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The search for scale-invariant random geometries is central to the asymptotic safety hypothesis for the
Euclidean path integral in quantum gravity. In an attempt to uncover new universality classes of scale-
invariant random geometries that go beyond surface topology, we explore a generalization of the mating of
trees approach introduced by Duplantier, Miller, and Sheffield. The latter provides an encoding of Liouville
quantum gravity on the 2-sphere decorated by a certain random space-filling curve in terms of a two-
dimensional correlated Brownian motion, that can be viewed as describing a pair of random trees. The
random geometry of Liouville quantum gravity can be conveniently studied and simulated numerically by
discretizing the mating of trees using the mated-CRT maps of Gwynne, Miller, and Sheffield. Considering
higher-dimensional correlated Brownian motions, one is naturally led to a sequence of nonplanar random
graphs generalizing the mated-CRT maps that may belong to new universality classes of scale-invariant
random geometries. We develop a numerical method to efficiently simulate these random graphs and explore
their possible scaling limits through distance measurements, allowing us in particular to estimate Hausdorff
dimensions in the two- and three-dimensional setting. In the two-dimensional case these estimates accurately
reproduce previous known analytic and numerical results, while in the three-dimensional case they provide a
first window on a potential three-parameter family of new scale-invariant random geometries.
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I. INTRODUCTION

A. Asymptotic safety and random geometry

According to general relativity, the gravitational force we
experience is accounted for by the dynamical geometry of
spacetime, as described by a (pseudo-Riemannian) metric on
a four-dimensional spacetime manifold satisfying Einstein’s
classical field equations. Since our world appears funda-
mentally quantum mechanical, general relativity is widely
believed to capture merely the low-energy limit of a more
fundamental quantum theory of gravity. A question central
to the development of such a theory is what is to replace the
classical smooth metric notion of spacetime geometry?
Proposals for the resulting structure, going under the
umbrella term of quantum geometry, differ considerably
from one approach to the other. But the characteristics are
generally quite different from the smooth metric structure of
general relativity because of increasingly large quantum
fluctuations at microscopic length scales at and beyond the
Planck scale. This becomes evident when one treats the
metric field perturbatively in the gravitational quantum field
theory, where its nonrenormalizability spoils the predictive
power at microscopic scales. A scenario in which predictive
power can be restored, while retaining the pseudo-
Riemannian metric structure as an effective description of

spacetime geometry at arbitrarily short length scales, has
been proposed in the form of asymptotic safety [1–3]. In this
scenario the nonperturbative renormalization group flow of
the gravitational quantum field theory approaches an ultra-
violet (UV) fixed point at which the dimensionless couplings
take finite values and do not change with the energy scale. If
these couplings are the ones of geometrical operators, we are
led to the conclusion that the quantum laws of the spacetime
geometry itself at such a fixed point must be scale-invariant.
Focusing on Euclidean quantum field theories of four-

dimensional Riemannian metrics, functional renormaliza-
tion group methods [2] relying on truncations of the
renormalization group flow onto finite numbers of cou-
plings have consistently found evidence for the existence of
a suitable fixed point, see, e.g., Ref. [4]. From a math-
ematical or statistical physics point of view, a Euclidean
quantum field theory is ideally understood as a probability
measure on an appropriate space of field configurations.
This suggest that a mathematical construction of a UV fixed
point of Euclidean quantum gravity amounts to the iden-
tification of a suitable model of scale-invariant random
geometry on the spacetime manifold.
In the toy model of Euclidean two-dimensional quantum

gravity this has been realized in the form of the Brownian
plane (and its cousins on compact surfaces, like the
Brownian sphere), an exactly scale-invariant probability
measure on metric spaces with the topology of the plane,
that represents a rigorous construction of what is called the
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pure-gravity universality class in the physics literature. It
appears not just as the scaling limit of uniform random
triangulations of the 2-sphere [5], but also naturally arises
from Liouville quantum gravity in the absence of matter
coupling [6–8]. The latter is related to the Liouville
conformal field theory [9], which due to the scaling
symmetry of conformal field theories makes it clear that
we are dealing with a fixed point of the renormalization
group flow. As a consequence of this symmetry, the
Brownian plane is not a (random) Riemannian manifold,
which would require the geometry in any sufficiently small
neighborhood to resemble that of the Euclidean plane, but
is genuinely fractal. For instance, its Hausdorff dimension,
equal to 4 [10], differs substantially from its topological
dimension.

B. The search for new universality classes

Beyond two dimensions, however, we currently know
of no explicit examples of nontrivial scale-invariant
random metric spaces with the topology of a three- or
four-dimensional manifold. The construction of natural
examples is therefore not only an important ingredient
for the asymptotic safety scenario but also presents an
important open mathematical problem. Essentially there are
three ways of approaching the problem, mimicking what
we know from two dimensions (where all three ways lead
to the same results).
The first way would be to construct a scale-invariant

quantum field theory on the spacetime manifold that
describes the gauge-fixed degrees of freedom of the
Riemannian metric. Subsequently, we would need to figure
out how to extract the metric geometry from these. This
would be analogous in the two-dimensional setting to first
identifying the Liouville conformal field theory, which
aims to describe two-dimensional Riemannian metrics in
conformal gauge, and extract the geometry from there using
an appropriate regularization procedure (which has largely
been achieved via quantum Loewner evolution in the case
of pure gravity and Liouville first passage percolation in
the presence of matter fields). However, this procedure is
difficult to generalize to higher dimensions, because of the
lack of good global coordinate gauges and the challenges
involved in constructing nonperturbative interacting quan-
tum field theories.
The second way is to introduce discreteness in the field

configurations following the philosophy of lattice field
theory. Having a nonzero lattice spacing regularizes the
ultraviolet divergences in the path integral while allowing
to include field configurations beyond the perturbative
regime, as is successfully employed in the numerical
investigation of QCD in its strongly coupled regime.
The main difference with discretization of matter field
theories, in which the lattice provides the geometry on
which the fields live, is that in gravity the field should
describe the geometry itself. This is naturally achieved by

allowing the lattice itself to become dynamical, with the
gravitational degrees of freedom entirely contained in the
combinatorial data describing the lattice and its geometry.
In dynamical triangulations [11–13] the lattice is con-
structed by gluing equilateral simplices (triangles, tetrahe-
dra, …, depending on the dimension in which the model is
considered), while much more general random planar map
models have been investigated in two dimensions. In order
to find a scale-invariant random geometry, representing a
potential Euclidean quantum field theory at the UV fixed
point, it is necessary to take a scaling limit where the
number of building blocks is taken to infinity while their
size is taken to zero. As is well known from statistical
physics, for such a nontrivial scaling limit to exist, the
discrete model must be critical, in that it exhibits diverging
correlation lengths. Besides criticality, another very impor-
tant criterion in the case of random geometry is that the
manifold structure does not degenerate in the scaling limit.
For instance, in dynamical triangulations of the 3-sphere,
the piece-wise flat geometries built from equilateral tetra-
hedra have the topology of the 3-sphere and display
criticality in the so-called branched polymer phase of
the model. However, numerical simulations indicate that
shrinking the building blocks leads to the topology degen-
erating into that of trees, nothing like the manifold structure
of the 3-sphere. Apart from the branched polymers,
simulations of dynamical triangulations in three and four
dimensions have not (yet) uncovered critical phenomena
that escape this branched-polymer universality. This means
that the lattice approach is yet to uncover concrete
opportunities to establish scale-invariant random geom-
etries on three- and four-dimensional manifolds. There are
however promising avenues in models that restrict the
family of triangulations considered. Simulations suggest
that four-dimensional causal dynamical triangulations
(CDT) [14] feature continuous phase transitions [15,16]
where one expects criticality to be found, while a numerical
investigation of a recently proposed model of three-
dimensional dynamical triangulations assembled from
triples of trees is underway [17].
The third route toward scale-invariant random geometry,

the one that we follow in this work, also aims to assemble
geometries out of simpler building blocks, but instead
of relying on criticality and scaling limits to approach
scale-invariance with random discrete objects, one takes
the building blocks themselves to be scale-invariant. If the
assembly does not spoil the scale-invariance and the
resulting geometry has the desired topology, this provides
a very economical way of uncovering new universality
classes. A simple example of such an assembly procedure is
that of the continuum random tree (CRT), which is the
scaling limit of the branched polymer universality class
mentioned above, out of Brownian motion [18]. Brownian
motion, seen as a random continuous real function on the
line (or equivalently as a massless free scalar field in one
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dimension), is the prime example of a scale-invariant
random object. This random real function naturally gives
rise to a gluing procedure of the real line into a topological
tree with a metric, namely the CRT, that shares the same
scaling symmetry (see Sec. II E for a discussion). Since the
CRT is not a topological manifold, its relevance for
quantum gravity is not obvious, but stems from the
possibility of using the CRT itself as building block for
larger random geometries.

C. Mating of trees

The hope of assembling manifolds out of random trees
may seem far-fetched, but is well established in two-
dimensional quantum gravity. At the level of discretized
surfaces, bijective encoding of planar maps in treelike
combinatorial structures has a long tradition, starting with
Mullin’s bijection for tree-decorated maps [19] and the
Cori–Vauquelin–Scheafer bijection between quadrangu-
lations [20,21] and labeled trees. The study of the latter
bijection in the scaling limit, in which the discrete trees
approach the CRT, paved the way for a mathematically
rigorous construction of (and convergence to) the scale-
invariant Brownian sphere [5,22,23]. Generalizations of
Mullin’s bijection to random planar maps decorated by
various critical statistical systems [24–27] hinted at a
different appearance of CRTs in the continuum limit, in a
way that ties in closely with Liouville quantum gravity
and conformally invariant random curves described by
Schramm–Loewner evolution (SLE). In the foundational
paper [28] by Duplantier, Miller and Sheffield this
approach, going under the name of mating of trees,
was introduced in its generality. Starting from two
independently sampled CRTs, there exists a simple
assembly procedure that identifies points in the contours
of the two trees, resulting in a scale-invariant random
metric space that (almost surely) has the topology of the
2-sphere. This metric space is known to correspond with
Liouville quantum gravity for a particular value of its
coupling constant (γ ¼ ffiffiffi

2
p

). Remarkably, any other value
of this coupling γ ∈ ð0; 2Þ associated to a gravitational
universality class in the presence of an arbitrary matter
conformal field theory (as long as the matter central charge is
below 1), can be achieved by introducing a correlation
between the pair of CRTs. As alluded to above, a CRT is
assembled from a Brownian motion, meaning that a pair of
CRTs is naturally obtained from the two coordinates of a
two-dimensional Brownian motion, and this correlation can
be understood as the choice of a nontrivial covariance matrix
for the latter Brownian motion.
The fact that the CRT provides the universal building

block for essentially all scale-invariant random geometries
relevant to two-dimensional quantum gravity naturally
raises the question whether higher-dimensional random
geometries can be constructed in similar fashion. One can

question whether this is sufficiently motivated from a path
integral perspective on quantum gravity, but given that at
present we do not know of a single explicit example of a
scale-invariant random geometry with three-dimensional
manifold topology one should not set too stringent con-
ditions. In this work we propose a rather straightforward
generalization of the mating of trees construction, in
which the pair of correlated CRTs is replaced by a triple.
If the result has a well-defined and scale-invariant random
metric structure, something that requires checking, it
necessarily gives rise to new universality classes beyond
random surfaces. Naturally the model possesses a three-
dimensional parameter space as opposed to the one-
dimensional parameter space of mated-CRT surfaces.
One of the critical exponents, the string susceptibility,
can be calculated (analytically for special regions and
numerically elsewhere) and displays a nontrivial depend-
ence on the three parameters, suggesting that they really
parametrize an entire family of new universality classes. To
start exploring the parameter space we develop a numerical
toolbox to simulate the result of mating a triple of trees
and measure an important critical exponent related to the
metric: the Hausdorff dimension, which governs the rela-
tive scaling between volume and radius of geodesic balls in
the geometry. Whether the topology induced by the metric
really is that of a three-dimensional manifold requires a
more refined analysis that is beyond the scope of the
current work.

D. Outline

This paper is organized as follows: we start in Sec. II by
reviewing the mating of trees approach to two-dimensional
quantum gravity and its relation to random planar map
models and Liouville quantum gravity. To access the metric
properties of mated CRTs, it is necessary to consider
regularizations in the form of mated-CRT maps, where
geodesic distances can be conveniently approximated by
graph distances on the map. In Sec. III we propose a
generalization of the mated-CRT maps to mated-CRT
graphs associated to Brownian motion of arbitrary dimen-
sion and outline an algorithm to effectively sample them.
Section IV describes our numerical implementation and
simulation of mated-CRT graphs associated to two- and
three-dimensional Brownian motions and a finite-size
scaling analysis of geodesic distances. The resulting
estimates of the Hausdorff dimension in the two-
dimensional case serve as an important benchmark of
the numerical method, while in three dimensions the
estimated Hausdorff dimensions combined with the com-
puted string susceptibilities provide a first window into a
large family of potentially three-dimensional random
geometry universality classes. In the last section we discuss
our results in the context of scale-invariant random geo-
metries and quantum gravity.
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II. MATING OF TREES: 2D QUANTUM GRAVITY
FROM BROWNIAN MOTION

The basic idea of the mating of trees approach is that
both the geometry and the matter degrees of freedom in
two-dimensional quantum gravity on the 2-sphere can be
encoded in a single continuous path in the Euclidean plane.
For a detailed story of the correspondence, we direct the
mathematically inclined audience toward the foundational
paper by Duplantier, Miller, and Sheffield [28] and the
recent survey by Gwynne, Holden, and Sun [29], as well as
the many references in the latter. In this section we provide
a high-level introduction to the topic for those that are not
entirely comfortable with the probability theory literature.
First, we will review two examples of mating-of-trees
bijections between discrete surfaces decorated with stat-
istical systems and certain discrete walks in the quadrant.
Next, we will explain how this picture extends to the
continuum limit and generalizes to the full family of two-
dimensional quantum gravity theories coupled to con-
formal matter.

A. First discrete example: Spanning-tree
decorated quadrangulations

The simplest example of a model of discrete surfaces that
is naturally encoded by a walk in the quadrant, is that
of spanning-tree decorated quadrangulations, which goes
back to a bijection of Mullin [19] in the sixties. To define
the model, we need to introduce some terminology. A
planar map is a planar graph, in which loops and multiple
edges between vertices are allowed, together with a proper
embedding in the 2-sphere. A region in the sphere that is
delimited by edges of the map is called a face and the
degree of a face is the number of edges in its contour.
A planar map is said to be rooted if it has a distinguished
oriented edge. A quadrangulation is a planar map in which
all faces have degree four [Fig. 1(a)]. To see that a
quadrangulation describes a discrete surface, it is some-
times useful to think of the faces as identical unit squares
equipped with the Euclidean metric and the incidence
relations of the map as prescriptions on how to glue these
squares along their sides in order to obtain a piecewise flat
metric on the sphere.

A spanning-tree-decorated quadrangulation is a quad-
rangulation together with a choice of diagonal in each face,
such that the graph formed by the diagonals alone has no
loops [Fig. 1(b)]. In this case the diagonals necessarily take
the form of two disjoint trees that together span the vertices
of the quadrangulation, hence the name of the model. The
two vertices of the root edge belong to the two different
trees and mark a root for each of them. If one assigns equal
Boltzmann weight to each spanning-tree-decorated quad-
rangulation (in other words, one samples uniformly), one
may think of this decoration as a statistical system coupled
to the geometry of the surface described by the quad-
rangulation, thus as a rather abstract form of matter. Note
that the presence of the statistical system has an (entropic)
effect on the geometry, as the number of decorations differs
from one quadrangulation to the other.
According to Mullin [19] rooted spanning-tree-

decorated quadrangulations with n faces are in bijection
with excursions in the quadrant of length 2n with unit steps
parallel to the axes. An excursion in the quadrant is a walk
Z0; Z1;…; Z2n ∈ Z2

≥0 with 2n steps that starts and ends at
the origin, Z0 ¼ Z2n ¼ 0 [Fig. 1(d)]. The bijection is rather
easy to understand: there exists a unique closed path on the
surface starting and ending at the root edge that intersects
all edges of the quadrangulation while avoiding all diag-
onals [Fig. 1(c)]. The corresponding excursion simply
records for the ith visited edge the heights Zi ∈ Z2

≥0 of
its left and right extremity in the tree, where the height of a
vertex in a tree is the distance in the tree to its root. From the
figure it should be clear that between consecutive visits,
exactly one of the heights changes by �1, so Ziþ1 − Zi ∈
fð0;�1Þ; ð�1; 0Þg and one indeed obtains the desired
excursion in the quadrant. It is straightforward to check
that any such excursion can be obtained in this was and that
the quadrangulation together with its decoration can be
reconstructed from the excursion.
In light of what follows, it is useful to think of the

reconstruction starting from an excursion as a three step
procedure. In the first step one only examines the sequence
of horizontal steps of the excursion (and ignoring the
vertical coordinate), which encodes a Dyck path, i.e., a
walk with unit steps on the non-negative integers starting

(a) (b) (c) (d)

FIG. 1. (a) A rooted quadrangulation (note that the white outer region is a face of degree four as well). (b) A spanning-tree-decorated
quadrangulation. (c) The space-filling curve. (d) The corresponding excursion ðZiÞ in the quadrant. Figure adapted from [30].
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and ending at zero. It encodes a plane tree, which we draw
in blue. In the second step, a red tree is constructed
similarly from the vertical steps of the excursion. Now
every visit of the excursion naturally corresponds to a pair
of corners, one on each tree, such that following the
excursion corresponds to tracing the contour of the blue
tree in counterclockwise direction and the contour of the
red tree in clockwise direction. Finally, in the third step
the blue and red tree are “mated” into a spanning-tree-
decorated quadrangulation by drawing a black edge
between each pair of corners.

B. Second discrete example:
Site-percolated triangulations

The previous example is archetypal, where it is intui-
tively clear that the surface can be encoded in trees, because
the decoration already takes the form of a tree. Admittedly,
it is not the most natural statistical system one would think
of when trying to couple quantum gravity to a matter field.
So let us look at a model that has a simpler interpretation,
but for which the trees are well hidden. This is the model
of (loopless) triangulations with site percolation [25,31,32].
A triangulation is a planar map in which all faces have
degree three and it is loopless if it has no edges starting and
ending on the same vertex. A site percolation on a rooted
triangulation is simply an assignment of one of two colors,
say blue and red, to each vertex of the map, with the only
requirement that the root edge points from a red to a blue
vertex [see Fig. 3(a)]. If one assigns equal Boltzmann
weight to every such rooted site-percolated triangulation
with 2n triangles, we obtain a very simple example of a
statistical system on a random surface. One could think of
this system as the high-temperature limit of the standard
Ising model living on the vertices of the triangulation. Note
that, contrary to the spanning-tree-decorated quadrangula-
tions, each triangulation admits the same number of distinct
site percolations, namely 2n because there are precisely n
vertices that are not incident to the root edge. This means
that the statistical system does not affect the statistics of
the geometry, and we are dealing with a model whose

geometry lives in the universality class of pure gravity,
coupled to a rather trivial type of matter in the form of
white noise.
Just like in the previous example, we would like to find a

self-avoiding closed curve that in some sense explores the
full triangulation. It is natural to consider the partition of
the vertex set into monochromatic clusters and examine
the cluster interfaces, which naturally correspond to a
collection of disjoint closed loops on the graph dual to
the triangulation [Fig. 3(a)]. Since the root edge crosses an
interface, it is natural to start the exploration along this
interface. Unless the site-percolated triangulation is exactly
of the type of Fig. 1(b), with exactly one blue cluster and
one red cluster and such that the monochromatic edges in
each cluster form a tree, the exploration will return to the
root edge before having explored the full map. The rough
idea described in [25] is that one can merge all cluster
interfaces into a single exploration by following an inter-
face and taking detours into neighboring interfaces at the
very last opportunity before they become inaccessible.
More precisely, one may setup a peeling exploration

that visits all 3n edges of the triangulation as follows (see
Ref. [32] [Sec. II 3]). We start the exploration in the triangle
at the right of the root edge and position the tip of the
exploration at the other nonmonochromatic edge of that
triangle [see the top left of Fig. 3(c)]. Then at each step the
edge e at the tip is removed, in such a way that we
eventually return to the root edge (the final target). There
are five different cases (a to e) to be considered, which
are summarized in Fig. 2. If e is adjacent to a triangle
containing a nonboundary vertex, then the exploration
traces the cluster interface, meaning that it turns left or
right depending on the color of the vertex (cases a and b). If
however, all vertices of the triangle are on the boundary,
one considers the two components that are separated by the
triangle, and one implements a detour through the compo-
nent that does not contain the target. The choice of detour
is shown in Figs. 2(c) and 2(d) by a light green arrow
pointing from one component, where it can be regarded as
an intermediate target for the exploration, to the other,

(a) (b) (c) (d) (e)

FIG. 2. The five types of possibilities when peeling away an edge in the exploration. The pair of integers indicates the length change of
the contour to the left respectively right of the exploration path.
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indicating where the exploration will continue after the first
component has been fully explored. Finally, if instead of a
triangle the edge e is adjacent to a detour, the detour is
followed (case e). An example of a full exploration is
shown in Fig. 3(c).
To obtain a lattice walk, at every step i ¼ 1;…; 3n of the

exploration one keeps track of the distances Zi ∈ Z2
≥0 in

clockwise respectively counterclockwise direction along the
contour between the tip of the exploration and the root edge.
It is easily seen that the only possible changes in these
distances are (0,1), (1,0), and ð−1;−1Þ, so one obtains an
excursion with these increments in the quadrant of length
equal to the number of edges of the triangulation [Fig. 3(b)].
These walks are known as Kreweras walks [33]. It is a
nontrivial fact that this determines a bijection, see Ref. [[32]
Theorem 2.2] and the earlier Refs. [25,34].

C. Scaling limit of the walks

Afirst consequence of these bijections is that one can easily
understand the asymptotics of the enumeration. Let us denote
by Z�

n the canonical partition function with unit Boltzmann
weight per configuration, meaning simply the total number
of decorated rooted planar maps in the model. In the case
of spanning-tree decorated quadrangulations, the number of
simple excursions of length 2n is easily found to be

Zspanning-tree
n ¼ CatðnÞCatðnþ 1Þ

∼n→∞ 4

π
42nn−3; ð1Þ

where CatðnÞ ¼ 1
nþ1

ð2nn Þ are the Catalan numbers. Note
that the exponential growth 42n reflects the four different

increments available for each of the 2n steps of a simplewalk.
In the case of site-percolated triangulations, the number of
Kreweras excursions of length 3n is [25,33]

Zpercolation
n ¼ 4n

ðnþ 1Þð2nþ 1Þ
�
3n

n

�

∼n→∞
ffiffiffiffiffiffiffiffi
3

16π

r
33nn−5=2: ð2Þ

Also here the 33n agrees with the three possible increments
of the walk at each of the 3n steps. More importantly, the
exponents of the power-law correction differ between the
two models.
This should not be surprising, because the models feature

qualitatively different matter systems and should be
expected to belong to different universality classes. In
general, for a model of random geometry the partition
function is expected to scale with n as

Z�
n ∼n→∞Cnγs−2κn; ð3Þ

where γs is a critical exponent, known in the physics
literature as the string susceptibility. If the universality class
corresponds to two-dimensional quantum gravity coupled
to a matter conformal field theory with central charge
c ∈ ð−∞; 1�, then the KPZ formula predicts [35]

γs ¼
c − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc − 1Þðc − 25Þp
12

: ð4Þ

We see that spanning-tree-decorated quadrangulations fea-
ture the exponent γs ¼ −1 corresponding to c ¼ −2 and the

(a)

(b) (c)

FIG. 3. (a) A rooted site-percolated triangulation with cluster interfaces indicated in pink. (b) The corresponding excursion in the
quadrant with increments (1,0), (0,1), and ð−1;−1Þ. (c) The peeling exploration. The dark green curve illustrates the iteratively
constructed exploration path, while the lighter green curves indicate the required detours. The integers above each map are contour
lengths on the left respectively right of the exploration path.
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site-percolated triangulations exponent γs ¼ −1=2 corre-
sponding to c ¼ 0, in accordance with the expectation that
the latter live in the pure gravity universality class.
Why do we see two different exponents appearing in the

enumerations of excursions in the quadrant? In the large-n
limit the random walks in the quadrant, rescaled by 1=

ffiffiffi
n

p
,

approach a Brownian excursion in the quadrant, i.e., a two-
dimensional Brownian motion that is conditioned to start
and end at the origin and remain in the quadrant. In order to
specify this process, it is sufficient to know the covariance
of the unrestricted Brownian motion, which appears as the
limit of the unrestricted random walks. It is precisely in this
covariance that the two models differ. Indeed, denoting
the x and y components of a walk on Z2 by Lt and Rt
respectively, an unrestricted simple random walk on the
square lattice has covariance

VarðLtÞ ¼ VarðRtÞ ¼
t
2
; ð5Þ

CovðLt; RtÞ ¼ 0; ð6Þ

while an unrestricted Kreweras random walk satisfies

VarðLtÞ ¼ VarðRtÞ ¼
2t
3
; ð7Þ

CovðLt; RtÞ ¼
t
3
: ð8Þ

In general, for a random walk with

CovðLt; RtÞ ¼ ρVarðLtÞ ¼ ρVarðRtÞ; ð9Þ

ρ ∈ ð−1; 1Þ, it is known [36] that the number of excursions
in the quadrant of length n grows like

Cn−1−
π

arccosð−ρÞκn; ð10Þ

for some C > 0 and κ > 1. Note that for ρ ¼ 0 respectively
ρ ¼ 1=2 this indeed agrees with (1) respectively (2).
Moreover, it suggests that any other model of random
decorated planar maps that admits a bijection with walks
in the quadrant and belongs to a universality class with a
certain central charge cmust satisfy ρ ¼ − cosð π

1−γs
Þ. Several

further examples are indeed known for which this is the case,
including bipolar-oriented triangulations (c ¼ −7, γs ¼ −2,
ρ ¼ −1=2) [26] and Schnyder-wood-decorated triangula-
tions (c ¼ −25=2, γs ¼ −3, ρ ¼ −1=

ffiffiffi
2

p
) [27].

D. Mating of trees and Liouville quantum gravity

The discrete examples make one wonder whether there is
a continuum interpretation to the encoding by trees and
whether it extends to other universality classes of two-
dimensional quantum gravity coupled to conformal matter

with c ∈ ð−∞; 1�. This has indeed been shown to be the
case in a framework going under the name of mating of
trees [28], putting the case c ¼ 1 aside with its peculiarities
[37]. In order to understand the result, we need to explain
first how to describe geometry and space-filling curves
in the continuum. We are dealing with quantum gravity on
the 2-sphere, which is conveniently represented by the
Riemann sphere Ĉ ¼ C ∪ f∞g. Let ĝab be some fixed
conformal [38] background metric on Ĉ of unit area. Then,
we are after a random real field ϕ on Ĉ, that we informally
interpret as describing a random Riemannian metric gab ¼
eγϕĝab of unit volume, and independently a random
continuous space-filling curve ηĝ∶ ½0; 1� → Ĉ such that
ηĝð0Þ ¼ ηĝð1Þ and ηĝð½s; t�Þ has volume t − s with respect
to the background measure

ffiffiffî
g

p
d2z for 0 < s < t < 1. The

former is provided by Liouville quantum gravity (LQG)
and the latter by Schramm–Loewner evolution (SLE),
which we both briefly discuss.
By the uniformization theorem, any two-dimensional

Riemannian metric on the sphere is isometric to a con-
formal rescaling gab ¼ eγϕĝab of the background metric
ĝab. Liouville quantum gravity with coupling constant
γ ∈ ð0; 2Þ is the path integral quantization of this field ϕ
(known as the dilaton) with action

SL ¼ 1

4π

Z
d2x

ffiffiffî
g

p
ðĝab∂aϕ∂bϕþQR̂ϕþ 4πμ̂eγϕÞ; ð11Þ

where

Q ¼ γ

2
þ 2

γ
; ð12Þ

R̂ is the scalar curvature of ĝab and μ̂ > 0 a parameter
known as the cosmological constant. If gravity is coupled to
a conformal matter field with central charge c ∈ ð−∞; 1Þ,
then the parameter Q ∈ ð2;∞Þ is related to c via

c ¼ 25 − 6Q2: ð13Þ

It is not obvious that one can make sense of a random field
with density proportional to e−SL in an appropriate space of
generalized functions. Luckily ϕ is closely related to the
Gaussian free field (GFF) on ĝab, the free massless real
scalar field with action SL in which Q and μ̂ are set to zero,
which has an unambiguous probabilistic interpretation if
we restrict the constant mode, for instance, by requiring
zero mean (see Ref. [39] for a recent introduction to the
GFF). Accounting for the residual Möbius symmetry by
marking three points, say z1; z2; z3 ∈ Ĉ, it can be shown
that ϕ is obtained from the GFF by a deterministic position-
dependent shift [9,40].
The resulting random field ϕ is not defined pointwise but

should be viewed as a generalized function. In order to
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make sense of the rescaling gab ¼ eγϕĝab, it is thus
necessary to consider a suitable regularization. For in-
stance, we could look at the circle average ϕϵðzÞ, taken to
be the average of ϕðzÞ over a circle of radius ϵ around z.
Then, a normalized quantum area measure on Ĉ can be
defined via

μϕ ¼ lim
ϵ→0

eγϕϵðzÞ ffiffiffî
g

p
d2zR

Ĉ e
γϕϵðzÞ ffiffiffî

g
p

d2z
; ð14Þ

that is independent of ĝab and is such that z1, z2, z3 are
uniform points for μϕ.[41] See Fig. 4(a) for an illustration.
Similarly, one may introduce a quantum lengthmeasure via

νϕ ¼ lim
ϵ→0

eγϕϵðzÞ=2 ffiffiffî
g4

p jdzjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Ĉ e

γϕϵðzÞ ffiffiffî
g

p
d2z

q : ð15Þ

Given a regionU ⊂ Ĉ and a curve Γ∶½0; 1� → Ĉ, μϕðUÞ and
νϕðΓð½0; 1�ÞÞ should be interpreted as rigorous definitions
for the usual area

R
U

ffiffiffi
g

p
d2z and length

R
1
0

ffiffiffi
g4

p jΓ0ðtÞjdt as
measured by the Riemannian metric gab ¼ eγϕĝab. The
Riemann sphere Ĉ equipped with the random measures
μϕ and νϕ is called the unit-area γ-quantum sphere.
Next, we describe the random space-filling curve ηĝ

arising from SLEκ0 with κ0 ¼ 16=γ2 ∈ ð4;∞Þ. A concise
way to introduce this curve is via imaginary geometry.
If h∶C → R is a smooth real function, one can consider
the flow lines of the complex vector field eih=χ where

χ ¼
ffiffiffi
κ0

p
2
− 2ffiffiffi

κ0
p . More precisely, to z ∈ C we associate the

curve ηz determined by

η0zðtÞ ¼ e
i
χhðηzðtÞÞ; ηzð0Þ ¼ z; t ≥ 0: ð16Þ

Remarkably these flow lines are still well-defined if we take
h to be the (far from smooth) whole-plane GFF h on Ĉ

(independently but similar to the one for LQG). It can be
shown, see Ref. [42], that for each z ∈ C the flow-line ηzðtÞ
does not self-intersect and approaches ∞ as t → ∞, and
that for two distinct starting points z; z0 ∈ C the flow lines
ηz and ηz0 almost surely eventually meet and stay together
before reaching ∞ [Fig. 4(b)]. One may use this to
associate an order to the points in the complex plane: z
precedes z0 if ηz meets ηz0 from the left. The space-filling
curve SLEκ0 is the continuous non-self-crossing path
ηĝ∶ ½0; 1� → Ĉ starting and ending at ∞ that visits the
points of C in this order, parametrized such that ηĝð½s; t�Þ
has area t − s for 0 ≤ s < t ≤ 1.
Liouville quantum gravity for γ ∈ ð0; 2Þ and the space-

filling SLEκ0 for κ0 ∈ ð4;∞Þ are intimately related to each
other when κ0 ¼ 16=γ2. To formulate this let us consider a
unit-area γ-quantum sphere μϕ, νϕ and an independently-
sampled space-filling curve ηĝ. It is then natural to consider
the reparametrization ηg of ηĝ such that it explores the
quantum area at unit rate, meaning that μϕðηgð½s; t�ÞÞ ¼
t − s for 0 < s < t < 0. Now for every t ∈ ð0; 1Þ, the traces
ηgð½0; t�Þ and ηgð½t;∞�Þ are closed subset of Ĉ. The
boundary ηgð½0; t�Þ ∩ ηgð½t;∞�Þ at which they meet consists
of two continuous curves starting at ηgðtÞ and ending at ∞.
Let ZðtÞ ¼ ðLðtÞ; RðtÞÞ ∈ R2

>0 be the νϕ-lengths of these
curves [Fig. 4(d)]. The crucial insight of the mating of trees
approach [28] is that the process ZðtÞ has a very simple law.
To be precise, according to [ [43] Theorem 1.1] (and [ [44]
Theorem 1.3] for the precise normalization) it has the law
of a two-dimensional Brownian motion ðLðtÞ; RðtÞÞ started
from (0,0) with covariance

VarðLðtÞÞ ¼ VarðRðtÞÞ ¼ 2

sinðπγ2
4
Þ
jtj; ð17Þ

CovðLðtÞ; RðtÞÞ ¼ −2 cot
�
πγ2

4

�
jtj ð18Þ

(a) (b) (c) (d)

FIG. 4. (a) LQGγ : simulation of the random measure μϕ on the round 2-sphere (lighter regions contain more quantum area than darker
regions). (b) Space-filling SLEκ0 : an illustration of the imaginary geometry flow lines from z and z0 to ∞. Here ηz (in red) meets ηz0 (in
blue) from the left, and thus z precedes z0 in the space-filling curve. (c) ηĝð½0; t�Þ is a closed region (in white) of ĝ-area t in Ĉ with∞ and
ηĝðtÞ on its boundary. (d) LQGγ þ SLEκ0 : the region ηgð½0; t�Þ has quantum area μϕðηgð½0; t�ÞÞ ¼ t and LðtÞ and RðtÞ are the left and right
boundary lengths of this region measured by νϕ respectively.
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and conditioned to stay in ½0;∞Þ2 and to return to (0,0) at
time t ¼ 1. Moreover, both the quantum sphere and the
space-filling curve are almost surely determined by this
process. This means that, at least in principle, one can
reconstruct the measures μϕ and νϕ as well as the curve ηĝ
simply by looking at the Brownian excursion ZðtÞ. In the
next subsection we will discuss an explicit procedure.
At this point one should recognize the analogy with the

discrete mating-of-trees bijections that we described above.
The quantum surface is the continuum analogue of the
random planar map, while the space-filling SLEκ0 is
the analogue of the exploration path determined by the
statistical system living on the planar map. In the discrete
case the bijections with lattice walks show that the random
discrete surface is completely determined by a correspond-
ing random walk, which starts at the origin and is
conditioned to stay in the positive quadrant Z2

≥0 before
returning to the origin after n steps. Upon rescaling the
walk by 1=

ffiffiffi
n

p
and normalizing the time to run over [0, 1],

its law converges in a probabilistic sense to that of the
Brownian excursion ðLðtÞ; RðtÞÞ. Comparing (9) to (17) we
observe that ρ ¼ − cosðπγ2=4Þ and therefore the string
susceptibility γs must be related to γ by

γs ¼ 1 −
4

γ2
; ð19Þ

which is easily checked to be consistent with the relations
between γs, γ, c, Q given in (4), (12), and (13).
To wrap up, mating of trees provides a procedure to go

back and forth between a unit-area γ-quantum sphere
together with a space-filling SLEκ0 curve on one side
and a pair or correlated continuum random trees encoded
by a Brownian excursion in the quadrant on the other, and
each side (almost surely) determines the other.

E. Mated-CRT maps

As should be clear from Fig. 4(b), the union of the flow
lines ηz1 ;…; ηzk of points z1;…; zk ∈ C has the structure of
a tree spanning z1;…; zk and∞. If we increase the number
k of points this tree approaches a tree that spans the whole

sphere, and the space-filling curve ηg can be understood
as tracing the contour of this tree. The quantum length
measure νϕ assigns a metric structure to the tree, and one
can interpret the process Rt as the distance in the tree
between ηgðtÞ and ∞. Similarly, Lt is the distance to ∞
along a complementary tree, which informally one can
think of as what is left of the surface after the first tree is
removed.
The reconstruction of the quantum sphere from the two-

dimensional Brownian excursion can also be understood
from the perspective of the trees. Both coordinates LðtÞ
and RðtÞ describe a continuous excursion in the positive
real line starting and ending at 0. Any such excursions
X∶½0; 1� → R≥0 naturally gives rise to a continuous metric
space: the real tree given by the unit interval [0, 1] with
metric

dðs; tÞ ¼ XðsÞ þ XðtÞ − 2 inf
u∈½s;t�

XðuÞ; ð20Þ

where it is understood that we identify s and t whenever
dðs; tÞ ¼ 0. If LðtÞ and RðtÞ are uncorrelated, which
happens for γ ¼ ffiffiffi

2
p

, each is an independent Brownian
excursion on the line and the corresponding real tree is
called the continuum random tree (CRT). In general they
encode a pair of correlated random trees very similar to
the CRT. It is relatively straightforward (see Ref. [ [28]
Sec. I 3]) to see that pairwise identification of points in the
contours of the two trees leads to a space that is (almost
surely) topologically equivalent to the 2-sphere. See Fig. 5
for an illustration. What is not at all obvious is that the
result has a natural conformal structure, let alone a natural
metric. A convenient way to see that it does is by
considering successively finer discretizations of the surface
as follows.
Consider an excursion X∶½0; 1� → R≥0 in the positive

real line such that Xð0Þ ¼ Xð1Þ ¼ 0. For any positive
integer n one may associate to X a triangulation of the
n-sided polygon with vertices labeled from 1 to n as
follows [45]. We divide the interval [0, 1] into n equal
parts ½0; 1n�; ½1n ; 2n�;…; ½1 − 1

n ; 1�, one for each vertex. For any
1 ≤ x < y ≤ n such that the vertices with labels x and y are

FIG. 5. Illustration of the mating of trees construction. The excursions LðtÞ and RðtÞ in the positive half line each encode a real tree (in
red and blue respectively). Upon pairwise identification of points in their contours a topological sphere emerges. The right figure
illustrates an intermediate state in which only part of the contour is identified.
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not neighbors, we draw a diagonal connecting these
vertices if there is a horizontal segment below the graph
of X connecting the intervals ½x−1n ; xn� and ½y−1n ; yn� in the

graph, i.e., if there is an s ∈ ½x−1n ; xn� and a t ∈ ½y−1n ; yn� such
that XðsÞ ¼ XðtÞ and XðuÞ ≥ XðsÞ for all u ∈ ½s; t�. For
generic X, for instance when X is a Brownian excursion, the
result is a triangulation.
In the case of a two-dimensional Brownian excursion

ðLðtÞ; RðtÞÞ we thus naturally obtain a pair of triangulated
polygons by applying the construction to both coordinates.
Gluing these two polygons together produces a triangula-
tion of the 2-sphere with 2n − 4 triangles, called the mated-
CRT map [45]. It is naturally equipped with a Hamiltonian
cycle, i.e., a simple closed path on the triangulation that
visits all vertices (in this case in order of their labels
1;…; n), and rooted on the edge that connects the vertices
with label 1 and n. See Fig. 6 for an example. This random
triangulation is very much analogous to the discrete models
in Secs. II A and II B, except that it exists for any of the
universality classes parametrized by γ ∈ ð0; 2Þ. For any n

we obtain a unit-area Riemannian metric gðnÞab on the
2-sphere by interpreting each triangle as an equilateral
Euclidean triangle of area 1=ð2n − 4Þ. Informally, the
metric associated to the mating of trees should be obtained

as the large-n limit of these metrics gðnÞab . More precisely,
one can work with the canonical Tutte embedding of the
triangulation in the sphere and it is shown in [ [45] Theorem
1.1 and Remark 3.7] that the corresponding measureffiffiffiffiffiffiffi
gðnÞ

p
d2z converges (in a weak sense) to μϕ as n → ∞

and the Hamiltonian cycle to the space-filling curve ηg.
So far we have not discussed geodesic distances in the

quantum sphere. Naively, one would expect to find a metric
structure, i.e., a distance between x; y ∈ Ĉ, by minimizing
the quantum length νϕðΓð½0; 1�ÞÞ of a curve Γ from x to y.
But due to the fractal nature of the geometry, this limit is

identically zero. Instead one should consider a different
regularization [7], namely there exists a deterministic
positive real number dγ > 2 depending only on γ such
that the regularized distance

Dϵðx; yÞ ¼
infΓ

R
Γ e

γ
dγ
ϕϵðzÞðĝÞ 1

2dγ jdzj
ðRĈ eγϕϵðzÞ ffiffiffî

g
p

d2zÞ1=dγ ð21Þ

possesses a well-defined limiting metric Dϕðx; yÞ (in
probability) as ϵ → 0 when appropriately rescaled (by a

factor of order ϵ−1þ
2
dγ in ϵ). The value dγ is precisely the

Hausdorff dimension of this metric [46], which informally
is saying that the μϕ-quantum area of a geodesic ball of
radius r around any point is of order rdγ when r → 0. The
exact value of dγ is only known for γ ¼ ffiffiffiffiffiffiffiffi

8=3
p

, corre-
sponding to the pure gravity universality class, where
d ffiffiffiffiffiffi

8=3
p ¼ 4. For γ ≠

ffiffiffiffiffiffiffiffi
8=3

p
, rigorous bounds are known

[47,48] as well as numerical estimates [30]. Moreover,
as γ → 0 the dimension dγ approaches 2 (see Ref. [49] for
bounds on the convergence rate) in accordance with the
constant curvature solution gab to the classical Liouville
action at γ ¼ 0.
It is widely expected that this random metric Dϕðx; yÞ

agrees with the large-n limit of the graph distance within
the n-vertex mated-CRT map when normalized by n−1=dγ,

and also with the geodesic distance as measured by gðnÞab
with the same normalization. A proof is still out of reach,
but it is known [ [47] Theorem 1.6] that the number of
vertices in a ball of radius r around a randomly chosen
vertex in the limit n → ∞ grows like rdγ with increasing
radius r. Therefore the simple model of mated-CRT maps
can be used to estimate the Hausdorff dimension of
Liouville quantum gravity for any γ ∈ ð0; 2Þ. We will
pursue this avenue in the next section.

FIG. 6. Left: the components ðX; YÞ of a 2D Brownian excursion are drawn with Y drawn upside down for illustration purposes. The
interval [0, 1] is divided in n equal parts and each of them correspond to a vertex. The horizontal segments that lead to edges between
vertices are indicated. Right: the triangulation resulting from gluing the pair of triangulated n-gons (the one associated to Y in blue on
top and the one associated to X on the bottom). Note that the top and bottom arc are yet to be identified. The shaded region represents the
region explored by the space-filling curve up to time t0.
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The string susceptibility γs can also be interpreted at the
level of the mated-CRT maps in terms of the distribution of
sizes of minimal-neck baby universes (minbus) within the
geometry. Since the mated-CRT map is a loopless triangu-
lation, the minimal length of a simple closed cycle is two.
We let a minbu of size k for 2 ≤ k ≤ n − 2 be a connected
region of 2k − 2 triangles not containing the root edge that
is separated by a cycle of length two from the remaining
2ðn − kÞ − 2 triangles. The string susceptibility is often
introduced [50] as the exponent featuring in the expected
number En;k of minbus of size k,

lim
n→∞

En;k

n
¼ Ckγs−2 þ oðkγs−2Þ ð22Þ

as k → ∞. Let us verify that this definition agrees with the
relation (19).
Note from the construction of the mated-CRT map that a

minbu of size k is associated to any x ¼ 1;…; n − k for
which both triangulated polygons have a diagonal connect-
ing x to xþ k. Therefore En;k=n is the probability of this
eventwhenx is sampleduniformly.DenotingXðtÞ ¼ ðX1ðtÞ;
X2ðtÞÞ ¼ ðLðtÞ; RðtÞÞ, this happens precisely when

min
u∈½xn;xþk−1

n �
XiðuÞ > max

�
min

s∈½x−1n ;xn�
XiðsÞ; min

t∈½xþk−1
n ;xþk

n �
XiðtÞ

�
for i ¼ 1; 2:

In the limit n → ∞ the probability is the same as that for an unrestricted correlated two-dimensional Brownian motion
ðX̃1ðtÞ; X̃2ðtÞÞ, such that

lim
n→∞

En;k

n
¼ P

�
min

u∈½x;xþk−1�
X̃iðuÞ > max

�
min

s∈½x−1;x�
X̃iðsÞ; min

t∈½xþk−1;xþk�
X̃iðtÞ

�
for i ¼ 1; 2

�
: ð23Þ

But this is essentially the probability that a two-
dimensional correlated Brownian motion started close to
the origin, remains in the quadrant for time at least k and is
close to the origin again at time k. This can be estimated
using the heat kernel of the Brownian motion [ [51]
Lemma 1], and scales with k as k−1−γ

2=4 (see discussion
about Brownian motion in the wedge below). We thus find

lim
n→∞

En;k

n
¼ Ck−1−γ

2=4 þ oðk−1−γ2=4Þ ð24Þ

as k → ∞. This is clearly in agreement with (19) and (22).

III. MATED-CRT GRAPHS FROM
MULTIDIMENSIONAL BROWNIAN EXCURSIONS

A. Mated-CRT graphs

Now that we know how to read metric properties and the
string susceptibility from the combinatorial data of a mated-
CRT map, let us introduce a natural generalization. Let d ¼
2; 3;… and C be a real positive-definite symmetric d × d
matrix. Then we may consider d-dimensional Brownian
motion XðtÞ ¼ ðX1ðtÞ;…; XdðtÞÞ started at the origin in
Rd with covariance matrix CovðXiðtÞ; XjðtÞÞ ¼ Cijjtj. A
Brownian excursion with covariance C is then such a
Brownian motion for t ∈ ½0; 1� that is conditioned to start
and end at the origin and stay in the octantRd

>0 for t ∈ ð0; 1Þ.
We can associate to this Brownian excursion a random
(multi-)graph GC

n on n vertices with a distinguished
Hamiltonian cycle by gluing the d triangulated n-gons
associated to the d excursions X1ðtÞ;…; XdðtÞ along their

boundary (Fig. 7). For d ¼ 2 this graph is planar and GC
n

corresponds to the graph underlying the mated-CRT map,
while for d ≥ 3 the graph is generally nonplanar.
The central question is whether the graph GC

n , seen as a
metric space induced by the graph distance, possesses a
scaling limit, meaning that there exists some real number
dCH > 0 for which the rescaled metric space n−1=d

C
HGC

n has a
continuous limit as n → ∞ (in a Gromov–Hausdorff
sense). A positive answer for d ≥ 3 would give rise to
new families of universality classes of random geometries,
which based on the two-dimensional case one would expect
to depend on the covariance matrix C. Note that the
construction of GC

n is invariant under scaling of the
coordinate axes, and its law therefore is invariant under
coordinate-wise rescaling of the matrix C. We may thus
assume unit diagonal entries of C without loss of genera-
lity, and we are left with a dðd − 1Þ=2-dimensional phase

(a) (b) (c)

FIG. 7. (a) Illustration of a three-dimensional Brownian ex-
cursion. (b) To each of the d ¼ 3 components of the excursion we
may associate a triangulation of the n-gon. (c) The resulting
mated-CRT graph GC

n with the Hamiltonian cycle appearing
in black.
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space of models. In d ¼ 2 this one-dimensional phase
space is parametrized by the Liouville coupling γ ∈ ð0; 2Þ.
As a first indication of a nontrivial scaling limit for

d ≥ 2, we will compute the string susceptibility of GC
n . The

definition of a minbu (minimal-neck baby universe) is
easily extended to GC

n : a minbu of size k in GC
n is a pair of

vertices with label x and xþ k, such that removing x and
xþ k and all incident edges from GC

n one is left with two
connected components with n − k − 1 and k − 1 vertices
respectively. Following the same reasoning as in the two-
dimensional case the expected number EC

n;k of minbus of
size k satisfies

lim
n→∞

EC
n;k

n
¼ Ckγs−2 þ oðkγs−2Þ;

if the heat kernel PC
t ðx; yÞ of the d-dimensional Brownian

motion with covariance matrix C on the octant with
absorbing boundary conditions falls off like PC

t ðx; yÞ ¼
ctγs−2 þ oðtγs−2Þ as t → ∞. Let us take a closer look at this
process to see whether this is realized.

B. Brownian excursions in a cone

Instead of dealing with correlated Brownian motion in
the octant Rd

≥0, it is often more convenient to work with
uncorrelated Brownian motion in an appropriate cone
W ⊂ Rd. If C is a positive-definite symmetric matrix, then
we can find an invertible real d × d matrix R such that
C ¼ RRT (in fact R may be taken to be lower-triangular
with positive entries on the diagonal, in which case it is
called the Cholesky decomposition ofC). LetW ¼ R−1Rd

≥0
be the preimage of the octant by the linear map R. Then the
standard d-dimensional Brownian motion in the cone W is
mapped by R to a Brownian motion with covariance
matrix C in the octant.
The corresponding heat kernel PC

t ðx; yÞddymeasures the
probability density that a standard Brownian motion started
at x ∈ W remains withinW for at least time t and is located
at y ∈ W at time t. By separation of radial and angular
motion, it can be explicitly expressed in terms of the
orthonormal eigenmodes of the spherical Laplace-Beltrami
operator LSd−1 on the spherical regionW ∩ Sd−1 ⊂ Rd with
Dirichlet boundary conditions,

�
LSd−1miðx̃Þ ¼ −λimiðx̃Þ for x̃ ∈ W ∩ Sd−1;

miðx̃Þ ¼ 0 for x̃ ∈ ∂W ∩ Sd−1:
ð25Þ

Namely [ [51] Lemma 1]

PC
t ðx;yÞ ¼

e−
jxj2þjyj2

2t

jxjd2−1jyjd2−1
X∞
j¼1

1

t
Iαj

�jxjjyj
t

�
mj

�
x
jxj

�
mj

�
y
jyj

�
;

ð26Þ

where IαðrÞ is a modified Bessel function satisfying
IαðrÞ ∼ rα as r → 0 and

αj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λj þ

�
d
2
− 1

�
2

s
: ð27Þ

It follows that for fixed x; y ∈ W,

PC
t ðx; yÞ ¼ ct−α1−1 þ oðt−α1−1Þ ð28Þ

as t → ∞, where the exponent depends on the fundamental
eigenvalue λ1 of LSd−1 on W ∩ Sd−1. Hence the string
susceptibility of the mated-CRT graph with covariance
matrix C is

γs ¼ 1 − α1 ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 þ

�
d
2
− 1

�
2

s
: ð29Þ

In the two-dimensional case, the appropriate linear
transformation R is

R ¼
�
sin α − cos α

0 1

�
; ð30Þ

C ¼ RRT ¼
�

1 − cos α

− cos α 1

�
: ð31Þ

Then R−1R2
≥0 is a cone of opening angle α, with the right

boundary ray along the positive x-axis (Fig. 8). The
corresponding fundamental eigenmode is m1ðθÞ ¼
sinðπθ=αÞ with eigenvalue λ1 ¼ π2=α2. We see that γs ¼
1 − π=α ¼ 1–4=γ2 is consistent with (19).
In the three-dimensional case the most general positive-

definite symmetric matrix C with unit diagonal entries is
given by [52]

C ¼

0
B@

1 − cosðαÞ − cosðγÞ
− cosðαÞ 1 − cosðβÞ
− cosðγÞ − cosðβÞ 1

1
CA ð32Þ

with α; β; γ ∈ ð0; πÞ such that αþ β þ γ > π. The corre-
sponding coneWα;β;γ ¼ R−1R3

≥0 intersects S
2 in a spherical

FIG. 8. An uncorrelated BE in a cone of opening angle α is
mapped to a correlated BE in R2

≥0 by (31).
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triangle Tα;β;γ with angles α, β, and γ (Fig. 9) and its
corresponding three-dimensional phase space is the interior
of a rounded tetrahedron (Fig. 10). The eigenvalue λ1 of the
fundamental eigenmode m1 of Tα;β;γ is only known for
special values of the angles. For example, for birectangular
spherical triangles (β ¼ γ ¼ π=2) the fundamental eigen-
value is known to be [53]

λ1 ¼
�
1þ π

α

��
2þ π

α

�
; ð33Þ

corresponding to a string susceptibility of γs ¼ − 1
2
− π

α. On
the other hand, for spherical triangles with very small area
αþ β þ γ − π the fundamental eigenvalue is well approxi-
mated by that of the Laplacian on a Euclidean triangle with
angles α; β; π − α − β, and area αþ β þ γ − π. Denoting
the fundamental eigenvalue of the unit-area Euclidean
triangle with these angles by λEuclðα; βÞ, we thus have

λ1 ¼
λEuclðα; βÞ

αþ β þ γ − π
þOð1Þ ð34Þ

as γ → π − α − β. In the case of the equilateral triangle,
it is a classical computation that λEuclðπ3 ; π3Þ ¼ 4ffiffi

3
p π2. Hence,

for the equilateral case (α ¼ β ¼ γ) we find the string
susceptibility

γs ¼ −
2π

33=4
ffiffiffiffiffiffiffiffiffiffi
α − π

3

p þ 1þO

� ffiffiffiffiffiffiffiffiffiffiffi
α −

π

3

r �
: ð35Þ

We see that γs → −∞ as α → π
3
analogous to the behavior

of the string susceptibility in 2D when the cone becomes
very narrow. The maximum is reached near the maximal
area region in both cases. For more general regions we use
the finite element method (FEM) to determine the solutions
numerically [54]. See Fig. 10.

C. A simpler biased Brownian excursion

Unit-time Brownian excursions in a nontrivial cone W
are challenging objects to simulate efficiently. For this
reason we introduce a slightly biased version of the
Brownian excursion, which is easier to simulate. As we
will see in a minute, for a unit-time Brownian excursion
the integral

R
1
0 jXðtÞj2α1−2dt has finite expectation value

Cα1 ¼ 2α1−1Γðα1Þ=α1 > 0. We may thus introduce the
Brownian excursion X̂ðtÞ obtained from XðtÞ by biasing
its law by the value of this integral, meaning that the
probability measure of X̂ðtÞ is that of XðtÞ multiplied byR
1
0 jXðtÞj2α1−2dt=Cα1 . In probabilistic terms, the new ran-
dom excursion X̂ðtÞ is absolutely continuous with respect
to the unit-time Brownian excursion and therefore displays
the same critical exponents. In particular, the mated-CRT

FIG. 9. The cone Wα;β;γ corresponds to the solid spherical
region delimited by the spherical triangle Tα;β;γ in the unit sphere.

FIG. 10. Left: the phase space of covariance matrices C, parametrized by C12 ¼ − cosðαÞ,C23 ¼ − cosðβÞ,C13 ¼ − cosðγÞ, spans the
regionC2

12 þ C2
13 þ C2

23 − 2C12C13C23 < 1. The corners are labeled with their spherical angles ðα; β; γÞ. The blue diagonal corresponds
to equilateral spherical triangles (α ¼ β ¼ γ), while the gray plane indicates the isosceles spherical triangles (β ¼ γ). The red dots are the
smallest (π

3
; π
3
; π
3
) and largest (π, π, π) equilateral triangles, which will be of particular interest in the results. Right: estimates of the string

susceptibility γs for isosceles triangles obtained from finite element methods.
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graph ĜC
n associated to the excursion X̂ðtÞ will display

the same local geometry as the unbiased mated-CRT graph
GC

n when n → ∞, and therefore agree on the Hausdorff
dimension dγ (if it exists) and the string susceptibility γs.
This is quite useful, because we claim that X̂ðtÞ can

be more easily sampled than XðtÞ. Let S be a random
point chosen from the spherical region W ∩ Sd−1 with

probability distribution m1ðxÞ2 (recall that this eigenmode
is assumed to be normalized and thus m1ðxÞ2 integrates to
one on W ∩ Sd−1). Independently, we sample two inde-
pendent Brownian motions X1ðtÞ and X2ðtÞ started at S and
conditioned to touch the boundary ∂W at the origin.
If T1 and T2 are the hitting times of the origin, then we

make the identification

X̂ðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1 þ T2

p
(
X1ðT1 − tðT1 þ T2ÞÞ 0 ≤ t ≤ T1

T1þT2

X2ðtðT1 þ T2Þ − T1Þ 1 ≥ t ≥ T1

T1þT2

: ð36Þ

In words, we concatenate the reversal of the first curve with the second to produce an excursion from the origin, which is
then rescaled to have unit duration (taking into account the usual Brownian scaling relations).
To understand why this works, let us first compute the distribution of the hitting time T1 (which is the same as that of T2).

From the y → 0 limit of the heat kernel (26) with jxj ¼ 1,

PC
t ðx; yÞ ∼y→0

t−α1−1e−
1
2tjyjα1þ1−d

2m1

�
y
jyj

�
m1ðxÞ; ðjxj ¼ 1Þ

it follows that the hitting time T1 is independent of the starting position S and distributed as an inverse gamma distribution
with index α1 and scale 1=2, i.e., has density

1

2α1Γðα1Þ
t−α1−1e−

1
2tdt onR>0: ð37Þ

Next, we determine the density of the Brownian excursion XðtÞ inW at a fixed time s ∈ ð0; 1Þ, which is obtained from the
heat kernel (26) via the limit

lim
y1;y2→0

Psðy1; xÞP1−sðx; y2Þ
P1ðy1; y2Þ

¼ 1

sα1þ1ð1 − sÞα1þ1
jxj2α1þ1e−

jxj2
2
ð1sþ 1

1−sÞjxj1−jdjm1

�
x
jxj

�
2

: ð38Þ

It follows that XðsÞ=jXðsÞj for any s is distributed like the point S above and that the distance jXðsÞj to the origin has
probability density

ρsðrÞdr ¼
1

sα1þ1ð1 − sÞα1þ1

r2α1þ1

2αΓðαþ 1Þ e
−r2

2
ð1sþ 1

1−sÞdr: ð39Þ

Integrating this expression against r2α1−2 yields the previously claimed expectation value

Cα1 ≔ E

�Z
1

0

jXðtÞj2α1−2
�
¼

Z
1

0

ds
Z

∞

0

drr2α1−2ρsðrÞ ¼ 2α1−1
Γðα1Þ
α1

: ð40Þ

Suppose now that X̂ðtÞ is the biasedBrownian excursion and,
conditionally on X̂ðtÞ, let U ∈ ½0; 1� be a random variable
sampled with density proportional to jX̂ðuÞj2α1−2du. Then
we let

T1 ¼
U

jX̂ðUÞj2 ; T2 ¼
1 −U

jX̂ðUÞj2 ; ð41Þ

S ¼ X̂ðUÞ
jX̂ðUÞj : ð42Þ

We will demonstrate that T1, T2, and S are independent and
T1 and T2 are distributed precisely as the inverse gamma
distribution mentioned above.
From (39) it follows that the joint distribution of the pair

ðjX̂ðUÞj; UÞ has probability density

1

Cα1

ρuðrÞr2α1−2drdu onR>0 × ð0; 1Þ: ð43Þ

Since T1 and T2 are bijectively related to jX̂ðUÞj and U
via (41), the joint density of the pair ðT1; T2Þ ∈ R2

>0 is
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obtained from this by the transformation r ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ1 þ τ2

p
,

u ¼ τ1=ðτ1 þ τ2Þ, with Jacobian 2r−5drdu ¼ dτ1dτ2,
which yields

1

Cα1

ρuðrÞr2α1−2dsdr

¼ 1

ð2α1Γðα1ÞÞ2
τ−α1−11 e−

1
2τ1τ−α1−12 e−

1
2τ2dτ1dτ2: ð44Þ

Comparing with (37), we observe that T1 and T2 are
independent and distributed with the desired inverse
gamma distribution.
Finally, conditionally on T1, T2, and S, the curves

X̂ðU − tÞ and X̂ðU þ tÞ are independent d-dimensional
Brownian motions both started at X̂ðUÞ ¼ S=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1 þ T2

p
and conditioned to hit to the origin after time
U ¼ T1=ðT1 þ T2Þ and 1 − U ¼ T2=ðT1 þ T2Þ respec-
tively. By the scale invariance of the Brownian motion
the curves

X1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1 þ T2

p
X̂

�
T1 − t
T1 þ T2

�
; ð45Þ

X2ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1 þ T2

p
X̂

�
T1 þ t
T1 þ T2

�
ð46Þ

are distributed as independent d-dimensional Brownian
motions started at S and conditioned to hit the origin after
time T1 and T2 respectively. But as we computed above, T1

and T2 have precisely the distribution of the hitting time of
the origin of a d-dimensional Brownian motion started at S
and conditioned to touch the boundary ∂W at the origin, so
we may lift the latter conditioning. Since this is precisely
the inverse of (36), we have proven that the identity (36)
holds for the law of X̂ðtÞ.

D. Brownian motion conditioned to hit the origin

Wehave seen that the biased excursion X̂ðtÞ, and therefore
also the biased mated-CRT graph ĜC

n , can be constructed
from a pair of d-dimensional Brownian motions that are
conditioned to hit the boundary ∂W at the origin. Let us
discuss these processes in a bitmore detail. An important role
is played by the harmonic function

hðxÞ ¼ jxj−α1−d
2
þ1m1

�
x
jxj

�
: ð47Þ

It can be recovered from the heat kernel by first computing
the t-integralZ

∞

0

PC
t ðx; yÞdt ¼

X∞
j¼1

1

αj
jxj1−d

2
−αj jyj1−d

2
þαj

×mj

�
x
jxj

�
mj

�
y
jyj

�
ð48Þ

for jxj > jyj. As y tends to zero we thus have

Z
∞

0

PC
t ðx; yÞdt ∼y→0

hðxÞhðyÞ jyj
2α1

α1
; ð49Þ

which estimates the probability that an unrestricted d-dimen-
sional Brownian motion started at x leaves the cone W at a
point close to the origin. Even though the Brownian motion
has vanishing probability of hitting ∂W at the origin, we
may still condition on this event by a so-called Doob’s
h-transform [56] of a standard Brownian motion with respect
to this harmonic function. Without diving into the theory
of h-transforms, we can characterize the Brownian motion
XiðtÞ conditioned to hit ∂W at the origin as follows. IfA ⊂ W
is a closed neighborhood of x0 ¼ Xið0Þ and we consider
the exit time τwhenXiðtÞ leavesA, then the distribution of the
exit point XiðτÞ is related to that of a standard Brownian
motion started at x0 by a factor hðXiðτÞÞ=hðx0Þ.
This characterization gives a simple iterative procedure

of constructing XiðtÞ started at x0 ∈ W from standard
Brownian motion, see Fig. 11. We take the subset A to
be the largest Euclidean ball centered at x0 and contained in
W and let x1 be a random variable on the sphere ∂A with
probability density hðxÞ=hðx0Þ. We may then consider a
standard Brownian motion started at x0 until it hits the
boundary of the ball at time t1. By symmetry this happens
at a uniform point x̃1 on ∂A. A d-dimensional rotation
around x0 that brings x̃1 to x1 then gives an appropriately
sampled path for XiðtÞ for t ∈ ½0; t1�. Since XiðtÞ is a
Markov process, we may iterate this procedure with the
new starting point Xiðt1Þ ¼ x1 to obtain the path for XiðtÞ
with t ∈ ½t1; t2�, etc. Of course, infinite iteration is required
to reach the origin, but if one is only interested in the path
until reaching some small distance ϵ > 0 from the origin,
then the number of required iterations can be seen to grow
only logarithmically in 1=ϵ.

FIG. 11. The first step in the iterative procedure to produce
XiðtÞ in the case of a two-dimensional cone W: x0 is sampled
from the unit circle W ∩ S1 with density m1ðxÞ2 ¼ hðxÞ2; a
standard two-dimensional Brownian motion is run until it exits
the disk A at x̃1, which is then rotated to end at the random
position x1 with distribution hðxÞ=hðx0Þ. This procedure is to be
repeated with a new disk centered at x1.
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IV. SIMULATIONS AND HAUSDORFF
DIMENSION ESTIMATES

A. Sampling mated-CRT graphs numerically

In the previous section we have introduced the random
mated-CRT graph ĜC

n constructed from the biased
Brownian excursion. Let us now turn to the numerical
implementation of this construction.
Sampling ĜC

n with exactly the right probability distribu-
tion is challenging, as it relies on continuous Brownian
motions. What helps is that the graph ĜC

n is determined
by the ranges of X1ðtÞ and X2ðtÞ on intervals of length
ðT1 þ T2Þ=n, where T1 and T2 are the time extents that
we know to be inverse-gamma distributed. The probability of
T1 or T2 being much shorter than their expectation value
1=ð2α − 2Þ is very small. Hence, to approximate ĜC

n well,
it suffices to sample the Brownian motions at a time resolu-
tion ϵ that is significantly smaller than E½ðT1 þ T2Þ=n� ¼
1=ðnðα − 1ÞÞ. This we do by approximating the Brownian
motion by a driftless random walk with increments that are
sampled uniformly on the sphere of radius

ffiffiffi
ϵ

p
in Rd. In this

case, we use
ffiffiffi
ϵ

p
∈ ½0.0001; 0.001�. The reason to opt for

these increments instead of the potentially more accurate
Gaussian increments is that the exit times and exit positions
(e.g., from the cone W) are more easily controlled with
bounded increments.
To be precise, for a desired correlation matrix C we

compute the exponent α1 and fundamental modem1 (either
analytically or numerically if an analytical solution is not
available). Then to obtain a single sample of ĜC

n we
perform the following procedure, based on the construction
in Sec. III C. A random starting point x0 with distribution
m1ðxÞ2 on W ∩ Sd−1 is chosen using rejection sampling.
Two random piecewise linear curves from x0 to the origin
are obtained by running the random walk in an iterative
fashion as follows. We find the largest radius r such that the
ball Ballrðx0Þ around x0 is contained in W and choose a
point x1 on its boundary with distribution hðxÞ=hðx0Þ,
again using rejection sampling. Next, we run the mentioned
random walk with steps of size

ffiffiffi
ϵ

p
until it leaves Ballrðx0Þ,

denoting the exit point on the sphere by x̃1. This random
walk is rotated by an orthogonal transformation that only
depends on x0, x1 and x̃1 to produce a piecewise linear path
from x0 to x1 [note that the last segment of this path has to
be shortened a bit to end precisely at x1 instead of ending
outside Ballrðx0Þ]. We iterate this procedure, but now using
x1 as the starting point, which extends the piecewise linear
path from x1 to a random point x2 on the boundary of
the largest ball Ballrðx1Þ around x1, and so on. This is
continued until we reach a point within distance 2

ffiffiffi
ϵ

p
from

the origin, after which we add a final segment connecting
to the origin. The result is a piecewise linear path from x0 to
the origin that stays strictly in the coneW and approximates
the law of the Brownian motion inW conditioned to hit the
origin. Concatenating the two paths according to (36) leads

to a piecewise linear excursion that approximates the biased
unit-time Brownian excursion X̂ðtÞ. Finally, the mated-
CRT graph of size n is obtained as explained in Sec. III A,
resulting in an adjacency matrix for the n vertices of
the graph.

B. Hausdorff dimension estimates via finite-size scaling

As explained in Sec. III A, the central question is whether
the metric space induced by the graph distance on ĜC

n
possesses a scaling limit. Does there exist a real number
dCH > 0, which we then call the Hausdorff dimension of the
model, such that the metric space n−1=d

C
HĜC

n has a limit as
n → ∞ (in the Gromov–Hausdorff sense)? This statement
about the limit is not something one can effectively verify
numerically, but there is a necessary condition that is within
numerical reach. Let dn be the graph distance between two
uniformly sampled vertices in the random graph ĜC

n . Then
for the existence of a sane Gromov–Hausdorff limit it is
necessary that dn=n1=d

C
H converges in distribution as n → ∞.

Since dn is relatively easy tomeasure, this allows us to verify
the convergence in distribution and at the same time estimate
the value dCH through finite-size scaling.
The probability distributions ρnðrÞ ¼ Pðdn ¼ rÞ for

r ¼ 0; 1; 2;… were estimated for n ¼ 211; 212;…; 219 as
follows. For each size n, the graph ĜC

n was sampled 80000
times and, in each sampled graph, the graph distances from a
uniformly chosenvertex to all other verticeswere determined
several times. All these distances were stored in a histogram,
which upon normalization, provides our best estimate for
ρnðrÞ with small statistical errors. See Fig. 12.
For convenience we extend ρnðrÞ to a continuous

function of r ∈ R≥0 via linear interpolation. If dn=n1=d
C
H

converges in distribution to a random variable with density
ρðxÞ, we expect to have the limit

lim
n→∞

n1=dHρnðn1=dHxÞ ¼ ρðxÞ: ð50Þ

FIG. 12. Normalized histogram ρnðrÞ for α ¼ β ¼ γ ¼ π
2
, ob-

tained by sampling m ¼ 10000 graphs independently and mea-
sured distances k ¼ 10 times from a uniformly random chosen
vertex.
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This a mildly stronger assumption than what is implied by
the Gromov–Hausdorff convergence, but one that is sup-
ported by our data. In order to study the limit (50), we
choose as reference size n0 ¼ 219 and aim to collapse the
curves ρn for the other sizes n to ρn0 . More precisely, for
each n ¼ 211;…; 218 we determine fit parameters kn and sn
that minimize the integrated square deviation between
k−1n ρnðk−1n ðxþ snÞ − snÞ and ρn0 . The shift sn is included
to compensate for discretization effects and is largely
independent of n. By comparing this expression with (50),
we see that kn ∼ Cn−1=dH , i.e., finding the asymptotic
behavior of kn is the key to estimating dH. See Fig. 13
for an example of a collapsed histogram.
In order to find more accurate values for dH, we collapse

ρn two times. In the first one k−1n ρnðk−1n ðxþsnÞ−snÞ⟼
ρn0 , we extract the values sn to compute its mean s. In the
second one, we use s to collapse k−1n ρnðk−1n ðxþsÞ−sÞ⟼
ρn0 and we extract kn. Finally, we estimate dH by fitting kn
to the ansatz �

n
n0

�
−1=dH

�
aþ b

�
n
n0

�
−δ
�
; ð51Þ

where a ≈ 1, δ of order 1=dH and jbj ≪ 1. This expression
takes into account a leading-order correction and has
proven to work well for Hausdorff dimension estimations
in a similar setting [30]. The fitting procedure was tested by
varying the range of volumes included, as well as the values
of δ and dH while keeping a ≈ 1 and jbj ≪ 1. In this way,
we determine systematic errors. On the other hand, the
statistical errors in the fit parameters were determined using
batching (by dividing the data into eight independent
batches and applying the analysis each independently).
The results are presented in the next subsections.

C. Results for mated-CRT maps (d = 2)

As explained in Sec. II E, the Gromov–Hausdorff con-
vergence of the mated-CRT maps has not been proved, but

the number of vertices within a ball of radius r in the graph
ĜC

n with very large n is known to grow as rdγ as r → ∞,
where dγ is the Hausdorff dimension of Liouville quantum
gravity. Here the covariance C12 ¼ − cosðαÞ is related to γ
through the relation α ¼ πγ2=4. This strongly suggests that
the convergence (50) holds with Hausdorff dimension
dCH ¼ dγ , and thus our methods provide a means of
estimating the Hausdorff dimension dγ of Liouville quan-
tum gravity. In Fig. 14 and Table I, we show the numerical
values of dH as a function of γ.
A distinction between the regions γ < 1 and γ ≥ 1 is

made, since the latter is the domain analyzed in [30].
The reason for choosing the four values γ ¼ 1;

ffiffiffiffiffiffiffiffi
4=3

p
;

ffiffiffi
2

p
;ffiffiffiffiffiffiffiffi

8=3
p

is that they are the values associated to the
universality classes of Schnyder-wood-decorated triangu-
lations, bipolar-oriented triangulations, spanning-tree-
decorated quadrangulations and uniform quadrangulations,
respectively. For these models, discrete mating-of-trees
bijections are available that are at the basis of the high-
precision estimates of dH in [30]. They thus form a good

FIG. 13. Collapsed histograms with optimal shift for α ¼ β ¼ π
2

and n0 ¼ 219.
FIG. 14. Hausdorff dimension estimates from simulated mated-
CRT maps for different values of γ. Watabiki’s formula (52) is
plotted in blue, while Ding and Gwynne’s formula (53) is plotted
in yellow.

TABLE I. Our Hausdorff dimension estimates from simulated
mated-CRT maps for different values of γ. The errors have been
determined according to the procedure outlined at the end of
Sec. IV B.

γ dH

3=8 2.24� 0.01
1=2 2.35� 0.01
5=8 2.47� 0.01
3=4 2.60� 0.02
1 2.90� 0.04ffiffiffiffiffiffiffiffi

4=3
p

3.13� 0.05ffiffiffi
2

p
3.59� 0.07ffiffiffiffiffiffiffiffi

8=3
p

4.07� 0.14
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benchmark for the techniques developed in this work. Our
results in Table I are seen to be very well consistent with
those in [ [30] Table 5], although the errors here are
significantly larger.

Our current method has the advantage that it can be used
to perform simulations at any γ ∈ ð0; 2Þ, in particular in the
region γ < 1 where very few numerical estimates for dH
were known (see Ref. [ [30] Sec. V] for estimates based on
Liouville first-passage percolation). Gaining more accurate
estimates for small γ is important, because it is in this
region that some proposed formulas for the Hausdorff
dimension deviate substantially. Two such formulas are the
one due to Watabiki [57] (shown in blue in Fig. 14)

dW ¼ 1þ γ2

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ γ2

4

�
2

þ γ2

s
; ð52Þ

and one by Ding and Gwynne [47] (shown in yellow in
Fig. 14)

dDG ¼ 2þ γ2

2
þ γffiffiffi

6
p : ð53Þ

FIG. 15. The cone Wα;β is spanned by the isosceles spherical
triangle Tα;β in the unit sphere.

FIG. 16. Top left: Hausdorff dimension estimates from mated-CRT graphs constructed from correlated 3D Brownian excursions as a
function of the covariances C12 ¼ − cosðαÞ and C23 ¼ C13 ¼ − cosðβÞ. The contours are based on a linear interpolation of the
simulated data points (see Table II) that are shown in blue. The light blue line (C12 ¼ C23) indicates the models corresponding to
equilateral spherical triangles. Top right: the corresponding errors in the estimates (including both systematic and statistical
contributions). Bottom: the same contours as the top left plot shown in the full three-dimensional phase diagram.
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As can be seen in Fig. 14, our new estimates strengthen the
conclusion of [30] that Watabiki’s formula is ruled out
numerically (in addition to being already inconsistent with
the γ → 0 bounds in [49]). However, the measurements are
still statistically consistent with Ding and Gwynne’s formula.

D. Results for mated-CRT graphs in d = 3

Having benchmarked the numerical methods, we turn to
the main numerical results of this work, the Hausdorff
dimension estimates of mated-CRT graphs in d ¼ 3. Since
the phase diagram is significantly larger than in d ¼ 2,
being three-dimensional instead of one-dimensional, we
have chosen to restrict our attention to the two-dimensional
subspace corresponding to isosceles spherical triangles
(Fig. 15) in which two of the angles are equal: γ ¼ β or,
equivalently, C23 ¼ C13 [58].
The estimates for the Hausdorff dimension dCH including

error bars for a variety of angle pairs ðα; βÞ are presented in
Fig. 16 and listed in Table II. For convenience we record a
reasonable fit for dCH using a quadratic ansatz in C that
respects the symmetries,

dH ≈ 4.83þ 0.42ðC12 þC23 þ C13Þ
þ 0.37ðC2

12 þ C2
23 þC2

13Þ
− 0.38ðC12C23 þ C13C23 þC12C23Þ: ð54Þ

Although we have only been able to effectively simulate
a limited region of the full phase diagram, several con-
clusions can be drawn based on the data. First of all, the
dependence of dCH onC differs qualitatively from that of the

string susceptibility in Fig. 10, suggesting that we are
really dealing with a multiparameter family of universality
classes. Second, contrary to the two-dimensional case there
appears to be no limit, at least in the isosceles region, where
the Hausdorff dimension approaches a “classical” value
equal to d itself, in this case 3. Instead we seem to observe a
minimum dH ≈ 4.1 when ðα; β; γÞ → ðπ=3; π=3; π=3Þ cor-
responding to a Brownian excursion in the cone spanned by
a tiny equilateral spherical triangle.

V. DISCUSSION

In this study, we have proposed a sequence of discrete
metric spaces GC

n , mated-CRT graphs, associated to a
correlated Brownian excursion in d dimensions, general-
izing the mated-CRT maps in d ¼ 2. We hypothesize
that upon normalization of distances these metric spaces
approach a nontrivial continuous random metric as n → ∞
that inherits its scaling properties from the Brownian
excursion. In d ¼ 2 this has largely been demonstrated
as part of the mating of trees approach to Liouville quantum
gravity, and the result is (depending on the correlation)
either known or strongly suspected to yield a scale-
invariant random metric with the topology of the 2-sphere.
In d ¼ 3 the situation is, of course, much less clear, but our
numerical study indicates that for the examined correlation
matrices the distance profiles of GC

n display accurate
scaling with n. Assuming this scaling persists to the full
metric space and the Gromov–Hausdorff convergence of
n−1=d

C
h GC

n as n → ∞ holds, this would establish a family of
new universality classes of random geometries constructed
from triples of correlated CRTs. While the characteristics
of the random geometries are yet to be studied in detail,
two critical exponents of these prospective universality
classes can be calculated or estimated from our data: the
string susceptibility and the Hausdorff dimension.
Our measurements pinpoint an interesting point on the

boundary of parameter space where the off-diagonal
elements of C approach −1=2, corresponding to a tiny
equilateral spherical triangle (α ¼ β ¼ γ ¼ π

3
), where the

string susceptibility diverges (γs → −∞) and the Hausdorff
dimension appears to reach a minimum just above 4. This
limit is analogous to the α → 0 limit of mating of trees in
d ¼ 2, corresponding to the semiclassical limit γ → 0
in two-dimensional Liouville quantum gravity. Note that
in both cases the covariance matrix C degenerates, and the
Brownian motion effectively becomes (d − 1)-dimensional,
moving on the plane perpendicular to the diagonal.
However, since one is forcing the curve to perform a
unit-time excursion in Rd

≥0 the limit is rather singular, so it
is not entirely clear how the classical γ ¼ 0 geometry is to be
retrieved at α ¼ 0 in d ¼ 2. If one relaxes the positivity
constraint in d ¼ 2, which naturally happens when consider
infinite-volume limits, and considers Brownian motion that
is nearly supported on the antidiagonal in R2, the α → 0
limit leads to identifications of points at equal height in a

TABLE II. Hausdorff dimension measurements with error
bars of the mated-CRT graph ĜC

n obtained from correlated 3D
Brownian Excursions. The angles ðα; βÞ correspond to the
spherical angles of the isosceles spherical triangles Tα;β.

ðα; βÞ dH ðα; βÞ dH

ð π
16
; π
2
Þ 5.12� 0.55 ðπ

3
; π
3
þ 0.04Þ 4.36� 0.11

ð25π
256

; π
2
Þ 4.72� 0.09 ðπ

3
; π
3
þ 0.80Þ 5.18� 0.19

ð9π
64
; 1.14Þ 5.61� 1.16 ðπ

3
; 1.18Þ 4.39� 0.08

ð9π
64
; 1.37Þ 4.63� 0.21 ðπ

3
; 1.29Þ 4.47� 0.11

ð9π
64
; 1.41Þ 4.61� 0.26 ðπ

3
; π
2
Þ 4.67� 0.04

ð9π
64
; 1.46Þ 4.73� 0.20 ðπ

3
þ 0.005; π

3
þ 0.005Þ 4.08� 0.04

ð9π
64
; π
2
Þ 4.79� 0.11 ðπ

2
; 0.79Þ 4.42� 0.09

ð9π
64
; 1.68Þ 4.96� 0.23 ðπ

2
; 0.81Þ 4.45� 0.18

ðπ
4
; 1.19Þ 4.36� 0.13 ðπ

2
; 0.83Þ 4.60� 0.14

ðπ
4
; 1.21Þ 4.45� 0.08 ðπ

2
; 0.95Þ 4.42� 0.06

ðπ
4
; 1.28Þ 4.45� 0.11 ðπ

2
; 1.11Þ 4.52� 0.09

ðπ
4
; 1.37Þ 4.49� 0.06 ðπ

2
; π
2
Þ 4.83� 0.06

ðπ
4
; π
2
Þ 4.64� 0.13 ð2π

3
; 0.68Þ 4.71� 0.21

ðπ
4
; 1.77Þ 5.01� 0.14 ð2π

3
; 0.86Þ 5.09� 0.25

ðπ
3
; π
3
þ 0.01Þ 4.12� 0.04 ð2π

3
; π
2
Þ 5.15� 0.09

ðπ
3
; π
3
þ 0.02Þ 4.35� 0.11
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single CRT, resembling the foliated structure of two-
dimensional causal dynamical triangulation [59] (see the
final remarks of [60]). The analogous interpretation in the
case d ¼ 3 amounts to the following. If we consider a two-
dimensional Brownian motion on the xþ yþ z ¼ 0-plane
in R3, then the first two components have covariance
C12 ¼ −1=2. Mating these two infinite correlated CRTs
results in a randommeasure onR2 that is an infinite analogue
of the unit-area γ-quantum sphere with γ ¼ ffiffiffiffiffiffiffiffi

4=3
p

. The
third tree then leads to identification of certain pairs of
points of R2 that have equal sum of heights within the two
embedded trees. It is a natural question to ask whether
the discrete mating of trees bijection for bipolar-oriented
triangulations, which lives in the γ ¼ ffiffiffiffiffiffiffiffi

4=3
p

universality
class [26], can incorporate such identifications to describe
three-dimensional discrete geometries.
This picture extends to other points on the two-

dimensional boundary of parameter space where
αþ β þ γ ¼ π, but with the random metric on the plane
replaced by that of Liouville quantum gravity with
γ ¼ 2

ffiffiffiffiffiffiffiffi
α=π

p
and the identification performed by equal

linear combination of the two heights (with coefficients
sin γ and sin β respectively). Here, as well as in the interior
of the parameter space where detC > 0, one may ask the
same question of whether discrete mating of trees bijec-
tions, like the ones in Secs. II A and II B, have a
combinatorial interpretation at the level of discrete
3-manifolds. It would be preferable to take the opposite
route, in which one starts with a combinatorial model of
discrete 3-manifolds, like three-dimensional dynamical
triangulations [13], perhaps dressed with some matter
statistical system and one would identify a bijective
encoding into a triple of trees. However, the combinatorics
of discrete 3-manifolds is still poorly understood, making
this a challenging route. First steps toward encoding
3-sphere triangulations in trees has been taken by Lionni
and one of the authors [17] by greatly restricting the type of
triangulations considered.
In regard to Hausdorff dimension estimates using the

numerical implementation of the mated-CRT maps in
the two-dimensional case, our estimates for γ ¼ 1;

ffiffiffiffiffiffiffiffi
4=3

p
;ffiffiffi

2
p

;
ffiffiffiffiffiffiffiffi
8=3

p
are statistically compatible with previous

numerical results [30] and rigorous bounds [47,48,61].
Moreover, this numerical toolbox proved to be reliable in
sampling random geometries in the region γ < 1 which has
been inaccessible with other methods. We measured dH
with good accuracy for γ ¼ 3=8; 1=2; 5=8; 3=4. These
results are compatible with a guessed formula of Ding
and Gwynne, based on rigorous bounds [47], and contra-
dict Watabiki’s formula, based on a heuristic heat kernel
analysis in Liouville quantum gravity.
In the case d ¼ 3, a technical problems is finding

sufficiently accurate numerical solutions to the harmonic
equation (25) in general cones, which could be further
improved with the methods of [55]. However, the main

challenge in extending the results further out in the
parameter space (and even to higher dimensions) is due
to the large system sizes required, because of the following
two reasons. As 1 − γs ¼ α1 becomes smaller, the distri-
bution of the time extents of the Brownian motions X1ðtÞ
and X2ðtÞ out of which we construct the excursion X̂ðtÞ
becomes increasingly heavy tailed (see Sec. III C), making
it harder to produce unbiased samples. Second, the occur-
rence of higher Hausdorff dimensions means that a larger
number of vertices is necessary to reach metric spaces
of the same diameter, and this number is limited by the
computing power available.
Perhaps the most important question that we leave open

in this work is whether the new family of scale-invariant
random geometries, if it exists, describes anything resem-
bling spacetime geometry, in particular whether it has
manifold topology. Deciding whether this is the case is
considerably more difficult in d ¼ 3 compared to d ¼ 2.
One of the reasons is the lack of a natural interpretation of
the mated-CRT graphs as a discrete geometry of deter-
ministic topology. The other reason is that even if one has
such a topology at the discrete level, there are many ways in
which it can degenerate in the scaling limit. In the two-
dimensional case, there exist practical sufficient criteria that
ensure the limit has 2-sphere topology (see Ref. [62] for a
discussion and application to the Brownian sphere), while
the situation in d ¼ 3 is less clear.
Short of answering these questions, having a catalogue

of potential scale-invariant random geometries available is
of value to research in quantum gravity. It opens up the
possibility of comparing characteristics of the UV fixed
point in asymptotically safe gravity, established through
other approaches, to the concrete list of models arising
from mating of trees. Drawing a bridge at the level of the
dynamics is difficult, but a natural starting point is to
compare critical exponents in various approaches.
Hausdorff dimensions are often difficult to assess, since
in approaches where the quantum geometry of spacetime is
approximated with differentiable metrics, they tend to come
out identical to the topological dimension. On the other
hand, the string susceptibility, seen as the scaling behavior
of the partition function or as the distribution of sizes of
minbus, should be easier to compare. Finally, the best
studied critical exponent in quantum gravity appears to be
the spectral dimension [63–66], which characterizes dif-
fusion processes in the geometry. It is consistently found to
decrease below the topological dimension in the UV. In the
case of two-dimensional mated-CRT maps, the spectral
dimension is exactly equal to 2 for all γ ∈ ð0; 2Þ [67].
A numerical estimation of the spectral dimension of the
mated-CRT graphs in d ¼ 3 would be a logical follow up
for the numerical methods developed in this work.

The source code for the Monte Carlo simulations and the
numerical data that form the basis for the results in Sec. IV
are available at [68].
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