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Local observables in SU,(2) lattice gauge theory

Valentin Bonzom,"" Maité Dupuis,”>" Florian Girelli,** and Qiaoyin Pan

2,38

YUniversité Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93430 Villetaneuse, France
*Perimeter Institute, 31 Caroline St North, Waterloo N2L 2Y5 Ontario, Canada
3Department of Applied Mathematics, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada

® (Received 3 October 2022; accepted 15 December 2022; published 23 January 2023)

We consider a deformation of 3D lattice gauge theory in the canonical picture, first classically, based on
the Heisenberg double of SU(2), then at the quantum level. We show that classical spinors can be used to
define a fundamental set of local observables. They are invariant quantities that live on the vertices of the
lattice and are labeled by pairs of incident edges. Any function on the classical phase space, e.g., Wilson
loops, can be rewritten in terms of these observables. At the quantum level, we show that spinors become
spinor operators. The quantization of the local observables then requires the use of the quantum R matrix,
which we prove to be equivalent to a specific parallel transport around the vertex. We provide the algebra of
the local observables, as a Poisson algebra classically, then as a ¢ deformation of 80*(2n) at the quantum
level. This formalism can be relevant to any theory relying on lattice gauge theory techniques such as
topological models, loop quantum gravity or of course lattice gauge theory itself.
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I. INTRODUCTION

The Hamiltonian picture of a lattice gauge theory is
specified by the phase space TG of a rotator associated to
each edge of a lattice [1], for a Lie group G. At the vertices,
local gauge transformations are generated by the Gauss
constraint, which encodes the conservation of the angular
momentum of the different rotators meeting at the vertex.
This structure, called kinematical, is relevant not only to the
discretization of Yang-Mills theory but also for example to
loop quantum gravity. The latter aims at describing the
quantum nature of space-time using gauge theory techniques
[2], and some class of specific topological models. All those
models are based on the same kinematical structure of lattice
gauge theory, and they differ in their dynamical aspects.

Instead of a Lie group G, one can generalize the
construction by using a Hopf algebra H (also known as
a quantum group) [3,4]. At the classical level, this corre-
sponds to replacing the cotangent bundle 7*G with a
Heisenberg double [5-7]. The Hamiltonian picture of
Hopf algebra lattice gauge theory is relevant to the
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construction of topological models which are in particular
used to define some quantum computing models [8,9], or to
define (loop) quantum gravity models [10-13] with a
nonvanishing cosmological constant.

The symmetry algebra becomes the Drinfeld double
H*><H of a given Hopf algebra H, whose elements
decorate the lattice (see also [14] where instead of the
Drinfeld double one uses a bicrossproduct Hopf algebra).
Recent developments [15,16] have shown that a clean way
to use quantum groups on the lattice is to replace the edges
of the lattice with ribbons. As a consequence, the local
gauge invariance is then expressed in terms of a constraint
on elements of H* instead of 7*G, which can be interpreted
geometrically as a holonomy constrained to be flat. This is
therefore a deformed Gauss constraint.

In any theory, the construction of observables is of
course fundamental. While the notion of observables in the
gravity case is more subtle than in the Yang-Mills case
[17,18], it is customary to call (abusing the terminology)
the quantities that are locally gauge invariant, observables
(so strictly speaking they could be called more appropri-
ately, kinematical observables). Mathematically these
quantities are invariant (i.e., transforms as scalars) under
infinitesimal gauge transformations (which are deformed in
the case of quantum groups).

Wilson loops are well-known and natural observables of
this type in any gauge theory. They are also extended
objects. In the context of loop quantum gravity, it was
realized that there are other observables that are more local
in nature. Instead of being extended as Wilson lines, they
are associated to the vertices of the lattice [19-23].

Published by the American Physical Society
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Consider G = SU(2) as the gauge group (corresponding
for instance to both 3D and 4D loop quantum gravity with
no cosmological constant). The fundamental degrees of
freedom can be taken to be spinors (i.e., living in the
fundamental representation of SU(2); they have nothing to
do with matter degrees of freedom) living on the ends of the
lattice edges. The spinors that meet at an n-valent vertex
can then be used to define observables labeled by pairs of
incident edges, which moreover form a u(n) algebra. The
framework passes on to the quantum level, where spinors
become spinor operators (i.e., tensor operators in the
fundamental representation) and give rise to a 1(n) algebra
of operators at each n-valent vertex.

Later on in [24], the larger algebra 80* (2n) was identified
as the full algebra of observables associated to n-valent
vertices. These observables are the most fundamental ones
since any other observable in the holonomy and flux
variables, such as Wilson loops, can be rewritten as a function
of those fundamental observables [25]. In other words, they
parametrize the invariant subspace of the phase space.

In this paper we work out the generalization to the case of
the quantum group SU, (2) (with g being real). We start with
aplain lattice gauge theory based on a ribbon structure, using
the classical group SL(2, C) but equipped with a nontrivial,
deformed, Poisson structure of the Heisenberg double
D(SU(2)). We consider the deformed spinor variables that
parametrize this phase space, already introduced in [13]. We
show that it is then possible to generalize the construction of
the local observables of [24] to the deformed case. We obtain
invariants for the deformed action of SU(2).

We then proceed to the quantization. The quantization of
the holonomy-flux algebra was already performed in [26],
which involved tensor operators of spin 1. Here we
quantize the spinors directly, which give rise to spinor
operators. Those objects have already been developed quite
extensively using the full algebraic apparatus of quantum
groups [27,28], such as the notion of braiding, induced by
the quantum R matrix. Those algebraic considerations thus
provide the guide lines to actually build local observables
directly at the quantum level [12,29]. However, since we
are in the world of lattice gauge theory, it is also natural to
use the geometric picture to construct the observables in
terms of quantum parallel transport. Note that in the
nondeformed case, no parallel transport is involved in
these local observables. However, in the deformed case,
AN(2) elements play the role of holonomies to transport
spinors around the ribbon structure of vertices. It was
already noticed in [26] that one can find quantum invariants
without using the braiding provided by the R matrix. Here,
we clarify this aspect and show that these two different
approaches, algebra versus geometry, actually coincide
beautifully. Indeed, the notion of braided permutation used
to construct the tensor operators can be understood as a
specific parallel transport along the ribbons. While this
might not come as a surprise to experts in integrable

systems, this interpretation in the context of lattice gauge
theory is new to the best of our knowledge.

Quantizing the spinors leads to the quantization of the
local observables which are build with them. The algebra of
those observables around a vertex of valence n is shown to
be a g deformation of $0*(2n) from [24], with a U, (u(n))
subalgebra. This is proved by reproducing the Serre-
Chevalley relations from our quantized observables.

The setup we have just described corresponds to the
kinematical structure of several models. Specifying the
dynamics then specializes the model. One can, e.g.,
construct a Hamiltonian to deal with a (deformed) Yang-
Mills type theory [6], or a Kitaev-like model [16].

In a companion paper [30], we have considered the
dynamics of 3D quantum gravity with a cosmological
constant using the present framework. As previously done
in the flat case [31], and in the deformed case using spin 1
operators [26], we were able to write Hamiltonian constraints
in terms of the local observables. Their quantization then
leads to quantum Hamiltonian constraints, which in the
invariant spin network basis give rise to difference equations.
We were then able to show that changes of triangulations
under Pachner moves change the coefficients in the spin
network basis with the same amplitudes as in the Turaev-Viro
model. It therefore derives the path integral approach (the
Turaev-Viro model) from the Hamiltonian approach.

The article is organized as follows. In Sec. I, we recall
the phase space structure of a deformed SU(2) lattice gauge
theory. In particular the phase space is defined in terms of
fluxes and holonomies. The basic building block is the
phase space of a deformed rotator. In Sec. III, we revisit this
phase space and parametrize it in terms of spinors. We then
proceed to the construction of the local observables
associated to the vertices of the lattice.

In Sec. V, as a preparation for the quantization of the
spinors, we recall the quantization of the phase space of the
deformed rotator and highlight that the R matrix contains
information on the quantum fluxes and holonomies.

In Sec. VI, we quantize the spinors and obtain explicitly
spinor operators. We show that the conjugation by the R
matrix that is used to build the observables at the quantum
level can be interpreted as a parallel transport around the
ribbon structure of vertices. Finally, we obtain the quan-
tization of the local observables and prove that they form a
deformation of 80*(2n) in terms of the Serre-Chevalley
relations.

II. HOLONOMY-FLUX PHASE SPACE

As is well known, the phase space of lattice gauge theory
is the phase space of a rotator, or spinning top [1], given in
terms of the cotangent bundle 7*G where G is the gauge
group. In the deformed case, the phase space is deformed, it
is not a cotangent bundle anymore. The general notion
replacing the cotangent bundle is the Heisenberg double
[32,33]. The configuration and momentum variables are
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typically called holonomies and fluxes, so that we call the
usual lattice gauge theory phase space the holonomy-flux
phase space. This is in contrast with the spinorial phase
space that we will introduce in Sec. III.

In this section, we review the phase space structure of a
lattice gauge theory based on the specific example of the
Heisenberg double of SU(2), D(SU(2)) 2 SU(2) > AN(2),
which we will work with all along. This can be viewed as
the deformed version of an SU(2) lattice gauge theory. The
deformation parameter is x € R™. The standard phase
space T*SU(2) of an (undeformed) SU(2) lattice gauge
theory is recovered in the limit x — 0.

A. Phase space: Ribbon and Heisenberg double

We are interested in graphs embedded in a 2D canonical
surface X. We first consider a single edge for which the
phase space is the Heisenberg double D(SU(2)) of SU(2)
with the dual group AN(2). AN(2) is isomorphic to
SB(2,C), the special Borel group, which is the group of
2 x 2 lower triangular matrices with positive real diagonal
entries and determinant 1. We parametrize an AN(2)
element £ as

A0
f:( l)’ 1€R+, ZEC. (1)
7z A7

Note also that D(SU(2)) = SL(2, C). We write D(SU(2)) =
SU(2) < AN(2) with <t encoding the mutual action of the
two subgroups. This phase space can in fact be derived from a
proper discretization [34] of 3D Euclidean gravity with a
negative cosmological constant. A similar derivation can
probably be used for other gauge theories.

1. Poisson structure

The Poisson structure of the Heisenberg double is fully
determined by the r matrix. Explicitly, the Poisson bracket
is given by

{dl,dz} = —ryd\dy, +dydyr = rd dy — dydy 1y,
Vd e SL(2,0), (2)

where we used the standard notation d; =d ® 1, d, =
H® d, and r= ryp = Zrm ® r[z], ry1 == Zr[z] ® rm.
The last equality is guaranteed by the fact that (r + ry;)
is the Casimir of D(SU(2)). In the fundamental represen-
tation, the r matrix can be written as a 4 x 4 matrix

1 0 0 O
4 0 -1 4 0
’:423”®p:4 0 0 -1 0
0O 0 0 1

€ 3u(2) ® an(2), (3)

where 6;,i = 1, 2, 3 are the Pauli matrices, p' (i = 1, 2, 3)
are Lie algebra generators of the Lie algebra an(2), which
can be written in terms of the Pauli matrices as

: o1 ; : .
pl = iK(af —5[0'3,0'1]) = k(io’ + e¥ke*)  (4)
and the Lie algebra of an(2) is

o' 1] = 2ix(618% ~ 5350t (5)

Note that the two subgroups SU(2) and AN(2) can be
treated on the same footing. The phase space SL(2,C)
can be equivalently described as the Heisenberg double
D(AN(2)) of AN(2) with the r matrix 7 € an(2) ® 3u(2)
where we simply have that 7= r,, 7 =r since it
amounts to exchanging the generators of the two sub-
spaces in (3). The two equivalent descriptions of the phase
space SL(2,C) corresponds to the two (and only two
possible) Iwasawa decompositions of a given SL(2,C)
element d. We denote by ¢ € AN(2),u € SU(2) the
elements of the left Iwasawa decomposition d = Zu and
by 7€ AN(2),i € SU(2) the elements of the right
Iwasawa decomposition d = i Z. Then (2) can be decom-
posed into the Poisson brackets between £ and u:

{01, 62} = =[r1,. 6123,
{uy, 02} = toruy,

{fhuz} = =t ry Uy,
{ur, up} = —[r, uyuy], (6)

or into the Poisson brackets between #Z and i:

{’?17022} = [721’2152},
{11171/22} = ’erng

{’leﬁz} = _ﬁ2r2lgl’

{dy, iy} = [r, dyity]. (7)

2. Ribbon constraint

The equivalence between the left and right Iwasawa
decompositions defines a constraint, which we call the
ribbon constraint

C=tut i, (8)

It is easy to check that this is a system of second-class
constraints (meaning that they do not close under
Poisson brackets). The name “ribbon” will become clear
when we represent graphically these two equal Iwasawa
decompositions. Concretely, an edge e is thickened into a
ribbon R(e) with
(i) Long sides, parallel to e, carrying the SU(2) ele-
ments u, i called holonomies.
(i) Short sides carrying the AN(2) elements 7, ¢ and
called fluxes [15].
This is represented in Fig. 1 together with a choice of
orientations (detailed below). We have fixed the orientation
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FIG. 1. The ribbon graph associated to the ribbon constraint.
The ribbon carries two pairs of variables (£,u) and (7, ).
The ribbon constraint is the trivialization of the ribbon

loop Zu?~'i".

of the long sides decorated with u« and i to be opposite to
that of the edge, which automatically fixes the orientation
of the two short sides of a ribbon, so that the ribbon
constraint (8) is satisfied.

All SU(2) and AN(2) subgroup elements are associated
to sides of the ribbon and can thus be viewed as holon-
omies. The ribbon constraint is then interpreted as a
trivialization of the path-ordered product of holonomies
on the loop surrounding the ribbon. To emphasize that the
phase space we describe here is the deformation of that of
the A = 0 loop gravity, we use the same terminology and
call Z, Z fluxes and u, i1 holonomies in the rest of the article.
This terminology is consistent with that in [15].

By solving the ribbon constraint, we obtain the Poisson
brackets between (7, i) and (Z, u):

{¢\, i} = —ry iy,
{M1722} = ZZMIra
{217f2} = 0’

{;1,“2}:—51142721,
{iy, 62} = riiy 5,
{iy, up} = 0. )

The explicit Poisson brackets between the matrix elements
of Z,u, f, and i can be found in Appendix A. The
dimension of the phase space for a ribbon is 12 -6 =6
upon imposing the ribbon constraint, and thus is consistent
with the dimension of SL(2,C).

3. SU(2) transformations

Let us define X :=7#7#" and write w=1+i¢-5 an
infinitesimal SU(2) group element. Then, the variation of
a phase space function /4 under a left infinitesimal SU(2)
transformation is given by [15]

5.h = -2 {TrWX, b}
=22k 2e.4% + e_Az + €,4Z, h},
. 2e, €_
with W = . (10)

e, O

4. Change of edge orientations

The way we associate variables to the sides of a ribbon
has been described above, as in Fig. 1. Changing the
orientation of an edge is an involution : that has the
following effects on the variables:

urs !

£ 7! (11)
and since it is an involution, ¢(if) = u~" and 1(7) = ¢~".

B. Ribbon graph and Gauss constraint

Let I' be a graph embedded in X. We start with the phase
space [ [, D(SU(2)) where the product is over the edges of
I'. As we thickened an edge into a ribbon, we now thicken I
into a ribbon graph I';;, by

(1) Thickening every edge into a ribbon in the same way
as in Fig. 1, where all ribbons are embedded in X.

(i) Thickening every n-valent vertex of I" into an n-gon.
An example is given in Fig. 2, with three 3-valent vertices
and one internal face.

As such, a ribbon graph contains three types of faces:

(i) Faces within ribbon edges, for which the ribbon
constraint is imposed—these are the faces in gray
in Fig. 2.

(i1) Faces surrounded by the short sides of the ribbons.
They correspond to the thickened vertices and we
call them ribbon vertices. In Fig. 2, these are the
three triangular faces R(v;),R(v,), and R(v3).
Notice that they are bounded by fluxes only.

(iii) Faces surrounded by the long sides of the ribbons—
these are the faces of the original graph. They are
bounded by SU(2) holonomies only.

To finish the combinatorial description of I';;,, notice that
the corners of T, i.e., the portions of X between pairs of
edges incident to a vertex, give rise in [, to vertices (the
ends of the long and short sides, and not to be confused
with ribbon vertices).

Each ribbon edge thus carries variables Cotly,Cy, iy,
which satisfy the ribbon constraint C, = £,u,Z;'ii;". In
addition we introduce the Gauss constraints. The Gauss
constraint associated to an n-valent vertex v imposes that
the ordered product of the fluxes around the ribbon vertex
R(v) is trivial. Explicitly, the Gauss constraint reads

=" ¢; ifo,=1
Go=1]._ % KM—{J ’ . (12

H,=1 " 7t if o, = —1 (12)
where 0; = 1 corresponds to an outgoing edge and 0; = —1

corresponds to an incoming edge.

The Gauss constraint generates SU(2) transformations. A
phase space function £ transforms under the infinitesimal
rotation parametrized by a infinitesimal vector € as [15]

8.h = -k~ [ A7 Tr(WG,G1). h},
=1

. 2e, €_
with W = , (13)

e, O
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€2 €3
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~ AY
U4 W03

1R(vg )

Ue

FIG. 2. A piece of a graph I" on the left and the corresponding piece of the ribbon graph I';;, on the right.

where A; is the first diagonal element of the matrix (1) of
the ith flux, Z,, ,, in G,, that is 4; or i

The subspace satisfying the Gauss constraint at every
vertex of I' is called the kinematical phase space. Its
parametrization using observables in terms of spinors
and their quantization will be the focus of the present
article.

Beyond the kinematical aspects, several choices of
dynamics are possible, such as lattice Hamiltonians for
Yang-Mills theory. There is also a topological model called
BF, which corresponds to 3D gravity, where the
Hamiltonian is a constraint, just like the Gauss constraint.
It is called the flatness constraint, and it imposes the
holonomies around all faces to be trivial. The classical
setup and the quantization of this flatness constraint was
initiated in [26] and the extension to spinors has been
developed in the companion article [30].

C. Adjoint ribbon parametrization

We have been working with the ribbon constraint (8), but
there is another version available. Indeed, we have worked
with AN(2) in terms of lower triangular matrices. But
instead, we could use upper triangular matrices. The
equivalence between the two formulations can be seen
by using the adjoint on C. It is also convenient to take the
inverse, so that SU(2) elements are left invariant. This gives
the following adjoint ribbon constraint:

C=tut™'i' - " =¢ulfa . (14)
It amounts to replacing # and # with, respectively, #~'" and
7~ [and similarly with u, @ but obviously u~'" = u for
any u € SU(2)]. Therefore, only the short side structure is
changed, as in Fig. 3. The associated transformation

preserving the Lie algebra an(2) is given by p' — —p'.
As a consequence, one switches the r matrix by
r— ri = —ry,. All Poisson brackets are given in
Appendix A.

Under this parametrization, the Gauss constraint is
transformed accordingly as G, — QZ_I, which transforms
gvg,i N (QL,QI,)‘I. We thus have the same action on phase
space functions as with the previous generators of gauge
transformations if we consider

1 3
65.h = —— [ AZ{TW (G, G !, hY,
. Kg,{r(gﬂg) }

) - 0 —e_
with W = ;
—-€, 2e

where A, is still 4; or 17! according to the orientation of the
edge e;.

In fact, this adjoint parametrization is not only an
alternative one but a necessary piece to construct the
complete kinematical phase space because £ and # only
contain, respectively, z and 7 in their matrix elements, but
neither Z nor Z. We will see in Sec. V that both z and 7 (as
well as Z and Z) are needed to construct the U/, (81(2))
generators upon quantization.

(15)

1
Aft-1
1

o AR,

1 a

SA

FIG. 3. The conjugate ribbon structure defined in terms of
upper triangular matrices.
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II1. SPINORIAL PHASE SPACE FOR A DEFORMED
LATTICE GAUGE THEORY

We have just described above the kinematical phase
space using the holonomy-flux variables. We now describe
the same space in terms of spinors. They live on the half
edges of the lattice and will make it easier to construct
local, gauge invariant quantities, i.e., observables. Indeed,
invariant functions of fluxes, for example, do not Poisson
close [19]. The right variables to build a (Poisson) closed
algebra of observables are the spinors.

To avoid confusion, we emphasize that they do not
encode matter degrees of freedom, they are just a different
parametrization of the phase space. They were initially
introduced in the loop quantum gravity formalism as a para-
metrization of the 7*SU(2) phase space [19,21,31,35-38].
We intend here to construct the deformed spinors that provide
an alternative parametrization of the deformed holonomy-
flux phase space, which will allow us to construct the
(deformed) notion of observables for this setup.

We start with some deformed spinors that allow us to
parametrize the AN(2) elements. We will then use them to
define SU(2)-covariant spinors which are the key objects
of this section. In Sec. VI, they will be quantized as
spinor operators, which are spin-1/2 tensor operators for
U,(8u(2)) or U, (8u(2)) [27]. Graphically, they can be
naturally associated to the four corners of the ribbon, see
Fig. 4, which will be clear by the end of Sec. III C.

A. Basic variables

Our building blocks are two independent spinors

), |E) € C? and their conjugate (¢| € C? and ({| € C?,
0=(2) €=,
&
o-(3)  @-Gd. (16)
&
such that

{Z:AvEB} = —ibyp.

(G Bsy = {8, sy = {Cu.Cpy = {Ca. T} =0,
VA,B=0,1.

FIG. 4. SU(2)-covariant spinors in the ribbon picture. Note that
we can replace ¢ and 7, respectively, by #~' and Z7'T.

We also introduce the dual spinor

a=(2)-(] 3o k==
)

which is orthogonal to |{), ({|¢] = 0. Similarly, one defines
the dual of the tilde spinor |]. We denote N, = {44, the
modulus of the spinor components for A =0, 1 and N =
Ny + N, for their norm. A spinor and its dual have the
same norm ({|¢) = [{|¢] = N. The modulus generates
dilation on the complex variables:

{NA»CB} = 684> {NAvEB} = _iéABzB- (18)

Let us now define the deformed variables |*) from [(),
with its dual (¢¥| and norm (£*|¢*) as in [13]

inh(§ N S
T e L N . ST
5Na
2
(crler) = Z:A:A—Z;smh< )
A

KN 4 —kN 4

:;Z(ez — e >>0 with Ny = a4
A
(20)

They satisfy the following Poisson brackets

= N
SRARE cosh(%*), (N5} = iBandh.
{Na. C3} = _iéABZZ- (21)

It is easy to check that we recover the undeformed Poisson
brackets (18) when x — 0. The deformed variable |Z¥) is
defined from |£) by (19) and (20) where all ¢, are replaced

by Z.?A‘

1. Change of edge orientations

Since there are no differences between |¢*) and |£*), and
since changing the orientation of an edge exchanges the
two sectors, it is natural to lift the involution : to the spinor
space as follows:

(&) =0 a8y =g forA=0,1. (22)
2. Recontructing the fluxes

We will use f ; to reconstruct £ and &6 | to reconstruct 2.
Since the spinors in the tilde and nontilde sectors are
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identical whereas 1(£) # £, £ can not be the same function
of £, as ? is of 56’1. We use

A= exp G (N, - N0)>,

z = —KC5CE,

/Izexp(g(ﬁo—]vl)) F=kBF. (23)

By applying 1 to (23), we recover as expected that (1) =
27" and 1(z) = —Z. The AN(2) matrices # and # become
functions of the spinors,

0 5me 3 i 0
/1_1)’ f(go,lvé’O,l): (f 1_1>,

(24)

- A
et = (|

and 1(#) = 77!, It is easy to check that these AN(2) matrix
elements do satisfy the expected Poisson brackets (A4).
Let us point out that z, zZ, A4 all commute with
N=Ny+ Ny, {N,z} ={N,i} ={N,z} =0.

While the deformed variables |¢*) and |Z¥) are important
in parametrizing the AN(2) elements and generating the
(infinitesimal) rotation transformations [15], they are not

|
=)= ( e ) -
+ ek

The norm is a function of the nondeformed norm N,

The Poisson brackets of the components are

{1} =511,
{i_.i,}= —%f_ﬁ,

yet the spinors we will use to reconstruct the holonomy-
flux phase space, because they do not transform covariantly
under the SU(2) action.

B. Covariant spinors

Let us now define the variables which transform cova-
riantly as spin 1/2 under SU(2), i.e., either (13) or (15),
depending on if we consider the ribbon variable # or !,
We consider the first case, where we deal with £. We recall
that X = #7" with # an AN(2) element now parametrized
as in (24) whose entries are defined in terms of the spinor
variables given in (23).

1. Covariant spinor

An SU(2)-covariant spinor (henceforth spinor) |T) is
defined by the transformation law

a1 = (o =07} =i

+

S)me e

where we recall that w = I + i€ - & is an infinitesimal SU(2)
group element. As shown in [13], the only two independent
solutions (up to normalization) to equate the rhs of (25)
with the rhs of (10) are |¢) and its dual |¢] defined as

{r_ 7} =5%(i_-2&V),

{t. 1} = =5 (0,7, + ),

O=(T)=(y) e

() = 1 = 2sinn ().
[ti} = (1) =0, @7)
0 = e, (29)

2. Braided covariant spinor

The spinor |¢) can be “parallelly transported” by #~!,
which produces another spinor, whose transformation law
under SU(2) is called braided. Explicitly, using (23), we have

0N [T o €T
f-l|r>=( )( f°>=e7”< C) (28)

—z A _No e No e

e 4C1 e4§1

which prompts the definition of the following spinorl:

"It differs from the spinor |z) of [13] by its normalization.

= N,

On the other hand, as the ribbon structure can be
equivalently represented by either # or #~!T as shown in
(14), one expects that |7) can also be defined by a parallel
transport of |¢) with #7. This is indeed the case,
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o) =€t = e, (30)

Hence whether we use Z or #~!7 we get essentially the same object.
The Poisson brackets of the components of |z) are the same as those of |¢) and |¢] with 7, replacing 7_, and 7, replacing
E—A? i.e.,

{T—7T+}:_%< T+ {T—a%—}:_%(T = +z€_§N)a

T T =71, =0, 31
{%—’%-F}_?K =Ty {T+’%+}:%(T+T+—few) { b=A } (31)

It will also be useful to compute the Poisson brackets between {z,,b,} and {z4.7,}. They give

N j ] N
{7} =—icosh=2 {2z }=-Zrz. {t.7}="r%. {t,.7,}=—icosh-—1,
2 2 2 2
kN _ N
{#_,7_} = icosh 20 (f,7,} —%t T }——%m (7.7, :icoshk—zl,
{ta.78} =0, {ta.75} = 0. (32)
|z) defines what we call a braided spinor. Indeed, it wt = Wew'. (33)
transforms as a spinor under the SU(2) transformations
generated by .(10), b}lt with a group element w' related to W Then we say that # transforms as
through #. Since triangular matrices are not stable under
conjugation by SU(2) group elements, we need to introduce ” GSU
another SU(2) group element to stabilize the transforma- ¢ W = wew'™! € AN(2). (34)
tion. Let ™) ¢ € AN(2) and w' € SU(2) be defined by the
Iwasawa decomposition Going at the infinitesimal level [15],
|
o (e e N VA
w~l+iec-c=1+1i , w~l+ie - 6=1+1i , ) (35)
€, -—¢ €, —€
the relation between € and € is given by
€, = %€,
1
€. =¢€,+= (/1 ze_ +A7'ze,). (36)

One can then check that, remarkably, the transformation generated by (10) is a rotation of (the infinitesimal version of) w

=57 ) v o)

5€|T> == / /
€t —ér,

)} = =272k 2e. 22

7] is also a braided covariant spinor. The transformation (37) can also be written as a nonbraided one, but generated with
X := £7¢ instead of X,

S|ty = 22 HTeW/ (X)L, o)} = 22 {2elA? — LA 2 = €717, |0) } = (W = D)|7), (38)

with W =€.(I+0,) + €_o, + € o_. {]t),|7]} and {|z),|7]} can viewed as two orthogonal complete basis of the space
C? ® C%. We have seen the orthogonality [¢|¢) = [z|z) = 0 above. Their completeness is guaranteed by the fact that

e+ = (o )=l ( g )) =+ e (39
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C. The tilde spinors

Covariant spinors and braided covariant spinors for the tilde sector, the “tilde covariant spinors,”

0 —1> - /- —e
5 = < - > = ( . )
<1 0 r_ Té‘g

way as the nontilde ones. We have

|f>=z<|r>>=(£)=<i§> i

|f>=z<|r>>=(;)=<€:;;6>, a-(7 )

whose norms are given by

({#7) = [7li] = (217)

are defined in a similar

-()-(3D) e
T_ e—lefK

0

= ¢4 = %sinh GN) (41)

They are independent of the nontilde spinors, i.e., all the components Poisson commute with those of the nontilde spinors.
The Poisson brackets of the tilde spinor components are the same as the nontilde ones:

i, T LY i1 =k i — 2 - -
{: = } 2 > 3 {~ = } ( ) {;—’;Jr} = {f—’i+} = 0’ (42)
(i} =-5%10, {I.0,}=-5@{17 +2e),
{t. 8, )=—-%¢7, {f.7}=-%(i% + 27N, _ _
s = B} o (7,2} ={f_,%,} =0. (43)
{74} =577, (7.7} =577, —ze), ' '

Note however that Z is not the same function of ¥, 0s &Y °f as
¢ is of £, CY, see (23), (24). In fact, we have 1(¢) = 7!
where we recall that z defined in (22) is an operator that
adds tildes to {f; and their complex conjugates. As a
consequence, the relation between |f) and |7) is not
obtained by adding tildes to |7) = e 577 |1) = 5 £1|1).
Instead we act with 1 to get

|7) = e 52)7) = 527, (44)

Since the Poisson brackets of the tilde spinors are the
same (with tildes) as the nontilde ones, the generator of
SU(2) transformations for the tilde spinors is given by

|

5:|f) = =2k {TrW(XP)~ )} = (w = T)|),

8:|7) = =2k {TrW (X))~ [7)} = (W" = D)|7),

where the infinitesimal SU(2) elements w =1+ i€ -6 and w’ =1+ ie"

of z,Z, ie.,

~ weSU(2) 20)

=w""1Pw € AN(2),

1(=A27 I Tr(WX)) = =22 ' Trw (XoP)~1,  (45)
where X°P = /777, This is consistent with the Gauss
constraint (12), which is a product of # and 7~ depending
on the orientations of the ribbons. Explicitly, we can
expand TrW (X°P)~!

TrW(XP)™! =212 —e_ A7 —e, 1717 (46)

It is straightforward then using the Poisson brackets from

Appendix A to show that the tilde spinors (40) satisfy the
following equations

5c[f] = =Pk {Tew (X?)~1 |7} = (w =D, (47)
5|7 = =2k {TrW(XP) 7 |7} = (W' =D)l7).  (48)

- ¢ are related by the right SU(2) transformation

I !

[ [ € €_ " T [ €z €
w=Il+ic-c=1+1i , w' =1+ie" -e=01+1 .

/! 1

€. —€ €L —€

(49)
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Thus the two infinitesimal parameters € and ¢” are related by

no__ 72
€1 =4 €1,

el =e,—1/2(Aze_ + AZe.). (50)

Just like there are two ways to write the transformations of |z) and |z], there are also two for |7) and |7]. While we have

seen above the equivalent of (37), the equivalent of (38) is

8.|7) = 1A H{TeW” 1 (XP~ 1), |2)} = 12 Y TrW" X, | )},

and it is clear that |7) and |7] are braided spinors in the same
sense as |7), |z].

There is a nice geometric interpretation of the relations
(29) and (44) which define the braided covariant spinors.
If we consider |7) to sit at a vertex of I'y,, which is the
target of the short side carrying #, then |7) = e~5£7!|7)
sits on the vertex of I';, at the source of the short side
carrying Z. In other words, |z) results from the parallel
transportation of |¢) by #~!. Similarly |7) is the result of
the parallel transportation of |7) by 7. This is represented
in Fig. 4.
|

5.|7) = 272 Tew" X, |7]}, (51)

D. Recovering the holonomy-flux variables
from the spinors
We assign the four spinors |#), |7), |7], |7] to the corners of
the ribbon edge as in Fig. 4. We assume the norm matching
condition N =N so that the tilde spinors and their
corresponding nontilde spinors have the same norm:

(t]d) = [£1F] = %sinh%. (52)

The holonomies u, i € SU(2) can be parametrized in terms
of these spinors

7] — |7)(7] nlz - 1(z -
B o ) o 1 R 53)
(lz)(7l7) (t[2)(7]7)
so that the following parallel transport relations along the long sides of the ribbon are satisfied,
ui =1z, wly=-ld,  wlly =1 wll]=-l),
ity = -, alf =1, all=-g),  a'l) =1 (54)

On the other hand, the fluxes ¢, e AN(2) can also be reconstructed by the deformed spinors as

_ e (e + e r[e]

(t]r) (z[7)

Their inverses

L ]+ e el
(t[r)(zl7)

can be checked by the orthogonality and completeness (39) of the two bases {|¢),

2: 55
(#5)(7]7) a
o1 _ e H R + el (56)

(#2)(77)
f]} and {|7), |7]}. Likewise for the tilde

sectors. The parallel transport relations between the spinors and braided spinors by the fluxes can be perfectly reflected by

(55) and (56).

Therefore, the spinor assignment of Fig. 4 fully illustrates the parallel transport relations of the four spinors. Finally, they

solve the ribbon constraint:

{fum — £l = 1)

Q2 i = e %ald = e %r)

=C=tul i =1, (57)

and the same can be done with the equivalent ribbon constraint #~'fuZ"ii~! = I. These spinors thus live on the constraint
surface generated by the ribbon constraint C. The matrix components defined in (53) also satisfy the desired Poisson

brackets [see (A4)].
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As shown in [13], the phase space SL(2,C) with the  that of the holonomy-flux phase space constructed
Poisson structure (2) for one ribbon is equivalent to in Sec. IL

S xS //M, with S, ={|r) e C*\{(t|t) =0}} the o
spinor phase space with the Poisson structure (27), E. k — 0 limit: The nondeformed phase space
S.={|)) e CO\{(7|) =0}} as the phase space with We furthermore write the fluxes in terms of the spinors.

the Poisson structure (42), and M := N — N the norm  Consider the Hermitian matrices ££7 = X = kXl — kX - &
matching constraint. It is a simple check that the .4 iz = xor — KXJPT — X . . Their components can

dimension of such a phase space is 8 —2 = 6, matching 1,4 represented in term of the spinors |7) and |),

- 1 .
\/ t|t =X = \/ T|T 5 (t|o]t), XP = 3 (z]o]7). (58)

Similarly, 777 = X = kXl - kX -5 and 777 = Xop — KXSP]I — «X™ .3 can be written with the tilde spinors. Explicitly,

R Y O L ) (59)

—

These objects transform as vectors under the SU(2) 1), |7] is identical to |z), |7], respectively, as
transformation as X = #~'Xi and u~'X°Py = X°P, con- it can be directly seen from their definition (26), (29), and
sistently with (54), and as such can be seen as the (29). We recover then the flat case where there is only one
deformation of the flat flux vectors. They capture the  pajr of spinors associated to each edge. The flux vectors X
hyperbolic geometry of the discretization of X [15]. In
particular, the Gauss constraint for a three-valent node -
encodes the closure of a hyperbolic triangle, whose side X and £, respectively. As a con§istency check, one can take
lengths and angles can be fully characterized in terms of  the x — 0 limit for X (58) and X (59) defined in terms of the
the vectors Xs or X°s associated to the corresponding  spinors, or more explicitly in terms of the x-deformed
sides (see Ref. [15]). spinor variables as in (23). Let us rewrite

and X become the standard flat flux vectors that we denote

Nl -No) K(Ng-N

( BEERSTS
ko[ 1 +M —kol kN
— - =(1+—)I—-«X-0,
&, &, 1 +M 2
~_ k(Ng—Np)
2 13 > B No=Ny No Ny) COCI
A+ |z Kewf’fg e(Nl—_NO +4 smh"N1 sinh 3¢ "NO

R 1+ (No—Ny) K ]\7 .
=9 E ol = (1 + K—)]I — kX -5, (60)
)l 1+ 2

K(N1=No) N1 -No)
= Bl )

—|— 4 sinh % sinh %

T SN
[}

<
I
RN

where X := 1 ({|5]¢) and fi= 11€/5/€]. On the other hand, S g =g. The flat limit of the holonomy and the flux vector
components can be checked to satisfy the Poisson brackets [39]

(gh =30l (=l (g0,

{#.g} = %ga", {#.5) = =t ¥} =0. (61)

Therefore, the k — 0 limit of the flux vectors X and X (58) recover the flat fluxes

026014-11



BONZOM, DUPUIS, GIRELLI, and PAN

PHYS. REV. D 107, 026014 (2023)

1

2

1

2

05

Tr(X5)— X, =9

Tr(X3)=5 %, (62)

>l
I

X =

.. . S = -0
The same limit can be achieved for XP and X as |£) < |z)

and |i]<'<10>|f]

IV. SPINORIAL OBSERVABLES

A. The spinorial phase space

For a given graph I', we take the Cartesian product of the
spinor phase spaces over all edges of I'. An edge e carries
the spinors |z,),|z.), |7.),|f,) and their duals. We have

Let us consider an n-valent vertex v of I". We then pick
an arbitrary edge incident to it, which we denote by e, and
then going counterclockwise starting from e, we label the
other incident edges by e, ..., e, and identify e, | = e;. In
the ribbon graph 'y, v gives rise to an n-gon R(v) and
each edge ¢; to a ribbon edge R(e;). Each of them shares a
vertex with its two neighbor ribbons, one clockwise and
one counterclockwise.

It is convenient to unify the notation for spinors as
follows:

=11, =1, T =|1), ™ =1],
already seen in Sec. III D that those variables reconstruct - -
the holonomy-flux variables in a way that automatically =0 =1, T =), =17, (63)
solves the ribbon constraint in each ribbon. We are thus left
with imposing the Gauss constraint at each vertex of I or component wise
|

tZ = tA? tX = (_1)%_Ai—A’ TZ = T4, T;\i_ = (_1)%_Af—A’

- . - = - 1

Iy = la i = (-1, Ty =14, = (-1)1E,, A= ii' (64)

We use the same notation as in (12) to denote the fluxes on the boundary edges of R(v) as 7, ,. Denote the spinor sitting at
the source vertex of 7, , to be g, and that sitting at its target is 77 ,. Referring to Fig. 4, they are explicitly

€ __ 4€
e-v_ti

T if o =,
Te,»v =71

Indeed, each vertex in I', is assigned two spinors from two
different ribbons. For instance, the spinors g, and ; , sitat
the vertex where 7, , and 7, , intersect. We now show in
the following proposition that these two spinors, except f;,
sitting at the base vertex, are all braided covariant under the
SU(2) transformation generated by the Gauss constraint.
Proposition 1. The spinors rij.j‘l,v andty , (i=1,....n)
which sit on the same vertex of I';;, are braided-covariant
under the SU(2) transformation defined in (13) by the
braided infinitesimal SU(2) parameter denoted by w() =

(i) (i)
T €0 €— . . Ai 0
I+ l(e}:) e§">>‘ If we parametrize ¢, , = (5’_ A;])’ then the

transformation reads

ei) = Ai‘zefrl)

el = el L L (AT el 4 AT el

€
e;v

1
A
i 1

o)

if 0, = —. (65)

SetS,y = —k7! (H A,;2> {TewGa', 16} = (Wit —D)zc,,,

(66a)

6672,-11 = _K_l <H AI:2> {TI‘ng*, T?,»v} = (W(i) - ]I)TZ,-U’

(66b)

where parameters in w'’) are defined by induction as

(n+1) __
€:t = €4

(n+1)

, and , i=1,...,n. (67)

) €; =¢€,

Proof.—We prove this proposition using the following induction result of the SU(2) transformation for any function f

from [15]2:

*We use different conventions from [15], hence why the expressions look different.
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W(k) _ _AEZka'vw(kJrl)f

n n e
—x! <H A;?) (TWGG f} = ' SOALTWE (2, £l £}, with W) — w — <2€Z e_) ;. (68)
k=1 k=1 = e, 0
and the Poisson brackets {A7, 75, ,} = (-1 AL 4o AT T8 o at = (= 1)A K A2 78,4 and
{Ai5i’ tz,-v,—} = _iKAzgtg,-v,Jr’ ‘ {AiZiv tiiv,—} = O
{Aiai’ ti v +} =0, {Aizi’ tiiv.+} = _iKAiztg;v,—’ 69
{Atsz’ e v,— } =-9 idiT e v,— iKTfH {A'Ziv zv—} = _i_KA‘ZiTg-v—a ( )
{Aisi’ Te,1;,+} = %AiSiTe[v&’ {A 517 e v +} -7 15t e v,+ iKTg,-v.—'
The braided matrix W*) reads explicitly
2eH) ()
(k) — ‘ -
()
where the vector components of €% are defined inductively in (67) or explicitly
ef — (HA,'_2>€:E =e, + ZZ (HA ) €_N;3i +e.M3). (71)
i=k i=k \j=i
Expanding the right-hand side of (68), the SU(2) transformation for te oA 18
i1 D €§l+]) elit+1)
5oty = AT (e {AL £, ) + D A1, )+ T A 15,)) = ( ) )r (72)
(D _lith
(i+1) ~ (i+1) 69 e
51, = —k A2 (26T AR 26} 4 eV {A 3,6} e+ A1 %,)) = < 0 o >r§iv, (73)

where the right-hand sides of both equations above are
calculated via (67) and (69). This proves (66). [

We will build local invariant quantities by taking scalar
products between spinors from different edges that meet at
the same vertex of I'. Due to the ribbon structure, they
might meet at the same vertex of [';, or at different vertices
of T'p. In the latter case, parallel transport around the
ribbon vertex is required to evaluate the scalar product at a
common vertex in [';,. An example of the situation is given
for a three-valent vertex in Fig. 5. One can form (quadratic)
scalar products of spinors from two adjacent links e; and
;1. The symmetry transformation is induced at the vertex

€y —e;

|

where the ribbons meet and, if they sit at the same vertex,
this ensures that the scalar product is invariant. One can
also define observables for spinors not sitting at the same
vertex. But in this case, it is necessary to parallel transport
one spinor to the other in order to ensure invariance.

B. Invariants from spinors sitting
at the same vertex in I';;;,

The spinors te ', and Te’,j‘l » sitat the same vertex inI';,. One

can build directly quadratic observables denoted Ef i ﬁ " with

these two spinors by forming their scalar products:
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(c) (d)

FIG.5. A node with three incident edges e, e;, e; (in gray) and the correspondent ribbon graph. The four possible orientations for e;
and e, with a fix orientation 03 = —1 for e; are illustrated separately. The spinors defining the scalar product E{,* can be read at the
common vertex (in red) of the ribbons associated to ¢; and e,.

1 v .
5+A 4€i Cit1 — —
€; 2/2(—1)2 Liatiiia foroj=o0;4 =1
A==£1
1 . .
s+A €0 Lit1 — —
€l'A ;/2(—1)2 ti,—ATii}—l,A’ for 0 = =041 = 1
€.€ip1 __ § 1A e €it1 _ =
Ei,iJrl =€ (_1)2 telivq_ATeHl”-A - Liaze €it1 ’ (74)
A=%1/2 € Z/ (=1) Li_aTii1as for —o0; =0,y =1
A=£1/2
1 v .
s+AZE iyl _ _
€; Z/ (=1) L aTii1ar foro;=o; =-1
A=£1/2

i€itl

Consider for instance 0; = 0;,; = 1, Efl 1" encodes four possible options of scalar products depending on the signs of

€, = + and €11 = +.

[f€i|T€i+1> for € = €41 ——

‘ ti|lzfm]  fore; = — €41 = +

14 A € €1 [ i s Citl

€; Z (=1 T4 =
A==1/2

. 75
t€i|T€i+l> for €; = +, €1 = — ( )
<l’€"|T€"+l] for € = €1 = +
They are by definition invariant under the SU(2) transformation acting on the vertex of I';;;, where the two spinors meet. Indeed,
under an SU(2) transformation with g € SU(2), [t — [t1|g™", (1| = (t1|g™", |z6+1) — g|z€i1), |t+1] — g|z¢i+1] and so clearly
all Eflii‘ defined in (75) are invariant under SU(2) transformations. Since those transformations are generated by the Gauss
constraint as shown in Proposition 1, we find directly the following corollary.
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Corollary 1. The scalar product E;' defined in (74)
is invariant under the infinitesimal gauge transformation 6,

generated by the Gauss constraint defined in (13), i.e.,

€is€it1
SESSH = 0.

(76)

C. Invariants from spinors sitting
at different vertices in I';;,

We now explain how to build invariants for an arbitrary
pair of edges i, j = 1, ..., n incident to an n-valent vertex.

As before, we can work with the ribbon decorated with Z, 7
|

or 7, 7717, We choose to explicit the case where we use
Z. 2, the other case is obtained in a similar way.

Consider first j = i + 1 so that the edges share a vertex
in I';j,. Then we know of the invariant Ef 2. We can also
try to define an observable in terms of 7; and 7, ;. We have
showed that the scalar product of #; and 7;,; is an
observable. On the other hand, we know that ¢; is the
result of transporting z; by 7,,, see (29), (44) [£,,, is
defined in (12)]. Therefore we can in fact transport 7, | by
Z¢,y 80 that it sits at the same vertex as z; in [;,. Obviously
one gets the same invariant as in (74).

KN
Proposition 2. Up to coefficients e* =, we have that

Z/ (=D)AL (677, ~ € Z/ (=D ATy (Elri ) for o =0 =1

A +1/2 A==%1/2
s ;/2(_ ) +A 6’ A(l’ﬂ lfi:ll> ~ €iA %/2( 1)2+A (fT f;:rll Al for O0; = —0i1] = 1

€i,€it1 = -

Ejifl 0 +A~€, 7 it _ _1 %+A~€, f—” € for — o — 0. —1 (77)

| ;/2( ST AT e ;/2( ST ), for =0 =0
@ 2 (DL, e 5 DG, for or= 0 = -1

AZE )2 A=+1/2

Proof.—Consider the definition (74) and focus on the
first case, with o; = 0;,; = 1. Then, we apply (29),

(¢i7), o iy and that (£;'77"), o {7, up to coefficients
KkN;
e~ 7. We further have

(¢ Nap = (=1)P2C_p_a,
(@) ap = (=D 2(7) _poa

Putting these equalities together, we get the proposition. m
In the quantization scheme, since we need to order
the Hilbert spaces, and build the spinor operators
using some braided permutation to the following
Hilbert space we will need to set up a reference point.
This is called the “cilium.” We will see that the notion
of braided permutation is nothing else than the quantum
version of the parallel transport we are discussing. As a
|

(78)

DY (_1)%+AT (LUT])

A==1/2
£ A=£1/2
g '—+A~e,
€; Z (_1>2 ('CUTJ)

A=%1/2

A=+1/2

~e > (=1 (L),
A=%1/2

e > (—DFA (LyE)), ~e Y (=D)FAT (L5178,
A=+1/2

e Y (FIFAELL (L), ~e D (FDFAEL(£51E)),,
A=+1/2

|

consequence, the notion of quantum observable based
on the braiding will be associated to the formulation
(77) instead of (74).

We generalize this construction to edges e;, ¢; incident
to the same vertex in I" but with j # i+ 1. To simplify
the notations of (65), we denote 7' = 7, and similarly
for the other spinors. Up to parallel transport by
fe[v,fej,y, we can always build our observables from

. i €j . . €j
the spinors 7;', 7. The recipe is to parallel transport z;

around the ribbon vertex to meet 7;' at the same vertex in
[ip. This is done by introducing L;; (respectively L',;]-”),
the AN(2) holonomy consisting of the product of #~! and
7 (respectively 77 and 7~'") clockwise around R(v) from
j to i,

Proposition 3. The quantity

foro;=0;=1

—0;=1

for 0; = —o;

(79)

~e S (- 1)+A~e,_A(£—T€,f)A’ for —0;=0; =1
A=+1/2

J

for o; =0; = -1
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. . €;,€;
is an observable, i.e., 5.Ee.; = 0.
. . . . . €; .
Different expressions can be obtained if one uses ti;y or fely instead.

D. Poisson algebra of observables

Let us now compute the observable Poisson algebra formed by the quadratic invariant Ef,e/ . When ¢ = 1, it is well
known that they form a 80*(2n) Poisson algebra [24] with a 1(n) subalgebra, where 7 is the valency of the vertex. When
q # 1, this algebra is deformed as we now describe.

To distinguish different kinds of observables, we define

_ =7 - - - g +,+
e = = E El i €iiv1 = El itle €it1,i E, 1 fi.i+1 Ez i+1° fi.i+l Ez NS (80)

e;;+1 and e; . ; are related by complex conjugation, and likewise for f;,;.; and fi,i 1 1. That is,

Citli = € jtls fi,i-H = m (81)
With no loss of generality, we can take the orientation o; = 0,,| = —1 and write these generators explicitly:
e =N, eiiv1 = (BlEi) =5 Fip o + Figfig g = e o 085410 + e i MioNitno) Cz G (82a)
& = [T =T _Fo -+ i By = VN BB et N0 B B (82b)
fiivt = [Filfi1) =0 _Fipr o — BBy - = eTiWNotN) & Ze oo efNintNino) e 2 (82c¢)
fiivt = —(BlE] = 5 Fiog — LB o = e i tNio) 5 o§z+1 | — eilNiotNicin) C 1Cz+1 0 (82d)

Indeed, e; ;. is holomorphic in spinor variables at the ith site and antiholomorphic at the (i 4 1)th site while e;_; ; is in the
opposite way. On the other hand, f; ;, ; (respectively, f” 1) is holomorphic (respectively, antiholomorphic) at both sites. The
holomorphic functions in spinor variables will be quahtized to annihilation operators while the antiholomorphic ones will
be quantized to creation operators that we will see in Sec. VI.

Other generators e;;, e;;, f;;, and i ; with j > i+ 1 can be defined recursively as follows:

e = %sinirllxe%(ei,j—w;—u + et fij1fj-1y) = #(ez 1€, T ¢ i Jh (83a)
_ 1 RN | st

€ji = M(e.j—uem—l +e 2 fi,j—lfj—l,j) = W(em i€jir1 +e > ; l+1fl+1j) (83]3)
__ 1 =L 83

fij = M (e o1yt enifio) = %SH]TQZH (e iv1j +eirnifivi)s (83c)

= (€5 = e i 83d

fij = %sinT%(e fij—1€jj-1 + ¢ j- 1f, 1j) = W( i1 T+ ei.i+1fi+l,j)' (83d)

Remarkably, the generators (82) and (83) can be recovered geometrically. To do this, without loss of generality, we will
use the definition (79) of Ee “/ and take 0; = 0i11 = -+ = 0; = —1 for convenience. Then the generators given in (79) can
be equivalently given by’

*Indeed, the parallel transport can also be done by using £;; instead of E,»_j”'. We have chosen the latter one so that ¢;; and ej; will be
naturally quantized to the standard generators of U/, (1(n)) as we will see in (180) using (181).
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0y = ( S LU (h ) ile; 5]

k=i k=
/_1 Ke, ~ j_l ~
— (H e—%> [#1C517). fii= _<H eT) #e;ME] with £ =271 27N (84)
k=i k=i
As a consistency check, when j = i + 1, (82) can be written using (84) with only the braided spinors |7), |#] and one flux Z; as
VPR - 51 .
eiiv1 = €5 (517 |E) = (BlE), e 1 = e 7 [T]Z; Y] = [11Ea),
K1\7i 1 S - ~ |~ ~ ﬂ o~ = ~ ~ )~
Frivn = e (6127 |Fiar) = (Bl i), frivt = —e= (5187 |Ei] = =(B]E]. (85)

We can also switch the indices for the generators f; ;. ,(p € N*), fi +p and define

p—1
_Mitk 4 Kejt - ~ =
fitpi= (He 4 ) l+p‘£l l+p|t> =—fiirp fivpi= —<H€ 4k> <Ti+p|‘cj.i+p|ti] = —fiisp- (86)
k=0

The Poisson algebra formed by the generators defined in (82) is given in the following two propositions.
Proposition 4. ¢;, ¢;;,; and ¢;, | ; defined in (82a) and (82b) form a k-deformed u(n) Poisson algebra. They satisfy the
following Poisson brackets

{e e} =0, {eine; i1} = i(6ij41 = 6ij)e) ju1s {eiejur i} = i(6;; = 8 jr1)eh1 s
2i i — ¢
{eii et = 5 —sin h%. (87)

Proposition 5. e;, e;;,1,¢; 1, i1, and f” 1 defined in (82) form a k-deformed 80*(2n) Poisson algebra. They satisfy
(87) and the following Poisson brackets:

. K . K¢ K
{ei,i+1vfj,j+l} =0 ji1 | fimriv1 T Eei,i+1fi—1,i+1 ) {ei+1,i7fj,j+l} =1ib;j 1| €2 fiivo — 59i+1,ifi+1,i+2 )

z . K K ¢ K ¢
{ei,iH’fj,j-&-l} = —i6;j <e Zlfi,i—&-z +2ei,i+lfi+l,i+2>v {eirris f, j+l} —i6; j41 <f; Li+1 — 2ei+1,ifi—1.i+1>»

. o2 k(e Fei) . K - . K .
{fi,i+1’fj,j+1}:_151';;5111}1%4'151',;—1 ei+2,i__fi.i+lfi+l,i+2 +l5i,j+1 ei—l,i+1+§fi,i+lfi—l,i >

{eifjs1} = i(6ij + 0ij50)f; 1 {euf,+1,} —i(6;; + 5z]+1)f, s Afis Tt = {fi,H—lvFj,H—l} =0. (88)

Proof.—The Poisson algebra (88) can be directly calculated with (the tilde version of) the Poisson brackets (27), (31), and
(32). To get the first three lines of (88), it is also useful to use the following Poisson brackets:

T, et} = iei-No) = ], i e E 1 =0,

egiN{tJr et} = —IKCICO = —iZ, e¥{a, e_%?ﬁ} = ieiNo~N1) = ],

e—F{E 2T} = ieiMoN) = ], —F{E AT =0,

e~ ST} = zkélé’o iZ, e E, T, ) = ief®—No) = ] (89)

We use these result to show, e.g., {e; ;.. ;1 }. We first write that

kN; = - ~ _K_A./'... g —K—N"v
{eive 2yt ={fi T+l T G (€728 ) — Ty (€728 )},
3KN

=ie™ (T —Aifien s + T 2 2t o — Fiog A Fir o),
. N —15 |~ . KN
= ie= 7 (|7 |Ei) = ie fictitts (90)

where the left-hand side can also be separated into
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kN;
{ell+1’e zfl 11}—6 z{ellJr]’fl 11} Ee zlellJrlfl 1+

We then conclude that

) K
{eiivtsFjs1} = 10 j41 <fi—1,i+1 + 2ei.i+1fi—1,i+1>

hence the first Poisson bracket in (88). The first three lines
of (88) can computed in the similar way. [
Let us now discuss the quantization of the model.

V. FROM PHASE SPACE TO HOPF ALGEBRAS

The relevant structures for this quantization are the Hopf
algebras U, (8u(2)), U, (8u(2)), and SU,(2),SU,1(2)
with ¢ real. The necessity to have the Hopf algebras
U,1(8u(2)) and SU_-1(2) was perhaps not fully appre-
ciated in the previous work [13], though it appeared already
in [6].

We are interested in the quantization of the Poisson
brackets (6) and (7) for a single ribbon. To this aim, we
construct the operators associated to the classical variables

|

(the holonomy-flux algebra) and introduce the Hilbert
space structure on which we represent these operators.

A. Poisson bracket quantization

As a first step, we introduce the deformation parameter,
g = e"™. Then the classical r matrix is quantized as r — R
with

g 0 0

e | 0 @ ai@-a?) 0
0 0 g
0 0 0 gt

~1 @I+ ihr + O(h?). (91)

Note that one obtains the inverse matrix R~! if one replaces
g by g

We quantize the holonomies and fluxes to be matrices of
operators £ — L,u — U,7 — L, ii — U. The quantization
of the Poisson brackets (6) and (7) gives the following
commutation relations for the matrices of operators [6,7]

Ry U Uy = UyU Ry, RL\L, = LyL}R, L\R3{ U, = U, Ly, LR7'U; = UL,

REI U]U2:U2U]R2_1, R_lilizzizi R_1 Usz]il :EIUQ, U1R1:2:L~20|,

L~1U2R511 :UZ[‘lv RU]LzzLQUI, RZlL U2 UQLI, U]iszl:zUl. (92)

[
The Poisson brackets (6), (7), Aanii 9 areﬁzgovered at the Je AN(2) - ie ANq(Z) Fun (AN(Z)) ~1 (§u(2))
first order through the map [A, B] = ifn{A, B}. Note that _ N B
R~! appears because of the minus sign difference between ieSU(2) > UeSU,(2)= Funq(SU( )
the classical Poisson structures, respectively, defined in (6) £ € AN(2) —» L € Fun1 (AN(2)) = U1 (3u(2))
and in (7). 05
The classical Casimir r 4 r,; can be quantized as R R uesu@2)~Ue SU‘I_I( ) (93)
and requesting this operator to be a Casimir implies that
[Ra1R, L Ly] = [Ry R, U,Uy| = [Ry\ R, Ly L] We have in particular
= [RyR.U,0,] = 0. (93)
Using this in (92) leads to the following equivalent |
commutation relations I — ( K~ 0 )
= I 1 ’
—qi(¢> - q2)J, K
R21U1U2:U2U R2]<:>R_1U U2:U2U R_l, k 0
I L= . - , 96

R;U,U, = U,U,R;! & RU,U, = U,U,R, (94) (q ;(qz_q_%)h K‘1> (96)

which are more amenable to identify the relevant structure.

The relations (92) and (94) define the algebra struc-
ture of the Hopf algebras U (§u(2)),uq(§u(2))4 and
SU,(2),8U,-1(2)

4Strictly speaking, these are the matrix elements of L which
belong to Fun -1 (AN(2)).

where (J4, K = q%) and (J,, K = qJTZ) are two commuting
copies of the /,(81(2)) generators (see Appendix B). The
antipodes S(L) and S(L) [see (B2) and (B11)] are given by
acting the correspondent antipodes on all the matrix ele-
ments. That is
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— S(K™1) 0\ K 0

S@)_<—ﬁ@%-qﬂiug Sw3>_'<¢%¢—qﬂﬂ+ K”)’ 7
_ S(K) 0 K! 0

S(L) = T 98
) (q‘%(q%— )S(J) S(I?‘l)> <—qi(6ﬁ—q‘f)h K> %)

The definitions of those Hopf algebras are given in Appendix B. We note that the left Iwasawa decomposition leads to elements
in the Hopf algebras, U/,-1(8u(2)) and SU_-1(2) while the right decomposition leads to elements in the Hopf algebras,

U,(81(2)) and SU,(2). At the classical level, this is reflected in the presence of the minus sign difference between (6), (7), the

Poisson structures, respectively, for the elements u, # of the left Iwasawa decomposition and for the elements i, # of the right
Iwasawa decomposition.

B. The R matrix contains the information about the flux and the holonomy

Let us add some additional comments on the defining relations

LyL,R™' = R'L,L,, R™'U,U, = U,U,R7", L,L,R =RL,L,, RU,U, = U,U,R. (99)
It is well known [40] that they can be obtained from the quantum Yang-Baxter equation (QYBE)
Ri2R13R23 = RasRi3Rias (100)

where we have used the standard notation R, = ZR“) QR LRy =IQR1) @ Rpn),Riz=R1 QLA R(y.
The solution relevant to us is specifically

= l_q_l " e g n _Jz n
quJ@LE%q 5T, ® (g5 (101)

qn/Z_q—n/Z .
where [n] := T is called a g number.

In the above quantization scheme, we have used this solution in the % ® % representation, with the generators represented

as 2 x 2 matrices

0 0

(o

0
p(J-)

) o=

1
0 0

(102)

P00
4 ) ~R=p(R).
0 g

) o

All the relations (99) can be seen as different realizations of the QYBE (100) written in a specific representation. Indeed,
in terms of the components of the R matrix, the Yang-Baxter equation is written as

. k3
J2 3

E iy, i rky i3 1k
R ky sz J1 k3R

k1 Jooks

where R, R’, R” are different copies of the R matrix. The
first two indices (i, j) of R';*, are the indices for R ;) and
the last two indices (k, /) are the indices for R, given in
the decomposition R = Y Ry @ R(2).

Let us fix the representation of R ), 7'\’,’(2), and R” to be
the fundamental representation of I{,(81(2)), then the
indices (iy, i3), (ja. j3). (k2. k3) € {—3.3} in (103). In this
representation, we then have [40]

(LX) = R, (104)

where the indices k,[ = i% are the indices labeling the
matrix elements of I, while a, p are the indices of the

— iy iy 1y ks ki ky
- Z R ky ksR ky st Ji g’
ky ko k3

(103)

|
U,(81(2)) generators ~in any reprfzseintation. The QYBE
(103) thus reduces to L{L,R = RL,L,.

On the other hand, fixing the representation of R, R’( N
and R’(’1> to be the fundamental representation and using

(U'))% =R, (105)
when i, j € {-1,1}, the QYBE reduces to RU,U, =
U,U,R.

In the same spirit, the first two equations in (99) are the
QYBE for the R matrix of U ,-1(%u(2)) in a given
representation. Note that the R matrix for U -1 (8u(2))
is simply the inverse of the R matrix for /,(31(2)).
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Therefore, the R matrix captures the quantum holonomy  different Hilbert spaces, usually performed via the R
and quantum flux information in its two subspaces. This ~ matrix, can be done using some parallel transport. This
gives a more geometrical interpretation to the R matrix in  leads to a new geometrical interpretation of the R matrix.
terms of quantum “holonomies” either in some deformation =~ We will also provide the quantization of the obser-
of AN(2) or SU(2).5 vables (74) and show that they form a deformation
The construction of tensor operators (such as spinor and  of 80*(2n).
vector operators) usually requires some braiding defined in
terms of the R matrix to transform appropriately [27,28].
We will show how this braiding can be reinterpreted in a _
more geometrical setting, i.e., in terms of parallel transport. The quantization of the deformed variables (%, (%, Ny
will give rise to the g deformation of the Jordan map for
VI. QUANTUM SPINORIAL REPRESENTATION 311(2). Indeed these variables can be quantized as g-boson
OF DEFORMED LATTICE GAUGE THEORY operators: the variables (% are quantized as g-boson
annihilation operators, the variables c % as g-boson creation
operators, and the variables N, as number operators.
Explicitly,

A. Quantizing the spinors

This section contains some of the key results of the
paper. In particular, after quantizing the deformed spinors,
we will show how the definition of spinor operators on

(&5 ¢1) — (a,b), (&5, ¢5) = (', b7), (No.N1) = (NgwNyp).
(56’511() - (d’ 5)’ (58’5;) - (d-l-’b-w’ (N07N1) - (Na’Nb)' (106)

These g-harmonic oscillators obey the following commutation rules

aa’ — gPata = ¢+*, ata — gFaat = —gF%, [N,,a'] = a’, [N,,a] = —a, (107)
from which one can deduce
qNa/z —_ q_Nu/z
qNa/2a’r — ql/ZaTqNa/Z’ qNa/2a — q—l/2ana/2’ ata = [Na] = q% - q_% , aa’ = [Na + 1]' (108)

Similar relations hold for the operators (b, b', N;,) and the tilde variables. The different sets of g-boson operators (a,a’, N,,)
(b,b",N), (a.a",N,), and (b,b",N,) all commute with each other.

States can be labeled by their occupation numbers, |n,) = a™«|0)/+/[n,] and |n,) = b™|0)/+/[n,], and
74> )10 = [11a) @ [15)- (109)
The g-deformed Jordan map is [41]
Jo=d'b,  J_=abt, K=qgi=qgT: J,=ab J =abt, R=qi=q7:  (110)

i

Indeed, with the quantization map (106), we recover the classical generators z,Z,4 and Z, Z, 4 at the linear 7 order of the
quantum fluxes (96) by taking g = " = 1 + kh + O(h?),

G —q )T, = 7= xE8;
(111)

’

' —qi(qt — 7)1 — 7= —KL5oLf
K> A= exp(g (N, - NO))

5Although we stick to the terminology that # and ¢ are called fluxes, they are AN(2) holonomies in the ribbon picture as each is
assigned to a side of the ribbon.
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We define the right adjoint action,® denoted as » (respectively, »), of I ¢(81(2)) [respectively, U -1 (3u(2)))] on some

operator O:

Jo» O =58 )OK +S(KHOJ, = —¢*2] ,OK + KOJ .,

J.» O=580 0K +85(K)OJ, = —¢FJ . OK' + K~'0J,

K» O=SK)OK=K"'0K, (112

K»O=S38(K)OK = K'OK. (113)

Let V/ be the irreducible representation of ¢/, (811(2)) of dimension 2j + 1. The basis state |j, m) € 1/ of fixed magnetic

number m is the Fock state |n,, 1y )y0,

Jom) = |j+m,j—myyg,

(114)

ie., j=3(n,+n,) and m =1(n, — n,). The g bosons act on those states as

1 1 1 1
aliom) = VG i+ g+, dliom) = VLl 3om 1),

: . 1 1 . . ! 1
b'|j.m) = [J—m+1]’1+2,m—2>, b|J’m>:\/[J—m]’J—2,m+2>,

Nalj-m) = (G +m)lj,m),

With the quantization map given above, we are now
ready to define the U, (8u(2)) and U -1 ($1(2)) quantum
spinors, which decorate the ribbon as in Fig. 6. A
U,(8u(2)) [respectively, U, -1($u(2))] quantum spinor,
denoted as T = (%), by definition should transform under
the U, (8u(2)) [respectively, U, -1 ($1(2))] adjoint action as
a spinor, i.e.,

JioT. =0, JioT, = K*T, = q¢™iT,,

(116)

Fo

where e is the right adjoint action (which can be either »
or »).

Remark 1. According to Biedenharn’s terminology
[41], the relations (116) define what he calls “conjugate
spinors.” This is what we will call the “right adjoint
quantum spinors” in this article. A left adjoint quantum
spinor, or a quantum spinor according to Biedenharn’s
terminology, is defined by the U, (81(2)) or U -1 (8u(2))
left adjoint action. Denote uniformly the ¢/,(8u(2)) or
U ,1(8u(2)) left adjoint action by o, then the left adjoint
action of the generators on a left adjoint quantum spinor,
say T, is

®Given a generator x of a Hopf algebra H with copro-
duct A(x) = > x(1) ® x(2), there are two kinds of adjoint
actions on operators Os of H namely the left adjoint
action x>O := ) x(1yOS(x()) and the right adjoint action
x » O =3 8(x(1))Ox(y), where S is the antipode of H.

Nplj.m) = (G =m)lj, m).

(115)

JioT, =0, JyoT,=T, KoT,=qg=T,.

Note the different behavior under the action of K compared
to (116). AU, (3u(2)) right adjoint quantum spinor , T can
be obtained via a U,-1(31(2)) left adjoint quantum spinor

1 a
2

q_lT’ with the relation ,T, = (—1)2"¢
U,1(8u(2)) right adjoint quantum spinor q_lT can be

T, while a
' A

obtained via an U, (31(2)) left adjoint quantum spinor , T’
with the relation T, = (=1)4¢%,T}.

A spinor operator is a special example of a tensor
operator T/=2. A tensor operator T/ associated with the
representation j transforms under the adjoint action as
an element of the representation j. The Wigner-Eckart
theorem provides the matrix elements of any tensor
operator T/.

FIG. 6. The reference ribbon. The spinor operators t€ and £ are
U,(%1u(2)) quantum spinors, while 7¢ and 7¢ are U1 (31(2))
quantum spinors.
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Theorem 1. [Wigner-Eckart Theorem for ¢/, (8u(2))
[41]] The matrix element of a tensor operator T/ of rank j
with j an irreducible representation of I/, (3u(2)) is
proportional to the g-WCG coefficient:

<j17m1|T{”|j27m2> :lequcﬁlfé {%2’ (117)
|
T t- gta
|t> = g -t = B = N s |t] =
ek t qg b
e_KNTIZ_,’S T_ q_Ajt_ba
|7) = -7 = = , 7] =
KN - Ng
ExS Ty q+b
LTI o .
- t-
) = Tl Lo (B (19 7 =
kNg ~ - Ng ~
RN + qg+b
e‘#fﬁ N T_ q‘%d
|f> e ~ - 7T = B = s |‘E] =
Ny ~ — Ny ~
e ¢k T+ qg+b

The spinors #° and 7 are quantized as U, (31(2)) spinor
operators while the (braided) spinors ¢ and 7¢ are quan-
tized as U,-1(8u(2)) spinor operators. Indeed, under the
right adjoint action, these quantum spinors transform as
desired:

Jipte =0, Jipte=t,, K»t, =gt
Jiw =0, Jipie =1, K»i=qgmi,
Jiwt, =0, Jipti=1,, K»1 =gt
Jiwd, =0, Jip# =%, K»i =g,

(119)

As a consequence, the Wigner-Eckart theorem tells us that

S
(J1.my |65, j2, ma) = 8 j1epay/ [dj]]qcﬁl_"% s (1202)
L
(1o mi T ljama) = 85, jyrepr/1d) ) Con iy
(120b)
o S
(1 mi|t5|j2, ma) = 65, jy1ep [dj,]qdr]n—rrzz s (120¢)
o
(J1smi| Tl o, ma) = 5j1,j2+e/2\/ [dj]]q-lcaﬁnzz {22'
(120d)

Therefore, as in the quantum fluxes, we again see both the
U,(8u(2)) and U,1(3u(2)) structures appearing upon

where T, is the mth component of T/, qu;il g {;,22 is the
q-WCQG coefficient for coupling j; and j to get j, and N;
is a constant independent of m, m;, m,.

The quantization map (106) leads to the quantum spinors
defined as

lj2

kNg — . Ng+1
e ¢ _ptgs
N1 — : e d t+ = i — thH s
eT‘CB t aTqT
No 2y Ngtl
—e 3 (Y L Tt _ —b'q T
N = -7 T R
e3¢y T+ alq
No Sk ~ ~.  _Ngtl
—e - t” —b' E
( Kﬁ,fl>_}t+:<t~+>:< qNW )7
e ¢ + qu 7
KNo Zie . ~i Nl
—e7 T — T
_ENy 2K it o Npl
e 1 + a'q 4

quantization. We decorate the ribbon with spinor operators
as in Fig. 6. t° and £ are the ¢/, (81(2)) quantum spinors,
while z¢ and #° are the U -1 (8u(2)) quantum spinors both
in the sense of the right adjoint action. The quantum spinor
components satisfy the commutation relations

fefe = gt fe,

(121)

1
7°1° = gt Tl

€==.

tote = gt te,

~ ~ 1o ~
7T = T T,

We define the inner products of the spinors with a
bilinear form B, determined by the g-WCG coefficient
11
+v/[2],C, ZnOO = £, _p(=1)1/2mg"/? with g compat-
ible with the spinor nature. B, thus defines a (nonsym-

metric) metric on the spinors. We denote the inner products
as spinor brackets in the following way

0

(t|t) = B, (t".t7) = =/[2],C,,_» otiuts = [N],
(2]e) = B, (x*,77) = —/[2],1 C, 2 St it = [N,
iy Eroro / 3 3084 £ Y

(t]t) := BQ(tJr’t )=~ [Z]qcm—m Otjmtm = [N],

s o Lolo,
(#8) = B (F.77) = =/ [2] ;- C,_py oFLnTn = [N],

(122)

as well as
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[tlt] = B, (7. t%) = V2],C,, _3 Otouth = [N + 2.
hM=%ﬁVﬂ=[ﬂ%@j%w = [N +2],
6] = B, (i) = VI2,C,, i oEuin = [N 421,
[#[4] = By (5. ) = V2,1 €, _2 Ymaih = (N 421,

(123)

while it can be checked directly that the remaining vanish,

[t]t) :== B,(t7.t7) =0 = B, (t", t7) = (t|t],
[t|t) =B, 1(77,77) =0 = B, (7", 7") = (7],
[0) = B,(.8) = 0 = B, (. ") = ({ld].
[&|%) = B (T7,47) = 0= B (F.7") = (¢7]. (124)

Unlike in the classical case, the norms of the spinors
and their duals are not equal, (:|-) # [|], due to the
noncommutativity (121) of the spinor components.
Furthermore, one can get [N+ 1] or [N+ 1] by the
following inner products,

[N+ 1] = g i(toth —tit7) = ga(thts — toth)

= gi(zhes —tit) = gi(ezt —1te),  (125)
[N 4+1) = gmi(E2 — £167) = ga(E5E- — 2.8

=49 ‘]_‘(T+T —TEl) = (@ T —#l7y). (126

They are actually those we will use to reconstruct the
quantum holonomies.

one can compute that

U._U_ . =q@¢U_U_, U_U,_=qU, _U_,

[U__. U] (qz - 2)U +U -, [U_.. Uy ] =0,
U__U_+ - q_%0_+[7__, U__U+ - q_%U+_U__,
U__.U, )= (q% - q_%)0—+0+—7 [U_y. U+—} =0,

Referring to Definition 2, we conclude that U is an SUq-

B. Recovering the quantum holonomy-flux algebra

Both the quantum fluxes and quantum holonomies can
be built from the quantum spinors in a neat way as their
classical counterparts (53).

1. Holonomies

We start with the following proposition:
Proposition 6. Impose the norm matching constraint

N = N. Then the operator matrix U = (U: 5:) whose
matrix elements are given by
~ 1
Upp = Bgdy a4 : 127
AB q ;TA -B [N—|- 1} ( )
which is an SU_-1(2) quantum matrix. The operator matrix
U= (g: Z: ) whose matrix elements are given by

UAB =

1 , P
()Y E,  (128)
[N +1] ;

is an SU,(2) quantum matrix.

In addition, together with the fluxes L and L (96) defined
in terms of the ¢/,(8u(2)) generators given by the Jordan
map (110), the holonomies defined this way satisfy the
commutation relations (92).

Proof.—By repeatedly applying (121)-(126) and the
commutation relation of the spinor components and the
norm factor

=l
Il

=™

Rl

t.z, (129)

1 1
U Ui =qU UL, U, Uiy =qU U, _,
det \ U=U__U,, —qU_ U, =1,
1 ~ ~ ~ 1~ ~
++=q U Uy, U, Uiy =q2U U,

U0, —q=0_ 0, =I

i}

1(2) quantum matrix and U is an SU,(2) quantum matrix.

Using the Jordan map (110), the commutation relations between the I, ($1(2)) generators and the quantum spinors read

t K = ¢TiKt,, 1K = qTiKTS,

teJ, toJ.

teJ,

1 € —lg4e
— gt = K'tS,
— gt = R,

=4 4JJF T
t.J = g5t

f;l% = q%k{f ,

~c T 15~
T K = qTiK7,

1 1
€ _ 4T3 € __ € € - = €
teJ L — g T8 = KT8, (EESE N RN B =

T, —qFIuae = K, 0. =qTI#,  (130)
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one can show that the commutation relations in (92) are
satisfied given the definition of the quantum holonomies
(127), (128), and the quantum fluxes (96). [

2. Flux vectors

We now reconstruct the quantization of the vectors X and
X°P from (58) in terms of the quantum spinors. They
become U,(8u(2)) and U,1(3u(2)) vector operators,
respectively, i.e., spin 1 tensor operators. The U, (31(2))
quantum vectors can be built from the 2/, (311(2)) spinors t¢
and € and the U/, (81(2)) vectors can be built from the
U, (8u(2)) spinors ¢ and 7°.

Using the ¢-WCG coupling, one can define the
U,(8u(2)) right adjoint vectors as [41]

TR
Xo= > ,Co 2 athts,  A=0.£1. (131)
m,n= l
m+n:i/%
In components they read
N I PR T 2 PR
Xo= Ci 1 ity + ¢, 1 tit
q 2 2 q 2
1
:ﬁ(CIUJJ— —q2J_J,), (132)
11
X, = G th=—-J K"
q 22
1o
X, = C| Lot =T K (133)

It is easy to check that they behave as a vector under the
action of U, (8u(2))

Jow Xy = /I F AL+ A+ 1]X,0,

K» X, =q7%Xy, (134)
so that the Wigner-Eckart theorem applies and gives the
matrix elements of X, in the irreducible representation V7,

chlj

n —A m’

<j7n|XA

jom) =
2727 +2)

(135)

Similarly, one defines the U -1 (8u(2)) vector as

1

Opf 33 +
E —Com 2 A‘r (P

m,n= t—
m4-n=A

A=0,£1, (136)

whose components are

op _ SR S 3y
X, = 7]C2 4 LT+ ¢ ; 0Tt
1
=—=(q2) I —qJ ), (137)
2]
X% = ¢ ilete = —J K,
2 2
1 _
X = qﬁlc_g _z T =J, K (138)
They are indeed U -1 (81(2)) vectors since
T XP = [ FA£A+1]X4y,
K» XP =g2XP, (139)
and from the Wigner-Eckart theorem,
GonlXP1m) = Nja € )
2jl12j+2
with N; = % (140)

One can see that X and X°P are the natural quantization the
classical deformed vectors X and X° as defined in (58).
The tilde sector of vectors X and X° can also be
built in the same way from ¢ and ¢, respectively. In
addition, higher spin quantum vectors of ¢/, (81(2)) and
U,1(31(2)) types can be built with the g-WCG coefficient
in a similar method.

C. Flipping the ribbon

In the following, we will omit the index ¢ on the spinor
operators as it is not relevant for the present discussion. We
introduce the operator I associated to changing the ori-
entation of an edge of I', which is a quantum version of 1.

When changing the orientation of an edge, we have the
following involutive transformation on the spinor operators

(141)

Since the tilde and nontilde spinors are classically the same,
and since the quantization map (118) is the same for both,
we can define

I(t)=t, I(t)=t, I(t)=1 () =, (142)
and just like we did classically with 7, we can lift I to the ¢
bosons by setting

I(b) =b, I(b") =5, (143)
and requiring that / is an involution. By applying 7 to (110),
one finds
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I(K)=K, I(K)=K.

(144)

1(Jo)=Tp 1(Jy) =Js,

It is then possible to find I(L) in terms of L,

where S is the antipode of /,(811(2)). Similarly, one finds
I(L) = S(L) with S being the antipode of U1 (31(2)).
Indeed, S(S(L)) =L and S(S(L)) =
the fact that / is an involution.

The same can be applied to U. Parametrize the matrix

elements of U and U as well as their antipode to be [see

L, consistently with

K! 0 .
I(L) = < g hi, 1?) =S(L).  (145)  Definition 2 for definition of the Hopf algebra SU, (2)]
|

g l’; A 12 - a - _lE

U= (“ ) €SU,(2), with ad—-gthe=1 3(U)= ( T > (146)
¢ d —g¢ a4
~ ~ R A _ 2 _ l’l.

= (‘f b) €SU,(2), with dd—qhé=1, S(0)= ( ¢ ‘{2b>, (147)
¢ d —q72¢  a

where we have used S to denote the antlpode for SU,-

a,b,,d of U and generators a, b é, dof U as

where [ is indeed an involution. We then have

1(U) = $(0),

1(2). It is natural to define the operator / acting on the generators

(148)

(149)

Recall that one can reconstruct these quantum holonomies in terms of the quantum spinors as in (127) and (128), which we

copy here:

- 1
Usp = (—1FBgES e e
ag = (—1) Q;A—B[AH_I

] S SUq—l (2),

~ 1
Usp=—=
AB N+ 1]

tBq 2ZtA1 s €SU,(2).

The matrix element of the antipodes of U and U defined in (146) and (147) can be equivalently written as

3 A 1
e L I L

Then (149) can be deduced from (142).

Therefore, we have a complete map for quantum objects
in terms of flipping the ribbons. We can then focus only on
one orientation for a ribbon and use the involution map 7 to
deduce the results after change of orientation.

D. 'R matrix as a parallel transport

In the classical construction, the different spinors are
related through parallel transport by the AN(2) holonomies.
We will see that their quantum counterparts, the spinor

(150)

(151)

operators, are related by AN, (2) holonomies. We expect to
have two possible cases, either lower triangular or upper
triangular.

1. Parallel transport within a ribbon

Let us start with the classical covariant and braided-
covariant spinors of a single ribbon related to one
another by AN(2) parallel transport in (29) and the first
equation of (44). At the quantum level, we have analog
relations
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L < K'z¢ ) e oy i ( Kte ) X i (152)
‘[e = = g+ g+ €’ € — ) e~ ~ ~ = g ¢ _Tfe,
—(gi — q78)J 1 + K7°. 474 (gt — q)J & + K1t 4
S(L)t ( Kt ) S(L)z ( Kz ) 1 (153)
€ = N =q + q T, 7€ = 5 5 = qq+te.
(g8 — g )T te + K7t ~(qt = q79)J % + K%,
One can take the complex conjugate of these relations and get equivalently,
(=)7AgHe, = goig T (= 1) g3 g (L7) 5, (154a)
(=1)g7328, = q~iq T (=17 P (S(L)") 7, (154b)
(=1)4g758, = g5 g (=) P gt (L) 5, (154c)
(=1, = g T (=1) P2 y(S(L)T) 5 (154d)

1 A

(7)) = e(=1)"g 2775,

%)

"= e(=1)pg,

(155)

and the commutation relation of the factor qe% or qe% with the spinor components

N,/ e 1 N N e« N
gty = g+t g, gt = qaTi g,

This quantum version of the parallel transport works within
a single ribbon, see Fig. 7(a). Let us now consider what
happens when dealing with more ribbons.

2. Spinors for many ribbons

We are interested in defining spinor operators when
dealing with many ribbon edges. We focus on a ribbon
graph I, where the graph I' is an N -valent vertex v
with N, edges ordered and labeled as e; and ey going
counterclockwise. The ribbon graph I';, is an N,,-gon R(v)
surrounded by N, ribbon edges R(e,), n € {1,...,N,}.
Once more, we do not consider the index e that does not

t

t T T

(a) The reference ribbon. (b) The flipped ribbon.
FIG. 7. Flipping the reference ribbon due to the change of
orientation of the edge e is equivalent to the spinor
flip 7 — 7, t—t.

(156)

bring anything to the present discussion. For the ribbon
edge R(e,), we introduce

7,=I1Q - @TQ - QI

(,=I® RI® - QL (157)
These objects, 7, or fn, are built using permutations,
starting, respectively, from #, or t,. However, the permu-
tation is not consistent with the coproduct if it is non
cocommutative. Consequently, due to the noncocommuta-
tivity of the coproducts of U,(3u(2)) and U -1 (3u(2)),
these objects are not spinor operators, except #; and ;.

We now want to define spinor operators, that is objects
transforming covariantly under the #/,(8u(2)) and
U,1(8u(2)) adjoint actions. To make the distinction
between the objects living on the n™ leg, %, or t,, and
the spinor operators, we will denote Mz and (Wf, the
objects transforming, respectively, as a U, 1($u(2)) and
U ,(811(2)) spinor operators. The construction of the spinor
operators on different Hilbert spaces is usually done using
the braiding induced by the R matrix [27].

As a consequence the usual construction of spinor
operators (or any tensor operators) is in terms of the R
matrix. There are two ways to define such a spinor operator.
Explicitly, we use Rj;' or R; to define the U, 1(3u(2))
tensor operator ("7,
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(n)fA = R;ll,nR_l o ,R’ganl_nl <fn)AR1nR2n o 'Rn—Z,an—l,n QIQ--- (1583)

n-2.n

or Wi =R, 1Ruus RoRu(E)aRyiR;A -+ Ry LRy QI @ -+ (158b)

nl

The two formulas of (158) are proportional to each other with the proportionality coefficient being a function of the
norms Ny, ..., N, which commutes with the 2, (81(2)) (or U1 (81(2))) generators. Similarly, we use R;; or R7;' to define

the U, (81(2)) tensor operator " {
(”)fA = Rn—l,an—Z,n ~RauRyy (fn)A,R'l_nl/R’Enl U R;iz,nRr_lll,n RI®--- (1593)

or (n)fA =R R R;ZIR_I (fn)ARannZ U Rn.n—ZRn.n—l IR :---. (lsgb)

na—1"%nn-2""" nl

We now show that these U1 (311(2)) spinors [respectively, U,(31(2)) spinors] can be equivalently obtained by using the
quantum parallel transport induced by L [respectively S(L)] or S(L)" (respectively, LT).

3. Braiding as a parallel transport

Let us focus first on the case with all ribbon edges R(e,,) oriented in the same way corresponding to incoming edges in the
associated graph. We focus on the N,-gon R(v).
Proposition 7. The braiding induced by the R matrix can be seen as a parallel transport.

<n)'fA = R;il,nR;lz,n o ’R’Er}Rl_nl (fz1)ARlnR2n T 7-">/11—2,n’R'n—1,n QI® -,
:(L~®"'®E®fn)A®]I®"'v

=L RLLY® Q% I, (160)
or (m) ~A = Rn,n—an,n—Z e RnZRnl (fn)ARZIIR;; e R;,ln—ZR;,ll—l ® I ® T
SL)® @SL)®%),®I®
= (SN2 @ (S(L) Ny, @ ®%y, , OIQ -, (161)

<n>fA = Rn—l.an—Z,n o R2ann(fn)A,R’l—r}Rgnl T REEZ,nR;il.n ® I -,
=SL)®  ®SL)®E), ®I® -,

=S QSL)p " ® - Qty, , ®I® -, (162)
or Wi, = R R R Rl (8)aRu Rz -+ Rypa Ry T ® -+,
(ET®-~~®I~,%®€,1)A®]I®---
:(ET)AA2®(£T)A2A3®...®fAn_l®]1®.... (163)

Proof.—For notational convenience, we remove the tildes of the generators of ¢/, ($1(2)) in the tilde sector. We consider
(160) at n = 2. Then, from the last line,

K® 7
<2>f:< o 1 } L > (164)
g (¢ —q3) ], T +K ' ®7F,

We will show that the first line, i.e., Rj; (I ® )R, gives the same object. By using (110) and (118) to express the
generators of U, ($1(2)) and the spinors in terms of the g-harmonic oscillators, we find

1
Ji. =17, (Jz + 2), JoE, =qiE ., J_F,=q(f.J_ —KE) (165)

and
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1
Ji =7 (JZ - 5), JE_ =qi J_,  J, i =qi(EJ, —Ki.). (166)
It leads to the commutation relations
KJ., %) = —q*K*%.,  [KJ.,%.]=0. (167)

Consider the first line of (160) for A = —, then

RAI®Z) N

(KT ® (KT )"

KL @ (KLY

n=0
o0 ] >
q—J ®J, ]I ® ' Z (K_1J+>n ® (KJ_)H’
=(1Q % )g/®V:D ”“’;"(K—m)" Q (KJ_)",
n=0
= (K ®7)Ry) (168)

as desired.

Computing R, (I ® 7, ) takes more work as KJ_ and 7, do not commute. Indeed, each time we put KJ_ to the right of
#,, we get an extra term —g2K2#_. This gives

1 —_ n
(KI_)'2, =7 (K1) =S K% g (K" = 2. (KJ)" = =L k2% (ka_y! (169)
—q

RI®%)=q

(K'J)" @ (KJ)" = g ig~/®/ (K1, ® K*.)

=g @ K ) ed S EE I 2 eyt (),
= (K ®@ TRy} +¢i(qi — )K"V, K ® KT KRy,
—(K'®@% + (¢ - g9 @ )R = (L ® ), Ri;. (170)
The generalization to any n is straightforward as
=R Rk R Ry (B)aR1wRan - Ru2.0 Rt s
= (L QI® - )R;! 1Rk R2n( )4, Ran Ry n Rnetns

= (l‘:AA2 ® £A2A3 ®]I® )Rn ln n— 2n . R}n( ) RSn Rn—Z,an—l,nv
=--~=L~AA2®L~A2A3®"'®TA,H®]I®"" (171)
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Therefore, we have proved (160). Equations (161)—(163)
can be proven using the same method. [

4. Geometric interpretation

We have just shown that the braiding induced by the R
matrix can be explicitly written as a parallel transport along
the ribbons using AN,(2) or AN-1(2) holonomies.’
Indeed, Eqgs. (160)—(163) tell us that the algebraic definition
of a tensor operator written in terms of the R matrix can be
replaced by a definition which has a very natural geomet-
rical interpretation when working with ribbons.

Let us illustrate the geometrical definition of the tensor
operator "% given in (160) in terms of parallel transports
by Ls. We put consecutively the ribbon edges, so that they
share a vertex. Let us deal again with the case where all the
links are incoming. The construction is illustrated in Fig. 8.

The first step consists in identifying a reference point.
This corresponds to choosing a cilium. We naturally choose
the reference point to sit on the ribbon edge R(e;). The
construction of the spinor operators will depend on the
orientation chosen for the ordering of the ribbon edges:
counterclockwise or clockwise starting from R(e; ). Indeed,
the source point can be the left or right end point. (Left or
right end point is specified by sitting at the vertex in I" and
looking towards the outgoing direction of the relevant
edge.) Let us choose first the right end point to be our
cilium as in Fig. 8(a) (the vertex in red). This means that
(D% is the reference spinor. We choose to order the ribbons
counter-clockwise which is the orientation consistent with
the definition of the spinors given in Proposition 8.

Indeed, the parallel transport by L indicates that we take
7,—which sits at the left end point of R(e;) since the right
end point of R(e,) is identified with the left-end point of
R(e;)—and transport it to the reference point.

We proceed recursively with other ribbons. The object 75
sitting at the right end point of R(e3), which is identified
with the left end point of R(e,). We can transport 73 using
L to @%, and so on and so forth.

Therefore, the geometrical construction of the spinor
operator ("7 is obtained by parallel transporting 7,, which
sits at the right end point of ribbon R(e,,), along the ribbon
short sides using the Ls to go from the right end point to the
left end point of each ribbon until reaching the reference
point [the right end point of R(e;)].

If instead we choose the cilium to be at the left end point
of ribbon 1, this means we use as a reference t. This means
that we order/add ribbons now in a clockwise manner. This
is illustrated in the Fig. 8(b).

Now let us discuss the case when the edges do not have
the same orientations.

"Recall the matrix elements of AN, ¢(2) and AN ;-1 (2) are given
by the generators of U/, (81(2)).

(a) (b)

FIG. 8. The choice of cilium is given by the red bullet. In (a),
the orientation is anticlockwise, while in (b), the orientation is
clockwise. This choice matters since we usually order the tensor
product from left to right.

5. Flipping ribbons, again
We again drop the ¢ spinor decoration since it does not
bring anything to the present discussion. As discussed in
Sec. VIC, when we flip the orientation of the ribbon, the
exchange of variables is performed by / such that
I(t)=t, I(7)=*,

I(L)=S(L), I(L)=3(L).

(172)

When flipping the orientation of an edge in Proposition 8, it
is thus enough to apply the operator /, but only to the factor
of the tensor product that corresponds to this edge.

For instance, consider n = 2 and reverse the orientation of
the edge 2 only (not 1). Then applying / on ribbon 2 (which
we henceforth denote /,) to the last line of (160) gives

@y =L(L,2 @ 7p) = Lu% @ 1(75) = L% @ 13
(173)

and to the last line of (162),

@ty =S(0),% @ t. (174)

The geometric picture is as follows. The first relation
(173) consists in the case where the cilium is at the right end
point. Because ribbon 2 is flipped, we have 7, that stands at
the right end point of ribbon 2, which is identified with the
left end point of ribbon 1. We then parallel transport 7,
using L on the sector 1 [see Fig. 9(c)]. The same applies for
(2)t,, when the cilium is taken as the left end point.

Consider now the case where it is ribbon 1 which is
flipped (outgoing) but ribbon 2 is not (it is incoming), see
Fig. 9(b). We thus apply I to the first factor of the tensor
product in the last lines of (160) and (162),
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(a) We transport T using L to the cilium (in red) to define
a spinor V7.

(c) We transport T2 using L to the cilium (in red) to recover
spinor @,

(b) We transport T using S(L) = L to the cilium (in red)
to recover a spinor (9T

(d) We transport 5 using S(L) = L to the cilium (in red)
to define a spinor ().

FIG. 9. The choice of cilium, the right end point of ribbon 1, is given by the red bullet. In each case, we transport the relevant spinor
living on the right end point of ribbon 2 using the holonomy in ribbon 1. We recover the same spinor in each case as in the

unflipped case.

@7, =1, (Ly% @ 73) = S(L),% ® 5.

@ty = S(I(L)),* ® ts = La" ® T (175)
In the first case, we take the cilium to be the right end point
of ribbon 1, which is decorated by the spinor z;. On the
right end point of ribbon 2, identified with the left end
point of ribbon 1, we have 7,. We can define a spinor
operator by transporting 7, to the cilium through S(L), that
is (S(L)),? ® 7.

When both ribbon 1 and ribbon 2 are flipped, see
Fig. 9(d), we use the map I,,, which flips the sectors 1
and 2. As we just discussed, we can define the spinor as

@z, =1,(LsP ® 75) = S(L) 4 ® 73,

@ty =1(S((L)4% @ T) = La® @ ty. (176)

We still take the right end point of ribbon 1 as the reference
point, we have now 7, sitting at the cilium. At the right

end point of the ribbon 2, coinciding with the left end
point of ribbon 1, we have 7,. We can define a spinor
operator by transporting 7, to the cilium through S(L), that
is (S(L)),8 ® 5.

To summarize, the definition of the spinor operator
on different ribbons does not depend on the orientation
of the edges, since for example L and S(L) are the same
operators and so are 7 and 7. So (176) is the same as (173)
and (174).

E. Observables

We will now proceed to the quantization of the observ-
ables defined in Sec. I'V. The first part of this subsection has
already appeared in [12,26,29]. The spinors are promoted
to spinor operators as we have discussed previously. The
scalar product is obtained by contracting with a Clebsch-
Gordan coefficients projecting the tensor product of two
spin 1/2 representations to the trivial representation.
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Proposition 8. The quantization of the general observ-
able (79) living on the edges e; and e; with i < j is given
by, up to some overall normalization constant,

;( 1)t 4g=2 0 DET for 0; = 0, =-1
Fee = %:( 1):t4g=20F U for 0; = —0; =1
%:( 1)7H4¢~307% 7] for 0, = 0; = 1

(177)

Since the quantum operators 7¢ and 7¢ have the same
matrix element, or as we discussed in Sec. VI C the spinors
are invariant under the flip of the ribbon, the observables for
the different orientations in Proposition 9 are actually the
same.” A natural question to enquire is the algebra that they
satisfy, if they satisfy one. One can indeed check that if we
were to build observables from the fluxes, the algebra of
observables would not close (even with no quantum
deformation [19]). The great advantage of using spinor
variables is that they provide a closed algebra of observ-
ables [19,21,24]. In the nondeformed case, the algebra of
observables is given in terms of the 80*(2n) Lie algebra
[24], where n here stands for the number of edges meeting
at the vertex of I'.

If we denote the generators of 80*(2n) by e, fi;.

fijsi,J =1,...,n, then their commutation relations are

leij. ext] = Bjeei — Byex;s leijs fral = uf jx = Oixf j1-
leij. ful = 8ufiur = 8uf ixs

[f:p kl} =9; j1€ki + 5kelj 5'k€1i - 5ilekj7

[fij fal = [Fijs Frul = 0. (178)

We can identify u(n) as a Lie subalgebra generated by {e;; }.

We want to show now that a similar statement holds in the
deformed case; i.e., we have a deformation of the 80*(2n)
algebra, which contains a deformation of the u(n) algebra.
The deformation of the 1t (n) algebra was already identified in
[29] using the R-matrix formalism. We extend here the
construction to have the full deformation of 30*(2n). We are
first going to recover the deformed substructure U, (1(n))
then the full deformed algebra U/, (80" (2n)).

Given a semisimple Lie algebra, its deformation is given
in terms of the Serre-Chevalley relations [33]. The (Cartan-
Weyl) generators are constructed by induction.

8We remind the readers that the observable defined in (177) is
not the same as in [30] for different orientations. Here the E,;s are
defined in the same way for different orientations of e; and e,
while they are defined differently in [30] for a uniform action on
the intertwiners for different orientation cases.

We have constructed a set of observables using the spinor
parametrization. As we discussed, we can obtain different
parametrizations because we can use different types of
parallel transport, either L or S(L)'. Hence in terms of the
spinor parametrization, we also have some arbitrariness in
terms of the explicit expression of the observables. We
know that at the classical level these observables form
the algebra 80*(2n). Hence we could apply the Serre-
Chevalley induction for the deformed case. The goal is
then to relate this construction to the parametrization in
terms of the spinors. We are going to show that the Serre-
Chevalley construction picks exclusively the parallel trans-
port induced by S(L)". Let us recall more details on the
Serre-Chevalley induction process to fix the notations.

The definition of the U/, (1(n)) from the Cartan-Weyl
generators &;; is as follows [41]. We first specify the
Chevalley set of generators containing n — 1 raising, n — 1
lowering, and n — 1 diagonal generators, denoted, respec-
tively, as &;;,1, £;-1, and &;, which satisfy the following
commutation relations:

[51‘7 5.,‘] =0, [51‘7 5j.j+1] = (5ij - 5i.~j+1)5j.,j+1a
€1 €1 jl = (6ijr1 = 0i5)E 41 s
[Si,i+lv€j+l.j] = 511;'[51‘ - 5i+1]~ (179)

The remaining Cartan-Weyl generators &;; and £;; with j >
i + 1 are defined recursively as follows:

Njg

Ei=q 7 (&Em€im ) — 61%5,‘—1,]55,;—1)’ (180a)

Njy

Ei=q 7 (& 01810 4_55/—1,,'5/',/'—1)- (180b)

By the Jordan map, the Chevalley set can be defined in
terms of the ¢ bosons (a;, a;,b;. b}):

1 1

Np;=Np,, ~Na;+Na,
Eiiv1 = alTaiJrlq T bTbin] T
¥ Np;=Np —Na;j+Na;
Eivij=aa;,q~ 7 "+ b1b1+1q — & =N;+1,
(181)

and the other generators in terms of the g bosons can be
deduced from (180). It is apparent that the definitions (181)
and (180) of the quantum operators £;; and their quantum
algebra given in (179) are the quantized version of the
definitions (82c), (82d) and (83d), (83b) of the quadratic
invariant observables e;; and their Poisson algebra (87),
respectively. In particular, the quantum and Poisson alge-
bras are related by [£;;, Ey] = in{e;;. ey} + O(A?). We can
then identify directly the relations between the U, (u(n))
Chevalley set of generators and the quadratic operators
constructed from the deformed quantum spinors. They
simply are
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BT =& Ej =& E=[&-1], E;" =& +1] (182)
For the remaining Cartan-Weyl generators in terms of the quantum spinors, one can make use of the quantum fluxes to
connect the spinors from distanced sites. The result is given in the following proposition.

Proposition 9. The Cartan-Weyl generators &; ;. , and &;.,; of U, (u(n)) for any p € N* can be expressed with the
quantum spinors at sites i and i + p and the quantum fluxes for ribbon edges connecting them. Explicitly, they can be
written as

n- Nitk p—l ~
Eiivp =41 A“‘l Z (- 1 “12t+ 'y H(S(Li+k)T)A,+k | ‘“‘TIH;A,W X (183)
A A1+l k=1
s i+p
Zl:l Nitk Aj ~ v ~ .
Eivpi=q = Z (—1)%_/4‘6]T vy (S(Li+k)‘)A,.+k,1A’*" E,,A,ﬂ, - (184)
ApAigr k=1
Aigp
Proof.—Notice that the following relations are satisfied:
~ 7 1o o N lp B ~ — N 1 _ACFEY -
Fatp — @yt = a7 (1) P (S(L)), 78 = g7 (= 1) g H(L]), ™ (185a)
. oy o Ni ~ Ni I, & -
Gty — aT st = g4 (—1): A (S(L s =q7 (- 1) Bq ( ) k. (185b)

Using the scalar operator of two spinors at the same corner to define the /,(1(n)) generator

Ai ~ g Aie
Eiiv1 = Z (_1)%+Aiq7ti—Ai1i+1,Ai’ Eivri= Z (_1)5 Alqzti,—A,T?;l,A,» (186)
A=l A=%)
and the induction, one can show the validity of (183) and (184). [

We extend the construction to include all the different types of observables and verify that the observables E; < are the
generators of U, (80" (2n)), which is the ¢ deformation of the algebra 80*(2n) [24]. Denote for different sectors ; and e; for
the quadratic operator Efjef as

Ei=&=N;+1, Eiivp =ET, Eipi=E T,
fi,ier Ez_z;p’ fi+p.i = _-7:1',1'+p7 ﬁl itp 't E:rzip’ J%ier,i = _ﬁi,i+p' (187)
Proposition 10. The operators F; ;. , and Fiis » With p > 1 defined in (187) satisfy the recursion relations in terms of
&;j as follows:
1 _Nivt —1
fi,i+p = (]:i,i+p—15i+p—1,i+p - q25i+p—l,i+pfi.i+p—l) =4q 7 (j:i+1,i+p5i+1,i -q 25i+1,ifi+l,i+p)v (188a)
Nit1

~ ~ 1~ Nit1 ~ 1 5
Fiivp= (6i+p.i+p—l-7:i,i+p—1 —q 27:i,i+p—15i+p.i+p—1) =q:? (gi,i+1~7:i+1,i+p - qui-&-l,i-&-pgi.i-&-l)' (188b)

The operators &; 1, Fi;1» and F;,; ., defined in (187) form the generators of U,(80%(2n)), which is a closed algebra.
These generators satisfy (179) and the following commutation relations.

EiinF i — a2 F & = i Fitriots G2 i Fjj = Fj it = —61j.1q 3 Hlfi,i+2’
5i,i+1fj.j+1 _q%j:-j,j+lgi,i+l z, 1Q_LI}—: 25 q%5i+1,ij:-j,j+l _ﬁj,j+1£i+1,i = _5i,j+1-7:i+1,i—1a
(i Fjjral = =i+ 6ij11)Fj jras €5 F i) = (8 + 8101 F i
[j:i,i+lv*7~_-j.j+1] = 5ij([8i +gi+1]> _5i,j—15i+2.i _6i,j+15i—1.i+1’ []:i,i+1~7:j.j+1] = []:—i,i+1~7:—j.j+1] =0.
(189)
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The first two lines can be seen directly from (188). The
rest of the commutation relations can be calculated with the
definition (187) of the generators and the relation between
the spinors and the flux as shown in (185). The commu-
tation relations (189) are quantum versions of the Poisson
algebra (88) and are consistent with (178) when ¢ — 1. In
this sense, we view the operators &; ;. 1, F; ;1 and F iit1as
the generators of U, (80*(2n)).

VII. CONCLUSION

In this article, we have considered the framework of
deformed lattice gauge theory introduced in [15,26], both
classically and quantumly. Our key focus was the definition
of a complete set of local observables that are defined for any
pairs of edges incident to a vertex. At the classical level, they
are defined using the spinors first introduced in [13], while
the quantum aspect was touched in [29]. Any functions of the
standard holonomies and fluxes can be written in terms of
those spinors, hence any observables (invariant functions).

In this paper, we have performed the full quantization
of the spinors into spinor operators, and we have proved
that it is possible to construct the quantum holonomy and
flux operators from them. The quantization relies on the
structure of both U, (81(2)) and U -1 ($u(2)) [and SU,(2)
and SU_-1(2)].

We were thus able to quantize the local observables. In
particular, they are invariant objects at the quantum level.
Interestingly, we noticed that the conjugation by the
quantum R matrix, which is used to build tensor operators
on tensor products, can instead be implemented as parallel
transport by the variables L that are around the vertex.
While it may not come as a surprise for experts in integrable
systems, where the L operators (7 operators in the standard
notation of integrable systems) and the R matrix come
from [40], we find that this observation provides a neat
geometric interpretation to the use of the R matrix in the
gauge theory setting. It also simplifies explicit calculations,
as the 'R matrix can thus be bypassed. This was already
noticed in [26] and further used in [30].

Around each vertex of the lattice, we have shown that the
set of quantum local observables forms a deformation of the
algebra 80*(2n), with a U,(u(n)) subalgebra. This is
obtained by proving the Serre-Chevalley relations, which,
as we found, picks the parallel transport by S(L)" to
implement the conjugation by the R matrix.

As a first application of this setup, we have equipped the
gauge theory with the dynamics of 3D quantum gravity
with a cosmological constant in [30]. Indeed, we consid-
ered the Gauss law, which enforces restriction to observ-
ables, and the Hamiltonian constraints as dynamics. The
latter are matrix elements of the holonomies around faces in
the spinor basis. They can be rewritten as sums of products
of the present local observables over the vertices that are
along faces. We have then performed the quantization of

the Gauss law and of the Hamiltonian constraints. They
give rise to difference equations in the spin network basis,
from which we were able to derive the building blocks of
the Turaev-Viro model as the changes of the coefficients in
the spin network basis under Pachner moves. There are
even more interesting followups we could consider.

A. Generalization of the spinor formalism

The spinor formalism is tied to the specific choice of group
we considered, namely SU(2) and its deformation. It would
be interesting to explore in which way the algebra of
observables extends for a general Hopf algebra. More
specifically, one could use a specific class of representations
[such as the fundamental representation for SU(2) and its
deformation] to construct the notion of local observables, i.e.,
quantities defined on vertices that are invariant under the
action of the dual Hopf algebra. It would be interesting to
develop this in the finite-dimensional case with finite groups
for example. The construction was already done in the
undeformed, noncompact group case SU(1,1) [14].

B. Application to Yang-Mills or Kitaev models

The local observables we have introduced come as a
deformation of local observables, which were found in the
context of loop quantum gravity. They have been extensively
used to get a better understanding of the quantum nature of
discrete geometries: the dynamical aspects [12,29,31]. It
would be interesting to see how this approach could be
relevant for other frameworks that also rely on the lattice
gauge theory setup. As a first example, we would be
interested in exploring how we can reformulate the
Hamiltonian of the Kitaev model in terms of such observ-
ables. This was already proposed in [31] where the authors
used coherent states in the flat case. With a proper choice of
(quantum) group, the Kitaev model can be seen as a model of
3D gravity with particle excitations. Therefore such a
reformulation would provide some interesting insights on
how to include matter (spin or mass excitations) within the
dynamics in 3D gravity.
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APPENDIX A: EXPLICIT POISSON BRACKETS FOR HEISENBERG DOUBLE SL(2,C)

In this appendix, we collect the Poisson brackets for the SU(2) holonomies (u, if) and the AN(2) fluxes (¢, #) of the
phase space described in Sec. II. The Poisson brackets read

{21, 62} = [, 6123, {t1.uy} = €121y, {u. 62} = trruy, {up, uy} = =[r,uyuy),

(71,62} = [r1.4173), {011} = —iyry 2y, (@, 65} = ayrés, {ir, d} = [r.iyi1y),
{41, i} = —ry i, {71, w2} = =2 1uyryy, {u. 02} = Couyr. {a,, 62} = riy .
{71,602} =0, {idr ur} =0. (Al)
It is important to note that (A1) is not enough to describe the full Poisson structure. Notice that the an(2) Lie algebra is
preserved under 7° — ('), one can switch r — r' = —r,, in (A1) and write the Poisson brackets
(€1, 62} = =Cirty + e, ‘ {¢1,65} = [, £125), {¢1,uy} = —rtu,, {¢],i,} = ~¢}rity,
{flyf;}:_flr21£§+f;r21flv {/1(,?/22}:0, {ul’f;}:rﬂulf; {ﬁhf;}:f;rzﬂzl»
{ET,zz}:Zirlgz—gerT, {ZT,fz}:O, {E}L,uz}z—uzrgi, {gf,ﬁz}:—l/ziﬁzr,
{51725}:021’”212;—2&2121, {I/ZT,LZ;}I—[Vzl,I/ZJ{??ZL {ulag;}:ulrﬂg; {ﬂhbz;}zﬁlbzgrzl-

(A2)

We parametrize them into 2 x 2 matrices

(A =GR G G W

where 1,1 € R* and other parameters are complex. With this parametrization, the Poisson brackets in (A1) and (A2) are
explicitly

{4z} = %Kﬂz, {4z} = —%Kﬂz, {z,2} = ix(A* = 272).
(@t =-5ap. {ap)=-5ah. {wa) =i
{@p}=3ap. {ap)=5ap {ppr=0

{ha}=-Tda. {aay=TJa LBy =T (4B =-TIp

(ra} == Carar'p). (pah =" (2p) =3 (2B} =G D4,
1,7} = —%"Zz, {7} = %KZE, {2,2} = —ix(22 = 172)

(@f)=2ah {apr=5ah {a.d)=-ipf

(@py=-3ap {afr=-2ap PAr=o0,

ay=-%ia (hay=Tia 2R =-TIh (LB =TIk

{z,a}:%za, {Z,&}:—%K(Z&erﬁ), {z,ﬁ}:%czﬁ, {Z,E}:—%(Zﬁ—dd),
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(hay=-Sa @y =Sa R =5i 0B ==

() =Fea-ap). {2d)=-Gaa (2P == (eB) =54,

(@) =i (@) =-G@EE-4D. (2 =-GEhraa). (1) =7
(Ray=-Fa. {Lay=57a {Lpy -5 0B =57P

(o} =T {za)=GGEa—aTp). (@p) == (2P} =5 Pl a)

(L) =-FCa-alp). Ga)=ia (Lp)=-FE+aa. GR=FI (a9

and others vanish. These explicit Poisson brackets are used
to check the validity of the spinor parametrization in
Sec. 1L

APPENDIX B: U, (31(2)) AND SU,(2)

We work with a real deformation parameter ¢ = ¢*” that
includes the quantum parameter # and the cosmological
constant information encoded in k. The key point is to realize
|

KI.K™' = g%/,

Vi J]=

[
that the classical dual pair (SU(2)* = AN(2),SU(2)),
whose Lie algebra structures are encoded by the classical
r matrix, can be g deformed into a pair of quasitriangular
Hopf algebras, (U,(81(2)),R) and its dual (SU,(2).R).
Let us first recall their definitions.

Definition 1. (¢/,(81(2)),R). The quasitriangular
Hopf algebra (U/,(81(2)), R) is generated by the identity

and J ., K = qJTZ with the relations

It forms a Hopf algebra with the following coproduct and antipode

AJL) =l ®K+K'®J., AK):=

KQ®K,

2], with [o)=L "9 (B1)
qi —_ q_i
S(Us)=—q2J.,  S(K)=K". (B2)

while the counit ¢ is defined by eK =1 and eJ. =0. It is furthermore quasitriangular, with the R matrix

ReU,(8u(2) @ U, (8u(2)):

- 1 —g! )}’l n(n—
_ 1., (1-¢
q § [n] | q
n=0

)

(7T ® (g73I)"

(B3)

The R matrix is the quantum version of the classical » matrix and it satisfies the QYBE

R12R13R23 = R23R13R12’

(B4)

where we have used the standard notation R, =) Ry ® Rp) ® LRy =D I® R(1) ® Ry, Riz = 2Ry ®

I® R(z)

Thus the R matrix (B3) takes the form

. In the fundamental representation (j = 1/2), the generators are represented as 2 x 2 matrlces

pur= (1 o) =

0 1 g 0
)= ) (B5)

0 0 0 qa

0
(q7 = q72)

. (B6)

q4

0 qi
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Clearly, the classical r matrix (3) in the fundamental representation is recovered at the first order,

R=1Q1I+ iAr+ O(h?).

(B7)

We are particularly interested in the I/, ($1(2)) elements written as 2 x 2 matrix operators. These elements, denoted as

0* ={(q7)j €Uy (8u(2))(i. j = )}, are [42]

Q+_< K 0 )
g —g . K

The coproduct and counit of QF are given by
AQT)=0"®0", €0 =L
They satisfy

OFO5R = RO5 OF,

e, A(

Q_ _ (Ko_l —qZ(qi I_< q_i)]_ ) ) (Bg)

(@)) =D (g5 ® (¢, e((g®); =6 (BY)
k

070, R = RQ; 0. (B10)

U,1(31(2)) is generated by the same generators as U, (81(2)) with the same commutation relations (B1) but possessing

a different coproduct and antipode, denoted as A and §. They act on the generators as

A(J:t) = Jﬂ: ® K_l +K®Ji,

The two coproducts and two antipodes are related by

A=0coA, S=s1

where ¢ is the permutation operator acting on the tensor
space as 6(a @ b) = b ® a.

U,1(8u(2)) can in fact be represented on the repre-
sentation spaces of /,(811(2)). Indeed, since ¢ numbers are
invariant under the exchange ¢ <> ¢~', as algebras
U,(8u(2)) and U, (8u(2)) are isomorphic. The isomor-
phism between generators is given by

S(T) = < Ly —t_y

] >A(T):T®T, e(T) =1,
—qt . f__

A(K) =K Q K,

SUi)=—-q"Jy,  S(K)=K"'.  (Bll)

Jy=Jy, K¥! = K+, (B12)

where the tilde is used for ¢/, (8u(2)).

Definition 2. (SU,(2).R). The dual quasitriangular
Hopf algebra (SU,(2), R) is generated by the identity and
the coordinate functions 7" = (j- ;:) on the space of 2 x 2

matrices satisfying
RT1T2 - T2T1R, (B13)

where R is defined in (B6), and quotient with the ¢
determinant det, T'=1__t,, — gt +t,_ =1 The anti-
pode, coproduct, and counit are given by

i.e., A(tlj) = Zlik ® tkjv e(tij) = 51']" lv.] =+
k=+

(B14)

This Hopf algebra is dual quasitriangular with the R matrix defined in (B3), which is viewed as a map

R:SU,(2) ® SU,(2) = C.

The commutation relation (B13) is equivalent to the following relations:

[t =q it 1 _,

il
Ll =gt

It =qit, 1 _,

t_+t+_ - t+_t_+,

1
ity =gty

[oty) = —( = q )ity (B15)

The duality between U/, (811(2)) and SU,(2) can be represented by the bilinear map between the operator matrices Q=
and T [42] (see, e.g., [33] for a more detailed proof of the duality relation):

026014-36



LOCAL OBSERVABLES IN SU,(2) LATTICE GAUGE ...

PHYS. REV. D 107, 026014 (2023)

(T\,07) =R, (T\,07)=R;, ie,

where R21 —0coR= ZR(z) ® R<1>

(t';, (")) = R'; 5

(. (g7)) = (R7Y)5. (BI6)
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