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The recent holographic deduction of the Penrose inequality only assumes the null energy condition,
while a weak or dominant energy condition is required in the usual geometric proof. We take a step toward
filling the gap between these two approaches. For planar or spherically symmetric asymptotically
Schwarzschild anti-de Sitter (AdS) black holes, we give a purely geometric proof for the Penrose inequality
by assuming the null energy condition. We also point out that two naive generalizations of the charged
Penrose inequality are generally not true, and we propose two new candidates. When the spacetime is
asymptotically AdS but not Schwarzschild-AdS, the total mass is defined according to holographic
renormalization and depends on the scheme of quantization. In this case, the holographic argument implies
that the Penrose inequality should still be valid, but we use a concrete example to show that whether the
Penrose inequality holds or not will depend on what kind of quantization scheme we employ.
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I. INTRODUCTION

In general relativity, there are many well-known univer-
sal inequalities, such as the Penrose inequality [1,2], the
positive mass theorem [3,4], the second law of black
holes [5,6], and so on. As a theoretical test, the Penrose
inequality is related to the establishment of cosmic censor-
ship. Specifically, given the ADM mass or energy M of a
four-dimensional asymptotically flat spacetime which con-
tains a black hole as the initial data and denoting A to be the
minimal area of the surface enclosing the apparent horizon
σ, the Penrose inequality states that the spacetime’s total
mass M should be at least

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16π

p
and the saturation

appears only when the exterior is Schwarzschild. As
pointed out by Ref. [7], the apparent horizon area, in
general, may not satisfy the Penrose inequality. Penrose’s
argument [8] is as follows: If we wait a very long time, the
black hole will eventually settle down to a Kerr solution.
In a Kerr solution, the relationship between the black
hole’s mass Mkerr and the area of event horizon Aev is
Mkerr ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aev=16π

p
. Under this evolution, the black hole’s

mass, which is described by the Bondi mass, cannot
increase. Assuming cosmic censorship and appropriate

energy conditions, the apparent horizon either lies within
or coincides with the event horizon. Combining with the
second law of black holes that states the area of the event
horizon cannot decrease, Penrose found his inequality
immediately:

M ≥
ffiffiffiffiffiffiffiffi
A
16π

r
: ð1Þ

It is worth noting that the above argument is based on a lot
of mathematical or physical assumptions. Although math-
ematicians have proven that the Penrose inequality is true in
certain cases, there is no general proof for the Penrose
inequality(see, e.g., Refs. [9,10]).
Taking the same argument, we can also conjecture the

Penrose inequality for four-dimensional asymptotically
AdS spacetime [11]:

M ≥
�

A
16π

�1
2 þ 1

2l2
AdS

�
A
4π

�3
2

; ð2Þ

where M is the total mass or energy defined according to
holographic renormalization and A is the minimal area to
enclose the apparent horizon σ for this asymptotically AdS
spacetime. Here we have absorbed the Casimir energy [12]
into the definition of total mass. When the black hole is
described by the Schwarzschild-AdS solution, the inequal-
ity takes an equal sign. Another way to phrase this
conjecture is as follows: Given the same mass, the minimal
area to enclose the apparent horizon is bounded by the area
of the AdS Schwarzschild black hole’s horizon. In holog-
raphy, the bulk’s geometry is dual to the two asymptotical
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boundary’s QFT state [13,14]. For each boundary’s reduced
density matrix, its holographic entropy is proportional to
the area of the black hole’s apparent horizon [15,16].
Moreover, given the same total mass M, Ref. [17] shows
via holography that the boundary’s QFT state dual to the
Schwarzschild-AdS black hole has the maximum entropy.
Consequently, from the above basic holography’s argu-
ment, the AdS Penrose inequality can be

A ≤ maxA ¼ Asch: ð3Þ

Here Asch stands for the horizon area of the Schwarzschild-
AdS black hole with the same total energy. This idea was
recently used by Ref. [18] to argue the Penrose inequality in
asymptotically AdS spacetime. We note that Refs. [17,18],
though, discussed the AdS black hole in which the cross
section of the event horizon has spherical topology,
regardless of the topology of the event horizon. Thus, if
one follows their discussions, one obtains generalized
Penrose inequalities of asymptotically AdS black holes
with planar or hyperbolic topologies.
For charged black holes, one might wonder if the

charged generalization for the Penrose inequality can be
argued with Penrose’s original idea. However, this does not
work for the charged cases. Given the initial data mass M
and charge Q, the relation between the initial total massM,
the final black hole mass MRN, and the final event horizon
area Aev, before using the second law of black holes, is

M ≥ MRN ¼
�
Aev

16π

�1
2 þ 1

2l2
AdS

�
Aev

4π

�3
2 þQ2

2

ffiffiffiffiffiffiffi
4π

Aev

s
: ð4Þ

Here we assume that no charge can be radiated away.
Assuming cosmic censorship and appropriate energy con-
ditions, the event horizon area Aev is larger than the
minimal area A of the surface enclosing the apparent
horizon according to the second law of black holes, i.e.,
Aev ≥ A. If the right-hand side of the inequality (4) is a
monotonically increasing function of area, then we would
obtain the charged generalization proposed by Ref. [11],

M ≥
�

A
16π

�1
2 þ 1

2l2
AdS

�
A
4π

�3
2 þQ2

2

ffiffiffiffiffiffi
4π

A

r
: ð5Þ

Unfortunately, such monotonicity is not so obvious.
Thus, one should not be surprised if the charged generali-
zation (5) is broken in some cases. In fact, counterexamples
of (5) have been reported by Refs. [19,20] for the case
lAdS → ∞. Though the original idea of Penrose’s is invalid,
the logic of the holographic argument proposed by
Ref. [18] still works. If such a holographic argument is
really true, the minimal area A would be bounded by the
event horizon area of Reissner-Nordström (RN) black holes
if fixing the total mass M and charge Q,

AðM;QÞ ≤ ARNðM;QÞ: ð6Þ

This is a different generalization of the Penrose inequality,
which was holographically argued to be true by Ref. [18].
Although the recent holographic argument for the

Penrose inequality does not need to assume cosmic censor-
ship, it requires matter to satisfy the null energy condition
in the bulk1 [18]. However, in recent years the Penrose
inequality has been proven in certain cases, including the
asymptotically AdS spacetimes, which require that a
dominant or weak energy condition [11,21,22]. Both
dominant and weak energy conditions are stronger than
the null energy condition. This forms a gap between the
holographic argument and current geometric proofs on the
Penrose inequality in asymptotically AdS spacetime. If
matter decays rapidly enough near the AdS boundary,
the total mass M and minimal area A are geometrically
well defined. The Penrose inequality in this case becomes
a purely geometric inequality. Since the argument of
Ref. [18] uses the conjecture of holography, if its con-
clusion is true, then it is necessary to ask the following: Is it
possible to find a purely geometric proof for the AdS
Penrose inequality under the null energy condition without
referring to the unproved conjecture of the holographic
principle?
According to the holographic argument for charged

black holes, RN black holes will have the maximum
entropy, so the charged generalization is given by
Eq. (6). If setting the AdS radius lAdS to infinity, the
charged generalization (6) will follow the generalized
Penrose inequality in asymptotically flat spacetime,�

A
16π

�
1=2

≤
1

2

h
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p i
: ð7Þ

However, there are also counterexamples [19,20] for such
a charged generalization (7). Thus, we believe that the
charged generalization (6) from the holographic argument
is not generally true under the null energy condition. What
is the correct generalization for the charged case? Such
counterexamples also give us enough motivation and
necessity to seek purely geometric checks for the con-
clusions obtained from the holographic principle.
So far we have assumed that matter decays rapidly

enough near the AdS boundary and that black holes are
in fact asymptotically Schwarzschild-AdS black holes.2

Both total mass3 M and the area of the minimal

1The Penrose inequality focuses on the black hole’s horizon
and its exterior. More precisely, the matter should satisfy the null
energy condition in the black hole’s exterior.

2“Asymptotically Schwarzschild-AdS” is stronger than
“asymptotically AdS”, see Ref. [23].

3In the following proof, we will not distinguish between ADM
mass and Bondi mass since the ADM mass is equal to Bondi
mass for static asymptotically Schwarzschild-AdS black holes.

ZI-QING XIAO and RUN-QIU YANG PHYS. REV. D 107, 026013 (2023)

026013-2



surface4 A are determined by the bulk’s geometry in this
case [24]. If matter does not decay rapidly enough, the
spacetime may still be asymptotically AdS but not asymp-
totically Schwarzschild-AdS. In this case, the situation is
complicated. For instance, the existence of matter on the
AdS boundary will contribute to the total mass for
asymptotically AdS black holes according to holographic
renormalization; see, e.g., Refs. [25,26]. Since the total
mass obtained from the holographic renormalization is not
determined by bulk geometry, can the null energy condition
in the bulk still guarantee the Penrose inequality?
This paper aims to answer the question above (at least

partially). For static asymptotically Schwarzschild-AdS
black holes, we prove that the null energy condition can
guarantee the Penrose inequality only for planar or spheri-
cal horizon geometry cases; however, to guarantee the
inequality for the hyperbolically symmetric case, we have
to assume a weak energy condition. A concrete counter-
example is given to show that the Penrose inequality is
broken for the hyperbolic horizon geometry under the null
energy condition. This implies that the conclusions of
Refs. [17,18] implicitly depend on the topology of the event
horizon, though a more detailed reason is still unclear to us.
For a charged black hole, as we have explained, the naive
generalization (5) and holographic version (6) are both
incorrect. We then propose two kinds of charged general-
izations of the Penrose inequality. As we mentioned before,
the total mass is very subtle for asymptotically AdS black
holes. This paper follows the standard holographic renorm-
alization procedure [27,28], and we obtain the holographic
mass as the total mass. Without loss of generality, we
construct an asymptotically AdS black hole coupled to a
scalar field to check the Penrose inequality in holography.
When the source of the scalar field is nonzero, the
spacetime is asymptotically AdS but not asymptotically
Schwarzschild-AdS. In this case, we find that the null
energy condition is not enough to guarantee the Penrose
inequality. More precisely, whether the inequality holds or
not in this case depends on what kind of quantization
scheme we employ.
The organization of this paper is as follows. In Sec. II,

given the metric ansatz for static (dþ 1)-dimensional
asymptotically Schwarzschild-AdS black holes, we find
that the null energy condition guarantees the Penrose
inequality only for spherically and planar symmetric black
holes. In Sec. III, we propose two types of charged
generalizations for the Penrose inequality and prove them
in the static planar and spherically symmetric cases. In
Sec. IV, we construct a four-dimensional Einstein-scalar
gravity and numerically check the Penrose inequality with

two different quantization schemes for the scalar field
sector.

II. PROOF OF PENROSE INEQUALITY
WITH NULL ENERGY CONDITION

In this section, we propose a general version of the
Penrose inequality in (dþ 1)-dimensional asymptotically
AdS spacetime with the null energy condition and prove it
under spherically, planar, or hyperbolic symmetric cases.
But before the general proof, we first revisit the Penrose
inequality in Eqs. (1) and (2) in four-dimensional spacetime
and give some comments. In this paper, we consider three
kinds of topologies for the event horizon, which are
denoted by the parameter k. For asymptotically flat space-
time, only the spherical topology ðk ¼ þ1Þ can exist in a
black hole solution. However, in asymptotically AdS
spacetime, the black holes can have three topologies for
the cross section of the event horizon, i.e., the spherical
(k ¼ 1), planar (k ¼ 0), and hyperbolic (k ¼ −1) topol-
ogies. The Penrose inequality should then be generalized
into

M ≥
�

A
16π

�1
2

kþ 1

2l2
AdS

�
A
4π

�3
2

: ð8Þ

As pointed out by Ref. [11], there is nonzero Casimir
energy [12] for spherical and hyperbolic topologies. Here
we have absorbed the Casimir energy into the definition of
total mass to simplify our notations. For the hyperbolic and
planar geometries, the volume of the cross section will be
infinite, which will leave the inequality (8) meaningless.
However, for a static asymptotically AdS spacetime, we
can always choose the coordinate gauge so that the leading
term of the metric near the AdS boundary has the following
form:

ds2 ¼ −r2dt2 þ dr2

r2
þ r2dΣ2

k;d−1: ð9Þ

Here dΣk;d−1 is the transverse metric of the unit sphere,
planar, or hyperboloid defined by Eq. (15). We denote
Ωk;d−1 ≔

R
dΣk;d−1. For the event horizon, we can always

define an “effective” radius rh according to the equation

A ¼ Ωk;d−1rd−1h : ð10Þ

Similarly, we can introduce a “mass density parameter” f0
according to

M ¼ ðd − 1ÞΩk;d−1

16π
fd0: ð11Þ

Although both the total mass M and area A are infinite in
the planar and hyperbolic cases, we notice that the mass
parameter fd0 and the horizon radius rh are always finite.

4For stationary solutions, the apparent horizon will coincide
with the event horizon. So the minimal area to enclose apparent
horizon A is just the area of event horizon.

PENROSE INEQUALITY IN HOLOGRAPHY PHYS. REV. D 107, 026013 (2023)

026013-3



The Penrose inequality (8) can then be reorganized in terms
of the following inequality (see, e.g., Refs. [11,21,22]),

1

l2
AdS

þ k
r2h

−
fd0
rdh

≤ 0; ð12Þ

for general dimensional and all three different topologies of
the horizon. We then propose the following conjecture for
static asymptotically Schwarzschild-AdS black holes.
Conjecture 1. For a static asymptotically Schwarzschild-

AdS black hole, if (1) the Einstein equation is satisfied,
(2) matter’s energy momentum tensor Tμν satisfies the null
energy condition, and (3) the cross section of the event
horizon has spherical or planar topology, then the inequal-
ity (12) is true, and the saturation appears only if the
exterior of the event horizon is Schwarzschild-AdS.
Note that the parameters f0 and rh in asymptotically

Schwarzschild-AdS black holes will be determined com-
pletely by the bulk geometry, so we expect that there should
be a geometrical proof without referring to the conjecture of
AdS=CFT. If we recall the inequality (12), conjecture 1
then implies

fd0 ≥ rdh

�
1

l2
AdS

þ k
r2h

�
: ð13Þ

Combining this with the definition for the total mass (11),
we can see that the Penrose inequality is the stronger
version of the positive energy theorem if the cross section
of the event horizon has planar or spherical topology. This
is interesting and seemingly surprising since the local
energy density could be negative under the null energy
condition. In the following, we give such a geometrical
proof in spherically and planar symmetric static cases. We
also give a detailed counterexample to show that the
inequality (12) can be broken in hyperbolic topology if
we impose only the null energy condition.

A. Einstein equation in spherically, planar, and
hyperbolically symmetric cases

For spherical, planar, and hyperbolic symmetric geom-
etries, the metric ansatz for asymptotically (dþ 1)-
dimensional black holes is given by

ds2 ¼ −fðrÞe−χðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
k;d−1: ð14Þ

Here k ¼ 0;�1 represents different symmetric cases:

dΣ2
k;d−1 ¼

8>><
>>:

dΩ2
d−1 ¼ dθ2 þ sin2 θdΩ2

d−2 for k ¼ þ1

dl2
d−1 ¼

P
d−1
i¼1 dx

2
i for k ¼ 0

dΞ2
d−1 ¼ dθ2 þ sinh2 θdΩ2

d−2 for k ¼ −1:

ð15Þ

There is an event horizon5 for the black hole at r ¼ rh
which is the largest root of fðrÞ ¼ 0. The outermost
horizon condition will lead to f0ðrhÞ ≥ 0; i.e., the derivative
of the blackening factor fðrÞwith respect to r at the horizon
rh is non-negative. From the perspective of the thermal
ensemble, the temperature of the black hole is non-negative
because the temperature is given by

T ¼ e−χðrhÞ=2

4π
f0ðrhÞ ≥ 0: ð16Þ

In the following proof and following sections, we set
lAdS ¼ 1 for convenience. The energy momentum tensor
Tμ

ν has the form

8πTμ
ν ¼ diag½−ρðrÞ; prðrÞ; pTðrÞ; pTðrÞ;…; pTðrÞ�: ð17Þ

The Einstein equation shows the following three indepen-
dent equations:

f0 ¼ d − 2

r
k −

2

d − 1
rρ̂ −

ðd − 2Þf
r

; ð18aÞ

χ0 ¼ −
2r

ðd − 1Þf ðρþ prÞ; ð18bÞ

p0
r ¼

ðd − 2Þρ̂þ 2ðd − 1Þp̂T − dp̂r

2r

−
ðp̂r þ ρ̂Þ½p̂rr2 þ ðd − 2Þðd − 1Þk=2�

ðd − 1Þrf : ð18cÞ

Here we define some auxiliary variables fρ̂; p̂r; p̂Tg to
include the effects of the cosmological constants,

ρ̂ ¼ ρ −
dðd − 1Þ

2
; p̂r ¼ pr þ

dðd − 1Þ
2

;

p̂T ¼ pT þ dðd − 1Þ
2

: ð19Þ

The extra factor dðd−1Þ
2

is contributed by the cosmological
constant term Λgμν in the Einstein equation. As is well
known, in order to match the asymptotically AdS boundary
condition, the two functions fðrÞ and χðrÞ must follow the
asymptotically behaviors as

lim
r→∞

fðrÞ
r2

¼ 1; lim
r→∞

χðrÞ ¼ 0: ð20Þ

However, the “asymptotically AdS” boundary condition is
not enough for our proof. Moreover, we need the matter
to decay rapidly near the AdS boundary r → ∞ so that

5For a static solution, the outermost horizon will coincide with
the event horizon [29,30].
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the functions fðrÞ and χðrÞ satisfy the following asymp-
totically Schwarzschild-AdS boundary conditions:

lim
r→∞

fðrÞ
r2

¼ 1þ k
r2

− fd0=r
d þ � � � ;

lim
r→∞

χðrÞ ¼ χ0=rdþα þ � � � ; α > 0: ð21Þ

Here fd0 is the mass density parameter. The richness of the
asymptotically Schwarzschild-AdS black holes is reflected
in the dots of the above boundary condition. However, no
matter what the form of higher order terms, they will all
share the same ADM mass. By virtue of the asymptotic
behavior for fðrÞ and χðrÞ, we can define a “quasilocal
mass” mðrÞ for an equal-r surface:

mðrÞ ¼ k
d
½rd−2 þ XðrÞ� þ rdþ1eχ=2

2d

�
fe−χ

r2

�0
; ð22Þ

where XðrÞ is an auxiliary function

XðrÞ≡ ðd − 2Þ
Z

∞

r
½1 − e−χðxÞ=2�xd−3dx: ð23Þ

One can check that6

mð∞Þ ¼ fd0=2: ð24Þ

We can use the energy density ρ and transverse pressure
density pT to express m0ðrÞ. One can verify

m0ðrÞ ¼ rd−1e−χ=2

d
ðρ̂þ p̂TÞ ¼

rd−1e−χ=2

d
ðρþ pTÞ: ð25Þ

If the matter satisfies the null energy condition, combined
with Eqs. (18b) and (25), we can directly conclude that

χ0 ≤ 0; m0 ≥ 0 ð26Þ

and vice versa. The boundary condition (21) also implies
χðrÞ ≥ 0 and XðrÞ ≥ 0 outside the horizon, which we will
use in the following proof. Ultimately,m0 ≥ 0 andmð∞Þ ¼
fd0=2 imply that

mðrÞ ≤ mð∞Þ ¼ fd0=2: ð27Þ

At the horizon we have f0ðrhÞ ≥ 0, so Eq. (22) implies

mðrhÞ ≥
k
d

h
rd−2h þ XðrhÞ

i
: ð28Þ

We can conclude that the quasilocal mass mðrÞ is a
monotonically increasing function outside the black hole,

which takes the minimum value k
d ½rd−2h þ XðrhÞ� at the

horizon and the maximum value fd0=2 on the AdS boun-
dary. Let us discuss three different horizon topologies.

B. Planar geometry

For the planar horizon case k ¼ 0, the expression of the
quasilocal mass mðrÞ is reduced to

mðrÞ ¼ rdþ1eχ=2

2d

�
fe−χ

r2

�0
: ð29Þ

Solving fe−χ=r2 in terms of mðrÞ and χðrÞ, we obtain

fe−χ

r2
¼ 2d

Z
r

rh

mðxÞe−χðxÞ=2
xdþ1

dx: ð30Þ

When r → ∞, the boundary condition indicates that

1 ¼ 2d
Z

∞

rh

mðxÞe−χðxÞ=2
xdþ1

dx: ð31Þ

If the null energy condition is satisfied, then we have
0 ≤ e−χðrÞ=2 ≤ 1. Combined with 0 ≤ mðrÞ ≤ fd0=2 in the
planar case, the above equation becomes an inequality:

1 ¼ 2d
Z

∞

rh

mðxÞe−χðxÞ=2
xdþ1

dx ≤ d
Z

∞

rh

fd0
xdþ1

dx ¼ fd0=r
d
h;

ð32Þ

which is the Penrose inequality (12) for the planar
symmetric case.
The inequality is saturated only if χ ¼ 0 and m ¼ fd0=2.

From Eq. (30), we can solve fðrÞ in terms of χðrÞ andmðrÞ,
which are both constant in this case. The solution is

fðrÞ ¼ r2ð1 − fd0=r
dÞ; ρ ¼ pr ¼ pT ¼ 0; ð33Þ

which is exactly the metric of the Schwarzschild-AdS black
hole. Thus, we conclude that, for planar, symmetric, static,
asymptotically Schwarzschild-AdS black holes, if the null
energy condition is satisfied, then the Penrose inequality is
true and its saturation appears only if the black hole is a
Schwarzschild-AdS black hole.

C. Spherical geometry

In this subsection, we consider the spherical symmetric
(k ¼ 1) case. We first solve the function fðrÞ in terms of
mðrÞ and χðrÞ and obtain

fðrÞe−χðrÞ
r2

¼ 2

Z
r

rh

½dmðyÞ−XðyÞ−yd−2�e−χðyÞ=2
ydþ1

dy: ð34Þ6For instance, k ¼ þ1; d ¼ 3, and the total mass M is equal to
mð∞Þ ¼ fd0=2. This is why we call mðrÞ the quasilocal mass.
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When r evolves to ∞, the left-hand side of Eq. (34)
becomes unit one,

1 ¼ 2

Z
∞

rh

½dmðxÞ − XðxÞ − xd−2�e−χðxÞ=2
xdþ1

dx: ð35Þ

Similar to the planar symmetric case, we focus on the
integral on the right-hand side of Eq. (34). From Eq. (28),
we find mðrhÞ ≥ 0 because XðrÞ ≥ 0. Combining this with
mðrÞ ≤ mð∞Þ ¼ fd0=2, we then obtain

1 ≤ 2

Z
∞

rh

ðdfd0=2 − xd−2Þe−χðxÞ=2
xdþ1

dx: ð36Þ

Let r0 be the root of dfd0=2 − xd−2 ¼ 0; the condition
χ0 ≤ 0 ensures

ðdfd0=2 − rd−2Þ½e−χðrÞ=2 − e−χðr0Þ=2� ≤ 0 ð37Þ

which leads to

Z
∞

rh

ðdfd0=2 − xd−2Þe−χðrÞ=2
xdþ1

dx

≤ e−χðr0Þ=2
Z

∞

rh

dfd0=2 − xd−2

xdþ1
dx: ð38Þ

Combining this result with Eq. (36) then yields

1 ≤ eχðr0Þ=2 ≤
Z

∞

rh

dfd0 − 2xd−2

xdþ1
dx ¼ fd0

rdh
−

1

r2h
; ð39Þ

and the Penrose inequality (12) follows. The inequality is
saturated only if χ ¼ 0 and m ¼ fd0=2, which leads to

fðrÞ ¼ r2ð1þ 1=r2 − fd0=r
dÞ; ρ ¼ pr ¼ pT ¼ 0:

ð40Þ

Thus, we conclude that for a static asymptotically
Schwarzschild-AdS black hole with spherical symmetry,
if the null energy condition is satisfied, then the Penrose
inequality is true, and its saturation appears only if the
black hole is a Schwarzschild-AdS black hole. This proves
conjecture 1 in the spherically and planar symmetri-
cal cases.

D. Broken case: Hyperbolic geometry

For the hyperbolic symmetric case, the null energy
condition cannot guarantee the Penrose inequality (12).
To verify this conclusion, we give a concrete counterex-
ample.7 We note that Eq. (34) becomes

fðrÞe−χðrÞ
r2

¼ 2

Z
r

rh

½dmðyÞ þ XðyÞ þ yd−2�e−χðyÞ=2
ydþ1

dy: ð41Þ

Now let us take rh ¼ 1; d ¼ 3 and

e−χ=2 ¼ 4þ tanhðr − 5Þ
5

; mðrÞ ¼ fd0=2 ≈ −0.15105:

ð42Þ

8Then, we can get the expression of XðrÞ,

XðrÞ ¼ 1

5
½ln coshðr − 5Þ − rþ ln 2� þ 1; ð43Þ

and two functions fðrÞe−χðrÞ=r2 and χðrÞ, which are shown
in Fig. 1. Since χ0 < 0 and m0 ¼ 0, the null energy
condition is guaranteed. However, let us check the sign

of ½1 − 1
r2h
− fd

0

r3h
�; we find that

1 −
1

r2h
−
fd0
r3h

¼ −
fd0
r3h

> 0: ð44Þ

Thus, we conclude that the Penrose inequality (12) is
broken when k ¼ −1.
The null energy condition does not require the energy

density ρ to be non-negative, but the sum of the energy
density and pressure density needs to be non-negative. If
matter satisfies the weak energy condition, we can prove
that the inequality is true, and its saturation appears only
in the Schwarzschild-AdS black hole, at least for the

FIG. 1. Values of fðrÞe−χðrÞ=r2 and χðrÞ=χðrhÞ. We see that
fðrÞe−χðrÞ=r2 and χðrÞ have the expected asymptotic behavior,
but the inequality is still broken.

7In view of [31], the validity of the Penrose inequality in
general hyperbolic cases seems to be rather unlikely.

8For hyperbolic black holes, the mass parameter fd0 can take a
negative value.
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maximally symmetric and static cases. See Appendix A for
details.

III. CHARGED BLACK HOLES

Before we discuss the charged generalization of the AdS
Penrose inequality, we first consider the asymptotically
charged flat case, which can be regarded as the limit of
lAdS → ∞. With the total mass M and charge Q as initial
data, there are two naive charged generalizations in four-
dimensional spacetime,

M ≥
ffiffiffiffiffiffiffiffi
A
16π

r
þQ2

ffiffiffiffi
π

A

r
; ð45Þ

and a weaker version,

�
A
16π

�
1=2

≤
1

2

h
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p i
: ð46Þ

Here the saturation appears only if the black holes are RN
black holes. When we introduce the chargeQ as initial data,
as well as M, the definition of Q is vague. For general
charged black holes, QðrÞ is defined as

1

2Ωk;d−1

Z
Sr

FμνdSμν ¼ QðrÞ; ð47Þ

where Sr is an equal-r surface and Ωk;d−1 denotes
the dimensionless volume of the relevant horizon geom-
etry (15). For RN black holes, the chargeQðrÞ is a constant
outside the black holes. This is because there is no charge
outside the RN black holes. For general cases, QðrÞ is
dependent on r because matter outside the black hole
usually also carries charge. If interpreting Q2 in inequal-
ity (46) as the square of the total charge, i.e., Q2ð∞Þ, we
find that the inequality (46) is not always true. See
Refs. [19,20] for a counterexample. This reminds us that
the charged generalization for the Penrose inequality needs
to be treated carefully, and naive generalizations (5) and (6)
are both incorrect, in general. In this section, we conjecture
two different types of charged generalizations for the
Penrose inequality.

A. First type of generalization

We separate the energy momentum tensor Tμν into two
parts,

Tμν ¼ TðMÞ
μν þ TðoÞ

μν ð48Þ

where the energy momentum tensor TðMÞ
μν for the Maxwell

field is defined as

TðMÞ
μν ¼ 2

�
Fμ

σFνσ −
gμν
4

FστFστ

�
; ð49Þ

and TðoÞ
μν stands for the other parts in Tμν. To present our

generalized Penrose inequality in static charged black
holes, we need a little more preparation.
We denote γ to be a codimension-2 spacelike surface and

lμ to be a future-directed, infalling, null geodesic, vector
field normal to γ and satisfying ξμlμ ¼ −1, where ξμ is the
Killing vector standing for static symmetry and normalized
at infinity by ξμξμ ¼ −1. We denote the expansion θðlÞ for
lμ. Then we define Q2

m to be

Q2
m ¼ inf

S

�ð1 − dÞQ2ðγÞSðγÞ
rs
R
γ θðlÞdS

�
: ð50Þ

Here rs is an “effective” radius which satisfies

rd−1s Ωk;d−1 ¼ SðγÞ; ð51Þ

where SðγÞ denotes the area of γ. We now propose the first
type of charged generalization:
Conjecture 2. For an asymptotically Schwarzschild-

AdS black hole, if (1) the Einstein equation is satisfied,
(2) TðoÞ

μν satisfies the null energy condition, and (3) the cross
section of the event horizon has spherical or planar top-
ology, then the charged generalization of the Penrose
inequality reads

1þ k
r2h

−
fd0
rdh

þ 2Q2
m

ðd − 1Þðd − 2Þr2d−2h

≤ 0: ð52Þ

The saturation appears only in RN black holes.
This is very similar to the generalization proposed by

Ref. [11]; however, in general, Qm will be different from
the total charge.
To support this generalization, we give the proof for the

spherically and planar symmetric cases. Under the coor-
dinate gauge (14), the expansion θðlÞ for lμ is given by

θðlÞ ¼ ð1 − dÞ e
χ=2

r
ð53Þ

and the Maxwell field strength tensor has the form

Fμν ¼ −
QðrÞe−χ=2

rd−1
ðdtÞμ ∧ ðdrÞν: ð54Þ

The nonvanishing components of the surface element
dSμν read

dS01 ¼ −dS10 ¼ e−χ=2rd−1dΣk;d−1: ð55Þ

Substituting this result into the definition (50), we can
obtain the expression of Q2

m,
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Q2
m ¼ min

h
Q2ðrÞe−χðrÞ

2

i
; for r ≥ rh: ð56Þ

In order to prove this inequality (52), the key step is to
separate the energy density ρ and pressure density fpr; pTg
into two parts:

ρ ¼ Q2

r2d−2
þ ρðoÞ; pr ¼ −

Q2

r2d−2
þ pðoÞ

r ;

pT ¼ Q2

r2d−2
þ pðoÞ

T : ð57Þ

Since we require that ρðoÞ þ pðoÞ
T ≥ 0 and ρðoÞ þ pðoÞ

r ≥ 0,
then we obtain

ρþ pr ≥ 0; ρþ pT ≥
2Q2

r2d−2
: ð58Þ

To prove the inequality (52), we introduce a new quasilocal
mass m̃ðrÞ,

m̃ðrÞ ¼ mðrÞ þ
Z

∞

r

2Q2e−
χ
2

dyd−1
dy; ð59Þ

so the derivative of m̃ðrÞ is always non-negative,

m̃0ðrÞ ¼ rd−1e−χ=2

d

�
ρþ pT −

2Q2

r2d−2

�
≥ 0: ð60Þ

When r → ∞,

m̃ð∞Þ ¼ mð∞Þ ¼ dfd0=2: ð61Þ

This implies

m̃ðrÞ ≤ dfd0=2: ð62Þ

Recall the definition of the quasilocal mass in Eq. (22). We
substitute the expression of mðrÞ into our new quasilocal
mass in Eq. (59):

m̃ðrÞ ¼ k
d
½rd−2 þ XðrÞ� þ rdþ1eχ=2

2d

�
fe−χ

r2

�0

þ
Z

∞

r

2Q2e−
χ
2

dyd−1
dy: ð63Þ

Here k ¼ 0 and 1, which stand for planar and spherically
symmetry, respectively. Following the standard procedure
in Sec. II, we solve fe−χ=r2 in terms of mðrÞ and χðrÞ,

2

Z
r

rh

�
dm̃ðxÞ −

Z
∞

x

2Q2e−
χ
2

yd−1
dy − kXðxÞ − kxd−2

�

× e−χðxÞ=2x−ðdþ1Þdx ¼ fðrÞe−χðrÞ
r2

: ð64Þ

Recall that fðrhÞ0 ≥ 0 because the surface of r ¼ rh is the
outermost horizon, so we can obtain

h
dm̃ðrhÞ −

R∞
rh

2Q2e−
χ
2

yd−1
dy − kXðrhÞ − krd−2h

i
e−χðrhÞ=2

rdþ1
h

≥ 0:

ð65Þ

Because of XðrÞ ≥ 0 and e−χðrhÞ=2 ≥ 0, the above inequality
(65) becomes

dm̃ðrhÞ −
R∞
rh

2Q2e−
χ
2

yd−1
dy − krd−2h

rdþ1
h

≥ 0: ð66Þ

We see that the above inequality, which is defined at the
horizon rh, plays a decisive role in the following proof. In
particular, the inequality (66) restricts the evaluation relation-
ship between total mass M and Q2

m. For the convenience of
our proof, we define an auxiliary function WðrÞ,

WðrÞ ¼ dfd0=2 −
2Q2

m

ðd − 2Þrd−2 − krd−2: ð67Þ

We combine this with Eqs. (56), (62), and (66) to obtain

WðrÞ
rdþ1

≥
dm̃ðrÞ − R

∞
r

2Q2e−
χ
2

yd−1 dy − krd−2

rdþ1
: ð68Þ

Particularly, at the horizon r ¼ rh we have

WðrhÞ
rdþ1
h

≥
dm̃ðrhÞ −

R
∞
rh

2Q2e−
χ
2

yd−1 dy − krd−2h

rdþ1
h

≥ 0; ð69Þ

due to inequality (66). Thus the horizon rh is limited by the
value of function WðrÞ.
Returning to Eq. (64), the left-hand side will become unit

one when r evolves to ∞, which is the boundary condition
of asymptotically AdS spacetime,

1 ¼ 2

Z
∞

rh

�
dm̃ðxÞ −

Z
∞

x

2Q2e−
χ
2

yd−1
dy − kXðxÞ − kxd−2

�

× e−χðxÞ=2x−ðdþ1Þdx: ð70Þ

Through Eqs. (28) and (59), we find m̃ðrhÞ ≥ 0. Combining
this with m̃ðrÞ ≤ m̃ð∞Þ ¼ fd0=2 and XðrÞ ≥ 0, we then
obtain

1 ≤ 2

Z
∞

rh

h
dfd0=2 −

R∞
x

2Q2e−
χ
2

yd−1
dy − kxd−2

i
e−χðxÞ=2

xdþ1
dx:

ð71Þ
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Using the inequality (68), we see that the above inequality
becomes

1 ≤ 2

Z
∞

rh

WðxÞe−χðxÞ=2
xdþ1

dx: ð72Þ

The above inequality implies that the maximum value of
WðrÞ must be positive,

maxWðrÞ ¼ max

�
dfd0=2 −

2Q2
m

ðd − 2Þrd−2 − krd−2
�
> 0:

ð73Þ

Otherwise the above integration in Eq. (72) will be
negative.

For k ¼ 1, it is obvious that when rd−2 ¼ rd−2Δ ¼
ffiffiffiffiffiffiffi
2Q2

m
d−2

q
,

WðrÞ takes the maximum value dfd0=2 − 2

ffiffiffiffiffiffiffi
2Q2

m
d−2

q
,

maxWðrÞ ¼ WðrΔÞ ¼ dfd0=2 − 2

ffiffiffiffiffiffiffiffiffiffiffi
2Q2

m

d − 2

r
> 0: ð74Þ

The two points r1, r2 are the roots of WðrÞ ¼ 0,

rd−21 ¼ dfd0=4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdfd0=4Þ2 −

2Q2
m

d − 2

r
;

rd−22 ¼ dfd0=4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdfd0=4Þ2 −

2Q2
m

d − 2

r
: ð75Þ

As we can see, r1 ≤ rh < r2 from Fig. 2 because
WðrhÞ ≥ 0.9 We separate the interval ½rh;∞Þ into two
parts: ½rh; r2Þ and ½r2; r∞Þ. There are two different
situations.

(i) rh ≤ r < r2:
Here χ0 ≤ 0 ensures e−χðrÞ=2 − e−χðr2Þ=2 ≤ 0 and

WðrÞ ≥ 0. We then have

WðrÞ½e−χðrÞ=2 − e−χðr2Þ=2� ≤ 0: ð76Þ

(ii) r2 ≤ r:
We see that e−χðrÞ=2 − e−χðr2Þ=2 ≥ 0 andWðrÞ ≤ 0,

so we still have the inequality (76).
The inequality (76) is true for all r ∈ ½rh;∞Þ. This leads to

1 ≤ 2

Z
∞

rh

WðrÞe−χðrÞ=2
rdþ1

dr ≤ 2e−χðr2Þ=2
Z

∞

rh

WðrÞ
rdþ1

dr: ð77Þ

Multiplying e−χðr2Þ=2 by the above inequality, we finally
obtain

1 ≤ eχðr2Þ=2 ≤ 2

Z
∞

rh

WðrÞ
xdþ1

dx

¼ fd0
rdh

−
1

r2h
−

2Q2
m

ðd − 1Þðd − 2Þr2d−2h

: ð78Þ

For k ¼ 0,WðrÞ is a monotonically increasing function, so

maxWðrÞ ¼ Wðr → ∞Þ ¼ dfd0=2 > 0: ð79Þ

The point r0 satisfies Wðr0Þ ¼ 0,

rd−20 ¼ 4Q2
m

dðd − 2Þfd0
: ð80Þ

Combining WðrhÞ ≥ 0 with W0ðrÞ ≥ 0 for the planar case,
we obtain that WðrÞ ≥ 0 for r ≥ rh. The inequality (72)
becomes

1 ≤ 2

Z
∞

rh

WðxÞe−χðxÞ=2
xdþ1

dx ≤ 2

Z
∞

rh

WðxÞ
xdþ1

dx

¼ fd0
rdh

−
2Q2

m

ðd − 1Þðd − 2Þr2d−2h

: ð81Þ

Combining two symmetric cases, the first type of charged
generalization (52) for the Penrose inequality is used.
Recall the whole proof; the saturation for the charged

inequality appears if χðrÞ¼0;m̃ðrÞ¼fd0=2 andQðrÞ¼Qm.
This implies charged density jðrÞ ¼ 0, and the exterior is a
RN black hole.

B. Second type of generalization

The inequality (52) is not expressed in term of the
boundary quantities of asymptotically AdS spacetime. It
would be more satisfactory if we could use boundary

FIG. 2. Schematic diagram of the function WðrÞ for k ¼ 1.
The value of the function WðrÞ at the horizon rh must be
non-negative.

9The value of rh cannot be equal to or greater than r2;
otherwise the integration of Eq. (72) will be negative.
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quantities to express the charged generalization of the
Penrose inequality since such versions of the Penrose
inequality can be interpreted as the inequality of dual
boundary field theory according to holography. In order to
alleviate the contradiction between charged generalization
for the Penrose inequality and the basic idea from holog-
raphy, we propose the second type of charged Penrose
inequality. Consider the Maxwell equation with source Jν,

∇μFμν ¼ 4πJν: ð82Þ

We introduce the gauge potential which satisfies

Fμν ¼ ðdAÞμν: ð83Þ

To find the generalization in the general case, we separate

the energy momentum tensor TðoÞ
μν as follows:

TðoÞ
μν ¼ T̃ðoÞ

μν − 8π

�
gμνJρAρ −

1

2
JμAν −

1

2
JνAμ

�
; ð84Þ

so the total energy momentum tensor reads

Tμν ¼ TðMÞ
μν þ T̃ðoÞ

μν − 8π

�
gμνJρAρ −

1

2
JμAν −

1

2
JνAμ

�
:

ð85Þ

In the static case, the gauge potential Aμ and charge density
Jμ have the following form:

Aμ ∝ ξμ; Jμ ∝ ξμ: ð86Þ

Here the potential is Φ ≔ Aμξ
μ, and the charged density is

j ≔ Jμξμ. In holography, the potential Φ∞, which is
defined on the AdS boundary,10 is interpreted as the
chemical potential. Given the initial data fd0=2 and Φ∞
and taking the gauge Φ ¼ 0 at the event horizon, we have
the following conjecture.
Conjecture 3. For an asymptotically Schwarzschild-

AdS black hole, if (1) the Einstein equation is satisfied,
(2) T̃ðoÞ

μν and Tμν both satisfy the null energy condition,
(3) the charge of the black hole and charge density j have
the same sign, and (4) the cross section of the event horizon
has spherical or planar topology, then the charged gen-
eration of the Penrose inequality reads

1 ≤
fd0
rdh

−
k
r2h

−
2ðd − 2ÞΦ2

∞

ðd − 1Þr2h
; ð87Þ

and the saturation appears only if the exterior of the event
horizon is AdS-RN.

In contrast to the naive generalizations (5) and (6), here
we use the chemical potential to replace the charge. Like
previous sections, to support this conjecture, we prove it
under the spherically or planar symmetric spacetime.
Under the same coordinates gauge (14), the gauge

potential A and charge density Jμ have the following form:

Aμ ¼ ΦðrÞðdtÞμ; Jμ ¼ jðrÞðdtÞμ: ð88Þ

Here ΦðrÞ and jðrÞ are the potential and current density.
According to Eq. (54), we obtain

Qe−χ=2

rd−1
¼ Φ0: ð89Þ

The Maxwell equation reads

ðΦ0eχ=2rd−1Þ0 ¼ 4πjeχ=2rd−1

f
: ð90Þ

The energy density ρ and pressure density fpr; pTg are
now replaced by

ρ ¼ Φ02eχ þ ρ̃ðoÞ;

pr ¼ −Φ02eχ þ 8πΦjeχ

f
þ p̃ðoÞ

r ;

pT ¼ Φ02eχ þ 8πΦjeχ

f
þ p̃ðoÞ

T : ð91Þ

The null energy condition requires ρþpr≥0;ρþpT ≥0;
then we obtain

8πΦjeχ

f
þ ρ̃ðoÞ þ p̃ðoÞ

r ≥ 0;

2Φ02 þ 8πΦjeχ

f
þ ρ̃ðoÞ þ p̃ðoÞ

T ≥ 0: ð92Þ

A new quasilocal mass m̃ðrÞ is defined as

m̃ðrÞ ¼ mðrÞ − 2

d
ðΦQÞ; ð93Þ

so the derivative of m̃ðrÞ is

m̃0ðrÞ ¼ m0ðrÞ − 2

d
ðΦΦ0eχ=2rd−1Þ0

¼ m0ðrÞ − 2

d
eχ=2rd−1Φ02 −

2

d
Φðeχ=2rd−1Φ0Þ0: ð94Þ

Substituting Eq. (25), (90), and (92) into the above
equation, we obtain

m̃0ðrÞ ¼ rd−1e−χ=2

d
ðρ̃ðoÞ þ p̃ðoÞ

T Þ ≥ 0: ð95Þ10In this paper, we abbreviate Φð∞Þ as Φ∞.

ZI-QING XIAO and RUN-QIU YANG PHYS. REV. D 107, 026013 (2023)

026013-10



Thus, we obtain m̃ðrÞ ≤ m̃ð∞Þ ¼ fd0=2 − 2
d ðΦ∞Q∞Þ. Let

us rephrase the Maxwell equation:

Q0 ¼ 4πjeχ=2rd−1

f
: ð96Þ

Because QðrhÞ and j have the same sign, we can take
QðrhÞ ≥ 0 and j ≥ 0 without losing generality. so the
charge QðrÞ will always be non-negative:

QðrÞ ≥ 0: ð97Þ

According to the relationship betweenQ andΦ in Eq. (89),
we can obtain

Φ0 ≥ 0: ð98Þ

In holography, we generally set the value of the potential Φ
at the horizon equal to zero as a gauge fixing,

ΦðrhÞ ¼ 0: ð99Þ

After the gauge fixing, we can directly obtain the chemical
potential Φ∞ on the AdS boundary. In order to compare
with RN black holes, we rephrase the Maxwell equation as

ðΦ0rd−1Þ0 ¼
�
4πj
f

−
χ0Φ0

2

�
rd−1: ð100Þ

Let us denote ΦRNðrÞ as the gauge potential of RN black
holes with the same horizon and chemical potential, i.e.,
ΦRNðrÞ satisfies ΦRNðrhÞ ¼ 0, ΦRNð∞Þ ¼ Φ∞, and

ðΦ0
RNr

d−1Þ0 ¼ 0: ð101Þ

We define ΔΦ ¼ Φ −ΦRN,

ðΔΦ0rd−1Þ0 ¼
�
4πj
f

−
χ0Φ0

2

�
rd−1 ≥ 0: ð102Þ

Since j ≥ 0, then χ0 ≤ 0 and Φ0 ≤ 0. Thus, the “maximal
principle” shows that the maximum of ΔΦ can only be
attained at endpoints. Thus, we have

maxΔΦ ¼ ΔΦðrhÞ ¼ ΔΦð∞Þ ¼ 0: ð103Þ

Thus, the relationship between Φ and ΦRN is

0 ≤ Φ ≤ ΦRN: ð104Þ

As usual, we solve the function fðrÞ in terms of mðrÞ
and χðrÞ,

fðrÞe−χðrÞ
r2

¼ 2

Z
r

rh

½dm̃ðxÞ þ 2ðΦQÞ − kXðxÞ − kxd−2�e−χðxÞ=2
xdþ1

dx;

ð105Þ

and fðrhÞ0 ≥ 0 leads to

½dm̃ðrhÞ þ 2ΦðrhÞQðrhÞ − kXðrhÞ − krd−2h �e−χðrhÞ=2
rdþ1
h

≥ 0:

ð106Þ

Because XðrÞ ≥ 0, e−χðrhÞ=2 ≥ 0, and ΦðrhÞ ¼ 0, the above
inequality becomes

dm̃ðrhÞ − krd−2h

rdþ1
h

≥ 0: ð107Þ

Since m̃0ðrÞ ≥ 0, we can obtain

dfd0=2 − 2ðΦ∞Q∞Þ − krd−2h

rdþ1
h

¼ dm̃ð∞Þ − krd−2h

rdþ1
h

≥
dm̃ðrhÞ − krd−2h

rdþ1
h

≥ 0: ð108Þ

Just like the proof in the first type of generalization, we
define an auxiliary function W̃ðrÞ,

W̃ðrÞ ¼ dfd0=2 − 2ðΦ∞Q∞Þ þ 2ðΦRNQ∞Þ − krd−2

¼ dfd0=2 − 2
Φ∞Q∞rd−2h

rd−2
− krd−2: ð109Þ

Here the ΦRN is given by Eq. (101), for which the solution
reads

ΦRN ¼ Φ∞ −
Φ∞rd−2h

rd−2
: ð110Þ

One can verify that

W̃ðrhÞ ¼ dfd0=2 − 2ðΦ∞Q∞Þ − krd−2h : ð111Þ

Combining this with (108), we obtain

W̃ðrhÞ ≥ 0: ð112Þ

Thus, the horizon rh is limited by the value of the function
WðrÞ. When r → ∞, the inequality becomes
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1 ≤ 2

Z
∞

rh

½dfd0=2 − 2ðΦ∞Q∞Þ þ 2ðΦQÞ − kxd−2�

× e−χðxÞ=2x−ðdþ1Þdx; ð113Þ

which is due to dm̃ðrÞ ≤ dfd0=2 − 2ðΦ∞Q∞Þ and
XðrÞ ≥ 0. Combining this with ΦRN ≥ Φ ≥ 0, we obtain

1 ≤ 2

Z
∞

rh

½dfd0=2 − 2ðΦ∞Q∞Þ þ 2ðΦRNQÞ − kxd−2�

× e−χðxÞ=2x−ðdþ1Þdx: ð114Þ

We require j ≥ 0, and the derivative of QðrÞ is greater than
zero, Q0ðrÞ ≥ 0. Combined with Q ≥ 0, we finally get

1 ≤ 2

Z
∞

rh

½dfd0=2 − 2ðΦ∞Q∞Þ þ 2ðΦRNQ∞Þ − kxd−2�

× e−χðxÞ=2x−ðdþ1Þdx: ð115Þ

We substitute (110) into the above inequality:

1 ≤ 2

Z
∞

rh

W̃ðxÞe−χðxÞ=2
xdþ1

dx; ð116Þ

which is very similar to the proof of the first type of charged
generalization. The only difference is the coefficient of
1=rd−2 in the auxiliary function. Thus, we can use the
discussion in Sec. III A to obtain11

1 ≤ 2

Z
∞

rh

W̃ðxÞe−χðxÞ=2
xdþ1

dx ≤ 2e−χðr2Þ=2
Z

∞

rh

W̃ðxÞ
xdþ1

dx;

ð117Þ

which yields

fd0
rdh

−
k
r2h

−
2Φ∞Q∞

ðd − 1Þrdh
¼ 2

Z
∞

rh

W̃ðxÞ
xdþ1

dx ≥ eχðr2Þ=2 ≥ 1:

ð118Þ

The next step is to find the relation between Φ∞ and Q∞.
Note that the infinity sign of the subscript represents the
value of the potential and charge on the AdS boundary.
Near infinity we have the following asymptotic expansions
for Φ,

Φ ¼ Φ∞ −
Q∞

ðd − 2Þrd−2 þ… ð119Þ

We already know that Φ ≤ ΦRN for all r ≥ rh; then,
Eqs. (B5) and (110) imply

Q∞

d − 2
≥ Φ∞rd−2h : ð120Þ

We finally reach the expected charged generalization:

1 ≤
fd0
rdh

−
k
r2h

−
2Φ∞Q∞

ðd − 1Þrdh
≤
fd0
rdh

−
k
r2h

−
2ðd − 2ÞΦ2

∞

ðd − 1Þr2h
: ð121Þ

To saturate this inequality, we see from Eqs. (95), (113),
and (115) that jðrÞ ¼ χðrÞ ¼ 0 and m̃ðrÞ ¼ fd0=2. The zero
charge density and χ ¼ 0 show that ΦðrÞ ¼ ΦRNðrÞ. This
leads to

fðrÞ ¼ r2
�
1þ k

r2
−
fd0
rd

þ 2Q2
∞

ðd − 1Þðd − 2Þr2d−2
�
; ð122Þ

so the bulk geometry is a RN black hole.

IV. PENROSE INEQUALITY AND SCHEME
OF QUANTIZATION

In the previous sections, we assume that the bulk
geometry is asymptotically Schwarzschild-AdS so that
all the quantities, especially the total mass, are defined
only by bulk geometry. In holography, when the dual field
theory has a nonzero external source, the total mass cannot
be read directly from the bulk metric. Instead, we have to
use the so-called “holographic renormalization” approach
to find the total mass. In this case, our previous proof is
invalid. It is interesting to ask whether we can still obtain
the Penrose inequality in such a case if the bulk matter
satisfies the null energy condition. In this section, we
consider the asymptotically AdS black hole with scalar
field ϕ as a concrete example.

A. Model

For (dþ 1)-dimensional Einstein-scalar gravity, the
action reads

S ¼ 1

16πG

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∇μϕ∇μϕ − VðϕÞ

�
: ð123Þ

Here g denotes the determinant of the spacetime metric gμν,
andR is the Ricci scalar. For the bulk scalar field ϕ, VðϕÞ is
some potential function dependent on ϕ. Considering the
static asymptotically AdS black hole with spherical, planar,
or hyperbolic horizon geometry, the ansatz is the same as
in Eq. (14),

ds2 ¼ −fðrÞe−χðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
k;d−1: ð124Þ

11Like the first type of charged generalization, if
maxWðrÞ ≤ 0, the inequality will be broken. One can verify

that the mass parameter fd0 has an inequality relation: dfd0=2 −

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Φ∞Q∞rd−2h

q
≥ 0 for k ¼ 1 and dfd0=2 ≥ 0 for k ¼ 0.
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In order to satisfy the asymptotically AdS boundary
condition, the function fðrÞ and χðrÞ must satisfy the
following conditions at the AdS boundary r → ∞:

fðrÞ ¼ r2 þ � � � ; χðrÞ ¼ χ0=rα þ � � � α > 0: ð125Þ

If ϕðrÞ ¼ 0 at any r, the scalar potential VðϕÞ will return to
−dðd − 1Þ so that the theory (123) is pure AdS gravity.
Without loss of generality, assuming ϕðr → ∞Þ → 0, we
choose the potential function as

VðϕÞ ¼ −dðd − 1Þ þ 1

2
m2ϕ2 þOðϕ3Þ ð126Þ

near the boundary.12 The parameter m is the mass of the
scalar field. In holography, the mass squared of the scalar
field can be negative, but above the Breitenlohner-
Freedman bound m2

BF,
13

m2 > m2
BF ¼ −

d2

4
: ð127Þ

According to the action (123), the equations of
motion are

∇μ∇μϕ − ∂ϕV ¼ 0; ð128Þ

Rμν −
1

2
Rgμν ¼

1

2
∂μϕ∂νϕþ 1

2

�
−
1

2
∇ρϕ∇ρϕ − VðϕÞ

�
gμν:

ð129Þ

One can check that the scalar hairy black hole solution
satisfies the null energy condition. Substituting the
ansatz (124) into the above equations, we obtain

ϕ00 þ
�
f0

f
−
χ0

2
þ d − 1

r

�
ϕ0 −

1

f
∂ϕV ¼ 0; ð130aÞ

χ0

r
þ 1

d − 1
ϕ02 ¼ 0; ð130bÞ

2

r
f0

f
−
χ0

r
þ 2

d − 1

V
f
þ 2ðd − 2Þðf − kÞ

r2f
¼ 0: ð130cÞ

Near the AdS boundary, the scalar field has an asymptotic
form,

ϕðrÞ ¼ ϕs

rd−Δ
ð1þ � � �Þ þ ϕv

rΔ
ð1þ � � �Þ; ð131Þ

where ϕs and ϕv are coefficients of the leading terms and Δ
is the conformal dimension of the dual operator. We see the
usual relationship [13,34] between Δ and m2,

Δ ¼ ðdþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p
Þ=2: ð132Þ

In order to get the value of every expansion coefficient,
we expand the metric (124) at large r and substitute the
expansion of both the scalar field ϕ and metric into the
equations of motion (130). Then, given the boundary
condition, we can solve these coefficients order by order.
However, it depends on the specific form of the potential
VðϕÞ in such a process. With loss of generality, we consider
the specific model in four-dimensional spacetime with
planar horizon geometry (k ¼ 0) to illustrate the key
feature. We take the scalar potential function [35] as

VðϕÞ ¼ −6 −
4

δ2
sinh

�
δϕ

2

�
2

ð133Þ

where δ is a constant. One can check the boundary’s
asymptotic form of the potential,

VðϕÞ ¼ −6 − ϕ2 þOðϕ4Þ: ð134Þ

Here Δ ¼ 2 and m2 ¼ −2, which satisfies the
Breitenlohner-Freedman bound (127). Then, near the
AdS boundary, we expand the metric that is determined
by functions fðrÞ and χðrÞ:

fðrÞ ¼ r2
�
1þ ϕ2

s

4r2
−
f30
r3

þO
�
1

r4

��
; ð135aÞ

χðrÞ ¼ ϕ2
s

4r2
þ 2ϕsϕv

3r3
þO

�
1

r4

�
: ð135bÞ

B. Numerical check on the Penrose inequality

If we want to obtain the right holographic stress tensor
Tμ

ν through the well-defined variational principle, the
Gibbons-Hawking-York boundary term [36,37] should
be added to the action (123),

SGHY ¼ lim
r→∞

1

8πG

Z
d3x

ffiffiffiffiffiffi
−h

p
K: ð136Þ

Here hij is the induced metric on the AdS boundary and h
denotes the determinant of hij. Note that K is the trace of
the second fundamental form Kij,

Kij ≡ −
1

2
Lnhij ¼ −

1

2
∇inj −

1

2
∇jni; K ¼ hijKij;

ð137Þ
where nμ is the outward-pointing unit vector normal to the
AdS boundary. Because the action is still divergent in the

12Recall that we have taken the AdS radius lAdS equal to unity
in the beginning of this paper.

13It was first derived in Refs. [32,33]. Loosely speaking, the
negative mass squared below the Breitenlohner-Freedman bound
m2 < m2

BF will lead to an instability.
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AdS boundary after adding the Gibbons-Hawking-York
boundary term, we should introduce a boundary counterterm
to regulate infinity. Following the standard holographic
renormalization scheme [12,27,38], the counterterm for
the gravitational sector in this case is given by

Sc:t: ¼ lim
r→∞

1

16πG

Z
d3x

ffiffiffiffiffiffi
−h

p
ð−4Þ: ð138Þ

Since the mass satisfies − d2
4
< m2 < 1 − d2

4
, there are two

different renormalization schemes [28,39,40] for the scalar
field ϕðrÞ sector. For instance, if we treat ϕs as the source,
we must fix the value of ϕs on the AdS boundary which is
referred to as the standard quantization for ϕðrÞ. Then, we
should add the following counterterm:

Sϕs
¼ lim

r→∞

1

16πG

Z
d3x

ffiffiffiffiffiffi
−h

p �
−
1

2
ϕ2

�
: ð139Þ

However, if we fix the value of ϕv on the boundary,
the counterterm we need to add is different from the
previous one:

Sϕv
¼ lim

r→∞

1

16πG

Z
d3x

ffiffiffiffiffiffi
−h

p �
ϕðnμ∂μϕÞ þ

1

2
ϕ2

�
: ð140Þ

Then, we obtain the regulated action S̃,

S̃ ¼ SGHY þ Sc:t: þ Sϕs;v
: ð141Þ

So far, S̃ is finite when r → ∞. Thus, we can obtain the
holographic stress tensor

Tμν ¼
1

16πG
lim
r→∞

r

�
2ðKhμν − Kμν − 2hμνÞ

þ hμν ×

�− 1
2
ϕ2

ϕðnμ∂μϕÞ þ 1
2
ϕ2

�
: ð142Þ

Substituting the asymptotic expansion into Tμν, we can
obtain the value of the tt component,

16πGTtt ¼
�
2f30 þ ϕsϕv fix ϕs

2f30 þ 2ϕsϕv fix ϕv:
ð143Þ

The new mass parameter f̃30 which is defined by the
holographic mass or energy is relevant to the value of Ttt.
In this case, f̃30 is given by

f̃30=2 ¼ 4πGTtt ¼
�
f30=2þ ϕsϕv=4 fix ϕs

f30=2þ ϕsϕv=2 fix ϕv:
ð144Þ

Fixing rh ¼ 1 and δ ¼ 1, we can solve the equations of
motion (130) numerically and then read the data ðf30;ϕs;ϕvÞ

from the asymptotic form of Eq. (135) on the boundary. In
Fig. 3, the independent variable is the value of ϕðrhÞ, which
is the value of ϕ at the horizon. Under the same ϕðrhÞ, it is
obvious that the value of the holographic massM is different
while employing two kinds of quantization schemes. In this
case, the Penrose inequality is given by

4πM
Ω0;2

¼ f̃30
2
≥
rh
2
¼ 1

2
: ð145Þ

The inequality is guaranteed as ϕðrhÞ increases if we fix ϕs
on the boundary. Otherwise, the inequality will be broken
if we fix ϕv on the boundary. This means that the Penrose
inequality is generally not true if we use alternative
quantization in holography.

V. SUMMARY

The recent holographic deduction of the Penrose
inequality only assumes the null energy condition, while
the weak or dominant energy condition is required in the
usual geometric proof. Here, we take a step toward filling
the gap between these two approaches. We first discussed
the AdS Penrose inequality and null energy condition
from the viewpoint of pure geometry. For an asymptotically
Schwarzschild-AdS black hole, the matter decays fast
enough so that we can read the total mass directly from
the asymptotical expansion of the bulk metric near the AdS
boundary. By virtue of this property, we defined a quasi-
local mass (22) which satisfies mðrÞ ¼ M on the AdS
boundary. Additionally, due to its particular form, the
derivative of mðrÞ is non-negative in Eq. (25), which is
guaranteed by the null energy condition. Our proof indi-
cates that the null energy condition guarantees the Penrose
inequality for black holes with planar or spherical sym-
metries, as expected from the holographic argument of
Ref. [18]. This argument also implies that the null energy

FIG. 3. Mass parameter f̃30=2 with two renormalization
schemes.
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condition could guarantee the Penrose inequality for hyper-
bolically symmetric black holes; however, we find a
counterexample (42) to show that this is not true. These
results inspired us to conjecture that the null energy
condition can guarantee the Penrose inequality in asymp-
totically Schwarzschild-AdS black holes only when the
cross section of the horizon has planar or spherical topology.
Next we proposed two kinds of charged generaliza-

tions for the inequality for charged black holes. The
holographic argument of Ref. [18] implies that the naive
generalization (6) provided the null energy condition.
However, counterexamples in the static spherically sym-
metric case have been found independently in Refs. [19,20]
for such a naive generalization. After reexamining the
charge Q in the inequality (46), we proposed the first type
of generalization, which interprets Q in the inequality as
Qm in (50). However, Qm is not defined at the boundary,
so it cannot be interpreted as a physical quantity of dual
boundary field theory according to AdS=CFT correspon-
dence. Thus, we proposed the second version (87) of the
charged Penrose inequality, in which the charge Q is
replaced by the chemical potential Φ∞. We then gave
the proofs for two such generalizations in the spherically
and planar symmetric cases.
Furthermore, we found that the null energy condition is

not enough to guarantee the inequality in holography if the
bulk geometry is asymptotically AdS but not asymptoti-
cally Schwarzschild-AdS. In order to make this argument
more explicit, we constructed the asymptotically AdS
black holes coupled to a scalar field. Following the holo-
graphic renormalization, we found that different quantiza-
tions for ϕðrÞ will lead to different values of holographic
mass (144). We gave strong numerical evidence to show
that whether the Penrose inequality holds or not will depend
on the quantization scheme. We note that the arguments of
Refs. [17,18] are valid regardless of the topologies of the
horizon and the quantization scheme. Thus, such holo-
graphic arguments would lead to similar conclusions for
different topologies and quantization schemes. However,
our geometric proofs and concrete examples show that,
if we only impose the null energy condition, whether
the generalized Penrose inequality in asymptotically AdS
spacetime is true or not will strongly depend on the
topologies of the horizon and the quantization schemes.
In the present paper, though we proposed the conjectures

for the general static case, we can only give the proofs in the
spherically and planar symmetric cases. It is worth exam-
ining our conjectures in inhomogeneous cases. In addition,
it is well known that in general relativity there are many
other definitions of mass, such as Kamor mass, ADMmass,
and so on. In this paper, we used the holographic renorm-
alization to define the total mass in the Penrose inequality.
The question is how much the mass of different definitions
influences the structure of the Penrose inequality.
Nevertheless, this paper only considered the scalar hairy

black holes. It would also be interesting to consider other
types of black holes, such as vector hairy black holes.
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APPENDIX A: PROOF OF PENROSE
INEQUALITY WITH THE WEAK

ENERGY CONDITION

In Sec. II, we considered the Penrose inequality by
assuming the null energy condition. The null energy con-
dition does not require the energy density ρ to be non-
negative, but the sum of the energy density and pressure
density needs to be non-negative. If matter satisfies the weak
energy condition, we find that the Penrose inequality follows
directly since ρ is always non-negative. Just like the previous
procedure, let us define a quasilocal mass, which is known as
the Hawking mass [41,42],

mðrÞ ¼ rd−2ðr2 þ k − fÞ
2

: ðA1Þ

When r → ∞, one can check that mðrÞ is equal to one-half
of the mass parameter fd0,

mð∞Þ ¼ fd0=2: ðA2Þ

Taking the derivative of mðrÞ with respect to r, we obtain

m0ðrÞ ¼ ðd − 2Þkþ dr2 − ðd − 2Þf − rf0

r3−d
: ðA3Þ

Integrating the left and right sides of Eq. (A3) from the
horizon rh to ∞, we find

mð∞Þ−mðrhÞ ¼
Z

∞

rh

ðd− 2Þkþ dr2 − ðd− 2Þf − rf0

r3−d
dr:

ðA4Þ

From Eq. (18a), the expression of ρ is

ρ ¼ ðd − 1Þ½ðd − 2Þkþ dr2 − ðd − 2Þf − rf0�
2r2

≥ 0: ðA5Þ

Combining this with the weak energy condition, we obtain

mð∞Þ −mðrhÞ ¼ fd0=2 −
rdh þ krd−2h

2
≥ 0; ðA6Þ

so the Penrose inequality (12) follows. In order to see why
the weak energy condition guarantees the Penrose inequality
with no difficulty, we express the integral (A4) in terms of
the energy density ρ,
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mð∞Þ −mðrhÞ ¼
Z

∞

rh

2ρ

d − 1
rd−1dr: ðA7Þ

If we interpret ρ as the mass density for the quasilocal mass
mðrÞ, the mð∞Þ must greater than or equal to mðrhÞ due to
ρ ≥ 0. By virtue of construction of the quasilocal mass
in (A1), we can see more clearly that the Penrose inequality
is a stronger version of the positive energy theorem for
planar and spherical cases.
We conclude that the inequality is saturated only if

χðrÞ ¼ 0 and mðrÞ ¼ mð∞Þ ¼ fd0=2, which leads to

fðrÞ ¼ r2ð1þ k=r2 − fd0=r
d
hÞ; ρ ¼ pr ¼ pT ¼ 0:

ðA8Þ

We can see that, if the weak energy condition is satisfied,
then the Penrose inequality in all three topologies is true.
The saturation appears only if the black hole is a
Schwarzschild-AdS black hole.

APPENDIX B: COMMENTS ABOUT
ASYMPTOTICALLY SCHWARZSCHILD-AdS

SPACETIME

In this appendix, we discuss asymptotically
Schwarzschild-AdS spacetime. According to the
Fefferman-Graham construction [43], any asymptotically
AdS geometry can be described by a metric such as

ds2 ¼ L2

z2
½dz2 þ gijðx; zÞdxidxj�: ðB1Þ

Here L denotes the AdS radius, xi denotes the boundary
coordinates that can be extended to the bulk in some way,
and z is the emergent radial coordinate in the bulk with the
AdS boundary located at z ¼ 0. Considering the (dþ 1)-
dimensional asymptotically AdS spacetime with d boun-
dary dimensions, we can expand the boundary metric
gijðx; zÞ with z2 near the AdS boundary z ¼ 0:

gðx; zÞ ¼ g0 þ z2g1 þ z4g2 þ � � � þ zdgd=2

þ zd lnðz=LÞf þ � � � ðB2Þ

Here g0ðxÞ is the boundary metric. The logarithmic term
zd lnðz=LÞfijðxÞ arises for even d. It should be noted
that, only for n < d

2
, the expansion coefficients gnðxÞ are

determined by the boundary metric g0 through the Einstein
equation. More specifically, these coefficients can be
solved order by order; see [28] for details. However,
starting from n ¼ d=2, i.e., gd=2, there is another set of
linearly independent solutions that cannot be fixed by the
boundary metric g0. In order to fix these independent

solutions, we need to know the stress energy tensor in the
boundary. In asymptotically Schwarzschild-AdS space-
time, the coefficient of the zd term is determined by the
ADMmass of spacetime (see the relation between the mass
density parameter fd0 and the total mass M). Thus, for
asymptotically Schwarzschild-AdS spacetimes, we do not
require additional information from the boundary matter
field’s stress energy tensor to fix the coefficient of
n ≤ d=2 terms.
However, when the matter field does not decay fast

enough, like the scalar field in our paper, we need more
information from other matter fields to fix the coefficient of
the n ¼ d=2 term. In Sec. IV, we expanded the metric of
some Einstein-scalar theory. Let us rephrase the result with
z equal to the inverse of r:

fðzÞ ¼ 1þ ϕ2
s

4
z2 − f30z

3 þOðz4Þ;

χðzÞ ¼ ϕ2
s

4
z2 þ 2ϕsϕv

3
z3 þOðz4Þ: ðB3Þ

Then, we combine the above expansions as

fðzÞe−χðzÞ ¼ 1 −
�
f30 þ

2ϕsϕv

3

�
z3 þOðz4Þ: ðB4Þ

We can clearly see that giving only the ADM mass of
spacetime is not enough to specify the bulk geometry. As
we claimed in our paper, the system’s total mass should
identify as the holographic mass. The metric of asymp-
totically Schwarzschild-AdS spacetime needs to meet

fðzÞ ¼ 1þ kz2 − fd0z
d þ � � � ;

χðzÞ ¼ χ0zdþα þ � � � ; α > 0; ðB5Þ

at the AdS boundary. Therefore, the richness of this
spacetime is reflected in the higher order term denoted
by the dots in Eq. (B5) . Still considering Einstein-scalar
theory here as an example, we can fix some terms in the
dots determined by the boundary stress energy tensor from
the scalar sector. Then, we can conversely construct the
corresponding scalar potential function through the equa-
tion of motion. A rich family of potential functions satisfies
our requirements for asymptotic behavior of metric (B5).
One may wonder if solutions for Einstein-scalar theory
generated this way could be nonphysical. However, we
note that the solutions for the action

S ¼ 1

16πG

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∇μϕ∇μϕ − VðϕÞ

�

do not violate the null energy condition.
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