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The method of nonlinear realizations is a convenient tool for building dynamical realizations of a Lie
group, which relies solely upon structure relations of the corresponding Lie algebra. The goal of this work
is to discuss advantages and limitations of the method, which is here applied to construct perfect fluid
equations with conformal symmetry. Four cases are studied in detail, which include the Schrödinger group,
the l-conformal Galilei group, the Lifshitz group, and the relativistic conformal group.

DOI: 10.1103/PhysRevD.107.026008

I. INTRODUCTION

Recently, there has been a considerable effort to under-
stand the hydrodynamic limit of the AdS=CFT correspon-
dence [1–3].1 The main point of the study was to establish
that the low-frequency behavior of an interacting field
theory at finite temperature could be described by fluid
mechanics.
The conventional formulation of fluid dynamics relies

upon an expansion scheme in which the effects of viscosity
and heat transfer are regarded as corrections to the perfect
fluid equations (see e.g., [2]). As is known, for a properly
chosen equation of state the (non)relativistic perfect fluid
equations exhibit conformal invariance (see e.g., [5–7]). It
is then natural to wonder whether such equations can be
formulated on purely group-theoretic grounds.
A convenient tool for building dynamical realizations of

a Lie group, which relies solely upon structure relations of
the corresponding Lie algebra, is provided by the method
of nonlinear realizations [8]. The scheme includes several
steps. First of all, one introduces coordinates and fields,
whose number in general is equal to the number of
generators of a Lie algebra at hand. Then one builds a
formal group-theoretic element g, which is a product of
exponentials of the type eiαT , where α is a coordinate (or a
field) and T is a Lie algebra generator. After that, one studies
the left action of the group upon the group-theoretic element
g and establishes transformation laws of the coordinates and

fields. Finally, one computes the Maurer-Cartan one-forms
g−1dg. By construction, they hold invariant under the left
action of the group upon the group theoretic element and,
hence, provide convenient building blocks to formulate
invariant equations of motion. If desirable, they can also be
used to eliminate some of the fields from the consideration
by imposing constraints. Within the method of nonlinear
realizations, imposing constraints is attributed to the inverse
Higgs phenomenon [9].
An alternative formulation of fluid dynamics in terms of

group-valued variables, which relies upon Kirillov’s method
of orbits [10], was proposed in [11]. The formalism is
particularly suitable for taking into account constituent
particles, which carry non-Abelian charges or spin degrees
of freedom, as well as for incorporating anomalies [12–16].
The goal of this work is to discuss advantages and

limitations of the method of nonlinear realizations, which
is here applied to construct perfect fluid equations with
conformal symmetry. Four cases are studied in detail,
which include the Schrödinger group, the l-conformal
Galilei group, the Lifshitz group, and the relativistic
conformal group.
The organization of the work is as follows. In the next

section, we briefly outline key features of the method of
nonlinear realizations, which are used in a later section to
explore fluid equations with conformal symmetry. For
simplicity of the presentation, the construction is illustrated
by the example of soð2; 1Þ algebra, which was first studied
in [17]. In Sec. III, perfect fluid equations with the
Schrödinger symmetry are built in terms of the invariant
Maurer-Cartan one-forms associated with the Schrödinger
group and an invariant derivative. It is demonstrated that a
proper equation of states, which links pressure to fluid
density, comes about quite naturally without the need to
invoke more sophisticated arguments [5,6]. In Secs. IV
and V, a similar analysis is performed for the l-conformal
Galilei group and the Lifshitz group, respectively. To the best
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of our knowledge, the Lifshitz-invariant equations in Sec. V
are new. Section VI is focused on the case of the relativistic
conformal group. In contrast to the nonrelativistic examples,
the construction of relativistic fluid equations invariant under
the conformal group in terms of the Maurer-Cartan invar-
iants alone turns to be problematic and extra arguments need
to be invoked. In the concluding Sec. VII, we summarize our
results and discuss possible further developments.
Throughout the paper, summation over repeated indices

is understood unless otherwise stated.

II. THE METHOD OF NONLINEAR
REALIZATIONS

In this section, we outline key features of the method
of nonlinear realizations [8], which will be used below to
explore fluid equations with conformal symmetry. For
simplicity of the presentation, the construction will be
illustrated by the example of soð2; 1Þ algebra

½H;D� ¼ iH; ½H;K� ¼ 2iD; ½D;K� ¼ iK; ð1Þ

which was first studied in [17]. Above H is interpreted as
the temporal translation generator,D links to dilatation, and
K is associated with the special conformal transformation.
In its essence, the method of nonlinear realizations is a

tool to build dynamical realizations of a Lie group, which is
based solely upon structure relations of the corresponding
Lie algebra. As the first step of the construction, one
introduces coordinates and fields whose number in general
is equal to the number of generators of the Lie algebra. The
choice is not unique and it essentially depends on a
dynamical realization one seeks. For example, if one is
concerned with one-dimensional mechanics originating
from (1), a temporal variable t and a function uðtÞ, which
describes a particle dynamics, are needed. It seems natural
to link t to H and uðtÞ to D. In order to treat all the
generators on equal footing, one introduces one more field
wðtÞ, which is regarded as a partner of K. At this stage, it is
not yet clear whether uðtÞ or wðtÞ will be more suitable for
describing a reasonable conformal mechanics model and
one anticipates an SOð2; 1Þ-invariant constraint, which will
link the fields to each other.
Then one introduces the group-theoretic element

g ¼ eitHeiuðtÞDeiwðtÞK: ð2Þ

In general, the expressions in (1) are regarded as formal Lie
brackets (rather than commutators of operators) and the
exponential entering (2) is treated as the exponential map of
a Lie algebra to a neighborhood of the unit group element.
Yet, nothing prevents one from assuming that a specific
representation of the Lie algebra is chosen such that (1)
represents commutators of the generators and (2) is an
operator acting upon a state. In the latter case, the
exponential entering (2) can be regarded as a formal

Taylor series eA ¼ P∞
n¼0

An

n! , in which case the well-known
Baker-Campbell-Hausdorff formula

eiATe−iA ¼ T þ
X∞
n¼1

in

n!
½A; ½A;…½A; T�…��|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

ð3Þ

is applicable, where A and T are two arbitrary operators.
The conventional property of the exponential

eαAeβA ¼ eðαþβÞA; ð4Þ

holds true as well, where α, β are constants and A is an
operator action upon a state in the representation chosen.
Equation (3) is the cornerstone of the whole consideration
to follow. Note that the order in which the factors
contribute to the group-theoretic element (2) can be chosen
at will and different options are related by coordinate and
field redefinitions.
At the second step of the construction, one analyzes the

left action of the group upon the group-theoretic element

g0 ¼ eiβHeiλDeiσK · g ¼ eit
0Heiu

0ðt0ÞDeiw0ðt0ÞK; ð5Þ

where β, λ, σ are real transformation parameters, and makes
use of (3) so as to establish transformation laws of the
coordinates and fields. For most physical applications it
suffices to consider their infinitesimal form.
When performing calculations, depending on a specific

operator eL at hand, it might prove helpful to insert the unit
operator e−BeB, with B to be specified below, either to the
left or to the right of eL. The following chain of relations

eiλDeitH ¼ eiλDeitHe−iλDeiλD|fflfflfflfflffl{zfflfflfflfflffl}
1

¼ eiλDð1þ itHþ…Þe−iλDeiλD

¼ ð1þ itðHþ ½iλD;H� þ…Þ þ…ÞeiλD
¼ eið1þλÞtHeiλD ð6Þ

gives the example of how eiλD “passes through” eitH. The
Baker-Campbell-Hausdorff formula was repeatedly applied
in the second line of (6). At the same time, when computing
eiσKeitH with infinitesimal σ, it proves convenient to place
eitHe−itH to the left of the operator

eiσKeitH ¼ eitHe−itH|fflfflfflfflffl{zfflfflfflfflffl}
1

eiσKeitH ¼ eitHe−itHð1þ iσKÞeitH

¼ eitH
�
1þ iσ

�
K − ½itH;K� þ 1

2!
½itH; ½itH;K��

��

¼ eiðtþσt2ÞHeiσKe2iσtD; ð7Þ

where we used the fact that eiσAeiσB ¼ eiσBeiσA for infini-
tesimal σ.
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Taking into account the technicalities, from Eq. (5) one obtains the infinitesimal SOð2; 1Þ transformations acting upon the
temporal variable and the fields uðtÞ, wðtÞ (each transformation is separated by semicolon)

t0 ¼ tþ β; u0ðt0Þ ¼ uðtÞ; w0ðt0Þ ¼ wðtÞ;
t0 ¼ ð1þ λÞt; u0ðt0Þ ¼ uðtÞ þ λ; w0ðt0Þ ¼ wðtÞ;
t0 ¼ tþ σt2; u0ðt0Þ ¼ uðtÞ þ 2σt; w0ðt0Þ ¼ wðtÞ þ euðtÞσ: ð8Þ

The third step of the method consists in computing the
Maurer-Cartan one-forms2

g−1dg ¼ iωHH þ iωDDþ iωKK; ð9Þ

where

ωH ¼ e−udt; ωD ¼ du − 2we−udt;

ωK ¼ dw − wduþ w2e−udt: ð10Þ

By construction, they hold invariant under the group
transformation (5), (8) and, hence, provide convenient
building blocks to formulate invariant equations of motion.
If desirable, they can also be used to eliminate some of the
fields entering the group-theoretic element from the con-
sideration by imposing constraints.
In the last step of the construction, one specifies a

dynamical realization of the group at hand by choosing
judiciously a combination of the Maurer-Cartan invariants
which results in a reasonable set of second order differential
equations. The latter are identified with the equations of
motion of a dynamical system. This item is not straightfor-
ward and requires guesswork. For example, if one wishes to
use (10) in order to formulate one-dimensional SOð2; 1Þ-
invariant mechanics, one imposes the constraint ωD ¼ 0,
which links w to u

w ¼ 1

2

deu

dt
; ð11Þ

and then postulates the equation of motion [17]

ωK − γ2ωH ¼ 0; ð12Þ

in which γ is a (coupling) constant. Implementing the field
redefinition u ¼ ln ρ2, which is meant to remove the ðdudtÞ2
term from (12), one finally arrives at

d2ρ
dt2

¼ γ2

ρ3
; ð13Þ

which is the conventional 1d conformal mechanics equation
of motion [18].
To give another example, it is known that the Schwarzian

derivative

SðρðtÞÞ ¼ ρ
…ðtÞ
_ρðtÞ −

3

2

�
ρ̈ðtÞ
_ρðtÞ

�
2

; ð14Þ

where ρðtÞ is a real function and the dot designates the
derivative with respect to t, holds invariant under the
SLð2; RÞ transformation acting upon the argument

ρ0ðtÞ ¼ aρðtÞ þ b
cρðtÞ þ d

; ð15Þ

with ad − cb ¼ 1. At first glance, the invariance does not
seem obvious at all. Yet, because slð2; RÞ ∼ soð2; 1Þ, one
can naturally arrive at (14) by applying the group-theoretic
arguments similar to those above [19]. It suffices to keep
the temporal variable t as an external parameter3 and
introduce the group-theoretic element

g ¼ eiρðtÞHeisðtÞKeiuðtÞD; ð16Þ

where ρðtÞ, sðtÞ, uðtÞ are as yet unspecified functions,
which gives rise to the Maurer-Cartan invariants

ωH ¼ _ρe−udt; ωK ¼ euð_sþ s2 _ρÞdt; ωD¼ð _u−2s_ρÞdt:
ð17Þ

Imposing the constraints ωH−μdt¼0 and ωDþ2νdt¼0,
where μ and ν are arbitrary constants, one can express u and
s in terms of ρ, while substituting the result into the only
remaining one-form ωK , one arrives at the Schwarzian
derivative [19].
Our primary concern in later sections will be to under-

stand whether the construction outlined above is powerful
enough to result in perfect fluid equations with conformal
symmetry. Specifically, the cases of the Schrödinger group,
the l-conformal Galilei group, the Lifshitz group, and the
relativistic conformal group will be discussed in turn.

2Given g in (2), the inverse element is g−1 ¼ e−iwKe−iuDe−itH,
while the differential reads dg ¼ eitHðidtHÞeiuDeiwKþ
eitHeiuDðiduDÞeiwK þ eitHeiuDeiwKðidwKÞ.

3To be more precise, one considers R × SLð2; RÞ and links t to
the generator of the group of real numbers under addition R.
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III. PERFECT FLUID EQUATIONS
WITH THE SCHRÖDINGER SYMMETRY

The Lie algebra associated with the Schrödinger group
includes generators of temporal translation, dilatation, and
special conformal transformation, which form soð2; 1Þ

subalgebra, as well as spatial translations, the Galilei
boosts, and spatial rotations. Given a nonrelativistic space-
time parametrized by a temporal variable t and Cartesian
coordinates xi, i ¼ 1;…;N , where N is the spatial
dimension, they can be represented in the form4

H ¼ i
∂

∂t
; D ¼ i

�
t
∂

∂t
þ 1

2
xi

∂

∂xi

�
; K ¼ i

�
t2

∂

∂t
þ txi

∂

∂xi

�
;

Cð0Þ
i ¼ i

∂

∂xi
; Cð1Þ

i ¼ it
∂

∂xi
; ð18Þ

which obey the commutation relations

½H;D� ¼ iH; ½H;K� ¼ 2iD; ½D;K� ¼ iK; ½H;Cð1Þ
i � ¼ iCð0Þ

i ;

½D;Cð0Þ
i � ¼ −

i
2
Cð0Þ
i ; ½D;Cð1Þ

i � ¼ i
2
Cð1Þ
i ; ½K;Cð0Þ

i � ¼ −iCð1Þ
i : ð19Þ

The finite form of the corresponding transformations acting
in the nonrelativistic spacetime reads

t0 ¼ αtþ β

γtþ δ
; x0i ¼

�
∂t0

∂t

�1
2

xi; t0 ¼ t;

x0i ¼ xi þ að0Þi þ að1Þi t; ð20Þ

where α, β, γ, δ, að0Þi , að1Þi are transformation parameters,
the first four of which obey the restriction αδ − βγ ¼ 1.
In order to describe a fluid, one introduces the density5

ρðt; xÞ and the velocity vector field υiðt; xÞ, i ¼ 1;…;N .
The transformation law of ρðt; xÞ under the Schrödinger
group is obtained by fixing a value of the temporal variable
t and demanding the mass of an N -dimensional volume
element V to be invariant under (20)

Z
V 0
dx0ρ0ðt0; x0Þ ¼

Z
V
dxρðt; xÞ; ð21Þ

where dx ¼ dx1…dxN . This gives

ρðt; xÞ ¼
�
∂t0

∂t

�N
2

ρ0ðt0; x0Þ; ρðt; xÞ ¼ ρ0ðt0; x0Þ; ð22Þ

where the first relation corresponds to the SOð2; 1Þ trans-
formations, while the second links to the spatial translations
and the Galilei boosts.
Considering an orbit of a liquid particle parametrized by

xiðtÞ, for which

dxiðtÞ
dt

¼ υiðt; xðtÞÞ; ð23Þ

from Eq. (20) one can determine the transformation laws of
the velocity vector field6

υiðt; xÞ ¼
�
∂t0

∂t

�1
2

υ0iðt0; x0Þ þ
∂

∂t

�
∂t0

∂t

�
−1
2

x0i;

υiðt; xÞ ¼ υ0iðt0; x0Þ − að1Þi ; ð24Þ

where again the former equality corresponds to the SOð2; 1Þ
transformations, while the latter links to the spatial trans-
lations and the Galilei boosts.
In what follows, we will need infinitesimal form of

the Schrödinger transformations acting upon the coordi-
nates and fields. Substituting α ¼ 1, δ ¼ 1, γ ¼ 0 into
(20), (22), (24) and regarding β as infinitesimal para-
meter, one obtains the infinitesimal form of the temporal
translation

4Here and in what follows the conventional rotation generators are disregarded.
5Throughout the paper, we use units in which ρ is dimensionless. This can be done by choosing a reference value ρ0 and

rescaling ρ → ρ
ρ0
.

6As is usual in classical dynamics, when restricting transformations similar to (20) to a particle orbit, one replaces x0i with x
0
iðt0Þ and xi

with xiðtÞ.
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t0 ¼ tþ β; x0i ¼ xi;

ρ0ðt0; x0Þ ¼ ρðt; xÞ; υ0iðt0; x0Þ ¼ υiðt; xÞ: ð25Þ

Choosing α ¼ e
λ
2, δ ¼ e−

λ
2, β ¼ 0, γ ¼ 0, setting λ to be infinitesimal parameter and Taylor expanding in λ up to the first

order, one gets the dilatation transformation

t0 ¼ ð1þ λÞt; x0i ¼
�
1þ λ

2

�
xi;

ρ0ðt0; x0Þ ¼
�
1 −

N λ

2

�
ρðt; xÞ; υ0iðt0; x0Þ ¼

�
1 −

λ

2

�
υiðt; xÞ; ð26Þ

where, as above, N denotes the spatial dimension.
Infinitesimal form of the special conformal transformation is found by setting α ¼ 1, δ ¼ 1, β ¼ 0, γ ¼ −σ in Eq. (20),

regarding σ as infinitesimal parameter, and Taylor expanding in σ up to the first order

t0 ¼ tþ σt2; x0i ¼ ð1þ σtÞxi;
ρ0ðt0; x0Þ ¼ ð1 −N σtÞρðt; xÞ; υ0iðt0; x0Þ ¼ ð1 − σtÞυiðt; xÞ þ σxi: ð27Þ

The spatial translations and the Galilei boosts maintain their form

t0 ¼ t; x0i ¼ xi þ að0Þi þ að1Þi t;

ρ0ðt0; x0Þ ¼ ρðt; xÞ; υ0iðt0; x0Þ ¼ υiðt; xÞ þ að1Þi : ð28Þ

Having fixed transformation laws of the fields which characterize a fluid, we are now in a position to construct
invariant equations of motion within the method of nonlinear realizations. As the first step, one has to introduce a proper
group-theoretic element. The building blocks, which are at our disposal, are the coordinates t, xi and the fields ρðt; xÞ,
υiðt; xÞ on the one hand, and the generators of the Schrödinger algebra H, D, K, Cð0Þ

i , Cð1Þ
i on the other hand. It seems

natural to link the generator of temporal translation H and the generator of spatial translations Cð0Þ
i to the temporal

variable t and the Cartesian coordinates xi, respectively. The remaining generators of the algebra should be
accompanied by specific combinations of ρðt; xÞ and υiðt; xÞ in a way compatible with the left action of the

Schrödinger group upon a group-theoretic element, which will be introduced shortly. Because Cð1Þ
i carries a vector

index, its partner in a group-theoretic element should be proportional to the velocity vector field υiðt; xÞ. For symmetry
reasons (see below), a coefficient of proportionality can be taken to be just the unity. Denoting companions of D, K by
uðt; xÞ, wðt; xÞ, respectively, and postponing for later a clarification of their connection to ρðt; xÞ, υiðt; xÞ, one finally gets
the group-theoretic element

g ¼ eitHeixiC
ð0Þ
i eiυiðt;xÞC

ð1Þ
i eiuðt;xÞDeiwðt;xÞK: ð29Þ

As was mentioned is Sec. II, factors contributing to a group-theoretic element in general do not commute. The choice
(29) proves to be most convenient for our subsequent analysis.
As the next step, one considers the left action of the Schrödinger group upon the group-theoretic element

eiβHeia
ð0Þ
i Cð0Þ

i eia
ð1Þ
i Cð1Þ

i eiλDeiσK · eitHeixiC
ð0Þ
i eiυiðt;xÞC

ð1Þ
i eiuðt;xÞDeiwðt;xÞK ¼ eit

0Heix
0
iC

ð0Þ
i eiυ

0
iðt0;x0ÞCð1Þ

i eiu
0ðt0;x0ÞDeiw0ðt0;x0ÞK; ð30Þ

where β, λ, σ, að0Þi , að1Þi are transformation parameters, and makes use of the Baker-Campbell-Hausdorff formula (3) to
determine transformation laws of the coordinates and fields. For simplicity of the presentation, we focus on their
infinitesimal form (each transformation is separated by a semicolon)
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t0 ¼ tþ β; x0i ¼ xi;

υ0iðt0; x0Þ ¼ υiðt; xÞ; u0ðt0; x0Þ ¼ uðt; xÞ; w0ðt0; x0Þ ¼ wðt; xÞ;

t0 ¼ ð1þ λÞt; x0i ¼
�
1þ λ

2

�
xi;

υ0iðt0; x0Þ ¼
�
1 −

λ

2

�
υiðt; xÞ; u0ðt0; x0Þ ¼ uðt; xÞ þ λ; w0ðt0; x0Þ ¼ wðt; xÞ;

t0 ¼ tþ σt2; x0i ¼ ð1þ σtÞxi;
υ0iðt0; x0Þ ¼ ð1 − σtÞυiðt; xÞ þ σxi; u0ðt0; x0Þ ¼ uðt; xÞ þ 2σt; w0ðt0; x0Þ ¼ wðt; xÞ þ σeuðt;xÞ;

t0 ¼ t; x0i ¼ xi þ að0Þi ;

υ0iðt0; x0Þ ¼ υiðt; xÞ; u0ðt0; x0Þ ¼ uðt; xÞ; w0ðt0; x0Þ ¼ wðt; xÞ;
t0 ¼ t; x0i ¼ xi þ tað1Þi ;

υ0iðt0; x0Þ ¼ υiðt; xÞ þ að1Þi ; u0ðt0; x0Þ ¼ uðt; xÞ; w0ðt0; x0Þ ¼ wðt; xÞ: ð31Þ

At this stage, comparing (31) with (25)–(28) and taking
into account the identities

∂

∂t
¼

�
∂t0

∂t

�
∂

∂t0
þ
�
∂x0i
∂t

�
∂

∂x0i
;

∂

∂xi
¼

�
∂t0

∂xi

�
∂

∂t0
þ
�
∂x0j
∂xi

�
∂

∂x0j
; ð32Þ

one can unambiguously link u, w to ρ and υi

ρ ¼ e−
N
2
u; w ¼ 1

N
ρ−

2
N
∂υi
∂xi

: ð33Þ

A comparison of (31) with (25)–(28) also confirms our
earlier identification of a companion of the Galilei boost

generatorCð1Þ
i entering the group-theoretic element with the

fluid velocity vector field υi.
As the final step, one computes the invariant Maurer-

Cartan one-forms

g−1dg ¼ iωHH þ iωDDþ iωKK þ iωð0Þ
i Cð0Þ

i þ iωð1Þ
i Cð1Þ

i ;

ð34Þ

where

ωH ¼ e−udt; ωD ¼ du − 2we−udt;

ωK ¼ dw − wduþ w2e−udt; ωð0Þ
i ¼ e−

u
2ðdxi − υidtÞ;

ωð1Þ
i ¼ e

u
2dυi − we−

u
2ðdxi − υidtÞ; ð35Þ

and takes notice of the fact that the derivative

∇i ¼ ρ−
1
N

∂

∂xi
; ð36Þ

is invariant under the action of the Schrödinger group.7

The invariants (35) and (36) are all one needs to formulate
perfect fluid equations with the Schrödinger symmetry
within the group-theoretic approach. First of all, a com-
parison of ωð0Þ

i with one of the key ingredients of fluid
mechanics (23) suggests a further specification in the group-
theoretic element (29)

xi → xiðtÞ; ð37Þ

where xiðtÞ is now interpreted as parametrizing an orbit of a
liquid particle. The substitution (37) also links the differ-
ential d to the material derivative D, which is commonly
used within fluid mechanics

d ¼ dtD; D ¼ ∂

∂t
þ υiðt; xÞ

∂

∂xi
: ð38Þ

Imposing the Schrödinger-invariant constraint

ωð0Þ
i ¼ 0; ð39Þ

one thus reproduces Eq. (23) and confirms once again that
the identification of υi in (29) with the fluid velocity vector
field was correct.
Substituting (33) into ωD, one gets

ωD ¼ −
2

N

�
Dρ

ρ
þ ∂υi
∂xi

�
dt: ð40Þ

7The invariance of the derivative is most easily verified by
making recourse to the finite transformations (20), (22) and
taking into account the identity (32).
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Hence, demandingωD to vanish, one naturally arrives at the
continuity equation

∂ρ

∂t
þ ∂ðρυiÞ

∂xi
¼ 0; ð41Þ

which is the equation of motion for ρ in fluid mechanics.
It remains to determine the equation for υi. Note that

after imposing the constraint (39), the one-form ωð1Þ
i

simplifies to

ωð1Þ
i ¼ ðρ− 1

NDυiÞdt: ð42Þ

In particular, it involves the material derivative of the
velocity vector field υi, which is the fluid mechanics analog
of the acceleration vector in Newtonian mechanics.
Because the remaining Maurer-Cartan forms in (35) do
not carry vector indices, one is led to use the invariant
derivative (36) so as to specify a potential term. Imposing
the simplest Schrödinger-invariant restriction

ωð1Þ
i þ α∇iωH ¼ 0; ð43Þ

where α is a real constant, one gets the equation of motion

Dυi ¼ −α
∂ρ

2
N

∂xi
: ð44Þ

The latter can be put into the conventional Euler form

ρDυi ¼ −
∂p
∂xi

; ð45Þ

by introducing the pressure pðt; xÞ which obeys the
equation of state

p ¼ νρ1þ
2
N ; ð46Þ

with ν ¼ 2α
Nþ2

. Equations (41), (45), and (46) reproduce the
perfect fluid equations invariant under the action of the
Schrödinger group, which were originally introduced
in [5,6] (for conserved charges and the energy-momentum
tensor see [6]). Within the group-theoretic approach, they

result from imposing the invariant constraints ωð0Þ
i ¼ 0,

ωD ¼ 0, ωð1Þ
i þ α∇iωH ¼ 0 upon the Maurer-Cartan one-

forms. The advantage of the method is that the equation of
state (46) comes about quite naturally without the need to
invoke more sophisticated arguments (cf. [5,6]).
Concluding this section, we note that some statements in

the literature regarding conformal symmetries of nonrela-
tivistic fluid mechanics contradict each other. For a detailed
account and further references see [20].

IV. PERFECT FLUID EQUATIONS WITH
THE l-CONFORMAL GALILEI SYMMETRY

As is well known, the Schrödinger algebra is a parti-
cular instance of the so-called l–conformal Galilei
algebra [21,22]. The latter includes generators of (temporal)
translation, dilatation, special conformal transformation,
spatial rotations, spatial translations, Galilei boosts and
constant accelerations. They obey the structure relations8

½H;D� ¼ iH; ½H;K� ¼ 2iD; ½D;K� ¼ iK;

½H;CðnÞ
i � ¼ inCðn−1Þ

i ; ½D;CðnÞ
i � ¼ iðn − lÞCðnÞ

i ;

½K;CðnÞ
i � ¼ iðn − 2lÞCðnþ1Þ

i ; ð47Þ

where i ¼ 1;…;N and n ¼ 0;…; 2l. Here N designates
the spatial dimension and l is an arbitrary (half-)integer real
parameter, which gives the name to the algebra.
A conventional realization of the algebra in terms

of differential operators acting in a nonrelativistic space-
time reads

H ¼ i
∂

∂t
; D ¼ i

�
t
∂

∂t
þ lxi

∂

∂xi

�
;

K ¼ i

�
t2

∂

∂t
þ 2ltxi

∂

∂xi

�
; CðnÞ

i ¼ itn
∂

∂xi
: ð48Þ

Note that the value of the parameter l specifies the number

of acceleration generators at hand (CðnÞ
i with n > 1) and for

l ¼ 1
2
one reveals the Schrödinger algebra discussed in the

preceding section. A finite form of the transformations is
given by (no sum over repeated index n)

t0 ¼ αtþ β

γtþ δ
; x0i ¼

�
∂t0

∂t

�
l
xi; t0 ¼ t;

x0i ¼ xi þ aðnÞi tn; ð49Þ

where n ¼ 0;…; 2l, and α, β, γ, δ, að0Þi , að1Þi , …, að2lÞi are
transformation parameters, the first four of which obey
the restriction αδ − βγ ¼ 1.
In a very recent work [23], the perfect fluid equations

with the Schrödinger symmetry were generalized so as to
accommodate the l-conformal Galilei symmetry

∂ρ

∂t
þ ∂ðρυiÞ

∂xi
¼ 0; ρD2lυi ¼−

∂p
∂xi

; p¼ νρ1þ
1

lN ; ð50Þ

where ν is a constant. Conserved charges and the energy-
momentum tensor were built as well [23]. Our goal in this

8As above, in this section we disregard spatial rotations.
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section, is to demonstrate that the group-theoretic approach
allows one to arrive at (50) in a rather natural and
efficient way.
As the first step, one has to determine transformation

laws of the fluid density and the velocity vector field under
the action of the l-conformal Galilei group. Repeating the
arguments in the preceding section, one finds (no sum over
repeated index n)

ρðt; xÞ ¼
�
∂t0

∂t

�
lN

ρ0ðt0; x0Þ;

υiðt; xÞ ¼
�
∂t0

∂t

�
1−l

υ0iðt0; x0Þ þ
∂

∂t

�
∂t0

∂t

�
−l
x0i;

ρðt; xÞ ¼ ρ0ðt0; x0Þ;
υiðt; xÞ ¼ υ0iðt0; x0Þ − naðnÞi tn−1; ð51Þ
where the first two lines correspond to the SOð2; 1Þ
transformations, while the rest describes the accelerations.
Note that, similarly to the Schrödinger case, the derivative

∇i ¼ ρ−
1
N

∂

∂xi
; ð52Þ

holds invariant under the transformations (49) and (51).
Equation (51) will be used below in order to link fields
contributing to a group-theoretic element to ρ and υi,

while (52) will help to formulate invariant equations
of motion.
Then one considers a natural generalization of the group

theoretic element (29)

g ¼ eitHeixiC
ð0Þ
i eiυ

ð1Þ
i ðt;xÞCð1Þ

i …eiυ
ð2lÞ
i ðt;xÞCð2lÞ

i eiuðt;xÞDeiwðt;xÞK;

ð53Þ

where t and xi are the temporal and spatial coordinates,

υð1Þi is identified with the fluid velocity vector field υi,

new vector fields υð2Þi , …, υð2lÞi will be later linked to
the material derivatives of υi, whereas u, w are scalars
to be expressed in terms of ρ and υi in accord with the
way in which they transform under the l-conformal
Galilei group.
Analyzing the left action of the group upon the

element (53)

g0 ¼eiβHeia
ð0Þ
i Cð0Þ

i eia
ð1Þ
i ðt;xÞCð1Þ

i …eia
ð2lÞ
i ðt;xÞCð2lÞ

i eiλDeiσK ·g; ð54Þ

where β, λ, σ, að0Þi , …, að2lÞi are infinitesimal trans-
formation parameters, one gets (each transformation is
separated by a semicolon; no sum over repeated indices
k and s)

t0 ¼ tþ β; x0i ¼ xi;

υ0ðkÞi ðt0; x0Þ ¼ υðkÞi ðt; xÞ; u0ðt0; x0Þ ¼ uðt; xÞ; w0ðt0; x0Þ ¼ wðt; xÞ;
t0 ¼ ð1þ λÞt; x0i ¼ ð1þ λlÞxi;

υ0ðkÞi ðt0; x0Þ ¼ ð1 − λðk − lÞÞυðkÞi ðt; xÞ; u0ðt0; x0Þ ¼ uðt; xÞ þ λ; w0ðt0; x0Þ ¼ wðt; xÞ;
t0 ¼ tþ σt2; x0i ¼ ð1þ 2σltÞxi;

υ0ðkÞi ðt0; x0Þ ¼ ð1 − 2σðk − lÞtÞυðkÞi ðt; xÞ u0ðt0; x0Þ ¼ uðt; xÞ w0ðt0; x0Þ ¼ wðt; xÞ
− σðk − 1 − 2lÞυðk−1Þi ðt; xÞ; þ 2σt þ σeuðt;xÞ;

t0 ¼ t; x0i ¼ xi þ tkaðkÞi ;

υ0ðk−sÞi ðt0; x0Þ ¼ υðk−sÞi ðt; xÞ þ tsCs
ka

ðkÞ
i ; u0ðt0; x0Þ ¼ uðt; xÞ; w0ðt0; x0Þ ¼ wðt; xÞ; ð55Þ

where k ¼ 0;…; 2l, s ≤ k, υð0Þi ¼ xi, and Cs
k are the

binomial coefficients Cs
k ¼ k!

s!ðk−sÞ!.
Comparing (55) with the infinitesimal form of (51)

(see [23]), one can express u, w in terms of ρ and υi

ρ ¼ e−Nlu; w ¼ 1

2Nl
ρ−

1
Nl
∂υð1Þi

∂xi
: ð56Þ

Recall that υð1Þi was earlier identified with the fluid velocity
vector field υi.

Afterwards, one computes the Maurer-Cartan invariants

g−1dg ¼ iωHH þ iωDDþ iωKK þ iωð0Þ
i Cð0Þ

i þ iωð1Þ
i Cð1Þ

i

þ � � � þ iωð2lÞ
i Cð2lÞ

i ; ð57Þ

then attends to an orbit of a liquid particle xi → xiðtÞ, and
finally imposes the constraints
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ωD ¼ 0; ωð0Þ
i ¼ 0; ωð1Þ

i ¼ 0;… ωð2l−1Þ
i ¼ 0;

ωð2lÞ
i þ α∇iωH ¼ 0; ð58Þ

where α is a real constant and ∇i is the invariant

derivative (52). The equations ωð0Þ
i ¼ 0;…;ωð2l−1Þ

i ¼ 0

allow one to link υðkÞi , with k ¼ 1;…; 2l − 1, to the
material derivatives of xi

υðkÞi ¼ 1

k!
Dkxi; ð59Þ

with D specified in (38). Substituting (56) into ωD ¼ 0,
one obtains the continuity equation, while the restriction

ωð2lÞ
i þ α∇iωH ¼ 0 reproduces the generalized Euler equa-

tion entering Eq. (50), in which

ν ¼ ð2lÞ!α
1þNl

: ð60Þ

Like in the preceding section, the equation of state exposed
in (50) arises automatically.
Note that for an arbitrary value of l the explicit form of

the Maurer-Cartan invariants is rather complicated. As an
illustration, we expose the l ¼ 3

2
case

ωH ¼ e−udt; ωD ¼ du − 2we−udt; ωK ¼ dw − wduþ w2e−udt;

ωð0Þ
i ¼ e−

3u
2 ðdxi − υð1Þi dtÞ; ωð1Þ

i ¼ e−
u
2ðdυð1Þi − 2υð2Þi dtÞ − 3we−

3u
2 ðdxi − υð1Þi dtÞ;

ωð2Þ
i ¼ e

u
2ðdυð2Þi − 3υð3Þi dtÞ − 2we−

u
2ðdυð1Þi − 2υð2Þi dtÞ þ 3w2e−

3u
2 ðdxi − υð1Þi dtÞ;

ωð3Þ
i ¼ e

3u
2 dυð3Þi − we

u
2ðdυð2Þi − 3υð3Þi dtÞ þ w2e−

u
2ðdυð1Þi − 2υð2Þi dtÞ − w3e−

3u
2 ðdxi − υð1Þi dtÞ: ð61Þ

To summarize, within the method of nonlinear realiza-
tions, both the perfect fluid equations, which hold invariant
under the action of the l-conformal Galilei group, and the
equation of state come about naturally. It suffices to
consider the group-theoretic element (53) and then impose
the constraints (58).

V. PERFECT FLUID EQUATIONS WITH THE
LIFSHITZ SYMMETRY

If one omits the special conformal transformation gen-
erator K in the Schrödinger algebra (19), the commutators

½H;D� and ½D;Cð1Þ
i � can be modified so as to include an

arbitrary constant z known as the dynamical critical
exponent (see e.g., [24])

½H;D� ¼ izH; ½H;Cð1Þ
i � ¼ iCð0Þ

i ; ½D;Cð0Þ
i � ¼−

i
2
Cð0Þ
i ;

½D;Cð1Þ
i � ¼ i

�
z−

1

2

�
Cð1Þ
i ; ð62Þ

where, as before, i ¼ 1;…;N . The resulting algebra is
known as the Lifshitz algebra.9 It is conventionally repre-
sented by the differential operators acting in a nonrelativ-
istic spacetime parametrized by ðt; xiÞ

H ¼ i
∂

∂t
; D ¼ izt

∂

∂t
þ i
2
xi

∂

∂xi
; Cð0Þ

i ¼ i
∂

∂xi
;

Cð1Þ
i ¼ it

∂

∂xi
: ð63Þ

In particular, D in (63) gives rise to the anisotropic scaling
of the temporal and spatial coordinates

t0 ¼ eλzt; x0i ¼ e
λ
2xi; ð64Þ

λ being the transformation parameter. The goal of this
section is to obtain perfect fluid equations invariant under
the action of the Lifshitz group and the corresponding
equation of state within the method of nonlinear
realizations.
Guided by the analysis in the preceding sections, one

directly attends to the group-theoretic element

g ¼ eitHeixiC
ð0Þ
i eiυiðt;xÞC

ð1Þ
i eiuðt;xÞD; ð65Þ

and then establishes (finite) transformation laws of the
coordinates and fields under the Lifshitz group (each
transformation is separated by a semicolon)

9To be more precise, in modern literature by the Lifshitz
algebra one usually means (62), in which the generator of Galilei
boosts Cð1Þ

i is discarded, while the generators of spatial rotations
Mij ¼ iðxi ∂

∂xj
− xj ∂

∂xi
Þ are reinstated.
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t0 ¼ tþ β; x0i ¼ xi;

υ0iðt0; x0Þ ¼ υiðt; xÞ; u0ðt0; x0Þ ¼ uðt; xÞ;
t0 ¼ eλzt; x0i ¼ e

λ
2xi;

υ0iðt0; x0Þ ¼ e−λðz−1
2
Þυiðt; xÞ; u0ðt0; x0Þ ¼ uðt; xÞ þ λ;

t0 ¼ t; x0i ¼ xi þ að0Þi ;

υ0iðt0; x0Þ ¼ υiðt; xÞ; u0ðt0; x0Þ ¼ uðt; xÞ;
t0 ¼ t; x0i ¼ xi þ tað1Þi ;

υ0iðt0; x0Þ ¼ υiðt; xÞ þ að1Þi ; u0ðt0; x0Þ ¼ uðt; xÞ; ð66Þ

where β and λ are (finite) parameters associated with the
temporal translation and anisotropic scaling transformation,

respectively, while að0Þi , að1Þi are related to the spatial
translations and the Galilei boosts. Then one computes
the Maurer-Cartan invariants

g−1dg ¼ iωHH þ iωDDþ iωð0Þ
i Cð0Þ

i þ iωð1Þ
i Cð1Þ

i ; ð67Þ

where

ωH ¼ e−zudt; ωD ¼ du; ωð0Þ
i ¼ e−

u
2ðdxi − υidtÞ;

ωð1Þ
i ¼ eðz−1

2
Þudυi: ð68Þ

In order to make contact with fluid mechanics, one
introduces the fluid density ρðt; xÞ and the velocity vector
field υiðt; xÞ. By making recourse to (21), one finds the
transformation law of the density under the dilatation

ρðt; xÞ ¼ e
λN
2 ρ0ðt0; x0Þ; ð69Þ

while ρðt; xÞ ¼ ρ0ðt0; x0Þ for other transformations from the
Lifshitz group. Likewise, considering an orbit of a liquid
particle as in Eq. (23) above and attending to (66), one
can identify υiðt; xÞ in (65), (66) with the fluid velocity
vector field.
Comparing the transformation laws (66) and (69), one

can link u to ρ

ρ ¼ e−
N
2
u: ð70Þ

The invariant zero-form

Ω ¼ −
2

N
ρ−

2z
N
∂υi
∂xi

; ð71Þ

and the invariant derivative

∇i ¼ ρ−
1
N

∂

∂xi
; ð72Þ

can be found as well.

Finally, imposing the constraints built from the invariants

ωD þ ΩωH ¼ 0; ωð1Þ
i þ α∇iωH ¼ 0; ð73Þ

where α is a constant, and taking into account the field
redefinition (70), one reduces the first equation in (73) to
the continuity equation, while the second condition gives
the conventional Euler equation and the equation of state

∂ρ

∂t
þ ∂ðρυiÞ

∂xi
¼ 0; ρDυi ¼ −

∂p
∂xi

; p ¼ νρ1þ
2ð2z−1Þ

N :

ð74Þ

Here ν is a constant, which links to α in (73) via
ν ¼ 2αz

Nþ2ð2z−1Þ. At z ¼ 1 one reproduces the result in Sec. II.

Note that, because each factor contributing to the left-
hand side of the Euler equation scales in a concrete way
under the dilatation transformation, it comes as no surprise
that by choosing the pressure to be a power function of the
density one can fix the exponent so as to ensure the
invariance of the entire equation. Similar reasoning worked
out in two preceding sections. To the best of our knowl-
edge, Eq. (74) have not yet been discussed in the literature.
A few comments are in order. Taking into account

the transformation laws (66), (69) and the fact that the
material derivative D introduced in (38) is invariant under
each transformation except for the dilatation, for which
D ¼ eλzD0, one can verify that the first two equations
in (74) do hold invariant under the Lifshitz group. One
reveals a subtlety in constructing conserved charges,
however. Using the relation

∂

∂t

�Z
V
dxρA

�
¼

Z
V
dxρDA; ð75Þ

where Aðt; xÞ is an arbitrary function, D is the material
derivative, and dx ¼ dx1…dxN , which holds true due to
the continuity equation and the assumption that ρ van-
ishes at the boundary of the volume element V, one can
check that

Cð0Þ
i ¼

Z
V
dxρυi; Cð1Þ

i ¼ tCð0Þ
i −

Z
V
dxρxi;

H ¼
Z
V
dx

�
1

2
ρυiυi þ VðρÞ

�
ð76Þ

are conserved over time. Here VðρÞ is the potential, which
via the Legendre transform gives the pressure [6]

pðρÞ ¼ ρV 0ðρÞ − VðρÞ ⇒ VðρÞ ¼ N
2ð2z − 1ÞpðρÞ: ð77Þ
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However, when trying to build a conserved charge
associated with the dilatation, which is typically of the
form [6]

D ¼ tH −
1

2

Z
V
dxρxiυi; ð78Þ

one reveals a problem. In view of (77), D in (78) is
conserved for z ¼ 1 only.
When equations of motion exhibit invariance under a

given transformation group, the corresponding action func-
tional may fail to do so. A well-known example is the
mechanical similarity [25], which is illustrated here by the
Lifshitz analog [26] of the 1d conformal mechanics (13)

ρ̈ ¼ ð2z − 1Þγ2
ρ4z−1

: ð79Þ

Whereas the equation of motion is invariant under the
anisotropic conformal transformation

t0 ¼ eλzt; ρ0ðt0Þ ¼ e
λ
2ρðtÞ; ð80Þ

the corresponding action functional

S ¼ 1

2

Z
dt

�
_ρ2 −

γ2

ρ4z−2

�
ð81Þ

scales as S0 ¼ eλð1−zÞS. Only for z ¼ 1 the action is
invariant and the conserved charge

D ¼ tH −
1

2
ρ_ρ; ð82Þ

where H ¼ 1
2
ð_ρ2 þ γ2

ρ2
Þ is the energy, can be constructed via

Noether’s theorem.
It is customary to link conservation of energy and

momentum to conservation of the energy-momentum
tensor Tμν, with μ ¼ ð0; iÞ and i ¼ 1;…;N , which for
the case at hand reads

T00 ¼ 1

2
ρυiυi þ VðρÞ; Ti0 ¼ ρυi

�
1

2
υiυi þ V 0ðρÞ

�
;

∂μTμ0 ¼ 0; T0i ¼ ρυi;

Tji ¼ pδji þ ρυjυi; ∂μTμi ¼ 0: ð83Þ

Within the fluid mechanics, the scale invariance is some-
times imposed by representing the dilatation generator in
the form D ¼ iξμ∂μ and demanding the current Tμνξν,
where ξν ¼ ηνμξ

μ and ηνμ ¼ diagðþ;−; � � � ;−Þ, to be con-
served ∂μðTμνξνÞ ¼ 0. As was explained above, for the case
at hand such a current exists for z ¼ 1 only, whereas the
equations of motion (74) hold invariant for an arbitrary
value of z.

VI. PERFECT FLUID EQUATIONS INVARIANT
UNDER RELATIVISTIC CONFORMAL GROUP

We now proceed to studying the case of the relativistic
conformal algebra, which is specified by the structure
relations

½D;Pi� ¼ −iPi; ½D;Ki� ¼ iKi;

½Pi; Kj� ¼ 2iηijD − 2iMij; ½Mij; Pl� ¼ −iηilPj þ iηjlPi;

½Mij; Kl� ¼ −iηilKj þ iηjlKi; ½Mij;Mkl� ¼ −iηikMjl − iηjlMik þ iηjkMil þ iηilMjk; ð84Þ

where i ¼ 0;…;N − 1 and ηij ¼ diagðþ;−; � � � ;−Þ is the
Minkowski metric. Above, D is identified with the dila-
tation generator, Pi links to translations in relativistic
spacetime, Ki is related to special conformal transforma-
tions, while Mij determines the Lie algebra of the Lorentz
group. A conventional realization of the generators in
Lorentzian spacetime parametrized by coordinates xi reads

D¼ ixi
∂

∂xi
; Pi ¼ i

∂

∂xi
; Ki ¼ i

�
2xixj

∂

∂xj
− xjxj

∂

∂xi

�
;

Mij ¼ i

�
xi

∂

∂xj
− xj

∂

∂xi

�
: ð85Þ

As usual, the indices are raised and lowered with the use of
the Minkowski metric and its inverse. Our objective in this
section is to inquire whether the group-theoretic approach
is capable of producing relativistic fluid equations with
conformal symmetry.
Given the algebra (84), it seems natural to start with the

group-theoretic element

g ¼ eix
iPieiυ

iðxÞKieiuðxÞDeifijðxÞMij ; ð86Þ

where xi are identified with the coordinates parametrizing
an N -dimensional Minkowski spacetime and υiðxÞ, uðxÞ,
fijðxÞ ¼ −fjiðxÞ are fields on it. Proceeding similarly
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as above, one obtains the infinitesimal conformal transformations acting upon the coordinates and fields (each
transformation is separated by a semicolon)

x0i ¼ xi þ βi; υ0iðx0Þ ¼ υiðxÞ; u0ðx0Þ ¼ uðxÞ; f0ijðx0Þ ¼ fijðxÞ;
x0i ¼ ð1þ λÞxi; υ0iðx0Þ ¼ ð1 − λÞυiðxÞ; u0ðx0Þ ¼ uðxÞ þ λ; f0ijðx0Þ ¼ fijðxÞ;
x0i ¼ xi − σiðxxÞ þ 2xiðσxÞ; υ0iðx0Þ ¼ ð1 − 2ðσxÞÞυiðxÞ − 2σiðxυÞ þ 2xiðσυÞ þ σi;

u0ðx0Þ ¼ uðxÞ þ 2ðσxÞ; eif
0ijðx0ÞMij ¼ e−2ix

kσpMkpeif
ijðxÞMij ;

x0i ¼ xi − ξijxj; υ0iðx0Þ ¼ υiðxÞ − ξijυjðxÞ; u0ðx0Þ ¼ uðxÞ;
eif

0ijðx0ÞMij ¼ e
i
2
ξkpMkpeif

ijðxÞMij ; ð87Þ

where βi, λ, σi, ξij ¼ −ξji are transformation parameters
corresponding to translations, dilatations, special
conformal transformations, and Lorentz transformations,
respectively, and we abbreviated ðabÞ ¼ aibi. The Maurer-
Cartan invariants g−1dg ¼ iωDDþ iωi

PPi þ iωi
KKi þ

iωij
MMij read

ωD ¼ du − 2ðdxυÞ; ωi
P ¼ e−udxjðexpð−2fÞÞji;

ωi
K ¼ euðdυj − dxjðυυÞ þ 2υjðdxυÞÞðexpð−2fÞÞji

ωij
MMij ¼ ðdfijMij þ 2dxiυje−if

kpMkpMijeif
lsMlsÞ; ð88Þ

where ðexpð−2fÞÞji stands for the conventional matrix
exponent.
At this point one reveals a problem. For one thing,

the transformation laws of xi in (87) reproduce the gen-
erators (85), which means that the identification of xi in the
group-theoretic element (86) with the coordinates para-
metrizing a Lorentzian manifold was correct. For another
thing, among the Maurer-Cartan one-forms (88) one does
not find an invariant, which would link dxi to υi. For each
nonrelativistic example above, there was such a relation,
which helped us to identify υi with the fluid velocity vector
field. Furthermore, from (87) it follows that υi does not
transform as a contravariant vector field, i.e., υ0iðx0Þ ≠
ð∂x0i
∂xjÞυjðxÞ with x0i ¼ x0iðxÞ taken from (87), and, hence, it
cannot be identified with the fluid velocity vector field.
Rather, ωD suggests that υi can be linked to the gradient
of u. Thus, the construction of relativistic fluid equations
invariant under the conformal group in terms of the
invariants (88) alone appears to be problematic.
Yet, discarding υi and focusing solely on xi, uðxÞ and

their transformation laws displayed in (87), one can build
the desired equations. Firstly, one considers the conformal
time s

ds2 ¼ e−2uðxÞηijdxidxj; ð89Þ

which remains intact under the transformations (87). Then
one introduces the velocity vector field ViðxÞ, which is

identified with dxi
ds when restricted upon a liquid particle

orbit xi ¼ xiðsÞ. By definition, ViðxÞ transforms as a
contravariant vector field V 0iðx0Þ ¼ ð∂x0i

∂xjÞVjðxÞ if x0i ¼
x0iðxÞ is taken from (87). In view of (89), it is constrained
to obey

ViVi ¼ e2u; ð90Þ

meaning that Vi is a timelike vector. In particular, V0 can be
expressed in terms of Vα, with α ¼ 1;…;N − 1, and u.
Note that imposing (90) is consistent with the conformal
transformations (87).
Taking into account that within the relativistic frame-

work the operator Vi
∂i, where ∂i ¼ ∂

∂xi, is an analog of
the material derivative (38) and analyzing the way in
which Vj

∂jVi is changed under the conformal transforma-
tions (87), one finds that introducing two more terms
of the type ViVj

∂ju and e2uηij∂ju yields the invariant
equation10

Vj
∂jVi − 2ViVj

∂juþ e2uηij∂ju ¼ 0: ð91Þ

Note that, in view of (90), a contraction of (91) with Vi
gives zero, meaning that only N − 1 equations are inde-
pendent. This correlates with the fact that V0 links to the
spatial components Vα and u via (90). In a similar fashion,
one can build a relativistic counterpart of the continuity
equation

∂iðe−NuViÞ ¼ 0; ð92Þ

whereN is the spacetime dimension, which holds invariant
under the conformal transformations (87).

10To be more precise, under the conformal transformations
(87) the expression on the left-hand side of (91) transforms as a
contravariant vector field. Setting it to zero, one obtains the
invariant equation.
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Finally, introducing the energy-momentum tensor

Tij ¼ e−ðNþ2ÞuViVj −
1

N
e−N uηij; ∂iTij ¼ 0; ð93Þ

which is suggested by Eq. (91) and focusing on the T00

component

T00 ¼ e−ðNþ2ÞuVαVα þ
�
N − 1

N

�
e−N u; ð94Þ

where Vα, with α ¼ 1;…;N − 1, are the spatial compo-
nents of the fluid velocity vector field, one concludes that

ε ¼
�
N − 1

N

�
e−N u ð95Þ

can be identified with the energy density (measured in the
comoving frame). Likewise, analyzing the stress tensor Tαβ

in the comoving frame, one determines the pressure

p ¼ 1

N
e−N u; ð96Þ

and establishes the equation of state

pðεÞ ¼ 1

N − 1
ε: ð97Þ

The equations obtained above reproduce the ultrarelativ-
istic limit of the relativistic fluid mechanics [27].

VII. CONCLUSION

To summarize, in this work a possibility to construct
perfect fluid equations with conformal symmetry within the
method of nonlinear realizations was studied. Four cases
were discussed in detail, which included the Schrödinger
group, the l-conformal Galilei group, the Lifshitz group,
and the relativistic conformal group. While the method
proved rather efficient for the nonrelativistic groups, in
particular yielding new results for the Lifshitz case, within
the relativistic framework the construction faced certain
difficulties and extra arguments needed to be invoked.
Turning to possible further developments, it is interesting

to inquire whether thermodynamic description of perfect
fluids with conformal symmetry can be accommodated
within the group-theoretic framework.
A possibility to combine the method of nonlinear

realizations with the approach in [11] is worth studying
as well.
In classical mechanics, having a potential energy, which

is a homogeneous function of an argument, results in the
mechanical similarity [25], Kepler’s third law being the
celebrated example. Physical implications of the aniso-
tropic conformal scaling symmetry of the Lifshitz perfect
fluid need to be better understood.
A Hamiltonian formulation for the equations of motion

in Secs. IV and V is worth exploring as well. Of particular
interest here are nontrivial Poisson brackets among the
fields and their origin [6].

ACKNOWLEDGMENTS

The author thanks V.P. Nair for a useful correspondence.

[1] G. Policastro, D. T. Son, and A. O. Starinets, From
AdS=CFT correspondence to hydrodynamics, J. High En-
ergy Phys. 09 (2002) 043.

[2] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and
M. A. Stephanov, Relativistic viscous hydrodynamics, con-
formal invariance, and holography, J. High Energy Phys. 04
(2008) 100.

[3] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M.
Rangamani, Nonlinear fluid dynamics from gravity, J. High
Energy Phys. 02 (2008) 045.

[4] M. Rangamani, Gravity and hydrodynamics: Lectures on
the fluid-gravity correspondence, Classical Quantum Grav-
ity 26, 224003 (2009).

[5] L. O’Raifeartaigh and V. V. Sreedhar, The maximal
kinematical invariance group of fluid dynamics and
explosion-implosion duality, Ann. Phys. (N.Y.) 293, 215
(2001).

[6] R. Jackiw, V. P. Nair, S. Y. Pi, and A. P. Polychronakos,
Perfect fluid theory and its extensions, J. Phys. A 37, R327
(2004).

[7] I. Fouxon and Y. Oz, CFT hydrodynamics: Symmetries,
exact solutions and gravity, J. High Energy Phys. 03 (2009)
120.

[8] S. R. Coleman, J. Wess, and B. Zumino, Structure of pheno-
menological Lagrangians. I, Phys. Rev. 177, 2239 (1969).

[9] E. A. Ivanov and V. I. Ogievetsky, The inverse Higgs
phenomenon in nonlinear realizations, Theor. Math. Phys.
25, 1050 (1975).

[10] A. A. Kirillov, Lectures on the Orbit Method, Graduate
Studies in Mathematics Vol. 64 (American Mathematical
Society, Providence, 2004).

[11] B. Bistrovic, R. Jackiw, H. Li, V. P. Nair, and S.-Y. Pi, Non-
Abelian fluid dynamics in Lagrangian formulation, Phys.
Rev. D 67, 025013 (2003).

GROUP-THEORETIC APPROACH TO PERFECT FLUID … PHYS. REV. D 107, 026008 (2023)

026008-13

https://doi.org/10.1088/1126-6708/2002/09/043
https://doi.org/10.1088/1126-6708/2002/09/043
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/02/045
https://doi.org/10.1088/1126-6708/2008/02/045
https://doi.org/10.1088/0264-9381/26/22/224003
https://doi.org/10.1088/0264-9381/26/22/224003
https://doi.org/10.1006/aphy.2001.6176
https://doi.org/10.1006/aphy.2001.6176
https://doi.org/10.1088/0305-4470/37/42/R01
https://doi.org/10.1088/0305-4470/37/42/R01
https://doi.org/10.1088/1126-6708/2009/03/120
https://doi.org/10.1088/1126-6708/2009/03/120
https://doi.org/10.1103/PhysRev.177.2239
https://doi.org/10.1007/BF01028947
https://doi.org/10.1007/BF01028947
https://doi.org/10.1103/PhysRevD.67.025013
https://doi.org/10.1103/PhysRevD.67.025013


[12] V. P. Nair, R. Ray, and S. Roy, Fluids, anomalies and the
chiral magnetic effect: A group-theoretic formulation, Phys.
Rev. D 86, 025012 (2012).

[13] D. Capasso, V. P. Nair, and J. Tekel, The isospin asymmetry in
anomalous fluid dynamics, Phys. Rev. D 88, 085025 (2013).

[14] D. Karabali and V. P. Nair, Relativistic particle and relativ-
istic fluids: Magnetic moment and spin-orbit interactions,
Phys. Rev. D 90, 105018 (2014).

[15] G. M. Monteiro, A. G. Abanov, and V. P. Nair, Hydro-
dynamics with gauge anomaly: Variational principle and
Hamiltonian formulation, Phys. Rev. D 91, 125033 (2015).

[16] V. P. Nair, Topological terms and diffeomorphism anomalies
in fluid dynamics and sigma models, Phys. Rev. D 103,
085017 (2021).

[17] E. Ivanov, S. Krivonos, and V. Leviant, Geometry of
conformal mechanics, J. Phys. A 22, 345 (1989).

[18] V. de Alfaro, S. Fubini, and G. Furlan, Conformal invariance
in quantum mechanics, Nuovo Cimento A 34, 569 (1976).

[19] A. Galajinsky, Schwarzian mechanics via nonlinear real-
izations, Phys. Lett. B 795, 277 (2019).

[20] P. A. Horvathy and P.-M. Zhang, Non-relativistic conformal
symmetries in fluid mechanics, Eur. Phys. J. C 65, 607
(2010).

[21] M. Henkel, Local Scale Invariance and Strongly Anisotropic
Equilibrium Critical Systems, Phys. Rev. Lett. 78, 1940
(1997).

[22] J. Negro, M. A. del Olmo, and A. Rodriguez-Marco, Non-
relativistic conformal groups, J. Math. Phys. (N.Y.) 38, 3786
(1997).

[23] A. Galajinsky, Equations of fluid dynamics with the
l-conformal Galilei symmetry, Nucl. Phys. B984, 115965
(2022).

[24] M. Taylor, Lifshitz holography, Classical Quantum Gravity
33, 033001 (2016).

[25] L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon
Press, New York, 1976), 3rd. ed..

[26] A. Galajinsky, Dynamical realizations of the Lifshitz group,
Phys. Rev. D 105, 106023 (2022).

[27] L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Pergamon Press, New York, 1951).

ANTON GALAJINSKY PHYS. REV. D 107, 026008 (2023)

026008-14

https://doi.org/10.1103/PhysRevD.86.025012
https://doi.org/10.1103/PhysRevD.86.025012
https://doi.org/10.1103/PhysRevD.88.085025
https://doi.org/10.1103/PhysRevD.90.105018
https://doi.org/10.1103/PhysRevD.91.125033
https://doi.org/10.1103/PhysRevD.103.085017
https://doi.org/10.1103/PhysRevD.103.085017
https://doi.org/10.1088/0305-4470/22/4/005
https://doi.org/10.1007/BF02785666
https://doi.org/10.1016/j.physletb.2019.05.054
https://doi.org/10.1140/epjc/s10052-009-1221-x
https://doi.org/10.1140/epjc/s10052-009-1221-x
https://doi.org/10.1103/PhysRevLett.78.1940
https://doi.org/10.1103/PhysRevLett.78.1940
https://doi.org/10.1063/1.532067
https://doi.org/10.1063/1.532067
https://doi.org/10.1016/j.nuclphysb.2022.115965
https://doi.org/10.1016/j.nuclphysb.2022.115965
https://doi.org/10.1088/0264-9381/33/3/033001
https://doi.org/10.1088/0264-9381/33/3/033001
https://doi.org/10.1103/PhysRevD.105.106023

