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Three-dimensional Lorentzian quantum gravity, expressed as the continuum limit of a nonperturbative
sum over spacetimes, is tantalizingly close to being amenable to analytical methods, and some of its
properties have been described in terms of effective matrix and other models. To gain a more detailed
understanding of three-dimensional quantum gravity, we perform a numerical investigation of the nature of
spatial hypersurfaces in three-dimensional causal dynamical triangulations (CDT). We measure and
analyze several quantum observables, the entropy exponent, the local and global Hausdorff dimensions,
and the quantum Ricci curvature of the spatial slices, and try to match them with known continuum
properties of systems of two-dimensional quantum geometry. Above the first-order phase transition of CDT
quantum gravity, we find strong evidence that the spatial dynamics lies in the same universality class as
two-dimensional Euclidean (Liouville) quantum gravity. Below the transition, the behavior of the spatial
slices does not match that of any known quantum gravity model. This may indicate the existence of a
new type of two-dimensional quantum system, induced by the more complex nature of the embedding
three-dimensional quantum geometry.
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I. INTRODUCTION

A complete theory of quantum gravity may offer insights
into how the spacetime we observe and inhabit can emerge
from first principles. The nonperturbative gravitational path
integral is a promising route toward such a theory, formu-
lated within a purely quantum field-theoretic setting [1]. If
one is interested in concrete Planckian or near-Planckian
results in the full, four-dimensional theory, like information
on the spectra of diffeomorphism-invariant observables,
causal dynamical triangulations or CDT quantum gravity
[2,3] is arguably the path integral approach that is furthest
developed. Recall that the continuum path integral for pure
gravity is given by

Z ¼
Z
GðMÞ

D½g�eiSEH½g�;

SEH½g� ¼ 1

16πGN

Z
M
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p
ðR − 2ΛÞ; ð1Þ

where GðMÞ denotes the space of diffeomorphism-
equivalence classes [g] of Lorentzian metrics gμνðxÞ on
the manifoldM, and SEH is the Einstein-Hilbert action. In the
CDT setup this formal expression is given a precise mean-
ing, namely, as the continuum limit of a regularized version
of (1), with GðMÞ approximated by a space of piecewise flat
Lorentzian spacetimes. Although the primary physical
interest is in spacetime dimension D ¼ 4, the CDT path
integral has also been studied in two and three dimensions.
Hallmarks of this strictly nonperturbative approach are

(i) the presence of a well-defined analytic continuation or
“Wick rotation”, mapping the regularized path integral to a
real partition function, which enables its analytical evalu-
ation in D ¼ 2 [4] and numerical evaluation in D ¼ 2, 3
and 4 [5,6], (ii) its formulation on a space of geometries,
avoiding the need to gauge-fix the diffeomorphism sym-
metry and isolate its physical degrees of freedom, (iii) fol-
lowing the logic of critical phenomena, a high degree of
uniqueness and universality if a continuum limit can be
shown to exist, (iv) a nonperturbative cure of the conformal
divergence, which by default renders Euclidean path
integrals in D ≥ 3 ill defined [7], and (v) unitarity, in
the form of reflection positivity of the regularized path
integral, with respect to a notion of discrete proper
time [2,6].
In terms of results in D ¼ 4, in addition to the presence

of second-order phase transitions [8–10], necessary for
the existence of a continuum limit, an important finding of
CDT is the emergence of an extended four-dimensional
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universe [11,12]. With the standard choiceM ¼ S1 × S3 for
the topology, in terms of the quantum observables mea-
sured so far (spectral and Hausdorff dimensions [13,14],
shape of the universe, including quantum fluctuations
[15,16], average Ricci curvature [17]), its behavior on
sufficiently coarse-grained scales is compatible with that of
a de Sitter universe. This is remarkable because it repre-
sents nontrivial evidence of a classical limit, one of the high
hurdles to clear for any nonperturbative and manifestly
background-independent approach to quantum gravity.
After Wick rotation, the gravitational path integrals

of CDT become partition functions of statistical systems,
whose elementary geometric building blocks (flat
D-dimensional simplices, see Sec. II for further details)
are assembled into piecewise flat manifolds T—the
triangulations—each one contributing with a Boltzmann
weight expð−SEH½T�Þ.1 There are a couple of reasons why
such seemingly simple ingredients can give rise to inter-
esting continuum theories of quantum gravity and quantum
geometry. On the one hand, there is the highly nontrivial
combinatorics of how the simplicial building blocks can
be glued together to yield distinct curved spacetimes T.
Especially in dimension D ≥ 3, this reflects the complex-
ities of local geometry and curvature, already familiar from
the classical theory. On the other hand, there is a compli-
cated interplay between “energy” (the bare action) and
“entropy” (the number of distinct triangulations for a given
value of the bare action), which depends on the values of
the bare coupling constants; i.e., the point in phase space at
which the path integral is evaluated.
An enormous amount has been learned about such

nonperturbative systems of geometry over the last
35 years, beginning with the Euclidean analogue and
precursor of the Lorentzian CDT theory, based on
Euclidean dynamical triangulations or dynamical trian-
gulations (DT) for short [18–20]. A crucial role in the
exploration of these systems has been played by
Monte Carlo methods, which are employed to numerically
evaluate the path integral and expectation values of
observables by importance sampling [21,22]. This is also
true in dimension D ¼ 2, where in addition a variety of
nonperturbative analytical solution techniques are avail-
able, e.g., combinatorial, matrix model and transfer matrix
methods [4,23,24], leading to compatible results.
Monte Carlo simulations should be seen as numerical

experiments, providing tests and feedback for the con-
struction of the theory. For full quantum gravity, the
quantitative information on the nonperturbative sector
obtained from numerical analysis is extremely valuable,
since it cannot currently be substituted by anything else.
Although we do not know in detail what a theory of

quantum gravity will eventually look like, it seems unlikely
that it will come in closed analytic form. A potential
scenario would be akin to QCD, where we manage to
extract nonperturbative information about the theory’s
spectrum (of suitable quantum-geometric observables) with
ever greater accuracy, using a background-independent
analogue of lattice gauge theory such as (C)DT. Despite
its conventional, quantum field-theoretic setting and the
absence of any exotic ingredients, this type of lattice gravity
has already uncovered unexpected features of strongly
quantum-fluctuating geometry, like the dynamical dimen-
sional reduction of spacetime near the Planck scale [13],
which is conjectured to be universal [25].
The focus of the present work will be the Lorentzian

CDT path integral in three spacetime dimensions [26].
More specifically, as a stepping stone towards a more
detailed geometric understanding of this quantum
gravity model, we will investigate the geometry of its
two-dimensional spatial hypersurfaces. A key question is
whether in a continuum limit the behavior of these surfaces
falls into one of the known universality classes [27] of
nonperturbative quantum gravity in two dimensions, or
whether there is evidence for a different type of quantum
dynamics. The two universality classes in question are that
of (the scaling limit of) two-dimensional DT [18,20], which
also contains Liouville quantum gravity, and that of two-
dimensional CDT quantum gravity [4,28].
Our study will be numerical in nature, but—depending

on the outcome—may well provide input for further
analytical work, which could be technically feasible
because of the effective two-dimensional character of
the spatial slices. Note that we do not claim that there is a
direct physical interpretation of the properties of these
spatial geometries from a three-dimensional point of view
(inasmuch as a lower-dimensional toy model of quantum
gravity can be called “physical” at all). Although in our
setup a spatial slice at constant proper time is an
invariantly defined concept,2 it is not clear to what extent
its properties can be thought of as “observable”, because
of the highly nonlocal construction of the hypersurfaces
and because of their singular nature (“moments in time”)
from the point of view of the quantum theory. To obtain
true quantum observables in a three-dimensional, space-
time sense would presumably require some smearing in
the time direction.
Nevertheless, our measurements within the slices of

constant time are perfectly well defined operationally
and give us a quantitative handle on the influence of the
three-dimensional quantum geometry in which the spatial

1Note that SEH½T� is the so-called bare action of the regularized
theory, depending on bare coupling constants, which in the
continuum limit will typically undergo renormalization.

2It is defined as the set of all points at a given proper-time
distance to a given initial spatial surface or an initial singularity,
in the spirit of similar constructions in the continuum [29]. Note
also that the proper-time slicing is not related to any gauge-fixing,
since the CDT setup is manifestly diffeomorphism-invariant (see
e.g., [3] for a detailed discussion).
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slices are embedded, as we will demonstrate. We will start
by investigating the distribution of the vertex order in the
slices, which counts the number of spatial edges meeting
at a vertex. This quantity is not per se related to a
continuum observable but can be compared with known
exact results for the ensembles of two-dimensional DTand
CDT geometries. The core of the paper consists of
measuring and analyzing the following quantum observ-
ables: (i) the entropy exponent γ, also known as the
string susceptibility, which determines the subexponential
growth of the partition function at fixed two-volume A,
as a function of A; (ii) the Hausdorff dimension dH,
obtained by comparing volumes with their linear exten-
sion, where we distinguish between a local and a global
variant; and (iii) the so-called curvature profileRðδÞ of the
spatial slices, measuring the average quantum Ricci
curvature [30] of the surfaces as a function of a linear
coarse-graining scale δ. We find convincing evidence that
the effective dynamics of the spatial slices in the so-called
degenerate phase of three-dimensional CDT quantum
gravity is described by two-dimensional DT quantum
gravity. However, we do not find a match with any known
two-dimensional system of quantum geometry in the
so-called de Sitter phase, where the dynamics of the
hypersurfaces is much richer due to the nontrivial influ-
ence of the embedding three-geometry. Further research is
needed to determine the continuum nature of the effective
spatial dynamics in this phase.
The remainder of the paper is structured as follows.

In the next section, we recall the main ingredients of CDT
quantum gravity in D ¼ 3 and review previous research
on the subject, and what it has revealed about its phase
structure and physical characteristics. In Sec. III, we
discuss the numerical implementation of the three-
dimensional CDT path integral in terms of Markov chain
Monte Carlo methods. Section IV contains a detailed
description of the properties of the spatial slices that we
have studied numerically. We present the results of
our measurements and describe the overall picture that
emerges from them. In Sec. V we summarize and discuss
our findings. A couple of technical discussions have been
relegated to the Appendixes, to improve the readability of
the main part of the paper.

II. THREE-DIMENSIONAL
CDT QUANTUM GRAVITY

Quantum gravity in three spacetime dimensions [31]
provides an interesting test case for the full gravitational
path integral. Although the pure gravity theory does not
have any local propagating degrees of freedom, the path
integral has the same functional form in terms of the three-
dimensional metric as its four-dimensional counterpart (1),
and therefore looks equally ill-behaved with regard to its
behavior under renormalization. How to reconcile the
difficulties of solving this metric path integral with the

“topological” nature of three-dimensional gravity,3 which
leads to considerable simplifications in a first-order, Chern-
Simons formulation, without any quantum field-theoretic
divergences, is only partially understood (see [32] for a
discussion).
The CDT formulation has thrown some light on the

nonperturbative aspects of this question, uncovering both
similarities and differences between the three-dimensional
and the physical, four-dimensional theory [26,33,34]. For a
better understanding of the issues involved and to set the
stage for the main part of the paper, let us briefly recall
the setup in three dimensions. After applying the Wick
rotation mentioned in the previous section, the regularized
CDT path integral in D ¼ 3 takes the form of a partition
function,

Z ¼
X

triang: T

1

CT
e−S

EH½T�; SEH½T� ¼ −k0N0ðTÞ þ k3N3ðTÞ;

ð2Þ

where SEH½T� denotes the Regge form of the Einstein-
Hilbert action on the piecewise flat triangulation T, N0ðTÞ
and N3ðTÞ are the numbers of vertices (“zero-simplices”)
and tetrahedra (“three-simplices”), and CT is the order of
the automorphism group of T. The coupling k0 is propor-
tional to the inverse bare Newton constant and k3 depends
linearly on the bare cosmological constant (see [26] for
details). The sum is taken over simplicial manifolds of a
given, fixed topology, which in our case will be S1 × S2, a
periodically identified time interval times a two-sphere.
The triangulated configurations T of the Lorentzian

CDT path integral have a discrete product structure,
representing a simplicial version of global hyperbolicity,
and are assembled from flat, Minkowskian tetrahedra [2,3].
A given spacetime geometry can be thought of as a
sequence of two-dimensional curved, spacelike triangula-
tions, labeled by an integer proper time t ¼ 1; 2; 3;…; ttot,
and made of equilateral triangles. The spacetime volume
between each pair of adjacent constant-time slices is
completely filled in with tetrahedra, resulting in a “sand-
wich” of simplicial three-dimensional spacetime with top-
ology ½0; 1� × S2. The tetrahedral edges linking neighboring
spatial slices are timelike (and all of equal length), while the
edges lying within a spatial slice are of course spacelike
(and also of equal length). We can therefore classify the
building blocks according to their constituent vertices. A
tetrahedron of type ðp; qÞ is defined as having p vertices in
slice t and q vertices in slice tþ 1, giving rise to the types
(1,3), (2,2), and (3,1), as illustrated by Fig. 1. Note that up

3More precisely, the physical degrees of freedom of three-
dimensional gravity are global modes of the metric, described by
Teichmüller parameters, which are present when the genus of the
spatial slices is larger than or equal to 1. The present work uses
spherical slices, without such parameters.

NATURE OF SPATIAL UNIVERSES IN 3D LORENTZIAN … PHYS. REV. D 107, 026011 (2023)

026011-3



to time reversal a (1,3)- and a (3,1)-tetrahedron are geomet-
rically identical. Since the analytic continuation only affects
the edge length assignments and not the topology of the
triangulation, this characterization of the tetrahedra contin-
ues to be meaningful after the Wick rotation.
The key findings of the original, mostly numerical

investigation of three-dimensional CDT quantum gravity
on S1 × S2 inside the range k0 ∈ ½3; 7� were as follows
[26,33,34]. After fine-tuning the bare “cosmological”
constant k3 to its critical value from inside the region of
convergence4 of the partition function Z, a two-phase
structure was found, consisting of what we shall call a
degenerate phase for k0 ≥ kc0 and a de Sitter phase for
k0 ≤ kc0. These two phases are very reminiscent of
corresponding phases in four-dimensional CDT quantum
gravity [2] with regard to their volume profiles, i.e., the
behavior of their spatial volume V2 as a function of the
proper time t. In the degenerate phase, V2ðtÞ oscillates
wildly, indicating that spacetime disintegrates into a
sequence of uncorrelated two-dimensional geometries
(see also Fig. 4 below). By contrast, in the de Sitter phase
a nontrivial “blob” forms when the time extension is chosen
sufficiently large, whose shape matches that of a Euclidean
de Sitter space [with hV2ðtÞi ∝ cos2ðctÞ], analogous to
what has been observed in D ¼ 4.5 This constitutes non-
trivial evidence that a well-defined and macroscopically
three-dimensional ground state of geometry6 exists non-
perturbatively. However, unlike in four dimensions the
transition at the critical point kc0 appears to be a first- and
not a second-order phase transition, and no fine-tuning of
the inverse gravitational coupling k0 is needed to obtain a

continuum limit. This is in line with the expectation that no
higher-order transitions are present, due to the absence of
propagating degrees of freedom.
Following these results, three-dimensional CDT quan-

tum gravity has been studied from various perspectives.
Considerable effort has been focused on the transfer matrix
associated with a single time step Δt ¼ 1, which captures
the amplitude of going from one spatial two-geometry to
an adjacent one. More precisely, one usually considers a
simpler, reduced transfer matrix, whose in- and out-states
are labeled by the spatial two-volume (and possibly
Teichmüller parameters). Given our knowledge about the
physical degrees of freedom of three-dimensional gravity,
these are the parameters that are expected to be the only
relevant ones in the continuum limit. The sandwich
geometries contributing to the transfer matrix are closer
to two-dimensional quantities and therefore potentially
more amenable to an analytic treatment. In this spirit, a
variant of the model was introduced in [38], in which
the (1,3)- and (3,1)-building blocks are substituted by
(1,4)- and (4,1)-pyramids, something that is not expected
to affect the universal properties of the model. The
motivation for considering this variant is that taking a
midsection of a sandwich geometry at half-integer time
yields a quadrangulation, whose dual graph is a configu-
ration described by a Hermitian two-matrix model with
ABAB-interaction, for which analytical results are avail-
able. However, the bicolored graph configurations gener-
ated by the matrix model form a much larger class than
those coming from CDT sandwich geometries, and corre-
spond to geometries that in general violate the simplicial
manifold conditions of the two-dimensional slices and of
the interpolating three-dimensional piecewise flat geom-
etries in specific ways. Three of these four conditions
(following the enumeration in [38]) are considered mild, in
the sense that violating them is conjectured not to affect the
universality class of the CDT model. As corroborating
evidence, [38] cites new numerical simulations of the CDT
model in D ¼ 3, where these conditions are relaxed,
but which nevertheless reproduce the results found in
the de Sitter phase of the earlier work that used strict
simplicial manifolds [26]. Interestingly, they note that the
degenerate phase completely disappears in the simulations
of this generalized variant of CDT quantum gravity, and
conjecture that the presence of this phase constitutes a
discretization artifact. Although our present work does
not directly address these various conjectures (and works
with simplicial manifolds only), our results suggest that
there may be more scope for different universality classes
in three dimensions than has been considered up to now,
and that it may be fruitful to reexamine the influence of
regularity conditions on continuum results in greater detail.
(Of course, not all universality classes may be associated
with interesting models of quantum gravity.) A similar
sentiment was expressed in [39], which gives a precise

FIG. 1. Three types of tetrahedral building blocks of three-
dimensional CDT: type (1,3) (left), type (2,2) (center), and type
(3,1) (right). Note that the two-dimensional triangulations at
times t and tþ 1 are not drawn isometrically; they are in general
curved surfaces.

4This region exists because the number of three-dimensional
CDT configurations is exponentially bounded as a function of the
discrete volume N3 [35].

5Volume profiles for nonperiodic boundary conditions in time,
with random, fixed two-spheres of various sizes as spatial
boundaries have been considered in [36,37].

6In the sense of minimizing the effective Euclidean action
governing the nonperturbative quantum dynamics.
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characterization of the bicolored two-dimensional cell
complexes associated with midsections of CDT geometries
with spherical and disclike spatial slices.
The configurations described by the ABAB-matrix

model violate also a fourth regularity condition [38], which
is associated with a considerable enlargement of the space
of three-geometries. It allows for the appearance of spatial
wormholes and a new phase, not present in standard CDT
quantum gravity, where these wormholes are abundant.
Whether this phase is interesting from a physics point of
view remains to be understood. The association of CDT
quantum gravity with the ABAB-matrix model was also
used to analyze the behavior of the bare coupling constants
of the former under renormalization [40]. An asymmetric
version of the matrix model was studied in [41], motivated
by the search for a Hamiltonian associated with the reduced
transfer matrix. Without invoking matrix models, a con-
tinuum Hamiltonian of this kind was derived for the first
time in [42], for spatial slices of cylinder topology, albeit
for a subensemble of CDT configurations with certain
ordering restrictions. The effective action for the two-
volumes of spatial slices with toroidal topology was
investigated in [43], and the dynamics of its Teichmüller
parameters in [44,45]. The phase structure of a one-
dimensional balls-in-boxes model, meant to capture the
effective dynamics of the two-volume of CDT quantum
gravity, was analyzed in [46], and shown to reproduce
certain features of CDT as well as Hořava-Lifshitz-inspired
gravity models (see also [47]). The spectral dimension of
the CDT model in the de Sitter phase was measured and
found to be compatible with the classical value of 3 on large
scales and to exhibit a dynamical dimensional reduction
to a value compatible with 2 on short scales, similar to
what happens in CDT for D ¼ 4 [48]. Lastly, a generalized

model of CDT quantum gravity with causally well-behaved
configurations, but without a preferred proper-time slicing
was defined and investigated numerically, and found to
reproduce the volume profile of a de Sitter space [49,50].

III. IMPLEMENTATION

Expectation values of geometric observables O in CDT
quantum gravity are computed as

hOi ¼ 1

Z

X
T

1

CT
O½T�e−SEH½T�; ð3Þ

where Z is the partition function defined in (2). As already
mentioned, the focus of our present work is a set of
observables pertaining to the two-dimensional spatial
triangulations of constant integer time t of the three-
dimensional CDT configurations, which will be the subject
of Sec. IV. Since it is not known how to compute Z
analytically in three dimensions, we will compute statistical
estimates of the expectation value of an observable by
sampling the CDT ensemble through Monte Carlo simu-
lations. In these simulations, we construct a random walk
in the ensemble of CDT geometries by performing local
updates (“moves”) on a triangulation. The basic set of
moves we used is shown in Fig. 2; see also [26]. If we
impose so-called detailed balance [51] on the updating
procedure, by accepting or rejecting such moves with an
appropriate probability, this random walk corresponds to a
sample of the ensemble where geometries appear with a
relative rate according to their Boltzmann weight. Since
subsequent geometries in a random walk are almost
identical, we must perform a large number of local moves
on a given geometry to obtain a new and sufficiently

FIG. 2. Three basic local moves in 3D CDT quantum gravity together with their inverses, and their effect on spatial slices. Spacelike
edges are drawn in blue and timelike ones in red. Top left: subdivision of a spatial triangle into three; top right: flip of a spatial edge. The
move at the bottom does not affect the spatial triangulations (time inverse not shown).
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independent one. This procedure is iterated to obtain a
sequence of independent triangulations, and an estimate of
the expectation value of an observable is computed as the
weighted average (3) over this sequence. To study the
continuum properties of observables, the number of build-
ing blocks should be taken to infinity. Since this is
impossible in practice, due to the finiteness of our computa-
tional resources, we use finite-size scaling methods [22]
to estimate the behavior of the system in the continuum
limit. For more details on computer simulations of three-
dimensional CDT we refer the interested reader to [33].
For a given value of the gravitational coupling k0,

the cosmological coupling k3 is always tuned to its
k0-dependent pseudocritical value,

7 which means that we
are investigating a one-dimensional phase space parame-
trized by k0. The location of the critical point kc0 along this
line, associated with the first-order transition mentioned in
Sec. II, is not a universal quantity. For example, it depends
on the regularity conditions imposed on the ensemble,
and the time extension ttot of the geometries [26]. In our
analysis of the spatial slices we will use standard CDT
simplicial manifolds8 and ttot ¼ 3 with periodic boundary
conditions in time, for which we have found kc0 ≈ 6.24.
A convenient order parameter to locate the phase

transition is the ratio,

O2ðTÞ ¼
N22ðTÞ
N31ðTÞ

; ð4Þ

whereN22ðTÞ and N31ðTÞ denote the numbers of (2,2)- and
(3,1)-simplices of the triangulation T respectively. Its
expectation value hO2i is nonvanishing for small k0
and drops to zero rapidly as the transition point kc0 is
approached, beyond which it remains zero for all values of
k0 > kc0 we have investigated. The measured values of hO2i
as a function of k0 are shown in Fig. 3, obtained in a system
with N3 ¼ 64.000 and ttot ¼ 3. The regions to the left and
right of the transition correspond to the de Sitter and
degenerate phases introduced earlier. Snapshots of typical
volume profiles V2ðtÞ, counting the number of triangles in
the spatial slice at time t, are depicted in Fig. 4 for a system
with N31 ¼ 16.000 and ttot ¼ 32. The volumes of neigh-
boring slices in the degenerate phase are largely uncorre-
lated, while they tend to align in the de Sitter phase. When
taking an ensemble average of the latter with the “centers of
volume” aligned, the expectation value hV2ðtÞi matches
that of a three-dimensional Euclidean de Sitter universe in a
proper-time parametrization [26].

We will perform measurements of the spatial slices
for three different k0-values, two in the de Sitter phase
at k0 ¼ 0.0 and 5.0 and one in the degenerate phase at
k0 ¼ 8.0, cf. Fig. 3. The volumes N31 of the systems we
investigate take values in the range [1.000, 96.000]. In
choosing these particular values of k0, we are staying away
from the direct vicinity of the first-order transition at
kc0 ≈ 6.24, to avoid that the system jumps between the
two phases during the simulation. The two points chosen in
the de Sitter phase are spaced well apart, while taking into
account that the Monte Carlo algorithm becomes increas-
ingly inefficient as k0 is lowered. It may be worth pointing
out that the expression for the discretized, bare Einstein-
Hilbert action in (2) is highly nonunique, and that the value
k0 ¼ 0.0 is therefore in no way physically distinguished.
The observed decoupling of neighboring slices provides

a strong argument for an effective slice behavior that
is characteristic for the universality class of Euclidean
dynamical triangulations, something our data in Sec. IV
below will confirm. As a cross-check that the system’s
behavior stays the same throughout the degenerate phase,
we have performed a short series of measurements for all
observables (except the curvature profile) at the much
higher value of k0 ¼ 15.0, which found no differences
compared with k0 ¼ 8.0. Little is known about the slice
behavior in the de Sitter phase; a preliminary investigation
of the Hausdorff dimension for small slice volumes V2ðtÞ ∼
1.000 was made in [26], resulting in the estimate
dH ¼ 3.4� 0.4. Furthermore, a measure of homogeneity
for the spatial slices was formulated and implemented
in [53], but with inconclusive results.
A final technical issue to be discussed before turning to a

description of the measurement results is that of volume-
fixing. As usual, we perform all measurements at fixed

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

FIG. 3. Expectation value of the order parameterO2 ¼ N22=N31

as a function of the bare coupling k0, exhibiting a first-order phase
transition at kc0 ≈ 6.24. To the left of the transition is the de Sitter
phase, and to its right the degenerate phase. Our measurements
on spatial slices are taken for the k0-values 0.0, 5.0, and 8.0, as
indicated.

7which in the limit N3 → ∞ would become the critical
value kc3ðk0Þ.8The effects of relaxing the local manifold constraints have
been investigated further in [52], where it was found that the order
of the phase transition is likely unchanged, although the location
of the critical point shifts to a smaller value as the restrictions are
loosened.
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spacetime volume; more precisely, since the Monte Carlo
moves are not volume-preserving, the simulations are run
in the vicinity of a target volume. The latter can be stated in
terms of the total volume N3 or in terms of N31, which is
what we will do below. Both prescriptions are essentially
equivalent, since in the case of periodic boundary con-
ditions in time we have the identity N3 ¼ 2N31 þ N22, and
since for fixed k0 the ratio between N22 and N31 is
approximately constant, and can be read off the graph in
Fig. 3. Note also that N31 is equal to the total number of
spatial triangles in the triangulation, i.e., the sum over all t
of V2ðtÞ. The approximate volume-fixing is implemented
by adding a term,

Sfix½T� ¼ ϵðN31ðTÞ − Ñ31Þ2; ð5Þ

to the bare action, where Ñ31 denotes the desired target
volume and the value of the small, positive parameter ϵ
determines the typical size of the fluctuations of N31

around Ñ31. In the simulations performed for this work,
we generally set ϵ to values on the order of 10−5.
In addition, since we are interested in the intrinsic

properties of the spatial slices and in extracting their
continuum behavior from finite-size scaling, we must
collect measurement data at different, fixed slice volumes.
Instead of adding further volume-fixing terms for the
individual slices to the action, which would run the risk
of introducing an unwanted bias, we let the individual
slices fluctuate freely, subject only to the total volume
constraint (5), but take data only when a slice hits a precise
desired value Ṽ2. More concretely, in between two mea-
surements we first perform a fixed number of attempted
moves,9 collectively referred to as a sweep. Different
observables can have different autocorrelation times (mea-
sured in Monte Carlo steps) and therefore require different
sweep sizes. A typical sweep size is taken to be on the order

of 1.000 times the target volume Ñ31. After completion of a
sweep, we continue performing local updates until one of
the slices hits the target two-volume Ṽ2. We then perform a
measurement of the observable under consideration on this
slice and subsequently start a new sweep.
The choice of the target three-volume Ñ31 that max-

imizes the probability of encountering slices with target
two-volume Ṽ2 depends on the phase. In the de Sitter phase
and for the small time extension ttot we have used, the total
volume spreads roughly evenly over the available slices and
an appropriate choice is Ñ31 ¼ ttot · Ṽ2. In the degenerate
phase, the volume tends to concentrate on one of the slices,
and a good choice is Ñ31 ¼ Ñ2 þm, where for ttot ¼ 3 and
Ṽ2 > 1.000 we found that m ¼ 100 is a convenient choice.
To maximize the volume of the spatial slices, we work

with ttot ¼ 3, the minimal number allowed by our simu-
lation code. Both this choice and our choice of periodic
boundary in time can in principle have an influence on the
behavior of observables, even if our measurements are
confined to individual slices. Investigations of the transfer
matrix in four-dimensional CDT quantum gravity have
indicated that such a setup can be appropriate, at least
for selected observables [54]. As an extra check, we have
performed a few measurements on systems with larger
ttot ≲ 32, and found the same behavior for the slice
geometries. This is reassuring, but not a substitute for a
more systematic investigation of the influence of these
global choices, which goes beyond the scope of our present
work. This proviso should be kept in mind when interpret-
ing the outcomes of our research, which will be pre-
sented next.

IV. GEOMETRIC OBSERVABLES
ON SPATIAL HYPERSURFACES

The main objective of our work is a detailed measure-
ment of the geometric properties of the two-dimensional
spatial hypersurfaces of constant integer proper time t in
three-dimensional CDT quantum gravity, both in the
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FIG. 4. Volume profiles V2ðtÞ of typical configurations appearing in the de Sitter phase (left) and the degenerate phase (right) of the
three-dimensional CDT model on S1 × S2.

9These attempted moves will be accepted or rejected according
to the detailed balance condition mentioned earlier.
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de Sitter and the degenerate phase. We will compare our
findings with known results for nonperturbative models
of two-dimensional quantum gravity. There are two pure-
gravity systems inD ¼ 2 available for reference, Euclidean
DT and Lorentzian CDT quantum gravity. However,
especially in the de Sitter phase there are no stringent
reasons why the slice geometries should match these
known systems, since they are part of a larger, three-
dimensional geometry. For example, the ambient geometry
may induce extrinsic curvature terms on the spatial slices,
which are not present in intrinsically two-dimensional
situations. The following subsections will deal in turn with
the four quantities we have studied on the spatial slices: the
vertex order, the entropy exponent, the Hausdorff dimen-
sion and the curvature profile.

A. Vertex order

We first examined the distribution of the vertex order,
which counts the number qðvÞ of spacelike edges meeting
at a given vertex v. For the simplicial manifolds we use in
the simulations, the possible vertex orders are qðvÞ ¼
3; 4; 5;…. As already mentioned earlier, the distribution
of the qðvÞ is not strictly speaking an observable. It is a
nonuniversal property of the discrete lattice, which depends
on the details of the lattice discretization and does not have
an obvious continuum counterpart. For example, using
quadrangulations instead of triangulations leads to the
same continuum theory of two-dimensional Euclidean
DT quantum gravity [55], but the two models have different
distributions of vertex orders. We have studied this quantity
nevertheless, since it is known analytically for both the DT
and CDT ensembles and gives us a first idea of whether
and how our system changes as a function of the bare
coupling k0.
The normalized probability distributionPðqÞ for thevertex

order in two-dimensional DT quantum gravity in the thermo-
dynamic limit has been determined analytically as [56]

PDTðqÞ ¼ 16

�
3

16

�
q ðq − 2Þð2q − 2Þ!

q!ðq − 1Þ! ; q ≥ 2; ð6Þ

with a large-q behavior∼ð3
4
Þq. The corresponding probability

distribution for two-dimensional CDT quantum gravity is
given by [57]

PCDTðqÞ ¼
q − 3

2q−2
; q ≥ 4; ð7Þ

with a falloff behavior∼ð1
2
Þq for largeq. Both distributions are

shown in Fig. 5.
We took measurements at the three chosen phase space

points k0 ¼ 0.0, 5.0, and 8.0, with a target volume
Ṽ2 ¼ 4.000 for the spatial slices, corresponding to a target
three-volume Ñ31 ¼ 12.000 in the de Sitter phase, and
Ñ31 ¼ 4.400 in the degenerate phase. The sweep size was

set to 100 · Ñ31 in each case. For each value of k0, we
collected measurements of PðqÞ for 100k different slices,
by recording for each slice the full set of vertex orders qðvÞ
for all vertices and normalizing the resulting histogram.
We then approximated the eigenvalue hPðqÞi by taking the
ensemble average over this dataset according to the
prescription (3). The results of the measurements for
q ∈ ½3; 20� are shown in Fig. 6 and are clearly distinct
for the three k0-values. While the distribution for k0 ¼ 8.0
in the degenerate phase is a very good match for the
analytical result, the distributions for k0 ¼ 0.0 and 5.0 in
the de Sitter phase are not good matches and are also
different from each other. This is confirmed when plotting
the measurements on a logarithmic scale, taking into
account a much larger range of q ≤ 180, as depicted in
Fig. 7, which also includes the known distributions for
Euclidean DT and CDT as thin straight lines. We see that
within measurement accuracy, the distribution of vertex
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FIG. 5. Probability distribution of the vertex order q for the
ensembles of two-dimensional Euclidean DT and Lorentzian
CDT quantum gravity, in the limit of infinitely many triangles.
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FIG. 6. Measured probability distribution of the vertex order q
on spatial slices of volume V2 ¼ 4.000 in three-dimensional
CDT, for k0 ¼ 0.0, 5.0, and 8.0 and q ≤ 20. For comparison, the
line connecting the exact values for DT from Fig. 5 are included.
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orders in the degenerate phase of the model is indistin-
guishable from (6), a result that is also compatible with the
numerical simulations of pure Euclidean DT quantum
gravity performed in [56]. By contrast, the distributions
obtained in the de Sitter phase exhibit a very different
behavior, at least for large q. High-order vertices are
relatively speaking more probable, and the data cannot
be fitted to a single exponential over the q-range we have
explored. Moreover, unlike what happens in the degenerate
phase, the distributions within the de Sitter phase depend
on the value of k0.
To obtain a more detailed picture of the dependence on

k0, we performed a series of shorter simulation runs at
additional points in the de Sitter phase. When entering the
de Sitter phase from the degenerate phase by crossing the
phase transition at kc0, the vertex order distribution jumps
discontinuously to a shape similar to that for k0 ¼ 5.0. As
k0 is decreased further inside this phase, the distribution
changes shape in a continuous way; the distributions we
measured for points in the interval 0.0 < k0 < 5.0 inter-
polate in a straightforward manner between the ones for
k0 ¼ 0.0 and k0 ¼ 5.0 shown in Figs. 6 and 7.
To summarize, the measurements of the vertex order

distribution in the degenerate phase produce an excellent
match with the known one for DT quantum gravity. By
contrast, the distributions found in the de Sitter phase do
not match those of the standard DT or CDT ensembles in
D ¼ 2. As mentioned earlier, this does not necessarily
mean that the slice geometries in the de Sitter phase do not
lie in either of the associated universality classes, but it is a
first indication that they may not. By looking at genuine
observables next, we will be able to make more definite
statements about the universal geometric properties of the
slice geometries.

B. Entropy exponent

An important parameter characterizing two-dimensional
systems of random geometry is the entropy exponent γ,
which contains information about the behavior of the
partition function at fixed two-volume N2 (number of
triangles), in the limit as N2 becomes large.10 Recall that
the path integral of DT quantum gravity inD ¼ 2 with bare
cosmological constant λ can be written as the infinite sum,

ZðλÞ ¼
X
N2

ZðN2Þe−λN2 ; ð8Þ

which is the (discrete) Laplace transform of the partition
function ZðN2Þ for fixed volume. For large N2, ZðN2Þ
behaves like

ZðN2Þ ∼ eλ
cN2Nγ−3

2 ð1þOð1=N2ÞÞ; ð9Þ

whose leading exponential growth is governed by a
(nonuniversal) critical cosmological constant λc > 0 and
whose subleading power-law behavior defines the universal
entropy exponent γ, which for DT quantum gravity is given
by γ ¼ −1=2. The asymptotic functional form (9) continues
to hold when conformal matter of central charge c < 1 is
added to the Euclidean quantum gravity model, giving rise
to the entropy exponents [58],

γ ¼ 1

12

�
c − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25 − cÞð1 − cÞ

p �
; ð10Þ

with c ¼ 0 corresponding to the pure-gravity case. Two-
dimensional CDT quantum gravity, which is not described
by formula (10), is characterized by γ ¼ 1=2 [4]. Computer
simulations have demonstrated that adding matter with
c ¼ 4 to the CDT system induces a phase transition in the
geometry [59], but the corresponding entropy exponent is
not known.
According to [60], the distribution of so-called baby

universes in two-dimensional Euclidean quantum gravity—
parts of a geometry that are connected to the larger bulk
geometry via a thin neck—depends in a simple way on the
entropy exponent γ. This insight was used subsequently to
formulate a prescription of how to extract γ by measuring
the distribution of minimal-neck baby universes (“minbus”)
in the DT ensemble with the help of Monte Carlo simu-
lations [61]. A minbu is a simply connected subset of disk
topology of a two-dimensional triangulation T, which is
connected to the rest of T along a loop consisting of three
edges, which is the minimal circumference of a neck
allowed by the simplicial manifold conditions.

FIG. 7. Measured probability distribution of the vertex order q
(logarithmic scale) on spatial slices of volume V2 ¼ 4.000 in
three-dimensional CDT, for k0 ¼ 0.0, 5.0, and 8.0. The unbroken
straight line is the analytical result (6) for two-dimensional DT,
and the dashed straight line the analytical result (7) for two-
dimensional CDT.

10We use N2 to denote two-volumes in two-dimensional
models of quantum gravity and V2 to denote the two-volume
of a spatial slice in three-dimensional quantum gravity.
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As shown in [60,61], it follows from relation (9) that
the average number n̄N2

ðBÞ of minbus of volume B
(counting the number of triangles in the minbu) in a
spherical triangulation of volume N2 for sufficiently large
B, N2 behaves like

n̄N2
ðBÞ ∼ ðN2 − BÞγ−2Bγ−2: ð11Þ

By measuring the distribution of minbus across a range of
volumes B for fixed N2 in a DT ensemble and fitting the
results to the function (11), the expected results γ ¼ −1=2
for pure gravity and γ ¼ −1=3 for gravity coupled to
Ising spins (c ¼ 1=2) were reproduced within measuring
accuracy [61].
We have carried out a similar analysis on the spatial

slices of triangulations generated by Monte Carlo simu-
lations of three-dimensional CDT quantum gravity.
There is no obvious reason why (9) should hold for some
“effective” fixed-volume partition function for the two-
volume N2 ¼ V2 of a single spatial slice in this
three-dimensional system. However, if the number of
(2,2)-simplices drops essentially to zero and neighboring
slices decouple, as is the case in the degenerate phase, the

three-dimensional partition function at fixed volume will
depend only on N31 (equal to the total two-volume), which
makes it plausible that (9) holds on individual spatial slices,
with N2 ¼ V2. In the de Sitter phase, if the spatial
geometries can be described in terms of two-dimensional
DT quantum gravity, the minbu method will presumably
also lead to γ ¼ −1=2.
We measured the distribution n̄V2

ðBÞ of minbu sizes B for
target slice volumes Ṽ2 ¼ 1.000 and 2.000 at the three phase
space points k0 ¼ 0.0, 5.0, and 8.0. The sweep size was set
to 104 · Ṽ2 for measurements in the degenerate phase, and
105 · Ṽ2 in the de Sitter phase. We used longer sweeps in the
de Sitter phase because the observed autocorrelations were
much larger, especially at k0 ¼ 0.0, where the algorithm is
much less efficient. We collected on the order of 5 × 104

minbu size histograms for Ṽ2 ¼ 1.000 and 1.5 × 105 histo-
grams for Ṽ2 ¼ 2.000 in the de Sitter phase, and 4 × 105

histograms for Ṽ2 ¼ 1.000 and 2 × 105 histograms for
Ṽ2 ¼ 2.000 in the degenerate phase. The resulting expect-
ation values hn̄V2

i of the minbu size distribution as a function
of the normalized ratio B=V2 ∈ ½0; 1=2� are shown in Fig. 8,
together with best fits of the form (11) for specific values
of γ. The best fits were determined following the procedure
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FIG. 8. Expectation values of the distribution n̄V2
of minbu sizes for spatial slices of volume V2 ¼ 1.000 and 2.000 in three-

dimensional CDT configurations, in the degenerate phase (k0 ¼ 8.0, top) and the de Sitter phase (k0 ¼ 0.0, bottom left, and k0 ¼ 5.0,
bottom right), on a log-log scale. The continuous lines are best fits of the form (11) for specific values of γ. Error bars are smaller than the
dot size.
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used in [61] and involved a subleading correction term to
the power law Bγ−2, as is described in more detail in
Appendix A below.
In the degenerate phase (Fig. 8, top), the choice

γ ¼ −1=2 fits the data extremely well throughout the entire
range of B=V2, with the exception of the smallest minbu
sizes. Our results coincide within error bars with those
reported in Table 1 of [61]. This confirms that the spatial
slices in the degenerate phase exhibit behavior consistent
with DT quantum gravity in two dimensions.
In the de Sitter phase, there is no γ-value that leads to a

good fit over the full range of B=V2, even when we
disregard the region of small minbu size B, where (11)
is known to be inaccurate. The plots for k ¼ 0.0 and
k0 ¼ 5.0 (Fig. 8, bottom) illustrate the optimum of what
can be achieved, namely, a fit that works reasonably well
for an intermediate range of B=V2, in this case, a fit
corresponding to γ ¼ −1. However, this clearly does not fit
the data for large minbus near B=V2 ¼ 1=2, especially not
for the smaller value of k0, and the discrepancy seems to get
worse with increasing volume V2.
We conclude that the minbu distribution in the de Sitter

phase does not follow the functional form of the right-hand
side of relation (11), at least not for the slice volumes we
have considered (and which seem to be sufficient in the
degenerate phase). A possible explanation is that the
“effective” partition function ZðV2Þ, which is obtained
from the three-dimensional CDT partition function ZðN3Þ
for fixed three-volume by integrating out all degrees
of freedom except for a single slice volume V2, does not
have the asymptotic form (9). This would imply that it is
not in the universality class of a DT model with central
charge c < 1 or of CDT quantum gravity. A more subtle
scenario would be that ZðV2Þ does behave according to (9)
(and perhaps does correspond to a known gravity model
in D ¼ 2), but that the derivation of the minbu distribution
(11) is invalidated by the presence of correlations between
the bulk and a baby universe that exist because of the
embedding of the spatial slice in a three-dimensional
simplicial geometry. Such correlations are not present in
the degenerate phase because of the absence of (2,2)-
simplices. In the following two subsections, we will look at
observables which also characterize the intrinsic geometry
of the spatial slices, but whose determination is less subtle
than that of the entropy exponent.

C. Hausdorff dimension

The Hausdorff dimension is a notion of fractal dimension
that can be used to characterize a quantum geometry in an
invariant manner. Broadly speaking, it is extracted by
comparing volumes with their characteristic linear size,
measured in terms of a geodesic distance. There have been
many studies of the Hausdorff dimension in the context of
DT and CDT quantum gravity, including extensive inves-
tigations in two-dimensional Euclidean DT models with

and without matter (see, for example, [20,62–64] and
references therein). Following [62], we will investigate a
local and a global (“cosmological”) variant of this observ-
able on the spatial slices. From analytical considerations, it
is known that in two-dimensional Euclidean DT quantum
gravity without matter both types of Hausdorff dimension
are equal to four (i.e., different from the topological
dimension of the triangular building blocks), while for
two-dimensional CDT quantum gravity they are both equal
to two [4,65].
When measuring the Hausdorff dimension numerically,

one can use either the link distance or the dual link distance
as a discrete implementation of the geodesic distance. In
known systems of pure gravity in D ¼ 2, they lead to
equivalent notions of geodesic distance in the continuum
limit, but for finite lattice sizes, one particular choice may
be more convenient. This is true for our investigation
below, where we will use the dual link distance, which is
defined between dual vertices (equivalently, centers of
triangles) and given by the length of the shortest path
along dual links between the vertices.
When comparing our results with previous measure-

ments of the Hausdorff dimension in the context of two-
dimensional Euclidean DT [63,66], one must take into
account that the latter employed a larger ensemble of
geometries. This generalized ensemble allows for local
gluings of the equilateral triangles that violate the strict
simplicial manifold conditions.11 When characterizing the
triangulations in terms of their dual, trivalent graphs, the
generalization consists in allowing for tadpole and self-
energy insertions. It has been demonstrated to reduce finite-
size effects [67] and is justified by the fact that the model on
the enlarged ensemble can be shown to lie in the same
universality class (see e.g., [68] and references therein).
Since no analogous result is available in three-dimensional
CDT quantum gravity, it is prudent to use only simplicial
manifolds, which implies that the spatial slices are sim-
plicial manifolds too. This may affect the quality of our
results, compared with the earlier, purely two-dimensional
investigations. Note also that nonlocal minbu surgery
moves were used in [63] to complement the standard local
Monte Carlo moves and reduce autocorrelation times,
something we cannot easily implement on two-dimensional
embedded triangulations.

1. Local Hausdorff dimension

A key quantity in determining the local Hausdorff
dimension dh of a two-dimensional triangulation T is the
shell volume SðrÞ, which in our implementation counts the
number of dual vertices (equivalently, triangles) at dual link
distance r from a given dual vertex. The corresponding
observable is the quantity S̄ðrÞ, obtained by averaging SðrÞ

11Two triangles cannot share more than one edge, any two
vertices cannot be connected by more than one edge.
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over all dual vertices of T. The reason for using the dual
link distance is that shells with respect to the link distance
quickly cover a large fraction of the geometry as r grows.
This implies that the average shell volumes S̄ðrÞ cover only
a small range of radii r before dropping to zero, yielding
too few data points to make reliable estimates of either
Hausdorff dimension. The local Hausdorff dimension is
extracted from the expectation value S̄ðrÞ in the ensemble at
fixed two-volume N2 according to

hS̄ðrÞiN2
∼ rdh−1; ð12Þ

for small r. In other words, dh captures the initial, volume-
independent power-law growth of small geodesic spherical
shells, where r must be sufficiently large to avoid domi-
nance by discretization artefacts and sufficiently small to
avoid significant corrections to the simple power law
behavior (12), if such a behavior is indeed present.
We have measured the expectation values of average

shell volumes as a function of the dual link distance r, at
slice volumes V2 ¼ 16k and 32k and at the three chosen
phase space points k0, which is all straightforward. The
local Hausdorff dimension dh was extracted by fitting the
measured data to the functional form,

hS̄ðrÞiV2
¼ c · ðrþ aÞdh−1; ð13Þ

where—following [63]—we have introduced an offset a to
account for short-distance discretization artefacts, and c is a
multiplicative parameter. The dependence of the Hausdorff
dimension on the chosen fitting range r ∈ ½rmin; rmax� will
be analyzed in more detail below.
The measured expectation values of the average shell

volume are shown in Fig. 9 for 0 ≤ r ≤ 40. The plot on the
left, describing the behavior of the system in the degenerate
phase, illustrates the difference between the data for slice
volumes 16k and 32k. The data points for the smaller
volume start deviating from the common behavior around
r ≈ 20, indicating that a power-law fit becomes inadequate
beyond this point. The plot on the right illustrates the

dependence of the initial slope on the value of k0. Note that
although the curve for k0 ¼ 0.0 lies in between the two
other curves, the corresponding Hausdorff dimension
obtained from fitting to the functional form (13) comes
out lower than that for k0 ¼ 5.0, see below.
Since the criteria for fixing the fitting range r ∈

½rmin; rmax� for Eq. (13) are only approximate, it is impor-
tant to understand which choice is most appropriate and
how stable the results for dh are when the range is varied.
Some earlier work used the range r ∈ ½5; 15� in terms of
the dual link distance and for a system of volume
N2 ¼ 64k [69].
To investigate the influence of the fitting range in a

systematic way, we have performed fits for a set of
ranges r ∈ ½rmin; rmin þ w� of varying width w, and with
rmin ∈ ½5; 14�. The resulting best fit values for the local
Hausdorff dimension dh as a function of rmin are shown in
Fig. 10, for two different widths w ¼ 10 and 12.
Starting our analysis in the degenerate phase, we observe

a good stability of the value of dh when rmin is increased
away from its lowest, “canonical” cutoff value of 5, which
indicates that the region rmin ≳ 5 is not affected by short-
distance artifacts and that data in the corresponding interval
r ∈ ½rmin; rmin þ w� are well approximated by a pure power
law. Shifting the fitting range to start beyond rmin ¼ 7
changes the extracted best dh, mildly for the larger volume
V2 ¼ 32k and more strongly for V2 ¼ 16k. Taking into
account Fig. 9, left, this indicates that one is leaving the
region where the functional form (13) is an appropriate fit.
Lastly, setting w ¼ 12 instead of 10 reduces the error bars
without appreciably changing dh and is therefore prefer-
able. To conclude, the optimal choice of range among the
possibilities we have investigated at k0 ¼ 8.0 appears to be
r ∈ ½5; 17�. The associated local Hausdorff dimension for
V2 ¼ 32k is given by

dh ¼ 3.31ð4Þ; degenerate phase ðk0 ¼ 8.0Þ; ð14Þ

obtained from fitting to (13), with fit parameters a ¼ 4.0ð2Þ
and c ¼ 0.08ð1Þ. To illustrate the excellent quality of the
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FIG. 9. Expectation values hS̄ðrÞiV2
of average shell volumes in the degenerate phase ðk0 ¼ 8.0Þ for slice volumes V2 ¼ 16k; 32k

(left), and for all three phase space points k0 ¼ 0.0, 5.0, and 8.0 for slice volume V2 ¼ 32k (right). Error bars are smaller than dot size.
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fit, Fig. 11 shows the measured data together with the best-
fit curve and the fits at the edges of the 95% confidence
interval, which basically fall on top of each other (see
Appendix B for details on how to compute such confidence
intervals). The fits for the data at k0 ¼ 5.0 and k0 ¼ 0.0
are of similar quality. We postpone a discussion of the
compatibility of this result with the analytical value dh ¼ 4
for DT quantum gravity to later, after having investigated
the global Hausdorff dimension.
Turning next to a discussion of the de Sitter phase,

Fig. 10 shows the best fit values for dh we extracted from
the shell volume data. They are consistently smaller than
those in the degenerate phase, and within the de Sitter phase

decrease further with decreasing k0. We observe only a
shorter range of values rmin ≳ 5 where the Hausdorff
dimension is reasonably stable. Examining the correspond-
ing curves in Fig. 9, right, there does not seem to be a
very extended initial-growth regime, before the curves
straighten out to become approximately linear. It is possible
that finite-size effects affect the data points at the upper
end of the chosen ranges ½rmin; rmax� and cause the
observed deviations from a simple power-law behavior.
Alternatively, this behavior may be a bona fide feature of
the embedded slices. The error bars for larger rmin are
significantly larger than in the degenerate phase, especially
for k0 ¼ 0.0. At least in part, this appears to be due to a
statistical uncertainty of the measured shell volumes for
increasing r. As before, the error bars are smaller for
w ¼ 12 than for w ¼ 10. For k0 ¼ 5.0, the local Hausdorff
dimension seems to decrease slightly with growing rmin,
but in view of the width of the 95% confidence interval this
may not have any significance.
From a best fit in the interval r ∈ ½5; 17�, we find for the

local Hausdorff dimension,

dh ¼ 2.91ð5Þ; de Sitter phase ðk0 ¼ 0.0Þ; ð15Þ

dh ¼ 3.10ð4Þ; de Sitter phase ðk0 ¼ 5.0Þ; ð16Þ

for the fit parameters a¼2.5ð3Þ, c¼0.26ð5Þ and a¼3.9ð3Þ,
c ¼ 0.11ð2Þ respectively. For the time being, we take
note of these results and refer to Sec. IV C 3 below for a
summary and attempted interpretation of all Hausdorff
dimension measurements.

2. Global Hausdorff dimension

The global Hausdorff dimension of a two-dimensional
triangulation describes its behavior as a whole and can
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FIG. 10. Best fit values for dh from fitting (13) to the measured expectation values hS̄ðrÞiV2
in the range r ∈ ½rmin; rmin þ w� for spatial

slices in the degenerate phase (k0 ¼ 8.0, slice volumes V2 ¼ 16k; 32k) and in the de Sitter phase (k0 ¼ 0.0, 5.0, slice volume V2 ¼ 32k).
The error bars correspond to the 95% confidence intervals of a χ2-test.
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FIG. 11. Expectation values hS̄ðrÞiV2
of average shell volumes

in the degenerate phase (k0 ¼ 8.0) and slice volume V2 ¼ 32k.
The curves are plots of the fit function (13) for three different sets
of fit parameters: the optimal fit which minimizes χ2 and the two
fits at the boundaries of the 95% confidence interval. The fit is
performed to the data points in the range 5 ≤ r ≤ 17, as indicated
by the unshaded region.
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again be characterized by the average volume S̄N2
ðrÞ of

spherical shells of radius r, where we have added an
explicit subscript N2 to emphasize that the total volume of
the triangulation will now play an important role. Given an
ensemble of geometries of volume N2, a global Hausdorff
dimension dH can be extracted if in the limit of largeN2 the
eigenvalue of the distribution of shell volumes over the
entire r-range can be described by the functional form,

hS̄N2
ðrÞi ¼ N1−1=dH

2 F ðxÞ; x ¼ r

N1=dH
2

; ð17Þ

where F is a universal function that depends on the
rescaled geodesic distance x. This is known to be the case
for DT quantum gravity in two dimensions, where F has
been computed explicitly [63], but there is no guarantee
that the scaling law (17) holds for general systems of
geometries in D ¼ 2. Even when a global Hausdorff
dimension dH can be assigned in this manner, it need
not be equal to the local Hausdorff dimension dh [63,70].
We will attempt to extract a global Hausdorff dimension

for the spatial slices in three-dimensional CDT by perform-
ing a finite-size scaling analysis where we collect data for
hS̄V2

ðrÞi for the full range of radii r and several slice sizes
V2, and then try to rescale the resulting distributions
according to (17). If we can find a single value dH such
that the rescaled distributions fall on top of each other
for all volumes V2, we define this dH to be the global
Hausdorff dimension of the system.
Following [63], we will work with the normalized shell

volume distributions nV2
ðrÞ ≔ hS̄V2

ðrÞi=V2, for which the
scaling law (17) assumes the form,

nV2
ðrÞ ¼ V−1=dH

2 F ðxÞ; x ¼ r

V1=dH
2

: ð18Þ

Note that the measured distributions nV2
ðrÞ are functions of

a discrete variable r ∈ N0. To perform a smooth rescaling,
we first construct continuous functions that interpolate
between these discrete values, which by slight abuse of
notation we continue to call nV2

ðrÞ. Following the meth-
odology of [64], we then rescale, for each system volume
V2 separately, the corresponding distribution nV2

ðrÞ such
that it maximally overlaps with the normalized distribution
nVmax

ðrÞ for the largest slice volume Vmax in the simulation,
which we are using as a reference distribution. We denote
these rescaled distance profiles by ñV2

ðr̃Þ, where r̃ is a
rescaled length variable. They take the form,

ñV2
ðr̃V2

Þ ¼
�

V2

Vmax

�
1=d

nV2
ðr̃Þ;

r̃V2
¼

�
V2

Vmax

�
1=d

ðrþ aÞ − a; ð19Þ

where the two fit parameters are a rescaling dimension d
and a phenomenological shift a [63,64] that corrects
for discretization effects at small r, similar to the pre-
scription (13) we used for the local Hausdorff dimension.
Note that r̃Vmax

is equal to the original discrete length
parameter r, so we can use them interchangeably, and
that ñVmax

¼ nVmax
. For each system size V2 < Vmax we

determine the corresponding fit parameters a, d from the
condition that the sum of the squared differences
ðñV2

ðr̃V2
Þ − ñVmax

ðrÞÞ2 should be minimized, where r̃V2

depends implicitly on the discrete parameter r. We perform
the fit in the range of integers r where ñVmax

ðrÞ >
1
5
maxr ñVmax

ðrÞ, which means we disregard contributions
from the tails of the distribution, where discretization
effects are more likely to be present. If over a large range
of V2 the rescaled distributions overlap to a common curve
or are reasonably close to doing so, we take the mean d̄ of
all the rescaling dimensions d and define this to be the
global Hausdorff dimension, dH ≔ d̄. We also average
the shift parameters to obtain one optimal shift ā for the
system. If we do not find sufficient overlap, the method
fails, and we cannot assign a global Hausdorff dimension.
We measured the expectation value of the shell

volume distribution for eight different slice volumes
V2 ∈ ½1.000; 32.000� in the degenerate phase, and for seven
slice volumes V2 ∈ ½1.000; 8.000� in the de Sitter phase.
Again, the autocorrelation times are much larger in the de
Sitter phase, and the resulting uncertainties especially large
near the peaks of the distributions. Since the location and
height of these peaks are important features for finding the
appropriate rescaling dimension required for a collapse,
large uncertainties in this region imply large error bars for
the best fit parameters. This led to our choice for the smaller
volume range in the de Sitter phase.
For each of the three phase space points, Fig. 12 shows a

collection of curves for a range of volumes V2, which have
been rescaled according to (19), using the averaged pair
ðd̄; āÞ for all of them. The topmost graph, for k0 ¼ 8.0,
makes a convincing case for the presence of finite-size
scaling in the degenerate phase. Using d̄ ¼ 3.30 and
ā ¼ 2.64 as the joint rescaling parameters leads to a curve
collapse of good, although not perfect quality for slice
volumes up to 32k. This is not the case for the rescaled
curves in the de Sitter phase (Fig. 12, bottom), which were
obtained for the averaged fit parameters d̄ ¼ 2.68 and
ā ¼ −0.46 at k0 ¼ 5.0 and d̄ ¼ 3.02 and ā ¼ 2.08 at
k0 ¼ 0.0. Although the slice volumes span a significantly
smaller range than in the degenerate phase, our rescaled
data do not support the presence of finite-size scaling in this
phase. In addition to the mismatch among the curves, we
also note that the distributions in the two phases look

different as a function of the rescaled radius x ¼ r=V1=d̄
2 .

While in the degenerate phase its range extends to around
6.7, and the peak is located near 2.4, the slice geometries in
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the de Sitter phase have a smaller linear extension, with x
reaching on the order of 4 (5.7) and the peak located near
1.4 (2.0) for k0 ¼ 5.0 (0.0). One could be tempted to
disregard the lack of overlap between the curves for different
volumes and simply define the global Hausdorff dimension
to be equal to the average d̄ ¼ 2.68 for k0 ¼ 5.0 and
d̄ ¼ 3.02 for k0 ¼ 0.0. However, Fig. 13 shows that this
would be misguided, since the values for d exhibit a strong
dependence on the volume in the rangewe have investigated.
Especially the curve for k0 ¼ 0.0 shows a steep rise, with

little indication of asymptoting to a constant value, very
different from the curve for the degenerate phase, which we
have included for comparison. Note also that the d-values
extracted from measurements in the de Sitter phase are not in
any obvious way related to the values we found for the local
Hausdorff dimension, namely, dh ¼ 3.10ð4Þ for k0 ¼ 5.0
and dh ¼ 2.91ð5Þ for k0 ¼ 0.0. This appears to be yet
another indication that the behavior of the shell distributions
is not governed by a single scale and that the scaling
hypothesis (17) is simply not valid in the de Sitter phase.
Based on these observations, we are unable to associate a

global Hausdorff dimension with the phase space points
in the de Sitter phase. By contrast, finite-size scaling is
observed in the degenerate phase, and the associated global
Hausdorff dimension is given by

dH ¼ 3.30ð2Þ; degenerate phase ðk0 ¼ 8.0Þ; ð20Þ

which within error margins coincides with the local
Hausdorff dimension dh ¼ 3.31ð4Þ of Eq. (14) we deter-
mined in the previous subsection.

3. Discussion of results

Let us consider first the results we obtained in the
degenerate phase. We found clear evidence for the presence
of finite-size scaling when analyzing the global Hausdorff
dimension, and mutually consistent values for both
Hausdorff dimensions, with dh ¼ 3.31ð4Þ for the local
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FIG. 12. Distributions ñV2
ðr̃V2

Þ of shell volumes rescaled with the averaged parameters ðd̄; āÞ in the degenerate phase (k0 ¼ 8.0, top)
and the de Sitter phase (k0 ¼ 5.0, bottom left, and k0 ¼ 0.0, bottom right).
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FIG. 13. Values for d extracted by comparing measured
distributions of shell volumes at a given volume V2 with
those at the top volume, for k0 ¼ 0.0, 5.0, and 8.0, as
explained in the text.
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and dH ¼ 3.30ð2Þ for the global variant. Despite the large
discrepancy with the analytical value dh ¼ dH ¼ 4 for
two-dimensional DT quantum gravity, we nevertheless
believe that the observed Hausdorff dimension of the
spatial slices is compatible with this model of quantum
gravity. This interpretation is supported by known diffi-
culties in numerically extracting the Hausdorff dimension
in two-dimensional systems of random geometry (see [71]
and references therein), with a tendency of the Hausdorff
dimension measurements to underestimate its true value.12

In previous works, these difficulties have motivated the use
of a more general geometric ensemble, the introduction of
additional minbu moves and of a phenomenological shift
parameter, as well as refined fitting techniques [63,64,66].
As mentioned earlier, several of these improvements are
unfortunately not directly applicable in our case, because
our two-dimensional geometries are parts of larger, three-
dimensional triangulations.
Earlier numerical results for pure DT quantum gravity

whose derivation most closely resembles our treatment are
the finite-size scalings obtained for N2 ≤ 32k from col-
lapsing curves for the shell volume distributions in terms
of the dual link distance in [66]. Depending on the fitting
method, they yielded the values dH ¼ 3.150ð31Þ and
dH ¼ 3.411ð89Þ. Unlike ours, this work used a generalized
ensemble, but the final results for the Hausdorff dimension
are broadly in line with our findings. Another aspect well
illustrated by [66] is the increase of the measured Hausdorff
dimension with the system volume, something we also
observed in the degenerate phase (Fig. 10).
Our results in the de Sitter phase are less clear-cut, but

point to a system that is in a different universality class from
DT quantum gravity. The values we determined for the
local Hausdorff dimensions, dh ¼ 3.10ð4Þ for k0 ¼ 5.0
and dh ¼ 2.91ð5Þ for k0 ¼ 0.0, are even further removed
from 4, but this might conceivably still be due to some
even more serious underestimate than in the degenerate
phase. More significant is the absence of finite-size scaling
and the ensuing impossibility to associate a consistent
global Hausdorff dimension to the system. The most likely
explanation is the absence of a single scale governing the
dynamics, which would imply a different universality class
from that of the degenerate phase. Discarding an interpre-
tation of the de Sitter phase in terms of DT quantum gravity
leaves us without any obvious alternative candidate theory
to explain these results. There are a number of two-
dimensional CDT models with matter coupling that have
a local and/or global Hausdorff dimension of or near 3,
including CDTwith eight Ising spins [59], several massless
scalar fields [72], or restricted hard dimers [73]. Also two
pure-gravity models of so-called locally causal dynamical

triangulations, generalizing the strict slicing of two-
dimensional CDT, were found to have Hausdorff dimen-
sions near 3 [71]. There is nothing obvious that would link
one of these models to the Euclidean slices we are dealing
with here, but we cannot exclude this possibility either
without a further investigation, which however would take
us beyond the scope of the present work.

D. Curvature profile

The last quantity we will measure on the spatial hyper-
surfaces is a curvature observable. It is based on the
quantum Ricci curvature, a generalized notion of Ricci
curvature introduced in [30]. The quantum Ricci curvature
depends on a neighborhood of linear size δ of a point x and
has the interpretation of a coarse-grained Ricci curvature
associated with the scale δ. It is defined on a range of metric
spaces of Riemannian signature, including nonsmooth
ones, and its introduction was motivated by the search
for a notion of (renormalized) curvature suitable for non-
perturbative quantum gravity. It can also be defined on
classical, smooth Riemannian spaces, where in the
limit δ → 0 it reproduces the standard notion of Ricci
curvature [30,74]. The simplest way to turn this (quasi)
local notion of curvature into a quantum observable
depending on the scale δ, dubbed the curvature profile [75],
is by averaging it over all points of a given metric space
and in each point over all directions, leading to a coarse-
grained, averaged notion of a Ricci scalar. The quantum
Ricci curvature and associated curvature profiles have been
studied for a wide range of smooth and piecewise flat
spaces [74,75] and used to characterize the curvature
properties of DT quantum gravity in D ¼ 2 [74], CDT
quantum gravity in D ¼ 2 [76], and full, four-dimensional
CDT quantum gravity, producing further evidence for
the de Sitter nature of the quantum geometry in four
dimensions [17]. In the following, we will recall briefly
the ingredients and construction of the curvature profile,
and refer to the literature [30,75,76] for more detailed
discussions.
The main ingredient in determining the quantum

Ricci curvature is the measurement of the average sphere
distance d̄ðSδp; Sδp0 Þ of two overlapping geodesic spheres

Sδp, Sδp0 , each of radius δ, whose centers p and p0 are also a
geodesic distance δ apart. To compute the (δ-dependent)
quantity d̄, we average over the distance between all pairs
of points ðq; q0Þ ∈ Sδp × Sδp0 on the two spheres. The
geometry of the situation is depicted in Fig. 14 for the
two-dimensional case, where the spheres are given by
circles. When applying the prescription on a smooth
Riemannian manifold, one extracts the Ricci curvature
Ricðv; vÞ at p in the limit δ → 0, where v is the tangent
vector at p in the direction of p0 [30,74]. However, we will
implement the prescription on piecewise flat triangulations
and for noninfinitesimal δ, where distances are defined in

12More precisely, this is true for DT models; numerical
measurements of the Hausdorff dimension for two-dimensional
CDT found dH ≈ 2 [57] and dH ¼ 2.2ð2Þ [71].
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terms of an integer-valued link distance or dual link
distance, and the limit δ → 0 is neither well defined nor
physically interesting because of short-distance discretiza-
tion artefacts. In what follows, we will use the link distance
dðq; q0Þ between pairs q, q0 of vertices, to allow for a direct
comparison with previous measurements of the quantum
Ricci curvature in two-dimensional DT quantum gravity,
which also used the link distance [74], on the ensemble of
regular, simplicial manifolds. In the triangulated setting, a
geodesic “sphere” Sδp centered at the vertex p is defined as
the set of vertices at link distance δ from p, N0ðSδpÞ counts
the number of vertices in this set, and the average sphere
distance takes the form of a normalized double sum,

d̄ðSδp; Sδp0 Þ ¼ 1

N0ðSδpÞ
1

N0ðSδp0 Þ
X
q∈Sδp

X
q0∈Sδ

p0

dðq; q0Þ;

dðp; p0Þ ¼ δ: ð21Þ

We have used inverted commas since the vertices of a point
set Sδp will in general not form a genuine sphere: it is not
required that the vertices form a sequence of nearest
neighbors which can be joined pairwise by N0ðSδpÞ edges,
resulting in a unique one-dimensional simplicial submani-
fold of the topology of a circle. Rather, such a procedure
generally yields multiple circles, and results in self-
intersections and -overlaps.
The quantum Ricci curvature Kqðp; p0Þ associated with

the point pair ðp; p0Þ is defined in terms of the normalized
average sphere distance as

d̄ðSδp; Sδp0 Þ=δ≕ cqð1 − Kqðp; p0ÞÞ; δ ¼ dðp; p0Þ: ð22Þ

The factor cq is a positive constant which describes the
δ-independent part of the average sphere distance. In the
continuum, it can be defined by the limit cq ≔ limδ→0 d̄=δ

and depends only on the dimension of the manifold. The
function Kqðp; p0Þ captures the nontrivial dependence of
the average sphere distance on the direction of the vector
pp0 and the scale δ. The most straightforward way to
construct a genuine, diffeomorphism-invariant curvature
observable is by taking an average d̄av of the average sphere
distance d̄ of Eq. (22) over all pairs ðp; p0Þ of center points
at a fixed distance δ ¼ dðp; p0Þ in the triangulation T,

d̄avðδÞ ≔
1

N δ

X
p∈T

X
p0∈T

d̄ðSδp; Sδp0 ÞδKðdðp; p0Þ; δÞ: ð23Þ

The symbol δK denotes a discrete Kronecker delta, imple-
menting the distance constraint on p, p0, and the normali-
zation N δ is defined by the double sum,

N δ ¼
X
p∈T

X
p0∈T

δKðdðp; p0Þ; δÞ: ð24Þ

The so-called curvature profile, introduced in [75], is given
by the quotient d̄avðδÞ=δ. Since the double sum (23)
includes an average over all directions, it allows us to
extract a scale-dependent quantum Ricci scalarKavðδÞ from
the curvature profile via

d̄avðδÞ=δ≕ cavð1 − KavðδÞÞ: ð25Þ

Since in the simplicial setting the factor cav cannot be fixed
through a limit δ → 0, it is set to the expectation value of
the normalized average sphere distance for the minimal
value of δ such that discretization artefacts are no longer
dominant. In [74], this value was taken to be δ ¼ 5.
Continuing our investigation of three-dimensional CDT

quantum gravity, we measured the expectation value

FIG. 14. The average sphere distance d̄ of two geodesic circles
Sδp and Sδp0 , whose centers p and p0 are a distance δ apart, is
obtained by averaging over the distance dðq; q0Þ of all point pairs
ðq; q0Þ along the two circles.

FIG. 15. Expectation value hd̄av=δi of the normalized average
sphere distance, measured in two-dimensional DT quantum
gravity (blue squares) [74], and for the spatial slices of three-
dimensional CDT quantum gravity in the degenerate phase
(yellow dots), both for volume V2 ¼ 60k. (Error bars are smaller
than dot size.)
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hd̄av=δi of the curvature profile of its spatial hypersurfaces
at the phase space points k0 ¼ 0.0, 5.0, and 8.0. We used
slice volumes in the range V2 ∈ ½4k; 60k� in the degenerate
phase and V2 ∈ ½4k; 20k� in the de Sitter phase. For the
volumes V2 ¼ 20, 30, 40 and 60k, we compared the
curvature profiles in the degenerate phase at k0 ¼ 8.0 to
those of two-dimensional DT quantum gravity [74], and in
each case found agreement within statistical error bars.13

For illustration, the results for V2 ¼ 60k are shown in
Fig. 15. There is an excellent match of our present data,
taken for δ ∈ ½1; 25�, with those of DT quantum gravity in
the range where they overlap, except at δ ¼ 1. The fact that
this agreement extends even into most of the region of
discretization artefacts at small δ provides additional
evidence that the spatial hypersurfaces in the degenerate
phase behave like two-dimensional DT geometries.
The monotonically decreasing curvature profiles we

found in both the degenerate and the de Sitter phase clearly
indicate the presence of positive curvature, as can be seen
from Eq. (25). Motivated by the fact that curvature profiles
of two-dimensional DT quantum gravity can best be fitted
to those of a five-dimensional continuum sphere with some
effective curvature radius ρeff [74], we tried to do the same
for our data. As expected from the match of the curvature
profiles, our results for the effective curvature radii in the
degenerate phase are close to the values listed in Table 1
of [74]. Note that a rough estimate for the onset of finite-
size effects in measuring hd̄av=δi on a sphere of curvature
radius ρ is δ ≈ ρ, where the extension 3δ of the double
circle of Fig. 14 is approximately equal to πρ, half of the
circumference of the sphere. This is in good agreement with
the findings in [74].

Consistent with this argument, we found that for
V2 ¼ 60k, a fitting range δ ∈ ½5; 15� is appropriate, while
for the smaller slice volume V2 ¼ 20k, which is the
maximal size available for measurements in the de Sitter
phase, the smaller range δ ∈ ½5; 10� should be used. The
measured curvature profile for V2 ¼ 20k at k0 ¼ 5.0 in the
de Sitter phase is shown in Fig. 16, where for comparison
we present it alongside the result for the same slice volume
at k0 ¼ 8.0 in the degenerate phase. The continuous lines
are best fits to a 5D continuum sphere. Following [74], an
additive shift was used such that the data point at δ ¼ 5
always lies on the continuum curve. Because of the small
fitting range we cannot and do not claim that the data taken
at this (or even smaller) volume represent convincing
evidence for the curvature behavior of a sphere, and the
effective curvature radii extracted (ρeff ¼ 13.5 for k0 ¼ 8.0,
ρeff ¼ 11.1 for k0 ¼ 5.0) should be taken with a large grain
of salt.14 In the degenerate phase we can say a bit more, as
we have seen, since we can go up to volume V2 ¼ 60k and
essentially reproduce the results of DT quantum gravity.
With regard to the de Sitter phase, we can at this stage only
conclude that the curvature profiles are not in contradiction
with those of a 5D continuum sphere, but it is clear that the
quality of our results is not sufficient to definitely say that it
is a sphere, let alone determine its dimension and curvature
radius reliably. This would require us to probe much larger
systems, which especially in the de Sitter phase was not
feasible in our setup.

V. SUMMARY AND CONCLUSION

We set out to gain a more detailed understanding of the
properties of three-dimensional CDT quantum gravity by
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FIG. 16. Comparing measured curvature profiles in the range δ ∈ ½5; 10� with those of five-dimensional continuum spheres, for slice
volume V2 ¼ 20k. Left: fit to a sphere with ρeff ¼ 13.5 in the degenerate phase (k0 ¼ 8.0). Right: fit to a sphere with ρeff ¼ 11.1 in the
de Sitter phase (k0 ¼ 5.0).

13We thank N. Klitgaard for making the original data available
to us.

14The data at k0 ¼ 0.0 are somewhat similar to those at
k0 ¼ 5.0, but their quality is even worse, and we do not show
them here.
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studying the intrinsic geometric properties of its spatial
slices at integer proper time. We worked with the “classic”
ensemble of three-dimensional simplicial manifolds, which
implies that the spatial hypermanifolds under consideration
also satisfy manifold conditions and can be characterized
by dual trivalent graphs without tadpoles or self-energy
insertions. The original work on this quantum gravity
model found two distinct phases on either side of a first-
order transition as a function of the bare inverse gravita-
tional coupling k0 [26]: a de Sitter phase of extended
geometry for k0 < kc0 and a degenerate phase for k0 > kc0,
characterized by a strongly fluctuating volume profile, the
almost complete absence of (2,2)-tetrahedra and an
approximate decoupling of nearby spatial slices.
We investigated the intrinsic geometric properties of the

spatial slices in both phases, well away from the critical
coupling kc0 ≈ 6.24, at k0 ¼ 0.0 and 5.0 in the de Sitter and
at k0 ¼ 8.0 in the degenerate phase. The quantities con-
sidered were the expectation values of the average co-
ordination number of vertices in the slices, of the entropy
exponent extracted from the distribution of minimal-neck
baby universes, of the local and global Hausdorff dimen-
sion, and of the curvature profile, obtained by averaging the
quantum Ricci curvature. They are for the most part well
studied in two-dimensional DT and CDT quantum gravity,
the primary systems of reference for our results on the
spatial slices. One aim of our investigation, motivated by
the observed decoupling behavior of the spatial slices, was
to verify that the behavior of the slices in the degenerate
phase lies in the same universality class as DT quantum
gravity in D ¼ 2. What happens in the de Sitter phase and
to what extent the embedding three-dimensional geometry
influences the effective dynamics of the hypersurfaces in
this phase is much less clear a priori.
Summarizing our results, we found convincing evidence

that the behavior of the spatial slices in the degenerate
phase is indeed compatible with that of two-dimensional
DT quantum gravity. The measured distribution of the
vertex order follows the analytical prediction almost
perfectly (Fig. 6). The same is true for the distribution
of (sufficiently large) minbu sizes (Fig. 8, top), yielding an
entropy exponent γ ¼ −1=2, the known value for pure
Euclidean gravity in D ¼ 2. Measurement of the local and
global Hausdorff dimension yielded mutually compatible
results, with dh ¼ 3.31ð4Þ and dH ¼ 3.30ð2Þ, exhibiting
finite-size scaling for the latter. We argued that the
discrepancy between the measured values and the analyti-
cally known value dh ≡ dH ¼ 4 is in line with expectations
for a simplicial manifold ensemble and the relatively small
volumes under consideration here. Finally, the measured
curvature profile matched very well that of a previous
investigation of DT quantum gravity in D ¼ 2 (Fig. 15), at
least up to the slice volume V2 ¼ 60kwe could investigate.
By contrast, in the de Sitter phase we could not establish

a corresponding overall match of the behavior of the

measured observables with that of any known quantum
gravity model in two dimensions. In particular, we did not
find any evidence that the spatial slices behave according
to DT quantum gravity in D ¼ 2, which one may argue is
the most natural hypothesis, given the absence in the slices
of a preferred direction or a time-space asymmetry, which
characterizes two-dimensional CDT configurations. We
also found that the behavior within the de Sitter phase
depends on the value of the bare coupling constant k0.
Since it was tangential to our main focus, we did not study
the nature of this k0-dependence more closely, which may
be a worthwhile project in itself. Within the limited range of
couplings k0 ∈ ½3.0; 6.0�, earlier work found some evidence
that results inside the de Sitter phase can be mapped onto
each other by a k0-dependent rescaling of the time- and
spacelike length units [26]. It would be interesting to
understand whether this also extends to the value k0 ¼ 0
we have been using, or even to negative k0.
Returning to the specifics of our results, the vertex order

in the de Sitter phase was found to obey a very different
distribution from that in the degenerate phase, with large
coordination numbers being more prevalent (Fig. 7). We
also saw that the distribution for k0 ¼ 5.0 is even further
removed from that for k0 ¼ 8.0 than the distribution for
k0 ¼ 0.0. The method of determining the entropy exponent
γ from the distribution of minbu sizes does not appear to be
applicable in the de Sitter phase, which we conjectured to
be due to the presence of correlations in the three-dimen-
sional embedding triangulations. Although this does not
necessarily disprove a DT-like behavior of the spatial slices,
it does not present any evidence in favor of it either. The
measured local Hausdorff dimensions, given by dh ¼
3.10ð4Þ for k0 ¼ 5.0 and dh ¼ 2.91ð5Þ for k0 ¼ 0.0 are
significantly smaller than the value found in the degenerate
phase, and point to a different continuum limit than that of
two-dimensional DT quantum gravity. Of course, it could
be the case that the de Sitter phase is subject to much larger
discretization artifacts, because of the genuinely three-
dimensional nature of the underlying geometries, and that
one needs to go to larger slice volumes to get a better
approximation of continuum behavior. However, even
taking this possibility into account, a yet stronger indication
that the slices do not exhibit DT-like behavior comes from
the absence of finite-size scaling at fixed k0 to extract a
global Hausdorff dimension, from which we deduced that
the slice dynamics is likely governed by more than just one
scale. Finally, the measurement of the curvature profiles
showed the presence of a positive average quantum Ricci
scalar. Matching with a continuum sphere was in principle
possible but should at this stage be regarded as incon-
clusive, since it was based on only a handful of measure-
ment points, which could be compatible with other
curvature profiles also. It therefore cannot serve as evidence
that the system is equivalent to two-dimensional DT
quantum gravity.
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Having largely dismissed an interpretation of the spatial
slices in the de Sitter phase in terms of two-dimensional
DT or CDT quantum gravity does not leave any obvious
alternatives to associate them with (the universality classes
of) other known systems of random geometry. DT gravity
coupled to matter with a conformal charge c < 1 is
disfavored, because the apparent absence of finite-size
scaling for the global Hausdorff dimension of the spatial
slices contradicts the scale-invariance of these systems. On
the one hand, the quality of our data is far removed from the
precision measurements of the Hausdorff dimension of such
systems [64], and we cannot entirely exclude that finite-size
scaling will appear at much larger volumes than the ones we
could probe here. On the other hand, we would urge caution
when comparing to ensembles with less stringent regularity
conditions, like those used in [64]: even if the relaxation of
simplicial manifold conditions does not change the univer-
sality class in specific two-dimensional models, this may not
hold in general in three-dimensional quantum gravity
models, and may depend on the details of the regularity
conditions. This is part of a more general question, namely,
are there natural larger ensembles of three-dimensional
triangulations which contain the simplicial manifold ensem-
ble of CDT, but lie in the same universality class? Conversely,
are there strictly smaller ensembles contained in that of
standard CDT quantum gravity, which still belong to the
same universality class? Larger ensembles may facilitate
numerical simulations and lead to faster convergence, while
smaller ensembles may be easier to enumerate and handle
analytically (see [77] for a recent example in three-
dimensional DT quantum gravity). Of course, there may
be more than one physically interesting universality class
associated with three-dimensional Lorentzian random geom-
etries, like the wormhole phase described by the ABAB-
matrix model [38] already mentioned in the Introduction.
Returning to ensembles of simplicial manifolds, our

results in the de Sitter phase may indicate the existence
of another, new model of two-dimensional quantum geom-
etry, where the embedding three-dimensional geometry
induces some effective dynamics on the spatial slices,
presumably through k0-dependent extrinsic curvature
contributions. Further research is needed to understand
whether such an induced model exists and whether it can in
turn be interpreted as a two-dimensional quantum field
theory with properties like locality and unitarity, as is the
case in the degenerate phase. Contrasting our relatively
straightforward verification of the DT nature of the
spatial dynamics in the degenerate phase with the diffi-
culties we encountered when investigating the de Sitter
phase highlights the fact that quantum geometry in
three dimensions—here by leaving its imprint on the
hypersurfaces—is significantly more complex and compli-
cated than quantum geometry in two dimensions. Much
remains to be done to illuminate its mathematical and
physical properties.

Our implementation code can be found at [78].
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APPENDIX A: ESTIMATING THE
ENTROPY EXPONENT

This appendix describes the procedure used in Sec. 2.1
of [61] to determine best fit values for the entropy exponent
γ with associated error bars, together with the results of
this analysis applied to our data. One introduces a
subleading correction to the right-hand side of (11) by
replacing

Bγ−2 → Bγ−2
�
1þ c

B
þO

�
1

B2

��
; ðA1Þ

which allows for a better fit in the regime of small B,
without significantly affecting the behavior of the function
at intermediate and large B. One then takes the logarithm
on both sides of (11) to obtain

logðn̄N2
ðBÞÞ ¼ aþ ðγ − 2Þ log ðBðN2 − BÞÞ þ c

B
; ðA2Þ

where the best fit parameters a, γ and c should now
be determined from the observed baby universe distribu-
tions shown in Fig. 8.15 The goodness of fit is defined
through the χ2-statistic, described in greater detail in
Appendix B below.
As mentioned before, the prediction (11) is only

expected to hold for sufficiently large baby universes,
where discretization effects are negligible. We therefore
introduce a lower cutoff B0 on B on the data before
extracting the best fit parameters. The resulting values of
the entropy exponent γ as a function of the cutoff B0 are
shown in Fig. 17 for N2 ≡ V2 ¼ 1.000, both with and
without the correction term c=B in (A2). Our figure
resembles Fig. 2 of Ref. [61] extremely closely, including
the magnitude of the error bars. The authors of [61]
subsequently obtain an estimate for γ by fitting an expo-
nential of the form,

γðB0Þ ¼ γ − c1e−c2B0 : ðA3Þ

15Note that the argument in the logarithm on the right-hand side
of this expression differs from Eq. (2.2) in [61] by a multiplicative
factor N2, which is absorbed by the fit parameter a.
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The resulting values for γ shown in Table 1 of [61] are
(within statistical error) identical to the ones we found from
our data, using the same method.

APPENDIX B: DETERMINING CONFIDENCE
INTERVALS FOR BEST FIT PARAMETERS

While researching the literature on numerical estimates
of quantities like the Hausdorff dimension and the entropy
exponent, we found that previous work is often not very
explicit about the methodology used to determine the
uncertainty in the best fit parameters, if such margins of
error are provided at all. Since our goal was to investigate
whether the behavior of the spatial slices is consistent with
that of known models of two-dimensional random geom-
etry, we considered it important to attach a degree of
confidence to the results obtained. This led us to a more
detailed study of the statistical methods available for
performing such an analysis. Here we summarize our
findings, in the hope that others may find them useful.
We also comment on the assumptions required to make use
of these methods and to what extent they apply in the
present context. Our main aim is to motivate the choices
made in computing the confidence intervals; we do not aim
for full mathematical or statistical rigor.
The generic starting point consists of a set of N data

points yn ∈ R measured at positions xn, to which we want
to fit a function fðx; θÞ with parameters θ. Firstly, we
require a measure of the goodness-of-fit which allows us to
find the set of best fit parameters θmin that minimizes this
measure. Secondly, since the measurements are inherently
noisy, we are interested in specifying a range for the fit
parameters in which we expect to find the “true” values
with a certain degree of confidence. In the method of least
squares, the goodness-of-fit is defined through the sum of
squares of the residuals, and the optimal fit is obtained
when this sum is minimized. However, the standard

unweighted sum of least squares assumes equal variances
on all the data points, which typically is not the case for the
measurements we perform in lattice quantum gravity. In
what follows, we will show how the χ2-distribution can be
used in the context of a linear regression model to define a
goodness-of-fit and corresponding confidence intervals for
the parameters θ. The models we fit in the main text of this
work do not fall into this class of linear models, so we
subsequently discuss how the analysis is affected when the
condition of linearity is relaxed.

1. Best fit parameter estimation

A linear model takes the form,

fðx; θÞ ¼
Xp
i¼1

θifiðxÞ; ðB1Þ

where the fi are functions of the independent variables.
These functions are allowed to be nonlinear in the xi—the
linearity condition applies to the fit parameters θi only.
Suppose the “correct” model has fit parameters θ0. If the
residuals ϵn on the N measurement outcomes are Gaussian
with standard deviation σn, we can consider the yn to be
normally distributed random variables with mean fðxn; θ0Þ
and standard deviation σn. We can turn these into N

standard normals Zn ¼ yn−fðxn;θ0Þ
σn

. Let us define the χ2-
statistic of a choice of fit parameters θ as the sum of the
squares of the Zn,

χ2ðθÞ ¼
XN
n¼1

�
yn − fðxn; θÞ

σn

�
2

: ðB2Þ

The reason we call this the χ2-statistic is that the sum of k
independent standard normals follows a so-called χ2-dis-
tribution with k degrees of freedom. Such a distribution has
expectation value k and variance 2k. The quantity χ2ðθÞ
should be minimized to find a maximum likelihood esti-
mator for θ0, corresponding to the set of best fit parameters.
In the current situation, where we are trying to fit a model

to the data points, we must take into account that the
individual yn are explicitly not independent—after all, we
have hypothesized the existence of a model fðx; θÞ that can
predict the outcomes of our measurements. The sum of N
squared standard normal distributions therefore follows a
χ2-distribution with a certain number k < N of degrees of
freedom. For a linear model without priors (i.e., restrictions
on the fit parameters), we have k ¼ N − p, where p is the
number of fit parameters.
Therefore, when fitting a linear model fðx; θÞ with p fit

parameters to N data points yn with Gaussian errors σn, we
expect the χ2-statistic to follow a χ2-distribution with k ¼
N − p degrees of freedom. As mentioned earlier, the best fit
parameters θmin are determined by finding the minimum

No correction

Correction

5 10 15 20 25 30

�0.55

�0.50

�0.45

�0.40

�0.35

FIG. 17. Fitted values of the entropy exponent γ in the
degenerate phase for slice volume N2 ¼ 1.000 and different
lower cutoffs B0. We show the best fit values with and without the
correction term appearing in (A2).
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possible value χ2min of the χ
2-statistic. The fit is considered

good when χ2min ≈ k, since this is the expectation value of
the corresponding χ2-distribution. Significantly larger val-
ues of χ2min indicate that no reasonable fit could be found
(e.g. our assumptions about the model may be wrong),
whereas a χ2min significantly lower than k could mean we are
overfitting the data or overestimating the measurement
errors σn.

2. Confidence intervals

With the best fit parameters θmin at our disposal, we can
now turn to determining confidence intervals on these
parameters. After all, slightly varying the parameters
around their best fit values should produce approximately
equal χ2-statistics. Moreover, the measurement data we are
using to compute χ2 are inherently noisy, which implies
that we have merely obtained an estimate of the “true” best
fits. To specify a range in which we expect to find the true
values with a certain degree of confidence, we can use the
properties of the χ2-distribution.
Confidence intervals (CIs) are computed at a certain

confidence level, specified by a percentage (a common
choice is the 95% CI). Alternatively, we can specify a
significance level α, corresponding to a ð1 − αÞ% con-
fidence level. Given α, we can determine the critical value
χ2crit;α of the χ2-statistic for our fitted model containing
p parameters by solving Pðχ2 ≤ χ2crit;αÞ ¼ ð1 − αÞ, where
Pðχ2 ≤ xÞ is the cumulative distribution function for a
χ2-distribution with k ¼ p degrees of freedom.16 We can
determine χ2crit;α by the use of quantile functions or lookup
tables. The ð1 − αÞ% confidence interval for the fit param-
eters θ is then defined [79] as the region for which

χ2ðθÞ − χ2min < χ2crit;α: ðB3Þ

Typically, this region is an ellipsoid in θ-space, which
can be determined numerically by performing a grid
search around θmin. As an example, when determining
the 95% confidence intervals for a linear model with two

parameters, we find χ2crit;0.05 ≈ 5.991, and the joint con-
fidence intervals of the two fit parameters are the region in
R2 for which (B3) holds.

3. Potential caveats

We have used the procedure just described to determine
the confidence intervals for the best fit parameters in the
main text of this work. However, as pointed out earlier, the
analysis rests on several assumptions that do not neces-
sarily apply to our models and measurements. An important
prerequisite for using the χ2-distribution is that the meas-
urement errors are Gaussian; otherwise the sum (B2) is not
a sum of squares of standard normals. We often found a
slight degree of skewness in the distribution of our
measurement results, potentially invalidating the use of
χ2-methods. However, the skewness factors were always
near zero, so that we may still consider the computed
bounds of the confidence intervals to be good approxima-
tions to their true values.
A second potential issue is that the models we fit in our

work are not linear. Both for the minbu sizes and the
microscopic Hausdorff dimension, one of the fit parameters
appears in the exponent of an independent variable.
Although the best fit parameters for such models can still
be obtained by minimizing (B2), determining the correct
number of degrees of freedom is known to be difficult [80].
This means that we do not know the proper expectation
value of (B2) and therefore do not have a reference point
to compare our χ2min to. However, not knowing the true
number of degrees of freedom has more serious conse-
quences for computing confidence intervals. The number p
of fit parameters in our models is small, p < 4, and
choosing a different number of degrees of freedom near
zero has a strong effect on the resulting χ2crit;α. This can
significantly alter the width of the corresponding confi-
dence interval. For our purposes, we do not consider this to
be a major issue. The main goal of our analysis was to
check whether our results are consistent with previously
known results from the literature, requiring an order-of-
magnitude estimate of the confidence interval. This order of
magnitude is not affected if we over- or underestimate the
degree-of-freedom count by a few units. Furthermore, since
all confidence intervals in this work were obtained by using
the same methods, any comparison among our confidence
intervals is likely to still be meaningful.
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