτ

ϵi
i ÞA ∝ tϵii;A and that ðl−1†

i τϵii ÞA ∝ tϵi1;A up to coefficients

e�
κNi
4 . We further have

ðl−1ÞAB ¼ ð−1ÞB−Al−B−A;

ðl†ÞAB ¼ ð−1ÞB−Aðl−1†Þ−B−A: ð78Þ

Putting these equalities together, we get the proposition. ▪
In the quantization scheme, since we need to order

the Hilbert spaces, and build the spinor operators
using some braided permutation to the following
Hilbert space we will need to set up a reference point.
This is called the “cilium.” We will see that the notion
of braided permutation is nothing else than the quantum
version of the parallel transport we are discussing. As a

consequence, the notion of quantum observable based
on the braiding will be associated to the formulation
(77) instead of (74).
We generalize this construction to edges ei, ej incident

to the same vertex in Γ but with j ≠ iþ 1. To simplify
the notations of (65), we denote τϵii ≡ τϵieiv and similarly
for the other spinors. Up to parallel transport by
leiv;lejv, we can always build our observables from

the spinors τϵii ; τ
ϵj
j . The recipe is to parallel transport τ

ϵj
j

around the ribbon vertex to meet τϵii at the same vertex in
Γrib. This is done by introducing Lij (respectively L−1†

ij ),
the AN(2) holonomy consisting of the product of l−1 and
l̃ (respectively l† and l̃−1†) clockwise around RðvÞ from
j to i,
Proposition 3. The quantity

E
ϵi;ϵj
ij ¼

8>>>>>>>>>>><>>>>>>>>>>>:

ϵi
P

A¼�1=2
ð−1Þ12þAτϵii;−AðLijτ

ϵj
j ÞA ∼ ϵi

P
A¼�1=2

ð−1Þ12þAτϵii;−AðL−1†
ij τ

ϵj
j ÞA; for oi ¼ oj ¼ 1

ϵi
P

A¼�1=2
ð−1Þ12þAτϵii;−AðLijτ̃

ϵj
j ÞA ∼ ϵi

P
A¼�1=2

ð−1Þ12þAτϵii;−AðL−1†
ij τ̃

ϵj
j ÞA; for oi ¼ −oj ¼ 1

ϵi
P

A¼�1=2
ð−1Þ12þAτ̃ϵii;−AðLijτ

ϵj
j ÞA ∼ ϵi

P
A¼�1=2

ð−1Þ12þAτ̃ϵii;−AðL−1†
ij τ

ϵj
j ÞA; for − oi ¼ oj ¼ 1

ϵi
P

A¼�1=2
ð−1Þ12þAτ̃ϵii;−AðLijτ̃

ϵj
j ÞA ∼ ϵi

P
A¼�1=2

ð−1Þ12þAτ̃ϵii;−AðL−1†
ij τ̃

ϵj
j ÞA; for oi ¼ oj ¼ −1

ð79Þ
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is an observable, i.e., δϵE
ϵi;ϵj
eiej ¼ 0.

Different expressions can be obtained if one uses tϵieiv or t
ϵj
ejv instead.

D. Poisson algebra of observables

Let us now compute the observable Poisson algebra formed by the quadratic invariant E
ϵi;ϵj
ij . When q ¼ 1, it is well

known that they form a so�ð2nÞ Poisson algebra [24] with a uðnÞ subalgebra, where n is the valency of the vertex. When
q ≠ 1, this algebra is deformed as we now describe.
To distinguish different kinds of observables, we define

ei ≡ ei;i ¼ Eþ;−
i;i ≡ E−;þ

i;i ; ei;iþ1 ¼ Eþ;−
i;iþ1; eiþ1;i ¼ E−;þ

i;iþ1; fi;iþ1 ¼ E−;−
i;iþ1; f̃i;iþ1 ¼ −Eþ;þ

i;iþ1: ð80Þ

ei;iþ1 and eiþ1;i are related by complex conjugation, and likewise for fi;iþ1 and f̃i;iþ1. That is,

eiþ1;i ¼ ei;iþ1; f̃i;iþ1 ¼ fi;iþ1: ð81Þ

With no loss of generality, we can take the orientation oi ¼ oiþ1 ¼ −1 and write these generators explicitly:

ei ¼ Ni; ei;iþ1 ¼ ht̃ijτ̃iþ1i≡ ¯̃ti;−τ̃iþ1;− þ ¯̃ti;þτ̃iþ1;þ ¼ e
κ
4
ðNi;1−Niþ1;1Þ ¯̃ζκi;0ζ̃κiþ1;0 þ e−

κ
4
ðNi;0−Niþ1;0Þ ¯̃ζκi;1ζ̃κiþ1;1; ð82aÞ

eiþ1;i ¼ ½t̃ijτ̃iþ1�≡ t̃i;− ¯̃τiþ1;− þ t̃i;þ ¯̃τiþ1;þ ¼ e
κ
4
ðNi;1−Niþ1;1Þζ̃κi;0

¯̃ζ
κ
iþ1;0 þ e−

κ
4
ðNi;0−Niþ1;0Þζ̃κi;1

¯̃ζ
κ
iþ1;1; ð82bÞ

fi;iþ1 ¼ ½t̃ijτ̃iþ1i≡ t̃i;−τ̃iþ1;þ − t̃i;þτ̃iþ1;− ¼ e−
κ
4
ðNi;0þNiþ1;1Þζ̃κi;1ζ̃

κ
iþ1;0 − e

κ
4
ðNi;1þNiþ1;0Þζ̃κi;0ζ̃

κ
iþ1;1; ð82cÞ

f̃i;iþ1 ¼ −ht̃ijτ̃iþ1�≡ ¯̃ti;− ¯̃τiþ1;þ − ¯̃ti;þ ¯̃τiþ1;− ¼ e−
κ
4
ðNi;1þNiþ1;0Þ ¯̃ζκi;0

¯̃ζ
κ
iþ1;1 − e

κ
4
ðNi;0þNiþ1;1Þ ¯̃ζκi;1

¯̃ζ
κ
iþ1;0: ð82dÞ

Indeed, ei;iþ1 is holomorphic in spinor variables at the ith site and antiholomorphic at the (iþ 1)th site while eiþ1;i is in the
opposite way. On the other hand, fi;iþ1 (respectively, f̃i;iþ1) is holomorphic (respectively, antiholomorphic) at both sites. The
holomorphic functions in spinor variables will be quantized to annihilation operators while the antiholomorphic ones will
be quantized to creation operators that we will see in Sec. VI.
Other generators eij; eji; fij, and f̃ij with j > iþ 1 can be defined recursively as follows:

eij ¼
1

2
κ sinh

κej−1
2

ðei;j−1ej−1;j þ e
κej−1

2 f̃i;j−1fj−1;jÞ≡ 1
2
κ sinh

κeiþ1

2

ðei;iþ1eiþ1;j þ e
κeiþ1

2 f̃i;iþ1fiþ1;jÞ; ð83aÞ

eji ¼
1

2
κ sinh

κej−1
2

ðej−1;iej;j−1 þ e−
κej−1

2 fi;j−1f̃j−1;jÞ≡ 1
2
κ sinh

κeiþ1

2

ðeiþ1;iej;iþ1 þ e−
κeiþ1

2 fi;iþ1f̃iþ1;jÞ; ð83bÞ

fij ¼
1

2
κ sinh

κej−1
2

ðe−κej−1
2 fi;j−1ej−1;j þ ej−1;ifj−1;jÞ≡ 1

2
κ sinh

κeiþ1

2

ðe−κeiþ1
2 fi;iþ1eiþ1;j þ eiþ1;ifiþ1;jÞ; ð83cÞ

f̃ij ¼
1

2
κ sinh

κej−1
2

ðeκej−1
2 f̃i;j−1ej;j−1 þ ei;j−1 f̃j−1;jÞ≡ 1

2
κ sinh

κeiþ1

2

ðeκeiþ1
2 f̃i;iþ1ej;iþ1 þ ei;iþ1f̃iþ1;jÞ: ð83dÞ

Remarkably, the generators (82) and (83) can be recovered geometrically. To do this, without loss of generality, we will
use the definition (79) of E

ϵi;ϵj
ij and take oi ¼ oiþ1 ¼ � � � ¼ oj ¼ −1 for convenience. Then the generators given in (79) can

be equivalently given by3

3Indeed, the parallel transport can also be done by using Lij instead of L−1†
ij . We have chosen the latter one so that eij and eji will be

naturally quantized to the standard generators of UqðuðnÞÞ as we will see in (180) using (181).
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eij ¼
�Yj−1

k¼i

e
κek
4

�
hτ̃ijL−1†

ij jτ̃ji; eji ¼
�Yj−1

k¼i

e−
κek
4

�
½τ̃ijL−1†

ij jτ̃j�

fij ¼
�Yj−1

k¼i

e−
κek
4

�
½τ̃ijL−1†

ij jτ̃ji; f̃ij ¼ −
�Yj−1

k¼i

e
κek
4

�
hτ̃ijL−1†

ij jτ̃j� with L−1†
ij ¼ l̃−1†

i l̃−1†
iþ1 � � � l̃−1†

j−1 : ð84Þ

As a consistency check, when j ¼ iþ 1, (82) can bewritten using (84) with only the braided spinors jτ̃i; jτ̃� and one flux l̃i as

ei;iþ1 ¼ e
κÑi
4 hτ̃ijl̃−1†

i jτ̃iþ1i≡ ht̃ijτ̃iþ1i; eiþ1;i ¼ e−
κÑi
4 ½τ̃ijl̃−1†

i jτ̃iþ1�≡ ½t̃ijτ̃iþ1�;
fi;iþ1 ¼ e−

κÑi
4 ½τ̃ijl̃−1†

i jτ̃iþ1i≡ ½t̃ijτ̃iþ1i; f̃i;iþ1 ¼ −e
κÑi
4 hτ̃ijl̃−1†

i jτ̃iþ1�≡ −ht̃ijτ̃iþ1�: ð85Þ
We can also switch the indices for the generators fi;iþpðp ∈ NþÞ, f̃i;iþp and define

fiþp;i ≔
�Yp−1

k¼0

e−
κeiþk

4

�
½τ̃iþpjL†

i;iþpjt̃ii≡ −fi;iþp f̃iþp;i ≔ −
�Yp−1

k¼0

e
κeiþk

4

�
hτ̃iþpjL†

i;iþpjt̃i� ¼ −f̃i;iþp: ð86Þ

The Poisson algebra formed by the generators defined in (82) is given in the following two propositions.
Proposition 4. ei, ei;iþ1 and eiþ1;i defined in (82a) and (82b) form a κ-deformed uðnÞ Poisson algebra. They satisfy the

following Poisson brackets

fei; ejg ¼ 0; fei; ej;jþ1g ¼ iðδi;jþ1 − δijÞej;jþ1; fei; ejþ1;jg ¼ iðδij − δi;jþ1Þejþ1;j;

fei;iþ1; ejþ1;jg ¼ δij
2i
κ
sinh

κðeiþ1 − eiÞ
2

: ð87Þ

Proposition 5. ei, ei;iþ1, eiþ1;i, fi;iþ1, and f̃i;iþ1 defined in (82) form a κ-deformed so�ð2nÞ Poisson algebra. They satisfy
(87) and the following Poisson brackets:

fei;iþ1; fj;jþ1g ¼ iδi;jþ1

�
fi−1;iþ1 þ

κ

2
ei;iþ1fi−1;iþ1

�
; feiþ1;i; fj;jþ1g ¼ iδi;j−1

�
e
κei
2 fi;iþ2 −

κ

2
eiþ1;ifiþ1;iþ2

�
;

fei;iþ1; f̃j;jþ1g ¼ −iδi;j−1
�
e−

κei
2 f̃i;iþ2 þ

κ

2
ei;iþ1 f̃iþ1;iþ2

�
; feiþ1;i; f̃j;jþ1g ¼ −iδi;jþ1

�
f̃i−1;iþ1 −

κ

2
eiþ1;i f̃i−1;iþ1

�
;

ffi;iþ1; f̃j;jþ1g ¼ −iδij
2

κ
sinh

κðei þ eiþ1Þ
2

þ iδi;j−1

�
eiþ2;i −

κ

2
fi;iþ1f̃iþ1;iþ2

�
þ iδi;jþ1

�
ei−1;iþ1 þ

κ

2
fi;iþ1f̃i−1;i

�
;

fei; fj;jþ1g ¼ iðδij þ δijþ1Þfj;jþ1; fei; f̃jþ1;jg ¼ −iðδij þ δijþ1Þf̃j;jþ1; ffi;iþ1; fj;jþ1g ¼ ff̃i;iþ1; f̃j;jþ1g ¼ 0: ð88Þ
Proof.—The Poisson algebra (88) can be directly calculated with (the tilde version of) the Poisson brackets (27), (31), and

(32). To get the first three lines of (88), it is also useful to use the following Poisson brackets:

e
3κÑ
4 f¯̃t−; e−κÑ

2 τ̃−g ¼ ie
κ
4
ðÑ1−Ñ0Þ ≡ iλ̃−1; e

3κÑ
4 f¯̃t−; e−κÑ

2 τ̃þg ¼ 0;

e
3κÑ
4 f¯̃tþ; e−κÑ

2 τ̃−g ¼ −iκ ¯̃ζκ1ζ̄κ0 ≡ −i ¯̃z; e
3κÑ
4 f¯̃tþ; e−κÑ

2 τ̃þg ¼ ie
κ
4
ðÑ0−Ñ1Þ ≡ iλ̃;

e−
3κÑ
4 f ¯̃τ−; eκÑ

2 t̃−g ¼ ie
κ
4
ðÑ0−Ñ1Þ ≡ iλ̃; e−

3κÑ
4 f ¯̃τ−; eκÑ

2 t̃þg ¼ 0;

e−
3κÑ
4 f ¯̃τþ; eκÑ

2 t̃−g ¼ iκ ¯̃ζκ1ζ̃
κ
0 ≡ i ¯̃z; e−

3κÑ
4 f ¯̃τþ; eκÑ

2 t̃þg ¼ ie
κ
4
ðÑ1−Ñ0Þ ≡ iλ̃−1: ð89Þ

We use these result to show, e.g., fei;iþ1; fi−1;ig. We first write that

fei;iþ1; e−
κÑi
2 fi−1;ig ¼ f¯̃ti;−τ̃iþ1;− þ ¯̃ti;þτ̃iþ1;þ; t̃i−1;−ðe−

κÑi
2 τ̃i;þÞ − t̃i−1;þðe−

κÑi
2 τ̃i;−Þg;

¼ ie−
3κÑi
4 ðt̃i−1;−λ̃iτ̃iþ1;þ þ t̃i−1;þ ¯̃ziτ̃iþ1;þ − t̃i−1;þλ̃−1i τ̃iþ1;−Þ;

≡ ie−
3κÑi
4 ½t̃i−1jl̃−1†

i jτ̃iþ1i≡ ie−
κÑi
2 fi−1;iþ1; ð90Þ

where the left-hand side can also be separated into
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fei;iþ1; e−
κÑi
2 fi−1;ig ¼ e−

κÑi
2 fei;iþ1; fi−1;ig −

iκ
2
e−

κÑi
2 ei;iþ1fi−1;i:

We then conclude that

fei;iþ1; fj;jþ1g ¼ iδi;jþ1

�
fi−1;iþ1 þ

κ

2
ei;iþ1fi−1;iþ1

�
hence the first Poisson bracket in (88). The first three lines
of (88) can computed in the similar way. ▪
Let us now discuss the quantization of the model.

V. FROM PHASE SPACE TO HOPF ALGEBRAS

The relevant structures for this quantization are the Hopf
algebras Uqðsuð2ÞÞ, Uq−1ðsuð2ÞÞ, and SUqð2Þ; SUq−1ð2Þ
with q real. The necessity to have the Hopf algebras
Uq−1ðsuð2ÞÞ and SUq−1ð2Þ was perhaps not fully appre-
ciated in the previous work [13], though it appeared already
in [6].
We are interested in the quantization of the Poisson

brackets (6) and (7) for a single ribbon. To this aim, we
construct the operators associated to the classical variables

(the holonomy-flux algebra) and introduce the Hilbert
space structure on which we represent these operators.

A. Poisson bracket quantization

As a first step, we introduce the deformation parameter,
q ¼ eℏκ. Then the classical r matrix is quantized as r → R
with

R ¼

0BBB@
q

1
4 0 0 0

0 q−
1
4 q−

1
4ðq1

2 − q−
1
2Þ 0

0 0 q−
1
4 0

0 0 0 q
1
4

1CCCA
≈ I ⊗ I þ iℏrþOðℏ2Þ: ð91Þ

Note that one obtains the inverse matrix R−1 if one replaces
q by q−1.
We quantize the holonomies and fluxes to be matrices of

operators l → L; u → U; l̃ → L̃; ũ → Ũ. The quantization
of the Poisson brackets (6) and (7) gives the following
commutation relations for the matrices of operators [6,7]

R21U1U2 ¼ U2U1R21; RL1L2 ¼ L2L1R; L1R−1
21U2 ¼ U2L1; L2R−1U1 ¼ U1L2;

R−1
21 Ũ1Ũ2 ¼ Ũ2Ũ1R−1

21 ; R−1L̃1L̃2 ¼ L̃2L̃1R−1; Ũ2R21L̃1 ¼ L̃1Ũ2; Ũ1RL̃2 ¼ L̃2Ũ1;

L̃1U2R−1
21 ¼ U2L̃1; RŨ1L2 ¼ L2Ũ1; R−1

21L1Ũ2 ¼ Ũ2L1; U1L̃2R ¼ L̃2U1: ð92Þ

The Poisson brackets (6), (7), and (9) are recovered at the

first order through the map ½Â; B̂� ¼ iℏ dfA; Bg. Note that
R−1 appears because of the minus sign difference between
the classical Poisson structures, respectively, defined in (6)
and in (7).
The classical Casimir rþ r21 can be quantized as R21R

and requesting this operator to be a Casimir implies that

½R21R;L1L2� ¼ ½R21R;U2U1� ¼ ½R21R; L̃2L̃1�
¼ ½R21R; Ũ1Ũ2� ¼ 0: ð93Þ

Using this in (92) leads to the following equivalent
commutation relations

R21U1U2 ¼ U2U1R21 ⇔ R−1U1U2 ¼ U2U1R−1;

R−1
21 Ũ1Ũ2 ¼ Ũ2Ũ1R−1

21 ⇔ RŨ1Ũ2 ¼ Ũ2Ũ1R; ð94Þ

which are more amenable to identify the relevant structure.
The relations (92) and (94) define the algebra struc-

ture of the Hopf algebras Uq−1ðsuð2ÞÞ;Uqðsuð2ÞÞ4 and
SUqð2Þ; SUq−1ð2Þ

											

l̃ ∈ ANð2Þ→ L̃ ∈ ANqð2Þ≡ FunqðANð2ÞÞ ≅ Uqðsuð2ÞÞ
ũ ∈ SUð2Þ→ Ũ ∈ SUqð2Þ≡ FunqðSUð2ÞÞ
l ∈ ANð2Þ→ L ∈ Funq−1ðANð2ÞÞ ≅ Uq−1ðsuð2ÞÞ
u ∈ SUð2Þ→U ∈ SUq−1ð2Þ

:

ð95Þ

We have in particular

L ¼
�

K−1 0

−q1
4ðq1

2 − q−
1
2ÞJþ K

�
;

L̃ ¼
�

K̃ 0

q−
1
4ðq1

2 − q−
1
2ÞJ̃þ K̃−1

�
; ð96Þ

where ðJ�; K ¼ q
Jz
2 Þ and ðJ̃�; K̃ ¼ q

J̃z
2 Þ are two commuting

copies of the Uqðsuð2ÞÞ generators (see Appendix B). The
antipodes S̄ðLÞ and SðL̃Þ [see (B2) and (B11)] are given by
acting the correspondent antipodes on all the matrix ele-
ments. That is

4Strictly speaking, these are the matrix elements of L which
belong to Funq−1ðANð2ÞÞ.
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S̄ðLÞ ¼
�

S̄ðK−1Þ 0

−q1
4ðq1

2 − q−
1
2ÞS̄ðJþÞ S̄ðKÞ

�
¼
�

K 0

q−
1
4ðq1

2 − q−
1
2ÞJþ K−1

�
; ð97Þ

SðL̃Þ ¼
�

SðK̃Þ 0

q−
1
4ðq1

2 − q−
1
2ÞSðJ̃þÞ SðK̃−1Þ

�
¼
�

K̃−1 0

−q1
4ðq1

2 − q−
1
2ÞJ̃þ K̃

�
: ð98Þ

The definitions of thoseHopf algebras are given inAppendixB.We note that the left Iwasawa decomposition leads to elements
in the Hopf algebras, Uq−1ðsuð2ÞÞ and SUq−1ð2Þ while the right decomposition leads to elements in the Hopf algebras,
Uqðsuð2ÞÞ and SUqð2Þ. At the classical level, this is reflected in the presence of theminus sign difference between (6), (7), the
Poisson structures, respectively, for the elements u, l of the left Iwasawa decomposition and for the elements ũ, l̃ of the right
Iwasawa decomposition.

B. The R matrix contains the information about the flux and the holonomy

Let us add some additional comments on the defining relations

L1L2R−1 ¼ R−1L2L1; R−1U1U2 ¼ U2U1R−1; L̃1L̃2R ¼ RL̃2L̃1; RŨ1Ũ2 ¼ Ũ2Ũ1R: ð99Þ
It is well known [40] that they can be obtained from the quantum Yang-Baxter equation (QYBE)

R12R13R23 ¼ R23R13R12; ð100Þ
where we have used the standard notation R12 ¼

P
Rð1Þ ⊗ Rð2Þ ⊗ I;R23 ¼ I ⊗ Rð1Þ ⊗ Rð2Þ;R13 ¼ Rð1Þ ⊗ I ⊗ Rð2Þ.

The solution relevant to us is specifically

R ¼ qJz⊗Jz
X∞
n¼0

ð1 − q−1Þn
½n�! q

nðn−1Þ
4 ðqJz

2 JþÞn ⊗ ðq−Jz
2 J−Þn; ð101Þ

where ½n� ≔ qn=2−q−n=2
q1=2−q−1=2 is called a q number.

In the above quantization scheme, we have used this solution in the 1
2
⊗ 1

2
representation, with the generators represented

as 2 × 2 matrices

ρðJ−Þ ¼
�
0 0

1 0

�
; ρðJþÞ ¼

�
0 1

0 0

�
; ρðKÞ ¼

�
q

1
4 0

0 q−
1
4

�
→ R ¼ ρðRÞ: ð102Þ

All the relations (99) can be seen as different realizations of the QYBE (100) written in a specific representation. Indeed,
in terms of the components of the R matrix, the Yang-Baxter equation is written asX

k1;k2;k3

Ri1
k1
i2
k2
R0k1

j1
i3
k3
R00k2

j2
k3
j3
¼
X

k1;k2;k3

R00i2
k2
i3
k3
R0i1

k1
k3
j3
Rk1

j1
k2
j2
; ð103Þ

where R;R0;R00 are different copies of the R matrix. The
first two indices (i, j) of Ri

j
k
l are the indices for Rð1Þ and

the last two indices (k, l) are the indices for Rð2Þ given in
the decomposition R ¼PRð1Þ ⊗ Rð2Þ.
Let us fix the representation of Rð2Þ;R0

ð2Þ, and R00 to be

the fundamental representation of Uqðsuð2ÞÞ, then the
indices ði2; i3Þ; ðj2; j3Þ; ðk2; k3Þ ∈ f− 1

2
; 1
2
g in (103). In this

representation, we then have [40]

ðL̃k
lÞαβ ¼ Rα

β
k
l; ð104Þ

where the indices k; l ¼ � 1
2
are the indices labeling the

matrix elements of L̃, while α, β are the indices of the

Uqðsuð2ÞÞ generators in any representation. The QYBE
(103) thus reduces to L̃1L̃2R ¼ RL̃2L̃1.
On the other hand, fixing the representation of R;R0

ð1Þ
and R00

ð1Þ to be the fundamental representation and using

ðŨi
jÞαβ ¼ Ri

j
α
β; ð105Þ

when i; j ∈ f− 1
2
; 1
2
g, the QYBE reduces to RŨ1Ũ2 ¼

Ũ2Ũ1R.
In the same spirit, the first two equations in (99) are the

QYBE for the R matrix of Uq−1ðsuð2ÞÞ in a given
representation. Note that the R matrix for Uq−1ðsuð2ÞÞ
is simply the inverse of the R matrix for Uqðsuð2ÞÞ.
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Therefore, the R matrix captures the quantum holonomy
and quantum flux information in its two subspaces. This
gives a more geometrical interpretation to the R matrix in
terms of quantum “holonomies” either in some deformation
of AN(2) or SU(2).5

The construction of tensor operators (such as spinor and
vector operators) usually requires some braiding defined in
terms of the R matrix to transform appropriately [27,28].
We will show how this braiding can be reinterpreted in a
more geometrical setting, i.e., in terms of parallel transport.

VI. QUANTUM SPINORIAL REPRESENTATION
OF DEFORMED LATTICE GAUGE THEORY

This section contains some of the key results of the
paper. In particular, after quantizing the deformed spinors,
we will show how the definition of spinor operators on

different Hilbert spaces, usually performed via the R
matrix, can be done using some parallel transport. This
leads to a new geometrical interpretation of the R matrix.
We will also provide the quantization of the obser-
vables (74) and show that they form a deformation
of so�ð2nÞ.

A. Quantizing the spinors

The quantization of the deformed variables ζκA; ζ̄
κ
A; NA

will give rise to the q deformation of the Jordan map for
suð2Þ. Indeed these variables can be quantized as q-boson
operators: the variables ζκA are quantized as q-boson
annihilation operators, the variables ζ̄κA as q-boson creation
operators, and the variables NA as number operators.
Explicitly,

ðζκ0; ζκ1Þ → ða; bÞ; ðζ̄κ0; ζ̄κ1Þ → ða†; b†Þ; ðN0; N1Þ → ðNa; NbÞ;
ðζ̃κ0; ζ̃κ1Þ → ðã; b̃Þ; ð ¯̃ζκ0; ¯̃ζκ1Þ → ðã†; b̃†Þ; ðÑ0; Ñ1Þ → ðÑa; ÑbÞ: ð106Þ

These q-harmonic oscillators obey the following commutation rules

aa† − q∓1
2a†a ¼ q�

Na
2 ; a†a − q�1

2aa† ¼ −q�
Naþ1

2 ; ½Na; a†� ¼ a†; ½Na; a� ¼ −a; ð107Þ

from which one can deduce

qNa=2a† ¼ q1=2a†qNa=2; qNa=2a ¼ q−1=2aqNa=2; a†a ¼ ½Na�≡ qNa=2 − q−Na=2

q
1
2 − q−

1
2

; aa† ¼ ½Na þ 1�: ð108Þ

Similar relations hold for the operators (b, b†, Nb) and the tilde variables. The different sets of q-boson operators (a; a†; Na)
(b; b†; Nb), (ã; ã†; Ña), and (b̃; b̃†; Ñb) all commute with each other.
States can be labeled by their occupation numbers, jnai ¼ a†na j0i= ffiffiffiffiffiffiffiffi½na�

p
and jnbi ¼ b†nb j0i= ffiffiffiffiffiffiffiffi½nb�

p
, and

jna; nbiHO ¼ jnai ⊗ jnbi: ð109Þ

The q-deformed Jordan map is [41]

Jþ ¼ a†b; J− ¼ ab†; K ¼ q
Jz
2 ¼ q

Na−Nb
4 ; J̃þ ¼ ã†b̃; J̃− ¼ ãb̃†; K̃ ¼ q

J̃z
2 ¼ q

Ña−Ñb
4 : ð110Þ

Indeed, with the quantization map (106), we recover the classical generators z; z̄; λ and z̃; ¯̃z; λ̃ at the linear ℏ order of the
quantum fluxes (96) by taking q ¼ eκℏ ¼ 1þ κℏþOðℏ2Þ,

				−q
1
4ðq1

2 − q−
1
2ÞJþ → z ¼ −κζ̄κ0ζκ1

K−1 → λ ¼ exp
�
κ
4
ðN1 − N0Þ

� ;

				 q
1
4ðq1

2 − q−
1
2ÞJ̃þ → z̃ ¼ κ ¯̃ζ

κ
0ζ̃

κ
1

K̃ → λ̃ ¼ exp
�
κ
4
ðÑ0 − Ñ1Þ

� : ð111Þ

5Although we stick to the terminology that l and l̃ are called fluxes, they are AN(2) holonomies in the ribbon picture as each is
assigned to a side of the ribbon.
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We define the right adjoint action,6 denoted as ▸ (respectively, ▸̄), of Uqðsuð2ÞÞ [respectively, Uq−1ðsuð2ÞÞ)] on some
operator O:

J� ▸ O ¼ SðJ�ÞOK þ SðK−1ÞOJ� ¼ −q�1
2J�OK þ KOJ�; K ▸ O ¼ SðKÞOK ¼ K−1OK; ð112Þ

J� ▸̄ O ¼ S̄ðJ�ÞOK−1 þ S̄ðKÞOJ� ¼ −q∓1
2J�OK−1 þ K−1OJ�; K ▸̄O ¼ S̄ðKÞOK ¼ K−1OK: ð113Þ

Let Vj be the irreducible representation of Uqðsuð2ÞÞ of dimension 2jþ 1. The basis state jj; mi ∈ Vj of fixed magnetic
number m is the Fock state jna; nbiHO,

jj;mi ¼ jjþm; j −miHO; ð114Þ

i.e., j ¼ 1
2
ðna þ nbÞ and m ¼ 1

2
ðna − nbÞ. The q bosons act on those states as

a†jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½jþmþ 1�

p 				jþ 1

2
; mþ 1

2



; ajj; mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½jþm�

p 				j − 1

2
; m −

1

2



;

b†jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½j −mþ 1�

p 				jþ 1

2
; m −

1

2



; bjj; mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½j −m�

p 				j − 1

2
; mþ 1

2



;

Najj; mi ¼ ðjþmÞjj; mi; Nbjj; mi ¼ ðj −mÞjj;mi: ð115Þ

With the quantization map given above, we are now
ready to define the Uqðsuð2ÞÞ and Uq−1ðsuð2ÞÞ quantum
spinors, which decorate the ribbon as in Fig. 6. A
Uqðsuð2ÞÞ [respectively, Uq−1ðsuð2ÞÞ] quantum spinor,
denoted as T ¼ ðT−

Tþ
Þ, by definition should transform under

the Uqðsuð2ÞÞ [respectively, Uq−1ðsuð2ÞÞ] adjoint action as
a spinor, i.e.,

J� • T� ¼ 0; J� • T∓ ¼ T∓; K • T� ¼ q∓1
4T�;

ð116Þ

where • is the right adjoint action (which can be either ▸
or ▸̄).
Remark 1. According to Biedenharn’s terminology

[41], the relations (116) define what he calls “conjugate
spinors.” This is what we will call the “right adjoint
quantum spinors” in this article. A left adjoint quantum
spinor, or a quantum spinor according to Biedenharn’s
terminology, is defined by the Uqðsuð2ÞÞ or Uq−1ðsuð2ÞÞ
left adjoint action. Denote uniformly the Uqðsuð2ÞÞ or
Uq−1ðsuð2ÞÞ left adjoint action by ∘ , then the left adjoint
action of the generators on a left adjoint quantum spinor,
say T0, is

J� ∘ T0
� ¼ 0; J� ∘ T0∓ ¼ T0∓; K ∘ T0

� ¼ q�1
4T0

�:

Note the different behavior under the action of K compared
to (116). A Uqðsuð2ÞÞ right adjoint quantum spinor qT can
be obtained via a Uq−1ðsuð2ÞÞ left adjoint quantum spinor

q−1T
0 with the relation qTA ¼ ð−1Þ12−AqA

2
q−1T

0
A
, while a

Uq−1ðsuð2ÞÞ right adjoint quantum spinor q−1T can be

obtained via an Uqðsuð2ÞÞ left adjoint quantum spinor qT0

with the relation q−1TA
¼ ð−1Þ12−Aq−A

2qT0
A.

A spinor operator is a special example of a tensor
operator Tj¼1

2. A tensor operator Tj associated with the
representation j transforms under the adjoint action as
an element of the representation j. The Wigner-Eckart
theorem provides the matrix elements of any tensor
operator Tj.

FIG. 6. The reference ribbon. The spinor operators tϵ and t̃ϵ are
Uqðsuð2ÞÞ quantum spinors, while τϵ and τ̃ϵ are Uq−1ðsuð2ÞÞ
quantum spinors.

6Given a generator x of a Hopf algebra H with copro-
duct △ðxÞ ¼P xð1Þ ⊗ xð2Þ, there are two kinds of adjoint
actions on operators Os of H namely the left adjoint
action x⊳O ≔

P
xð1ÞOSðxð2ÞÞ and the right adjoint action

x ▸ O ≔
P

Sðxð1ÞÞOxð2Þ, where S is the antipode of H.
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Theorem 1. [Wigner-Eckart Theorem for Uqðsuð2ÞÞ
[41]] The matrix element of a tensor operator Tj of rank j
with j an irreducible representation of Uqðsuð2ÞÞ is
proportional to the q-WCG coefficient:

hj1; m1jTj
mjj2; m2i ¼ Nj

j1j2q
Cj1 j j2
m1m m2

; ð117Þ

where Tj
m is the mth component of Tj, qC

j1 j j2
m1m m2

is the

q-WCG coefficient for coupling j1 and j to get j2 and N
j
j1j2

is a constant independent of m;m1; m2.
The quantization map (106) leads to the quantum spinors

defined as

jti ¼
 

e
κN1
4 ζκ0

e−
κN0
4 ζκ1

!
→ t− ¼

 
t−−
t−þ

!
¼
 

q
Nb
4 a

q−
Na
4 b

!
; jt� ¼

 
−e−

κN0
4 ζ̄κ1

e
κN1
4 ζ̄κ0

!
→ tþ ¼

 
tþ−
tþþ

!
¼
 
−b†q−

Naþ1
4

a†q
Nbþ1

4

!
;

jτi ¼
 
e−

κN1
4 ζκ0

e
κN0
4 ζκ1

!
→ τ− ¼

 
τ−−
τ−þ

!
¼
 
q−

Nb
4 a

q
Na
4 b

!
; jτ� ¼

 
−e

κN0
4 ζ̄κ1

e−
κN1
4 ζ̄κ0

!
→ τþ ¼

 
τþ−
τþþ

!
¼
 
−b†q

Naþ1
4

a†q−
Nbþ1

4

!
;

jt̃i ¼
 

e
κÑ1
4 ζ̃κ0

e−
κÑ0
4 ζ̃κ1

!
→ t̃− ¼

 
t̃−−
t̃−þ

!
¼
 

q
Ñb
4 ã

q−
Ña
4 b̃

!
; jt̃� ¼

 
−e−

κÑ0
4
¯̃ζ
κ
1

e
κÑ1
4
¯̃ζ
κ
0

!
→ t̃þ ¼

 
t̃þ−
t̃þþ

!
¼
 
−b̃†q−

Ñaþ1
4

ã†q
Ñbþ1

4

!
;

jτ̃i ¼
 
e−

κÑ1
4 ζ̃κ0

e
κÑ0
4 ζ̃κ1

!
→ τ̃− ¼

 
τ̃−−
τ̃−þ

!
¼
 
q−

Ñb
4 ã

q
Ña
4 b̃

!
; jτ̃� ¼

 
−e

κÑ0
4
¯̃ζ
κ
1

e−
κÑ1
4
¯̃ζ
κ
0

!
→ τ̃þ ¼

 
τ̃þ−
τ̃þþ

!
¼
 
−b̃†q

Ñaþ1
4

ã†q−
Ñbþ1

4

!
: ð118Þ

The spinors tϵ and t̃ϵ are quantized as Uqðsuð2ÞÞ spinor
operators while the (braided) spinors τϵ and τ̃ϵ are quan-
tized as Uq−1ðsuð2ÞÞ spinor operators. Indeed, under the
right adjoint action, these quantum spinors transform as
desired:

J� ▸ tϵ� ¼ 0; J� ▸ tϵ∓ ¼ tϵ�; K ▸ tϵ� ¼ q∓1
4tϵ�;

J� ▸ t̃ϵ� ¼ 0; J� ▸ t̃ϵ∓ ¼ t̃ϵ�; K ▸ t̃ϵ� ¼ q∓1
4t̃ϵ�;

J� ▸̄ τϵ� ¼ 0; J� ▸̄ τϵ∓ ¼ τϵ�; K ▸̄ τϵ� ¼ q∓1
4τϵ�;

J� ▸̄ τ̃ϵ� ¼ 0; J� ▸̄ τ̃ϵ∓ ¼ τ̃�; K ▸̄ τ̃ϵ� ¼ q∓1
4τ̃ϵ�:

ð119Þ

As a consequence, the Wigner-Eckart theorem tells us that

hj1; m1jtϵmjj2; m2i ¼ δj1;j2þϵ=2

ffiffiffiffiffiffiffiffiffi
½dj1 �

q
qC

j1
1
2

j2
m1−m m2

; ð120aÞ

hj1; m1jτϵmjj2; m2i ¼ δj1;j2þϵ=2

ffiffiffiffiffiffiffiffiffi
½dj1 �

q
q−1C

j1
1
2

j2
m1−m m2

;

ð120bÞ

hj1; m1jt̃ϵmjj2; m2i ¼ δj1;j2þϵ=2

ffiffiffiffiffiffiffiffiffi
½dj1 �

q
qC

j1
1
2

j2
m1−m m2

; ð120cÞ

hj1; m1jτ̃ϵmjj2; m2i ¼ δj1;j2þϵ=2

ffiffiffiffiffiffiffiffiffi
½dj1 �

q
q−1C

j1
1
2

j2
m1−m m2

:

ð120dÞ

Therefore, as in the quantum fluxes, we again see both the
Uqðsuð2ÞÞ and Uq−1ðsuð2ÞÞ structures appearing upon

quantization. We decorate the ribbon with spinor operators
as in Fig. 6. tϵ and t̃ϵ are the Uqðsuð2ÞÞ quantum spinors,
while τϵ and τ̃ϵ are the Uq−1ðsuð2ÞÞ quantum spinors both
in the sense of the right adjoint action. The quantum spinor
components satisfy the commutation relations

tϵ−tϵþ ¼ q−
1
2tϵþtϵ−; τϵ−τϵþ ¼ q

1
2τϵþτϵ−; t̃ϵ−t̃ϵþ ¼ q−

1
2t̃ϵþt̃ϵ−;

τ̃ϵ−τ̃ϵþ ¼ q
1
2τ̃ϵþτ̃ϵ−; ϵ ¼ �: ð121Þ

We define the inner products of the spinors with a
bilinear form Bq determined by the q-WCG coefficient

� ffiffiffiffiffiffi½2�p
qC

1
2

1
2

0

m n 0 ¼ �δm;−nð−1Þ1=2−mqm=2 with q compat-
ible with the spinor nature. Bq thus defines a (nonsym-
metric) metric on the spinors. We denote the inner products
as spinor brackets in the following way

htjti ≔ Bqðtþ; t−Þ ¼ −
ffiffiffiffiffiffi
½2�

p
qC

1
2

1
2

0

m−m 0t
þ
−mt−m ¼ ½N�;

hτjτi ≔ Bqðτþ; τ−Þ ¼ −
ffiffiffiffiffiffi
½2�

p
q−1C

1
2

1
2

0

m−m 0τ
þ
−mτ−m ¼ ½N�;

ht̃jt̃i ≔ Bqðt̃þ; t̃−Þ ¼ −
ffiffiffiffiffiffi
½2�

p
qC

1
2

1
2

0

m−m 0t̃
þ
−mt̃−m ¼ ½Ñ�;

hτ̃jτ̃i ≔ Bq−1ðτ̃þ; τ̃−Þ ¼ −
ffiffiffiffiffiffi
½2�

p
q−1C

1
2

1
2

0

m−m 0τ̃
þ
−mτ̃−m ¼ ½Ñ�;

ð122Þ

as well as
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½tjt� ≔ Bqðt−; tþÞ ¼
ffiffiffiffiffiffi
½2�

p
qC

1
2

1
2

0

m −m 0t
−
−mtþm ¼ ½N þ 2�;

½τjτ� ≔ Bq−1ðτ−; τþÞ ¼
ffiffiffiffiffiffi
½2�

p
q−1C

1
2

1
2

0

m −m 0τ
−
−mτþm ¼ ½N þ 2�;

½t̃jt̃� ≔ Bqðt̃−; t̃þÞ ¼
ffiffiffiffiffiffi
½2�

p
qC

1
2

1
2

0

m −m 0t̃
−
−mt̃þm ¼ ½Ñ þ 2�;

½τ̃jτ̃� ≔ Bq−1ðτ̃−; τ̃þÞ ¼
ffiffiffiffiffiffi
½2�

p
q−1C

1
2

1
2

0

m −m 0τ̃
−
−mτ̃þm ¼ ½Ñ þ 2�;

ð123Þ

while it can be checked directly that the remaining vanish,

½tjti ≔ Bqðt−; t−Þ ¼ 0 ¼ Bqðtþ; tþÞ≕ htjt�;
½τjτi ≔ Bq−1ðτ−; τ−Þ ¼ 0 ¼ Bq−1ðτþ; τþÞ≕ hτjτ�;
½t̃jt̃i ≔ Bqðt̃−; t̃−Þ ¼ 0 ¼ Bqðt̃þ; t̃þÞ≕ ht̃jt̃�;

½τ̃jτ̃i ≔ Bq−1ðτ̃−; τ̃−Þ ¼ 0 ¼ Bq−1ðτ̃þ; ¯̃τþÞ≕ hτ̃jτ̃�: ð124Þ

Unlike in the classical case, the norms of the spinors
and their duals are not equal, h·j·i ≠ ½·j·�, due to the
noncommutativity (121) of the spinor components.
Furthermore, one can get ½N þ 1� or ½Ñ þ 1� by the
following inner products,

½N þ 1� ¼ q−
1
4ðt−−tþþ − tþ−t−þÞ ¼ q

1
4ðtþþt−− − t−þtþ−Þ

¼ q−
1
4ðτþþτ−− − τ−þτþ−Þ ¼ q

1
4ðτ−−τþþ − τþ−τ−þÞ; ð125Þ

½Ñ þ 1� ¼ q−
1
4ðt̃−−t̃þþ − t̃þ− t̃−þÞ ¼ q

1
4ðt̃þþt̃−− − t̃−þt̃þ−Þ

¼ q−
1
4ðτ̃þþτ̃−− − τ̃−þτ̃þ−Þ ¼ q

1
4ðτ̃−−τ̃þþ − τ̃þ− τ̃−þÞ: ð126Þ

They are actually those we will use to reconstruct the
quantum holonomies.

B. Recovering the quantum holonomy-flux algebra

Both the quantum fluxes and quantum holonomies can
be built from the quantum spinors in a neat way as their
classical counterparts (53).

1. Holonomies

We start with the following proposition:
Proposition 6. Impose the norm matching constraint

N ¼ Ñ. Then the operator matrix U ¼ ðU−−
Uþ−

U−þ
Uþþ

Þ whose

matrix elements are given by

UAB ¼ ð−1Þ12−BqB
2

X
ϵ¼�

τϵAt̃
ϵ
−B

1

½N þ 1� ; ð127Þ

which is an SUq−1ð2Þ quantum matrix. The operator matrix

Ũ ¼ ðŨ−−
Ũþ−

Ũ−þ
Ũþþ

Þ whose matrix elements are given by

ŨAB ¼ 1

½Ñ þ 1� ð−1Þ
1
2
þBq−

B
2

X
ϵ¼�

tϵAτ̃
ϵ
−B ð128Þ

is an SUqð2Þ quantum matrix.
In addition, together with the fluxes L and L̃ (96) defined

in terms of the Uqðsuð2ÞÞ generators given by the Jordan
map (110), the holonomies defined this way satisfy the
commutation relations (92).
Proof.—By repeatedly applying (121)–(126) and the

commutation relation of the spinor components and the
norm factor

1

½N þ 1�T
ϵ
m ¼ Tϵ

m
1

½N þ 1þ ϵ� ;
1

½Ñ þ 1� T̃
ϵ
m ¼ T̃ϵ

m
1

½Ñ þ 1þ ϵ� ; T ¼ t; τ; T̃ ¼ t̃; τ̃; ð129Þ

one can compute that

U−−U−þ ¼ q
1
2U−þU−−; U−−Uþ− ¼ q

1
2Uþ−U−−; U−þUþþ ¼ q

1
2UþþU−þ; Uþ−Uþþ ¼ q

1
2UþþUþ−;

½U−−; Uþþ� ¼ −ðq1
2 − q−

1
2ÞU−þUþ−; ½U−þ; Uþ−� ¼ 0; detq−1U ≡U−−Uþþ − q

1
2U−þUþ− ¼ I;

Ũ−−Ũ−þ ¼ q−
1
2Ũ−þŨ−−; Ũ−−Ũþ− ¼ q−

1
2Ũþ−Ũ−−; Ũ−þŨþþ ¼ q−

1
2ŨþþŨ−þ; Ũþ−Ũþþ ¼ q−

1
2ŨþþŨþ−;

½Ũ−−; Ũþþ� ¼ ðq1
2 − q−

1
2ÞŨ−þŨþ−; ½Ũ−þ; Ũþ−� ¼ 0; detqŨ≡ Ũ−−Ũþþ − q−

1
2Ũ−þŨþ− ¼ I:

Referring to Definition 2, we conclude that U is an SUq−1ð2Þ quantum matrix and Ũ is an SUqð2Þ quantum matrix.
Using the Jordan map (110), the commutation relations between the Uqðsuð2ÞÞ generators and the quantum spinors read

tϵ�K ¼ q∓1
4Ktϵ�; τϵ�K ¼ q∓1

4Kτϵ�; t̃ϵ�K̃ ¼ q∓1
4K̃t̃ϵ�; τ̃ϵ�K̃ ¼ q∓1

4K̃τ̃ϵ�;

tϵ∓J� − q�1
4J�tϵ∓ ¼ K−1tϵ�; t∓J∓ ¼ q�1

4J∓tϵ∓; τϵ∓J� − q∓1
4J�τϵ∓ ¼ Kτϵ�; τϵ∓J∓ ¼ q∓1

4J∓τϵ∓;

t̃ϵ∓J̃� − q�1
4J̃�t̃ϵ∓ ¼ K̃−1t̃ϵ�; t̃∓J̃∓ ¼ q�1

4J̃∓t̃ϵ∓; τ̃ϵ∓J̃� − q∓1
4J̃�τ̃ϵ∓ ¼ K̃τ̃ϵ�; τ̃ϵ∓J̃∓ ¼ q∓1

4J̃∓τ̃ϵ∓; ð130Þ
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one can show that the commutation relations in (92) are
satisfied given the definition of the quantum holonomies
(127), (128), and the quantum fluxes (96). ▪

2. Flux vectors

We now reconstruct the quantization of the vectors X and
Xop from (58) in terms of the quantum spinors. They
become Uqðsuð2ÞÞ and Uq−1ðsuð2ÞÞ vector operators,
respectively, i.e., spin 1 tensor operators. The Uqðsuð2ÞÞ
quantum vectors can be built from the Uqðsuð2ÞÞ spinors tϵ
and t̃ϵ and the Uq−1ðsuð2ÞÞ vectors can be built from the
Uq−1ðsuð2ÞÞ spinors τϵ and τ̃ϵ.
Using the q-WCG coupling, one can define the

Uqðsuð2ÞÞ right adjoint vectors as [41]

XA ¼
X
m;n¼�1

2
mþn¼A

qC
1
2

1
2

1

−m −n −Atþmt−n ; A ¼ 0;�1: ð131Þ

In components they read

X0 ¼
q
C

1
2

1
2

1
1
2

−1
2

0
tþ−t−þ þ

q
C

1
2

1
2

1

−1
2

1
2

0
tþþt−−

¼ 1ffiffiffiffiffiffi½2�p ðq1
2JþJ− − q−

1
2J−JþÞ; ð132Þ

X−1 ¼
q
C

1
2

1
2

1
1
2

1
2

1
tþ−t−− ¼ −J−K−1;

X1 ¼
q
C

1
2

1
2

1

−1
2

−1
2

−1t
þ
þt−þ ¼ JþK−1: ð133Þ

It is easy to check that they behave as a vector under the
action of Uqðsuð2ÞÞ

J� ▸ XA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 ∓ A�½1� Aþ 1�

p
XA�1;

K ▸ XA ¼ q−
A
2XA; ð134Þ

so that the Wigner-Eckart theorem applies and gives the
matrix elements of XA in the irreducible representation Vj,

hj; njXAjj; mi ¼ NjqC
j 1 j
n −A m ;

with Nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2j�½2jþ 2�

½2�

s
: ð135Þ

Similarly, one defines the Uq−1ðsuð2ÞÞ vector as

Xop
A ¼

X
m;n¼�1

2
mþn¼A

q−1C
1
2

1
2

1

−m −n −Aτþmτ−n ; A ¼ 0;�1; ð136Þ

whose components are

Xop
0 ¼

q−1
C

1
2

1
2

1
1
2

−1
2

0
τþ−τ−þ þ

q−1
C

1
2

1
2

1

−1
2

1
2

0
τþþτ−−

¼ 1ffiffiffiffiffiffi½2�p ðq−1
2JþJ− − q

1
2J−JþÞ; ð137Þ

Xop
−1 ¼ q−1

C
1
2

1
2

1
1
2

1
2

1
τþ−τ−− ¼ −J−K;

Xop
1 ¼

q−1
C

1
2

1
2

1

−1
2

−1
2

−1τ
þ
þτ−þ ¼ JþK: ð138Þ

They are indeed Uq−1ðsuð2ÞÞ vectors since

J� ▸̄Xop
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 ∓ A�½1� Aþ 1�

p
XA�1;

K ▸̄Xop
A ¼ q−

A
2Xop

A ; ð139Þ

and from the Wigner-Eckart theorem,

hj; njXop
A jj;mi ¼ Njq−1C

j 1 j
n −A m ;

with Nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2j�½2jþ 2�

½2�

s
: ð140Þ

One can see thatX andXop are the natural quantization the
classical deformed vectors X⃗ and X⃗op as defined in (58).
The tilde sector of vectors X̃ and X̃op can also be
built in the same way from t̃ϵ and τ̃ϵ, respectively. In
addition, higher spin quantum vectors of Uqðsuð2ÞÞ and
Uq−1ðsuð2ÞÞ types can be built with the q-WCG coefficient
in a similar method.

C. Flipping the ribbon

In the following, we will omit the index ϵ on the spinor
operators as it is not relevant for the present discussion. We
introduce the operator I associated to changing the ori-
entation of an edge of Γ, which is a quantum version of {.
When changing the orientation of an edge, we have the

following involutive transformation on the spinor operators

τ̃ → τ; t̃ → t: ð141Þ

Since the tilde and nontilde spinors are classically the same,
and since the quantization map (118) is the same for both,
we can define

IðtÞ ¼ t̃; Iðt̃Þ ¼ t; IðτÞ ¼ τ̃; Iðτ̃Þ ¼ τ; ð142Þ

and just like we did classically with {, we can lift I to the q
bosons by setting

IðaÞ ¼ ã; Iða†Þ ¼ ã†; IðbÞ ¼ b̃; Iðb†Þ ¼ b̃†; ð143Þ

and requiring that I is an involution. By applying I to (110),
one finds
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IðJ�Þ ¼ J̃�; IðJ̃�Þ ¼ J�; IðKÞ ¼ K̃; IðK̃Þ ¼ K:

ð144Þ

It is then possible to find IðLÞ in terms of L̃,

IðLÞ ¼
�

K̃−1 0

−q1
4ðq1

2 − q−
1
2ÞJ̃þ K̃

�
¼ SðL̃Þ; ð145Þ

where S is the antipode of Uqðsuð2ÞÞ. Similarly, one finds
IðL̃Þ ¼ S̄ðLÞ with S̄ being the antipode of Uq−1ðsuð2ÞÞ.
Indeed, SðS̄ðLÞÞ≡ L and S̄ðSðL̃ÞÞ≡ L̃, consistently with
the fact that I is an involution.
The same can be applied to U. Parametrize the matrix

elements of U and Ũ as well as their antipode to be [see
Definition 2 for definition of the Hopf algebra SUqð2Þ]

U ¼
�
â b̂

ĉ d̂

�
∈ SUq−1ð2Þ; with â d̂−q1

2b̂ ĉ ¼ I S̄ðUÞ ¼
�

d̂ −q−1
2b̂

−q1
2ĉ â

�
; ð146Þ

Ũ ¼
�

ˆ̃a ˆ̃b
ˆ̃c ˆ̃d

�
∈ SUqð2Þ; with ˆ̃a ˆ̃d−q−1

2
ˆ̃b ˆ̃c ¼ I; SðŨÞ ¼

� ˆ̃d −q1
2
ˆ̃b

−q−1
2 ˆ̃c ˆ̃a

�
; ð147Þ

where we have used S̄ to denote the antipode for SUq−1ð2Þ. It is natural to define the operator I acting on the generators

â; b̂; ĉ; d̂ of U and generators ˆ̃a; ˆ̃b; ˆ̃c; ˆ̃d of Ũ as

IðâÞ ¼ ˆ̃d; Iðb̂Þ ¼ −q1
2
ˆ̃b; IðĉÞ ¼ −q−1

2 ˆ̃c; Iðd̂Þ ¼ ˆ̃a;

Ið ˆ̃aÞ ¼ d̂; Ið ˆ̃bÞ ¼ −q−1
2b̂; Ið ˆ̃cÞ ¼ −q1

2ĉ; Ið ˆ̃dÞ ¼ â; ð148Þ

where I is indeed an involution. We then have

IðUÞ ¼ SðŨÞ; IðŨÞ ¼ S̄ðUÞ: ð149Þ

Recall that one can reconstruct these quantum holonomies in terms of the quantum spinors as in (127) and (128), which we
copy here:

UAB ¼ ð−1Þ12−BqB
2

X
ϵ¼�

τϵAt̃
ϵ
−B

1

½N þ 1� ∈ SUq−1ð2Þ; ŨAB ¼ 1

½Ñ þ 1� ð−1Þ
1
2
þBq−

B
2

X
ϵ¼�

tϵAτ̃
ϵ
−B ∈ SUqð2Þ:

The matrix element of the antipodes of U and Ũ defined in (146) and (147) can be equivalently written as

ðS̄ðUÞÞAB ¼ ð−1ÞB−AqA−B
2 U−B−A ¼ 1

½N þ 1� ð−1Þ
1
2
þBq−

B
2

X
ϵ

t̃ϵAτ
ϵ
−B; ð150Þ

ðSðŨÞÞAB ¼ ð−1ÞA−BqB−A
2 Ũ−B−A ¼ ð−1Þ12−BqB

2

X
ϵ

τ̃ϵAt
ϵ
−B

1

½Ñ þ 1� : ð151Þ

Then (149) can be deduced from (142).
Therefore, we have a complete map for quantum objects

in terms of flipping the ribbons. We can then focus only on
one orientation for a ribbon and use the involution map I to
deduce the results after change of orientation.

D. R matrix as a parallel transport

In the classical construction, the different spinors are
related through parallel transport by the AN(2) holonomies.
We will see that their quantum counterparts, the spinor

operators, are related by ANqð2Þ holonomies. We expect to
have two possible cases, either lower triangular or upper
triangular.

1. Parallel transport within a ribbon

Let us start with the classical covariant and braided-
covariant spinors of a single ribbon related to one
another by AN(2) parallel transport in (29) and the first
equation of (44). At the quantum level, we have analog
relations
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Lτϵ ¼
�

K−1τϵ−

−ðq3
4 − q−

1
4ÞJþτϵ− þ Kτϵþ

�
¼ q

1þϵ
4 qϵ

N
4tϵ; L̃t̃ϵ ¼

�
K̃t̃ϵ−

ðq1
4 − q−

3
4ÞJ̃þt̃ϵ− þ K̃−1t̃ϵþ

�
¼ q−ϵ

Ñ
4q−

1þϵ
4 τ̃ϵ; ð152Þ

S̄ðLÞtϵ ¼
�

Ktϵ−

ðq1
4 − q−

3
4ÞJþtϵ− þ K−1tϵþ

�
¼ q−

1þϵ
4 q−ϵ

N
4τϵ; SðL̃Þτ̃ϵ ¼

�
K̃−1τ̃ϵ−

−ðq3
4 − q−

1
4ÞJ̃þτ̃ϵ− þ K̃τ̃ϵþ

�
¼ qϵ

Ñ
4q

1þϵ
4 t̃ϵ: ð153Þ

One can take the complex conjugate of these relations and get equivalently,

ð−1Þ12−AqA
2tϵ−A ¼ qϵ

N
4q

ϵ−2
4 ð−1Þ12−Bq−B

2τϵ−BðL†ÞBA; ð154aÞ
ð−1Þ12−Aq−A

2τϵ−A ¼ q−ϵ
N
4q

2−ϵ
4 ð−1Þ12−BqB

2tϵ−BðS̄ðLÞ†ÞBA; ð154bÞ

ð−1Þ12−Aq−A
2 τ̃ϵ−A ¼ q−ϵ

Ñ
4q

2−ϵ
4 ð−1Þ12−BqB

2 t̃ϵ−BðL̃†ÞBA; ð154cÞ

ð−1Þ12−AqA
2 t̃ϵ−A ¼ qϵ

Ñ
4q

ϵ−2
4 ð−1Þ12−Bq−B

2 τ̃ϵ−BðSðL̃Þ†ÞBA: ð154dÞ

To get (154) from (152) and (153), we have used the formulas for taking the complex conjugating of spinor components

ðtϵAÞ† ¼ ϵð−1Þ12−AqA
2t−ϵ−A; ðτϵAÞ† ¼ ϵð−1Þ12−Aq−A

2τ−ϵ−A;

ðt̃ϵAÞ† ¼ ϵð−1Þ12−AqA
2 t̃−ϵ−A; ðτ̃ϵAÞ† ¼ ϵð−1Þ12−Aq−A

2 τ̃−ϵ−A; ð155Þ

and the commutation relation of the factor qϵ
N
4 or qϵ

Ñ
4 with the spinor components

qϵ
N
4tϵ

0
A ¼ q

ϵϵ0
4 tϵ

0
Aq

ϵN
4 ; qϵ

N
4τϵ

0
A ¼ q

ϵϵ0
4 τϵ

0
Aq

ϵN
4 ; qϵ

Ñ
4 t̃ϵ

0
A ¼ q

ϵϵ0
4 t̃ϵ

0
Aq

ϵÑ
4 ; qϵ

Ñ
4 τ̃ϵ

0
A ¼ q

ϵϵ0
4 τ̃ϵ

0
Aq

ϵÑ
4 : ð156Þ

This quantum version of the parallel transport works within
a single ribbon, see Fig. 7(a). Let us now consider what
happens when dealing with more ribbons.

2. Spinors for many ribbons

We are interested in defining spinor operators when
dealing with many ribbon edges. We focus on a ribbon
graph Γrib where the graph Γ is an Nv-valent vertex v
with Nv edges ordered and labeled as e1 and eN going
counterclockwise. The ribbon graph Γrib is an Nv-gon RðvÞ
surrounded by Nv ribbon edges RðenÞ, n ∈ f1;…; Nvg.
Once more, we do not consider the index ϵ that does not

bring anything to the present discussion. For the ribbon
edge RðenÞ, we introduce

τ̃n ¼ I ⊗ � � � ⊗ τ̃ ⊗ � � � ⊗ I;

t̃n ¼ I ⊗ � � � ⊗ t̃ ⊗ � � � ⊗ I: ð157Þ

These objects, τ̃n or t̃n, are built using permutations,
starting, respectively, from τ̃1 or t̃1. However, the permu-
tation is not consistent with the coproduct if it is non
cocommutative. Consequently, due to the noncocommuta-
tivity of the coproducts of Uqðsuð2ÞÞ and Uq−1ðsuð2ÞÞ,
these objects are not spinor operators, except τ̃1 and t̃1.
We now want to define spinor operators, that is objects

transforming covariantly under the Uqðsuð2ÞÞ and
Uq−1ðsuð2ÞÞ adjoint actions. To make the distinction
between the objects living on the nth leg, τ̃n or t̃n, and
the spinor operators, we will denote ðnÞτ̃ and ðnÞt̃, the
objects transforming, respectively, as a Uq−1ðsuð2ÞÞ and
Uqðsuð2ÞÞ spinor operators. The construction of the spinor
operators on different Hilbert spaces is usually done using
the braiding induced by the R matrix [27].
As a consequence the usual construction of spinor

operators (or any tensor operators) is in terms of the R
matrix. There are two ways to define such a spinor operator.
Explicitly, we use R−1

ij or Rji to define the Uq−1ðsuð2ÞÞ
tensor operator ðnÞτ̃.

(a) (b)

FIG. 7. Flipping the reference ribbon due to the change of
orientation of the edge e is equivalent to the spinor
flip τ̃ → τ; t̃ → t.

BONZOM, DUPUIS, GIRELLI, and PAN PHYS. REV. D 107, 026014 (2023)

026014-26



ðnÞτ̃A ¼ R−1
n−1;nR

−1
n−2;n � � �R−1

2nR
−1
1n ðτ̃nÞAR1nR2n � � �Rn−2;nRn−1;n ⊗ I ⊗ � � � ð158aÞ

or ðnÞτ̃A ¼ Rn;n−1Rn;n−2 � � �Rn2Rn1ðτ̃nÞAR−1
n1R

−1
n2 � � �R−1

n;n−2R
−1
n;n−1 ⊗ I ⊗ � � � : ð158bÞ

The two formulas of (158) are proportional to each other with the proportionality coefficient being a function of the
normsN1;…; Nn which commutes with the Uqðsuð2ÞÞ (or Uq−1ðsuð2ÞÞ) generators. Similarly, we useRij orR−1

ji to define

the Uqðsuð2ÞÞ tensor operator ðnÞt̃

ðnÞt̃A ¼ Rn−1;nRn−2;n � � �R2nR1nðt̃nÞAR−1
1nR

−1
2n � � �R−1

n−2;nR
−1
n−1;n ⊗ I ⊗ � � � ð159aÞ

or ðnÞt̃A ¼ R−1
n;n−1R

−1
n;n−2 � � �R−1

n2R
−1
n1 ðt̃nÞARn1Rn2 � � �Rn;n−2Rn;n−1 ⊗ I ⊗ � � � : ð159bÞ

We now show that these Uq−1ðsuð2ÞÞ spinors [respectively, Uqðsuð2ÞÞ spinors] can be equivalently obtained by using the
quantum parallel transport induced by L̃ [respectively SðL̃Þ] or SðL̃Þ† (respectively, L̃†).

3. Braiding as a parallel transport

Let us focus first on the case with all ribbon edges RðenÞ oriented in the sameway corresponding to incoming edges in the
associated graph. We focus on the Nv-gon RðvÞ.
Proposition 7. The braiding induced by the R matrix can be seen as a parallel transport.

ðnÞτ̃A ¼ R−1
n−1;nR

−1
n−2;n � � �R−1

2nR
−1
1n ðτ̃nÞAR1nR2n � � �Rn−2;nRn−1;n ⊗ I ⊗ � � � ;

¼ ðL̃ ⊗ � � � ⊗ L̃ ⊗ τ̃nÞA ⊗ I ⊗ � � � ;
¼ L̃A

A2 ⊗ L̃A2

A3 ⊗ � � � ⊗ τ̃An−1
⊗ I ⊗ � � � ; ð160Þ

or ðnÞτ̃A ¼ Rn;n−1Rn;n−2 � � �Rn2Rn1ðτ̃nÞAR−1
n1R

−1
n2 � � �R−1

n;n−2R
−1
n;n−1 ⊗ I ⊗ � � � ;

ðSðL̃Þ† ⊗ � � � ⊗ SðL̃Þ† ⊗ τ̃nÞA ⊗ I ⊗ � � �
¼ ðSðL̃Þ†ÞAA2 ⊗ ðSðL̃Þ†ÞA2

A3 ⊗ � � � ⊗ τ̃An−1
⊗ I ⊗ � � � ; ð161Þ

ðnÞt̃A ¼ Rn−1;nRn−2;n � � �R2nR1nðt̃nÞAR−1
1nR

−1
2n � � �R−1

n−2;nR
−1
n−1;n ⊗ I ⊗ � � � ;

¼ ðSðL̃Þ ⊗ � � � ⊗ SðL̃Þ ⊗ t̃nÞA ⊗ I ⊗ � � � ;
¼ SðL̃ÞAA2 ⊗ SðL̃ÞA2

A3 ⊗ � � � ⊗ t̃An−1
⊗ I ⊗ � � � ; ð162Þ

or ðnÞt̃A ¼ R−1
n;n−1R

−1
n;n−2 � � �R−1

n2R
−1
n1 ðt̃nÞARn1Rn2 � � �Rn;n−2Rn;n−1 ⊗ I ⊗ � � � ;

ðL̃† ⊗ � � � ⊗ L̃† ⊗ t̃nÞA ⊗ I ⊗ � � �
¼ ðL̃†ÞAA2 ⊗ ðL̃†ÞA2

A3 ⊗ � � � ⊗ t̃An−1
⊗ I ⊗ � � � : ð163Þ

Proof.—For notational convenience, we remove the tildes of the generators of Uqðsuð2ÞÞ in the tilde sector. We consider
(160) at n ¼ 2. Then, from the last line,

ð2Þτ̃ ¼
�

K ⊗ τ̃−

q−
1
4ðq1

2 − q−
1
2ÞJþ ⊗ τ̃− þ K−1 ⊗ τ̃þ

�
: ð164Þ

We will show that the first line, i.e., R−1
12 ðI ⊗ τ̃ÞR12 gives the same object. By using (110) and (118) to express the

generators of Uqðsuð2ÞÞ and the spinors in terms of the q-harmonic oscillators, we find

Jzτ̃þ ¼ τ̃þ

�
Jz þ

1

2

�
; Jþτ̃þ ¼ q−

1
4τ̃þJþ; J−τ̃þ ¼ q−

1
4ðτ̃þJ− − Kτ̃−Þ ð165Þ

and
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Jzτ̃− ¼ τ̃−

�
Jz −

1

2

�
; J−τ̃− ¼ q

1
4τ̃−J−; Jþτ̃− ¼ q

1
4ðτ̃−Jþ − Kτ̃þÞ: ð166Þ

It leads to the commutation relations

½KJ�; τ̃∓� ¼ −q�1
4K2τ̃�; ½KJ�; τ̃�� ¼ 0: ð167Þ

Consider the first line of (160) for A ¼ −, then

R−1
12 ðI ⊗ τ̃−Þ ¼ q−Jz⊗Jz

X∞
n¼0

ð1 − qÞn
½n�! q−

nðn−1Þ
4 ðK−1JþÞn ⊗ ðKJ−Þnτ̃−;

¼ q−Jz⊗Jz
X∞
n¼0

ð1 − qÞn
½n�! q−

nðn−1Þ
4 ðK−1JþÞn ⊗ τ̃−ðKJ−Þn;

¼ q−Jz⊗JzðI ⊗ τ̃−Þ
X∞
n¼0

ð1 − qÞn
½n�! q−

nðn−1Þ
4 ðK−1JþÞn ⊗ ðKJ−Þn;

¼ ðI ⊗ τ̃−Þq−Jz⊗ðJz−1
2
ÞX∞
n¼0

ð1 − qÞn
½n�! q−

nðn−1Þ
4 ðK−1JþÞn ⊗ ðKJ−Þn;

¼ ðK ⊗ τ̃−ÞR−1
12 ð168Þ

as desired.
ComputingR−1

12 ðI ⊗ τ̃þÞ takes more work as KJ− and τ̃þ do not commute. Indeed, each time we put KJ− to the right of
τ̃þ, we get an extra term −q1

2K2τ̃−. This gives

ðKJ−Þnτ̃þ ¼ τ̃þðKJ−Þn − q−
1
4

Xn−1
k¼0

K2τ̃−qkðKJ−Þn−1 ¼ τ̃þðKJ−Þn − q−
1
4
1 − qn

1 − q
K2τ̃−ðKJ−Þn−1 ð169Þ

by using Jk−K2 ¼ qkK2Jk−. We can thus write

R−1
12 ðI ⊗ τ̃þÞ ¼ q−Jz⊗JzðI ⊗ τ̃þÞ

X∞
n¼0

ð1 − qÞn
½n�! q−

nðn−1Þ
4 ðK−1JþÞn ⊗ ðKJ−Þn − q−

1
4q−Jz⊗JzðK−1Jþ ⊗ K2τ̃−Þ

×
X∞
n¼0

ð1 − qÞn−1
½n − 1�! q−

ðn−1Þðn−2Þ
4

ð1 − qÞ
½n� q−

ðn−1Þ
2
1 − qn

1 − q
ððK−1JþÞn−1 ⊗ ðKJ−Þn−1Þ;

¼ ðI ⊗ τ̃þÞq−Jz⊗ðJzþ1
2
ÞX∞
n¼0

ð1 − qÞn
½n�! q−

nðn−1Þ
4 ðK−1JþÞn ⊗ ðKJ−Þn

þ ðq3
4 − q−

1
4ÞðK−1Jþ ⊗ K2τ̃−Þq−ðJzþ1Þ⊗ðJz−1

2
ÞX∞
n¼1

ð1 − qÞn−1
½n − 1�! q−

ðn−1Þðn−2Þ
4 ððK−1JþÞn−1 ⊗ ðKJ−Þn−1Þ;

¼ ðK−1 ⊗ τ̃þÞR−1
12 þ q

1
2ðq3

4 − q−
1
4ÞðK−1JþK ⊗ K2τ̃−K−2ÞR−1

12 ;

¼ ðK−1 ⊗ τ̃þ þ ðq1
4 − q−

3
4ÞJþ ⊗ τ̃−ÞR−1

12 ≡ ðL̃ ⊗ τ̃ÞþR−1
12 : ð170Þ

The generalization to any n is straightforward as

ðnÞτ̃A ¼ R−1
n−1;nR

−1
n−2;n � � �R−1

2nR
−1
1n ðτ̃nÞAR1nR2n � � �Rn−2;nRn−1;n;

¼ ðL̃A
A2 ⊗ I ⊗ � � �ÞR−1

n−1;nR
−1
n−2;n � � �R−1

2n ðτ̃nÞA2
R2n � � �Rn−2;nRn−1;n;

¼ ðL̃A
A2 ⊗ L̃A2

A3 ⊗ I ⊗ � � �ÞR−1
n−1;nR

−1
n−2;n � � �R−1

3n ðτ̃nÞA3
R3n � � �Rn−2;nRn−1;n;

¼ � � � ¼ L̃A
A2 ⊗ L̃A2

A3 ⊗ � � � ⊗ τ̃An−1
⊗ I ⊗ � � � : ð171Þ
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Therefore, we have proved (160). Equations (161)–(163)
can be proven using the same method. ▪

4. Geometric interpretation

We have just shown that the braiding induced by the R
matrix can be explicitly written as a parallel transport along
the ribbons using ANqð2Þ or ANq−1ð2Þ holonomies.7

Indeed, Eqs. (160)–(163) tell us that the algebraic definition
of a tensor operator written in terms of theR matrix can be
replaced by a definition which has a very natural geomet-
rical interpretation when working with ribbons.
Let us illustrate the geometrical definition of the tensor

operator ðnÞτ̃ given in (160) in terms of parallel transports
by L̃s. We put consecutively the ribbon edges, so that they
share a vertex. Let us deal again with the case where all the
links are incoming. The construction is illustrated in Fig. 8.
The first step consists in identifying a reference point.

This corresponds to choosing a cilium. We naturally choose
the reference point to sit on the ribbon edge Rðe1Þ. The
construction of the spinor operators will depend on the
orientation chosen for the ordering of the ribbon edges:
counterclockwise or clockwise starting from Rðe1Þ. Indeed,
the source point can be the left or right end point. (Left or
right end point is specified by sitting at the vertex in Γ and
looking towards the outgoing direction of the relevant
edge.) Let us choose first the right end point to be our
cilium as in Fig. 8(a) (the vertex in red). This means that
ð1Þτ̃ is the reference spinor. We choose to order the ribbons
counter-clockwise which is the orientation consistent with
the definition of the spinors given in Proposition 8.
Indeed, the parallel transport by L̃ indicates that we take

τ̃2—which sits at the left end point of Rðe1Þ since the right
end point of Rðe2Þ is identified with the left-end point of
Rðe1Þ—and transport it to the reference point.
We proceed recursively with other ribbons. The object τ̃3

sitting at the right end point of Rðe3Þ, which is identified
with the left end point of Rðe2Þ. We can transport τ̃3 using
L̃ to ð2Þτ̃, and so on and so forth.
Therefore, the geometrical construction of the spinor

operator ðnÞτ̃ is obtained by parallel transporting τ̃n, which
sits at the right end point of ribbon RðenÞ, along the ribbon
short sides using the L̃s to go from the right end point to the
left end point of each ribbon until reaching the reference
point [the right end point of Rðe1Þ].
If instead we choose the cilium to be at the left end point

of ribbon 1, this means we use as a reference t̃. This means
that we order/add ribbons now in a clockwise manner. This
is illustrated in the Fig. 8(b).
Now let us discuss the case when the edges do not have

the same orientations.

5. Flipping ribbons, again

We again drop the ϵ spinor decoration since it does not
bring anything to the present discussion. As discussed in
Sec. VI C, when we flip the orientation of the ribbon, the
exchange of variables is performed by I such that

IðtÞ ¼ t̃; IðτÞ ¼ τ̃; IðLÞ ¼ SðL̃Þ; IðL̃Þ ¼ S̄ðLÞ:
ð172Þ

When flipping the orientation of an edge in Proposition 8, it
is thus enough to apply the operator I, but only to the factor
of the tensor product that corresponds to this edge.
For instance, considern ¼ 2 and reverse the orientation of

the edge 2 only (not 1). Then applying I on ribbon 2 (which
we henceforth denote I2) to the last line of (160) gives

ð2ÞτA ¼ I2ðL̃A
B ⊗ τ̃BÞ ¼ L̃A

B ⊗ Iðτ̃BÞ ¼ L̃A
B ⊗ τB

ð173Þ

and to the last line of (162),

ð2ÞtA ¼ SðL̃ÞAB ⊗ tB: ð174Þ

The geometric picture is as follows. The first relation
(173) consists in the case where the cilium is at the right end
point. Because ribbon 2 is flipped, we have τ2 that stands at
the right end point of ribbon 2, which is identified with the
left end point of ribbon 1. We then parallel transport τ2
using L̃ on the sector 1 [see Fig. 9(c)]. The same applies for
ð2ÞtA, when the cilium is taken as the left end point.
Consider now the case where it is ribbon 1 which is

flipped (outgoing) but ribbon 2 is not (it is incoming), see
Fig. 9(b). We thus apply I to the first factor of the tensor
product in the last lines of (160) and (162),

(a) (b)

FIG. 8. The choice of cilium is given by the red bullet. In (a),
the orientation is anticlockwise, while in (b), the orientation is
clockwise. This choice matters since we usually order the tensor
product from left to right.

7Recall the matrix elements of ANqð2Þ and ANq−1ð2Þ are given
by the generators of Uqðsuð2ÞÞ.
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ð2Þτ̃A ¼ I1ðL̃A
B ⊗ τ̃BÞ ¼ S̄ðLÞAB ⊗ τ̃B;

ð2Þt̃A ¼ SðIðL̃ÞÞAB ⊗ t̃B ¼ LA
B ⊗ t̃B: ð175Þ

In the first case, we take the cilium to be the right end point
of ribbon 1, which is decorated by the spinor τ1. On the
right end point of ribbon 2, identified with the left end
point of ribbon 1, we have τ̃2. We can define a spinor
operator by transporting τ̃2 to the cilium through S̄ðLÞ, that
is ðS̄ðLÞÞAB ⊗ τ̃B.
When both ribbon 1 and ribbon 2 are flipped, see

Fig. 9(d), we use the map I12, which flips the sectors 1
and 2. As we just discussed, we can define the spinor as

ð2ÞτA ¼ I12ðL̃A
B ⊗ τ̃BÞ ¼ S̄ðLÞAB ⊗ τB;

ð2ÞtA ¼ I12ðSððL̃ÞÞAB ⊗ t̃BÞ ¼ LA
B ⊗ tB: ð176Þ

We still take the right end point of ribbon 1 as the reference
point, we have now τ1 sitting at the cilium. At the right

end point of the ribbon 2, coinciding with the left end
point of ribbon 1, we have τ2. We can define a spinor
operator by transporting τ2 to the cilium through S̄ðLÞ, that
is ðS̄ðLÞÞAB ⊗ τB.
To summarize, the definition of the spinor operator

on different ribbons does not depend on the orientation
of the edges, since for example L̃ and S̄ðLÞ are the same
operators and so are τ̃ and τ. So (176) is the same as (173)
and (174).

E. Observables

We will now proceed to the quantization of the observ-
ables defined in Sec. IV. The first part of this subsection has
already appeared in [12,26,29]. The spinors are promoted
to spinor operators as we have discussed previously. The
scalar product is obtained by contracting with a Clebsch-
Gordan coefficients projecting the tensor product of two
spin 1=2 representations to the trivial representation.

(a)

(c)

(b)

(d)

FIG. 9. The choice of cilium, the right end point of ribbon 1, is given by the red bullet. In each case, we transport the relevant spinor
living on the right end point of ribbon 2 using the holonomy in ribbon 1. We recover the same spinor in each case as in the
unflipped case.
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Proposition 8. The quantization of the general observ-
able (79) living on the edges ei and ej with i ≤ j is given
by, up to some overall normalization constant,

E
ϵi;ϵj
eiej ¼

8>>>>>>>>><>>>>>>>>>:

P
A
ð−1Þ12þAq−

A
2
ðiÞτ̃ϵi−A

ðjÞτ̃ϵjA for oi ¼ oj ¼ −1P
A
ð−1Þ12þAq−

A
2
ðiÞτϵi−A

ðjÞτ̃ϵjA for oi ¼ −oj ¼ −1P
A
ð−1Þ12þAq−

A
2
ðiÞτ̃ϵi−A

ðjÞτϵjA for oi ¼ −oj ¼ 1P
A
ð−1Þ12þAq−

A
2
ðiÞτϵi−A

ðjÞτϵjA for oi ¼ oj ¼ 1

:

ð177Þ
Since the quantum operators τϵ and τ̃ϵ have the same

matrix element, or as we discussed in Sec. VI C the spinors
are invariant under the flip of the ribbon, the observables for
the different orientations in Proposition 9 are actually the
same.8 A natural question to enquire is the algebra that they
satisfy, if they satisfy one. One can indeed check that if we
were to build observables from the fluxes, the algebra of
observables would not close (even with no quantum
deformation [19]). The great advantage of using spinor
variables is that they provide a closed algebra of observ-
ables [19,21,24]. In the nondeformed case, the algebra of
observables is given in terms of the so�ð2nÞ Lie algebra
[24], where n here stands for the number of edges meeting
at the vertex of Γ.
If we denote the generators of so�ð2nÞ by eij; fij;

f̃ij; i; j ¼ 1;…; n, then their commutation relations are

½eij; ekl� ¼ δjkeil − δilekj; ½eij; fkl� ¼ δilfjk − δikfjl;

½eij; f̃kl� ¼ δjkf̃il − δjlf̃ik;

½fij; f̃kl� ¼ δjleki þ δikelj − δjkeli − δilekj;

½fij; fkl� ¼ ½f̃ij; f̃kl� ¼ 0: ð178Þ

We can identifyuðnÞ as a Lie subalgebra generated by feijg.
Wewant to show now that a similar statement holds in the

deformed case; i.e., we have a deformation of the so�ð2nÞ
algebra, which contains a deformation of the uðnÞ algebra.
The deformationof theuðnÞ algebrawas already identified in
[29] using the R-matrix formalism. We extend here the
construction to have the full deformation of so�ð2nÞ. We are
first going to recover the deformed substructure UqðuðnÞÞ
then the full deformed algebra Uqðso�ð2nÞÞ.
Given a semisimple Lie algebra, its deformation is given

in terms of the Serre-Chevalley relations [33]. The (Cartan-
Weyl) generators are constructed by induction.

We have constructed a set of observables using the spinor
parametrization. As we discussed, we can obtain different
parametrizations because we can use different types of
parallel transport, either L or SðLÞ†. Hence in terms of the
spinor parametrization, we also have some arbitrariness in
terms of the explicit expression of the observables. We
know that at the classical level these observables form
the algebra so�ð2nÞ. Hence we could apply the Serre-
Chevalley induction for the deformed case. The goal is
then to relate this construction to the parametrization in
terms of the spinors. We are going to show that the Serre-
Chevalley construction picks exclusively the parallel trans-
port induced by SðLÞ†. Let us recall more details on the
Serre-Chevalley induction process to fix the notations.
The definition of the UqðuðnÞÞ from the Cartan-Weyl

generators Eij is as follows [41]. We first specify the
Chevalley set of generators containing n − 1 raising, n − 1
lowering, and n − 1 diagonal generators, denoted, respec-
tively, as Ei;iþ1, Ei;i−1, and Ei, which satisfy the following
commutation relations:

½Ei; Ej� ¼ 0; ½Ei; Ej;jþ1� ¼ ðδij − δi;jþ1ÞEj;jþ1;

½Ei; Ejþ1;j� ¼ ðδi;jþ1 − δijÞEjþ1;j;

½Ei;iþ1; Ejþ1;j� ¼ δij½Ei − Eiþ1�: ð179Þ

The remaining Cartan-Weyl generators Eij and Eji with j >
iþ 1 are defined recursively as follows:

Eij ≔ q
Nj−1
2 ðEi;j−1Ej−1;j − q

1
2Ej−1;jEi;j−1Þ; ð180aÞ

Eji ≔ q−
Nj−1
2 ðEj;j−1Ej−1;i − q−

1
2Ej−1;iEj;j−1Þ: ð180bÞ

By the Jordan map, the Chevalley set can be defined in
terms of the q bosons ðai; a†i ; bi; b†i Þ:

Ei;iþ1 ¼ a†i aiþ1q
Nbi

−Nbiþ1
4 þ b†i biþ1q

−NaiþNaiþ1
4 ;

Eiþ1;i ¼ aia
†
iþ1q

Nbi
−Nbiþ1
4 þ bib

†
iþ1q

−NaiþNaiþ1
4 ; Ei ¼ Ni þ 1;

ð181Þ

and the other generators in terms of the q bosons can be
deduced from (180). It is apparent that the definitions (181)
and (180) of the quantum operators Eij and their quantum
algebra given in (179) are the quantized version of the
definitions (82c), (82d) and (83d), (83b) of the quadratic
invariant observables eij and their Poisson algebra (87),
respectively. In particular, the quantum and Poisson alge-
bras are related by ½Eij; Ekl� ¼ iℏfeij; eklg þOðℏ2Þ. We can
then identify directly the relations between the UqðuðnÞÞ
Chevalley set of generators and the quadratic operators
constructed from the deformed quantum spinors. They
simply are

8We remind the readers that the observable defined in (177) is
not the same as in [30] for different orientations. Here theEijs are
defined in the same way for different orientations of ei and ej,
while they are defined differently in [30] for a uniform action on
the intertwiners for different orientation cases.
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Eþ;−
i;iþ1 ¼ Ei;iþ1; E−;þ

i;iþ1 ¼ Eiþ1;i; Eþ;−
i;i ¼ ½Ei − 1�; E−;þ

i;i ¼ ½Ei þ 1�: ð182Þ

For the remaining Cartan-Weyl generators in terms of the quantum spinors, one can make use of the quantum fluxes to
connect the spinors from distanced sites. The result is given in the following proposition.
Proposition 9. The Cartan-Weyl generators Ei;iþp and Eiþp;i of UqðuðnÞÞ for any p ∈ Nþ can be expressed with the

quantum spinors at sites i and iþ p and the quantum fluxes for ribbon edges connecting them. Explicitly, they can be
written as

Ei;iþp ¼ q

P
p−1
k¼1

Niþk
4

X
Ai;Aiþ1 ;
…;Aiþp

ð−1Þ12þAiq
Ai
2 t̃þi;−Ai

Yp−1
k¼1

ðSðL̃iþkÞ†ÞAiþk−1
Aiþk τ̃−iþp;Aiþp−1

; ð183Þ

Eiþp;i ¼ q−
P

p−1
k¼1

Niþk
4

X
Ai;Aiþ1 ;
…;Aiþp

ð−1Þ12−Aiq
Ai
2 t̃−i;−Ai

Yp−1
k¼1

ðSðL̃iþkÞ†ÞAiþk−1
Aiþk τ̃þiþp;Aiþp−1

: ð184Þ

Proof.—Notice that the following relations are satisfied:

τ̃−i;At̃
þ
i;B − q

1
2t̃þi;Bτ̃

−
i;A ¼ q−

Ni
4 ð−1Þ12−BqB

2ðSðL̃iÞ†ÞA−B ≡ q−
Ni
4 ð−1Þ12þAq−

A
2ðL̃†

i ÞB−A; ð185aÞ

t̃−i;Aτ̃
þ
i;B − q−

1
2τ̃þi;Bt̃

−
i;A ¼ q

Ni
4 ð−1Þ12þAq

A
2ðSðL̃iÞ†ÞB−A ¼ q

Ni
4 ð−1Þ12−Bq−B

2ðL̃†
i ÞA−B: ð185bÞ

Using the scalar operator of two spinors at the same corner to define the UqðuðnÞÞ generator

Ei;iþ1 ¼
X
Ai¼�1

2

ð−1Þ12þAiq
Ai
2 t̃þi;−Ai

τ̃−iþ1;Ai
; Eiþ1;i ¼

X
Ai¼�1

2

ð−1Þ12−Aiq
Ai
2 t̃−i;−Ai

τ̃þiþ1;Ai
; ð186Þ

and the induction, one can show the validity of (183) and (184). ▪
We extend the construction to include all the different types of observables and verify that the observables E

ϵi;ϵj
ij are the

generators of Uqðso�ð2nÞÞ, which is the q deformation of the algebra so�ð2nÞ [24]. Denote for different sectors ϵi and ϵj for
the quadratic operator E

ϵi;ϵj
ij as

Ei;i ≡ Ei ≔ Ni þ 1; Ei;iþp ≔ Eþ;−
i;iþp; Eiþp;i ≔ E−;þ

i;iþp;

F i;iþp ≔ E−;−
i;iþp; F iþp;i ≔ −F i;iþp; F̃ i;iþp ≔ −Eþ;þ

i;iþp; F̃ iþp;i ≔ −F̃ i;iþp: ð187Þ

Proposition 10. The operators F i;iþp and F̃ i;iþp with p > 1 defined in (187) satisfy the recursion relations in terms of
Eij as follows:

F i;iþp ¼ ðF i;iþp−1Eiþp−1;iþp − q
1
2Eiþp−1;iþpF i;iþp−1Þ ¼ q−

Niþ1
2 ðF iþ1;iþpEiþ1;i − q−

1
2Eiþ1;iF iþ1;iþpÞ; ð188aÞ

F̃ i;iþp ¼ ðEiþp;iþp−1F̃ i;iþp−1 − q−
1
2F̃ i;iþp−1Eiþp;iþp−1Þ ¼ q

Niþ1
2 ðEi;iþ1F̃ iþ1;iþp − q

1
2F̃ iþ1;iþpEi;iþ1Þ: ð188bÞ

The operators Ei;iþ1, F i;iþ1, and F̃ i;iþ1 defined in (187) form the generators of Uqðso�ð2nÞÞ, which is a closed algebra.
These generators satisfy (179) and the following commutation relations.

Ei;iþ1F j;jþ1 − q−
1
2F j;jþ1Ei;iþ1 ¼ δi;jþ1F iþ1;i−1; q−

1
2Eiþ1;iF j;jþ1 − F j;jþ1Eiþ1;i ¼ −δi;j−1q

Eiþ1
2 F i;iþ2;

Ei;iþ1F̃ j;jþ1 − q
1
2F̃ j;jþ1Ei;iþ1 ¼ δi;j−1q−

Eiþ1
2 F̃ i;iþ2; q

1
2Eiþ1;iF̃ j;jþ1 − F̃ j;jþ1Eiþ1;i ¼ −δi;jþ1F̃ iþ1;i−1;

½Ei;F j;jþ1� ¼ −ðδij þ δi;jþ1ÞF j;jþ1; ½Ei; F̃ j;jþ1� ¼ ðδij þ δi;jþ1ÞF̃ j;jþ1;

½F i;iþ1; F̃ j;jþ1� ¼ δijð½Ei þ Eiþ1�Þ − δi;j−1Eiþ2;i − δi;jþ1Ei−1;iþ1; ½F i;iþ1;F j;jþ1� ¼ ½F̃ i;iþ1; F̃ j;jþ1� ¼ 0:

ð189Þ
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The first two lines can be seen directly from (188). The
rest of the commutation relations can be calculated with the
definition (187) of the generators and the relation between
the spinors and the flux as shown in (185). The commu-
tation relations (189) are quantum versions of the Poisson
algebra (88) and are consistent with (178) when q → 1. In
this sense, we view the operators Ei;iþ1, F i;iþ1 and F̃ i;iþ1 as
the generators of Uqðso�ð2nÞÞ.

VII. CONCLUSION

In this article, we have considered the framework of
deformed lattice gauge theory introduced in [15,26], both
classically and quantumly. Our key focus was the definition
of a complete set of local observables that are defined for any
pairs of edges incident to a vertex. At the classical level, they
are defined using the spinors first introduced in [13], while
the quantum aspect was touched in [29]. Any functions of the
standard holonomies and fluxes can be written in terms of
those spinors, hence any observables (invariant functions).
In this paper, we have performed the full quantization

of the spinors into spinor operators, and we have proved
that it is possible to construct the quantum holonomy and
flux operators from them. The quantization relies on the
structure of both Uqðsuð2ÞÞ and Uq−1ðsuð2ÞÞ [and SUqð2Þ
and SUq−1ð2Þ].
We were thus able to quantize the local observables. In

particular, they are invariant objects at the quantum level.
Interestingly, we noticed that the conjugation by the
quantum R matrix, which is used to build tensor operators
on tensor products, can instead be implemented as parallel
transport by the variables L that are around the vertex.
While it may not come as a surprise for experts in integrable
systems, where the L operators (T operators in the standard
notation of integrable systems) and the R matrix come
from [40], we find that this observation provides a neat
geometric interpretation to the use of the R matrix in the
gauge theory setting. It also simplifies explicit calculations,
as the R matrix can thus be bypassed. This was already
noticed in [26] and further used in [30].
Around each vertex of the lattice, we have shown that the

set of quantum local observables forms a deformation of the
algebra so�ð2nÞ, with a UqðuðnÞÞ subalgebra. This is
obtained by proving the Serre-Chevalley relations, which,
as we found, picks the parallel transport by SðLÞ† to
implement the conjugation by the R matrix.
As a first application of this setup, we have equipped the

gauge theory with the dynamics of 3D quantum gravity
with a cosmological constant in [30]. Indeed, we consid-
ered the Gauss law, which enforces restriction to observ-
ables, and the Hamiltonian constraints as dynamics. The
latter are matrix elements of the holonomies around faces in
the spinor basis. They can be rewritten as sums of products
of the present local observables over the vertices that are
along faces. We have then performed the quantization of

the Gauss law and of the Hamiltonian constraints. They
give rise to difference equations in the spin network basis,
from which we were able to derive the building blocks of
the Turaev-Viro model as the changes of the coefficients in
the spin network basis under Pachner moves. There are
even more interesting followups we could consider.

A. Generalization of the spinor formalism

The spinor formalism is tied to the specific choice of group
we considered, namely SU(2) and its deformation. It would
be interesting to explore in which way the algebra of
observables extends for a general Hopf algebra. More
specifically, one could use a specific class of representations
[such as the fundamental representation for SU(2) and its
deformation] to construct the notion of local observables, i.e.,
quantities defined on vertices that are invariant under the
action of the dual Hopf algebra. It would be interesting to
develop this in the finite-dimensional case with finite groups
for example. The construction was already done in the
undeformed, noncompact group case SU(1,1) [14].

B. Application to Yang-Mills or Kitaev models

The local observables we have introduced come as a
deformation of local observables, which were found in the
context of loop quantum gravity. They have been extensively
used to get a better understanding of the quantum nature of
discrete geometries: the dynamical aspects [12,29,31]. It
would be interesting to see how this approach could be
relevant for other frameworks that also rely on the lattice
gauge theory setup. As a first example, we would be
interested in exploring how we can reformulate the
Hamiltonian of the Kitaev model in terms of such observ-
ables. This was already proposed in [31] where the authors
used coherent states in the flat case. With a proper choice of
(quantum) group, theKitaevmodel can be seen as amodel of
3D gravity with particle excitations. Therefore such a
reformulation would provide some interesting insights on
how to include matter (spin or mass excitations) within the
dynamics in 3D gravity.
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APPENDIX A: EXPLICIT POISSON BRACKETS FOR HEISENBERG DOUBLE SLð2;CÞ
In this appendix, we collect the Poisson brackets for the SU(2) holonomies ðu; ũÞ and the AN(2) fluxes ðl; l̃Þ of the

phase space described in Sec. II. The Poisson brackets read

fl1;l2g ¼ −½r21;l1l2�; fl1; u2g ¼ −l1r21u2; fu1;l2g ¼ l2ru1; fu1; u2g ¼ −½r; u1u2�;
fl̃1; l̃2g ¼ ½r21; l̃1l̃2�; fl̃1; ũ2g ¼ −ũ2r21l̃1; fũ1; l̃2g ¼ ũ1rl̃2; fũ1; ũ2g ¼ ½r; ũ1ũ2�;
fl1; ũ2g ¼ −r21l1ũ2; fl̃1; u2g ¼ −l̃1u2r21; fu1; l̃2g ¼ l̃2u1r; fũ1;l2g ¼ rũ1l2;

fl̃1;l2g ¼ 0; fũ1; u2g ¼ 0: ðA1Þ

It is important to note that (A1) is not enough to describe the full Poisson structure. Notice that the anð2Þ Lie algebra is
preserved under τi → ðτiÞ†, one can switch r → r† ¼ −r21 in (A1) and write the Poisson brackets				 fl†

1;l2g ¼ −l†
1rl2 þ l2rl

†
1;

fl1;l
†
2g ¼ −l1r21l

†
2 þ l†

2r21l1;

				 fl†
1;l

†
2g ¼ ½r21;l†

1l
†
2�;

fl†
1; l̃2g ¼ 0;

				 fl†
1; u2g ¼ −rl†

1u2;

fu1;l†
2g ¼ r21u1l

†
2;

				 fl†
1; ũ2g ¼ −l†

1rũ2;

fũ1;l†
2g ¼ l†

2r21ũ1;

				 fl̃†; l̃2g ¼ l̃†
1rl̃2 − l̃2rl̃

†
1;

fl̃1; l̃
†
2g ¼ l̃1r21l̃

†
2 − l̃†

2r21l̃1;

				 fl̃†
1;l2g ¼ 0;

fl̃†
1; l̃

†
2g ¼ −½r21; l̃†

1l̃
†
2�;

				 fl̃†
1; u2g ¼ −u2rl̃†

1;

fu1; l̃†
2g ¼ u1r21l̃

†
2;

				 fl̃†
1; ũ2g ¼ −l̃†

1ũ2r;

fũ1; l̃†
2g ¼ ũ1l̃

†
2r21:

ðA2Þ

We parametrize them into 2 × 2 matrices

l ¼
�
λ 0

z λ−1

�
; l̃ ¼

�
λ̃ 0

z̃ λ̃−1

�
; u ¼

�
α −β̄
β ᾱ

�
; ũ ¼

�
α̃ − ¯̃β

β̃ ¯̃α

�
; ðA3Þ

where λ; λ̃ ∈ Rþ and other parameters are complex. With this parametrization, the Poisson brackets in (A1) and (A2) are
explicitly

fλ; zg ¼ iκ
2
λz; fλ; z̄g ¼ −

iκ
2
λz̄; fz; z̄g ¼ iκðλ2 − λ−2Þ:

fα; βg ¼ −
iκ
2
αβ; fα; β̄g ¼ −

iκ
2
αβ̄; fα; ᾱg ¼ iκββ̄;

fᾱ; βg ¼ iκ
2
ᾱβ; fᾱ; β̄g ¼ iκ

2
ᾱ β̄; fβ; β̄g ¼ 0;

fλ; αg ¼ −
iκ
4
λα; ; fλ; ᾱg ¼ iκ

4
λᾱ; fλ; βg ¼ iκ

4
λβ; fλ; β̄g ¼ −

iκ
4
λβ̄;

fz; αg ¼ −
iκ
4
ðzαþ 4λ−1βÞ; fz; ᾱg ¼ iκ

4
zᾱ; fz; βg ¼ iκ

4
zβ; fz; β̄g ¼ −

iκ
4
ðzβ̄ − 4λ−1ᾱÞ;

fλ̃; z̃g ¼ −
iκ
2
λ̃ z̃; fλ̃; ¯̃zg ¼ iκ

2
λ̃ ¯̃z; fz̃; ¯̃zg ¼ −iκðλ̃2 − λ̃−2Þ

fα̃; β̃g ¼ iκ
2
α̃ β̃; fα̃; ¯̃βg ¼ iκ

2
α̃ ¯̃β; fα̃; ¯̃αg ¼ −iκβ̃ ¯̃β;

f ¯̃α; β̃g ¼ −
iκ
2
¯̃α β̃; f ¯̃α; ¯̃βg ¼ −

iκ
2
¯̃α ¯̃β; fβ̃; ¯̃βg ¼ 0;

fλ̃; α̃g ¼ −
iκ
4
λ̃ α̃; fλ̃; ¯̃αg ¼ iκ

4
λ̃ ¯̃α; fλ̃; β̃g ¼ −

iκ
4
λ̃ β̃; fλ̃; ¯̃βg ¼ iκ

4
λ̃ ¯̃β;

fz̃; α̃g ¼ iκ
4
z̃ α̃; fz̃; ¯̃αg ¼ −

iκ
4
ðz̃ ¯̃αþ4λ̃ β̃Þ; fz̃; β̃g ¼ iκ

4
z̃ β̃; fz̃; ¯̃βg ¼ −

iκ
4
ðz̃ ¯̃β−4λ̃ α̃Þ;
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fλ; α̃g ¼ −
iκ
4
λα̃; fλ; ¯̃αg ¼ iκ

4
λ ¯̃α; fλ; β̃g ¼ iκ

4
λβ̃; fλ; ¯̃βg ¼ −

iκ
4
λ ¯̃β;

fz; α̃g ¼ iκ
4
ðzα̃ − 4λβ̃Þ; fz; ¯̃αg ¼ −

iκ
4
z ¯̃α; fz; β̃g ¼ −

iκ
4
zβ̃; fz; ¯̃βg ¼ iκ

4
ðz ¯̃β þ 4λ ¯̃αÞ;

fz̄; α̃g ¼ iκ
4
z̄ α̃; fz̄; ¯̃αg ¼ −

iκ
4
ðz̄ ¯̃α−4λ ¯̃βÞ; fz̄; β̃g ¼ −

iκ
4
ðz̄ β̃þ4λα̃Þ; fz̄; ¯̃βg ¼ iκ

4
z̄ ¯̃β;

fλ̃; αg ¼ −
iκ
4
λ̃α; fλ̃; ᾱg ¼ iκ

4
λ̃ ᾱ; fλ̃; βg − iκ

4
λ̃β; fλ̃; β̄g ¼ iκ

4
λ̃ β̄;

fz̃;αg ¼ −
iκ
4
z̃α; fz̃; ᾱg ¼ iκ

4
ðz̃ ᾱ−4λ̃−1βÞ; fz̃; βg ¼ −

iκ
4
z̃β; fz̃; β̄g ¼ iκ

4
ðz̃ β̄þ4λ̃−1αÞ;

f ¯̃z;αg ¼ −
iκ
4
ð ¯̃zα − 4λ̃−1β̄Þ; f ¯̃z; ᾱg ¼ iκ

4
¯̃z ᾱ; f ¯̃z; βg ¼ −

iκ
4
ð ¯̃zβ þ 4λ̃−1ᾱÞ; f ¯̃z; β̄g ¼ iκ

4
¯̃z β̄; ðA4Þ

and others vanish. These explicit Poisson brackets are used
to check the validity of the spinor parametrization in
Sec. III.

APPENDIX B: Uqðsuð2ÞÞ AND SUqð2Þ
We work with a real deformation parameter q ¼ eκℏ that

includes the quantum parameter ℏ and the cosmological
constant information encoded in κ. The key point is to realize

that the classical dual pair ðSUð2Þ� ≡ ANð2Þ; SUð2ÞÞ,
whose Lie algebra structures are encoded by the classical
r matrix, can be q deformed into a pair of quasitriangular
Hopf algebras, ðUqðsuð2ÞÞ;RÞ and its dual ðSUqð2Þ;RÞ.
Let us first recall their definitions.
Definition 1. ðUqðsuð2ÞÞ;RÞ. The quasitriangular

Hopf algebra ðUqðsuð2ÞÞ;RÞ is generated by the identity

and J�; K ¼ q
Jz
2 with the relations

KJ�K−1 ¼ q�1
2J�; ½Jþ; J−� ¼ ½2Jz�; with ½n�≡ q

n
2 − q−

n
2

q
1
2 − q−

1
2

: ðB1Þ

It forms a Hopf algebra with the following coproduct and antipode

△ðJ�Þ ≔ J� ⊗ K þ K−1 ⊗ J�; △ðKÞ ≔ K ⊗ K; SðJ�Þ ≔ −q�1
2J�; SðKÞ ≔ K−1: ðB2Þ

while the counit ϵ is defined by ϵK ¼ 1 and ϵJ� ¼ 0. It is furthermore quasitriangular, with the R matrix
R ∈ Uqðsuð2ÞÞ ⊗ Uqðsuð2ÞÞ:

R ¼ qJz⊗Jz
X∞
n¼0

ð1 − q−1Þn
½n�! q

nðn−1Þ
4 ðqJz

2 JþÞn ⊗ ðq−Jz
2 J−Þn: ðB3Þ

The R matrix is the quantum version of the classical r matrix and it satisfies the QYBE

R12R13R23 ¼ R23R13R12; ðB4Þ
where we have used the standard notation R12 ¼

P
Rð1Þ ⊗ Rð2Þ ⊗ I;R23 ¼

P
I ⊗ Rð1Þ ⊗ Rð2Þ;R13 ¼

P
Rð1Þ ⊗

I ⊗ Rð2Þ. In the fundamental representation (j ¼ 1=2), the generators are represented as 2 × 2 matrices

ρðJ−Þ ¼
�
0 0

1 0

�
; ρðJþÞ ¼

�
0 1

0 0

�
; ρðKÞ ¼

�
q

1
4 0

0 q−
1
4

�
: ðB5Þ

Thus the R matrix (B3) takes the form

R ¼

0BBB@
q

1
4 0 0 0

0 q−
1
4 q−

1
4ðq1

2 − q−
1
2Þ 0

0 0 q−
1
4 0

0 0 0 q
1
4

1CCCA: ðB6Þ
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Clearly, the classical r matrix (3) in the fundamental representation is recovered at the first order,

R ¼ I ⊗ I þ iℏrþOðℏ2Þ: ðB7Þ

We are particularly interested in the Uqðsuð2ÞÞ elements written as 2 × 2 matrix operators. These elements, denoted as
Q� ¼ fðq�Þij ∈ Uqðsuð2ÞÞði; j ¼ �Þg, are [42]

Qþ ¼
�

K 0

q−
1
4ðq1

2 − q−
1
2ÞJþ K−1

�
; Q− ¼

�
K−1 −q1

4ðq1
2 − q−

1
2ÞJ−

0 K

�
: ðB8Þ

The coproduct and counit of Q� are given by

△ðQ�Þ ¼ Q� ⊗ Q�; ϵðQ�Þ ¼ I; i:e:; △ððq�ÞijÞ ¼
X
k

ðq�Þik ⊗ ðq�Þkj; ϵððq�ÞÞij ¼ δij: ðB9Þ

They satisfy

Q�
1 Q

�
2 R ¼ RQ�

2 Q
�
1 ; Q−

1Q
þ
2 R ¼ RQþ

2 Q
−
1 : ðB10Þ

Uq−1ðsuð2ÞÞ is generated by the same generators as Uqðsuð2ÞÞ with the same commutation relations (B1) but possessing

a different coproduct and antipode, denoted as △̄ and S̄. They act on the generators as

△̄ðJ�Þ ≔ J� ⊗ K−1 þ K ⊗ J�; △̄ðKÞ ≔ K ⊗ K; S̄ðJ�Þ ≔ −q∓1
2J�; S̄ðKÞ ≔ K−1: ðB11Þ

The two coproducts and two antipodes are related by

△̄ ¼ σ ∘ △; S̄ ¼ S−1;

where σ is the permutation operator acting on the tensor
space as σða ⊗ bÞ ¼ b ⊗ a.
Uq−1ðsuð2ÞÞ can in fact be represented on the repre-

sentation spaces of Uqðsuð2ÞÞ. Indeed, since q numbers are
invariant under the exchange q ↔ q−1, as algebras
Uqðsuð2ÞÞ and Uq−1ðsuð2ÞÞ are isomorphic. The isomor-
phism between generators is given by

J� ¼ J̃�; K∓1 ¼ K̃�1; ðB12Þ
where the tilde is used for Uqðsuð2ÞÞ.
Definition 2. ðSUqð2Þ;RÞ. The dual quasitriangular

Hopf algebra ðSUqð2Þ;RÞ is generated by the identity and
the coordinate functions T ¼ ðt−−t−þ

tþ−
tþþ

Þ on the space of 2 × 2

matrices satisfying

RT1T2 ¼ T2T1R; ðB13Þ
where R is defined in (B6), and quotient with the q
determinant detq T ≡ t−−tþþ − q−

1
2t−þtþ− ¼ I. The anti-

pode, coproduct, and counit are given by

SðTÞ ¼
�

tþþ −q1
2t−þ

−q−1
2tþ− t−−

�
△ðTÞ ¼ T ⊗ T; ϵðTÞ ¼ I; i:e:; △ðtijÞ ¼

X
k¼�

tik ⊗ tkj; ϵðtijÞ ¼ δij; i; j ¼ �:

ðB14Þ

This Hopf algebra is dual quasitriangular with the R matrix defined in (B3), which is viewed as a map
R∶SUqð2Þ ⊗ SUqð2Þ → C.

The commutation relation (B13) is equivalent to the following relations:

t−−t−þ ¼ q−
1
2t−þt−−; t−−tþ− ¼ q−

1
2tþ−t−−; t−þtþþ ¼ q−

1
2tþþt−þ;

tþ−tþþ ¼ q−
1
2tþþtþ−; t−þtþ− ¼ tþ−t−þ; ½t−−; tþþ� ¼ −ðq1

2 − q−
1
2Þt−þtþ−: ðB15Þ

The duality between Uqðsuð2ÞÞ and SUqð2Þ can be represented by the bilinear map between the operator matrices Q�

and T [42] (see, e.g., [33] for a more detailed proof of the duality relation):
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hT1; Q
þ
2 i ¼ R; hT1; Q−

2 i ¼ R−1
21 ; i:e:; htij; ðqþÞkli ¼ Ri

j
k
l; htij; ðq−Þkli ¼ ðR−1Þij kl; ðB16Þ

where R21 ¼ σ ∘ R ¼PRð2Þ ⊗ Rð1Þ.

[1] J. Kogut and L. Susskind, Hamiltonian formulation of
Wilson’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).

[2] C. Rovelli, Quantum Gravity, Cambridge Monographs on
Mathematical Physics (Cambridge University Press, Cam-
bridge, England, 2004).

[3] D. V. Boulatov, Quantum deformation of lattice gauge
theory, Commun. Math. Phys. 186, 295 (1997).

[4] L. D. Faddeev, On the exchange matrix for WZNW model,
Commun. Math. Phys. 132, 131 (1990).

[5] A. Y. Alekseev and L. D. Faddeev, ðT�GÞt: AToy model for
conformal field theory, Commun. Math. Phys. 141, 413
(1991).

[6] A. Stern and I. Yakushin, Deformation quantization of the
isotropic rotator, Mod. Phys. Lett. A 10, 399 (1995).

[7] A. Y. Alekseev and L. D. Faddeev, A involution and
dynamics for the q deformed quantum top, Zap. Nauchn.
Semin. 200, 3 (1992), arXiv:hep-th/9406196.

[8] O. Buerschaper, J. Martin Mombelli, M. Christandl, and M.
Aguado, A hierarchy of topological tensor network states,
J. Math. Phys. (N.Y.) 54, 012201 (2013).

[9] C. Meusburger, Kitaev lattice models as a Hopf algebra
gauge theory, Commun. Math. Phys. 353, 413 (2017).

[10] S. Major and L. Smolin, Quantum deformation of quantum
gravity, Nucl. Phys. B473, 267 (1996).

[11] J. Lewandowski and A. Okolow, Quantum group connec-
tions, J. Math. Phys. (N.Y.) 50, 123522 (2009).

[12] M. Dupuis and F. Girelli, Quantum hyperbolic geometry
in loop quantum gravity with cosmological constant, Phys.
Rev. D 87, 121502 (2013).

[13] M. Dupuis, F. Girelli, and E. R. Livine, Deformed spinor
networks for loop gravity: Towards hyperbolic twisted
geometries, Gen. Relativ. Gravit. 46, 1802 (2014).

[14] F. Girelli, P. K. Osei, and A. Osumanu, Semidual Kitaev
lattice model and tensor network representation, J. High
Energy Phys. 09 (2021) 210.

[15] V. Bonzom, M. Dupuis, F. Girelli, and E. R. Livine,
Deformed phase space for 3d loop gravity and hyperbolic
discrete geometries, arXiv:1402.2323.

[16] C. Meusburger and D. K. Wise, Hopf algebra gauge theory
on a ribbon graph, Rev. Math. Phys. 33, 2150016 (2021).

[17] B. Dittrich and T. Thiemann, Are the spectra of geometrical
operators in Loop Quantum Gravity really discrete?,
J. Math. Phys. (N.Y.) 50, 012503 (2009).

[18] C. Rovelli, Partial observables, Phys. Rev. D 65, 124013
(2002).

[19] F. Girelli and E. R. Livine, Reconstructing quantum geom-
etry from quantum information: Spin networks as harmonic
oscillators, Classical Quantum Gravity 22, 3295 (2005).

[20] E. R. Livine and S. Speziale, A new spinfoam vertex for
quantum gravity, Phys. Rev. D 76, 084028 (2007).

[21] L. Freidel and E. R. Livine, The fine structure of SU(2)
intertwiners from U(N) representations, J. Math. Phys.
(N.Y.) 51, 082502 (2010).

[22] E. F. Borja, L. Freidel, I. Garay, and E. R. Livine, U(N) tools
for loop quantum gravity: The return of the spinor, Classical
Quantum Gravity 28, 055005 (2011).

[23] E. R. Livine and J. Tambornino, Spinor representation for
loop quantum gravity, J. Math. Phys. (N.Y.) 53, 012503
(2012).

[24] F. Girelli and G. Sellaroli, SO*(2N) coherent states for loop
quantum gravity, J. Math. Phys. (N.Y.) 58, 071708 (2017).

[25] E. R. Livine and J. Tambornino, Holonomy operator and
quantization ambiguities on spinor space, Phys. Rev. D 87,
104014 (2013).

[26] V. Bonzom, M. Dupuis, and F. Girelli, Towards the Turaev-
Viro amplitudes from a Hamiltonian constraint, Phys. Rev.
D 90, 104038 (2014).

[27] V. Rittenberg and M. Scheunert, Tensor operators for
quantum groups and applications, J. Math. Phys. (N.Y.)
33, 436 (1992).

[28] C. Quesne, Sets of covariant and contravariant spinors for
SUqð2Þ and alternative quantizations, J. Phys. A 26, L299
(1993).

[29] M. Dupuis and F. Girelli, Observables in loop quantum
gravity with a cosmological constant, Phys. Rev. D 90,
104037 (2014).

[30] V. Bonzom, M. Dupuis, and Q. Pan, following paper, Spinor
representation of the Hamiltonian constraint in 3D loop
quantum gravity with a nonzero cosmological constant,
Phys. Rev. D 107, 026015 (2023).

[31] V. Bonzom and E. R. Livine, A new Hamiltonian for the
topological BF phase with spinor networks, J. Math. Phys.
(N.Y.) 53, 072201 (2012).

[32] M. A. Semenov-Tyan-Shanskii, Poisson-Lie groups. The
quantum duality principle and the twisted quantum double,
Theor. Math. Phys. 93, 1292 (1992).

[33] V. Chari, A. Pressley et al., A Guide to Quantum
Groups (Cambridge University Press, Cambridge, England,
1995).

[34] M. Dupuis, L. Freidel, F. Girelli, A. Osumanu, and J.
Rennert, On the origin of the quantum group symmetry in
3d quantum gravity, arXiv:2006.10105.

[35] L. Freidel and E. R. Livine, U(N) coherent states for
loop quantum gravity, J. Math. Phys. (N.Y.) 52, 052502
(2011).

[36] E. R. Livine and J. Tambornino, Loop gravity in terms of
spinors, J. Phys. Conf. Ser. 360, 012023 (2012).

[37] M. Dupuis and E. R. Livine, Revisiting the simplicity
constraints and coherent intertwiners, Classical Quantum
Gravity 28, 085001 (2011).

LOCAL OBSERVABLES IN SUqð2Þ LATTICE GAUGE … PHYS. REV. D 107, 026014 (2023)

026014-37

https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1007/s002200050111
https://doi.org/10.1007/BF02278003
https://doi.org/10.1007/BF02101512
https://doi.org/10.1007/BF02101512
https://doi.org/10.1142/S0217732395000430
https://arXiv.org/abs/hep-th/9406196
https://doi.org/10.1063/1.4773316
https://doi.org/10.1007/s00220-017-2860-7
https://doi.org/10.1016/0550-3213(96)00259-3
https://doi.org/10.1063/1.3265923
https://doi.org/10.1103/PhysRevD.87.121502
https://doi.org/10.1103/PhysRevD.87.121502
https://doi.org/10.1007/s10714-014-1802-3
https://doi.org/10.1007/JHEP09(2021)210
https://doi.org/10.1007/JHEP09(2021)210
https://arXiv.org/abs/1402.2323
https://doi.org/10.1142/S0129055X21500161
https://doi.org/10.1063/1.3054277
https://doi.org/10.1103/PhysRevD.65.124013
https://doi.org/10.1103/PhysRevD.65.124013
https://doi.org/10.1088/0264-9381/22/16/011
https://doi.org/10.1103/PhysRevD.76.084028
https://doi.org/10.1063/1.3473786
https://doi.org/10.1063/1.3473786
https://doi.org/10.1088/0264-9381/28/5/055005
https://doi.org/10.1088/0264-9381/28/5/055005
https://doi.org/10.1063/1.3675465
https://doi.org/10.1063/1.3675465
https://doi.org/10.1063/1.4993223
https://doi.org/10.1103/PhysRevD.87.104014
https://doi.org/10.1103/PhysRevD.87.104014
https://doi.org/10.1103/PhysRevD.90.104038
https://doi.org/10.1103/PhysRevD.90.104038
https://doi.org/10.1063/1.529833
https://doi.org/10.1063/1.529833
https://doi.org/10.1088/0305-4470/26/6/002
https://doi.org/10.1088/0305-4470/26/6/002
https://doi.org/10.1103/PhysRevD.90.104037
https://doi.org/10.1103/PhysRevD.90.104037
https://doi.org/10.1103/PhysRevD.107.026015
https://doi.org/10.1063/1.4731771
https://doi.org/10.1063/1.4731771
https://doi.org/10.1007/BF01083527
https://arXiv.org/abs/2006.10105
https://doi.org/10.1063/1.3587121
https://doi.org/10.1063/1.3587121
https://doi.org/10.1088/1742-6596/360/1/012023
https://doi.org/10.1088/0264-9381/28/8/085001
https://doi.org/10.1088/0264-9381/28/8/085001


[38] M. Dupuis and E. R. Livine, Holomorphic simplicity con-
straints for 4d spinfoam models, Classical Quantum Gravity
28, 215022 (2011).

[39] M. Dupuis, E. R. Livine, and Q. Pan, q-deformed 3D loop
gravity on the torus, Classical Quantum Gravity 37, 025017
(2020).

[40] H. Saleur and J. Zuber, Integrable lattice models and
quantum groups, Report No. CEA-CONF–10358, 1990.

[41] L. Biedenharn and M. Lohe,Quantum Group Symmetry and
q Tensor Algebras (World Scientific, Singapore, 1996).

[42] S. Majid, Foundations of Quantum Group Theory
(Cambridge University Press, Cambridge, England, 2000).

BONZOM, DUPUIS, GIRELLI, and PAN PHYS. REV. D 107, 026014 (2023)

026014-38

https://doi.org/10.1088/0264-9381/28/21/215022
https://doi.org/10.1088/0264-9381/28/21/215022
https://doi.org/10.1088/1361-6382/ab5d4f
https://doi.org/10.1088/1361-6382/ab5d4f

