
Holographic entanglement entropy
of the double Wick rotated BTZ black hole

Mitsutoshi Fujita * and Jun Zhang†

School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China

(Received 14 June 2022; accepted 19 December 2022; published 6 January 2023)

In this paper, we analyze the holographic covariant entanglement entropy in the double Wick rotated
version of a rotating Banados-Teitelboim-Zanelli black hole (3-dimensional Kerr-AdS solution), where the
periodicity of Euclidean time and spatial direction are changed. The dual field theory has negative energy in
the Lorentzian signature. The holographic entanglement entropy agrees with its conformal field theory
counterpart, which is obtained by a conformal transformation of the correlation functions of twisted operators.
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I. INTRODUCTION

In contrast to correlation functions in quantum field
theories, the entanglement entropy of a subsystem becomes
a nonlocal quantity [1,2]. Dividing the space at a fixed
time into two parts A and B, the entanglement entropy is
defined as

SA ¼ −TrAðρA log ρAÞ; ð1Þ

where the reduced density matrix ρA ¼ TrBρ is the trace
of the total density matrix over the subregion B. For
quantum critical phase transitions, the entanglement
entropy diverges at the critical point and becomes an order
parameter [3]. It captures geometric discernment of field
theories such as an area law [4]: the entanglement entropy
defined in a subregion is dependent on properties of a
shared boundary and resembles the black hole entropy. An
area law also implies that the most entangled degrees of
freedom come from the high energy ones located around an
infinitesimal neighborhood of the entangling surface.
An interesting discovery was made by changing the

periodicity of spacetime or adding boundaries [5,6]. When
we express the entanglement entropy in the path integral
formalism, the reduced density matrix and the entangle-
ment entropy can be defined using the partition function on
the n copies of the manifold glued along A at the fixed time.
We consider Euclidean time and space direction. When the
subsystem A is a single interval along a space direction with

a periodic boundary condition, the entanglement entropy
in 1þ 1 dimensional CFT becomes [7]

SA ¼ c
3
log

�
R
πa

sin

�
πl
R

��
þ a1; ð2Þ

where R is the circumference of the circle and a1 is a
constant, which is not universal. On the other hand, when
the space direction is infinitely long, entanglement entropy
of a thermal mixed state at a finite temperature becomes

SA ¼ c
3
log

�
R
πa

sinh

�
πl
R

��
þ a1: ð3Þ

If two point functions of twisted operators are considered,
this can be done via a conformal transformation.
Originally, the cut was made into a circle. After other
conformal transformations, the cut is along the axis of a
cylinder. The entanglement entropy at a semi-infinite line
or a finite 1d system with open boundaries has a constant
term called boundary entropy, which does not depend on
the length at zero temperature limit. The boundary entropy
has the expression S0 ¼ log g, where g is the ground state
degeneracy.
The Riemann surface can also have a general periodicity

z ∼ zþ 2πτ, where z is a Riemann surface complex
coordinate. The density matrix then depends on the
Hamiltonian and momentum of the CFT as follows:

ρ ¼ e−2πτ2Hþ2πiτ1P: ð4Þ

Entanglement entropy of CFT was computed with general
periodicity [8], where the cut is along a spatial direction.
The gravity dual of this CFT has angular momentum and
becomes a rotating Banados-Teitelboim-Zanelli (BTZ)
black hole, which is stationary but not static. The metric
does not have a curvature singularity at a surface in the
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origin without matter couplings. This surface is a singu-
larity in the causal structure. A rotating BTZ black hole has
its Euclidean version with an analytic continuation of the
angular momentum.
Periodicity can be changed by using a coordinate trans-

formation (the double Wick rotation) z0 ¼ iz≡ σ01 þ iσ02 as
follows:

z0 ∼ z0 þ 2πð−τ2 þ iτ1Þ: ð5Þ

The motivation of this paper is to compute entanglement
entropy with changed periodicity on both the CFT side
and the gravity dual. The gravity dual is the double Wick
rotated version of the rotating BTZ metric. It is interesting
to see changes in the gravity dual because the rotating BTZ
black hole is not static. It is necessary to analyze whether
the metric is a black hole. Degrees of freedom in time-
dependent backgrounds are also open problems. The
entanglement entropy in 2d CFT is proportional to the
central charge (degrees of freedom) and is useful.
In this work, we compute the holographic entanglement

entropy of the double Wick rotated spacetime and the
CFT counterpart. The Ryu-Takayanagi formula proposes
the holographic dual of the entanglement entropy [9,10],
which is the area of minimal surfaces (see also the review
[11,12]). Entanglement entropy is a powerful tool to
analyze strongly coupled systems. The holographic entan-
glement entropy has been the order parameter of the
confinement/deconfinement phase transition in a confining
gauge theory [13–16].1 A relation similar to the first law of
thermodynamics is analyzed in [18–20]. This relation was
rewritten in terms of the relative entropy [21]. Reference [8]
proposed a covariant generalization of the holographic
entanglement entropy, which is powerful to analyze the
time-dependence in the dual field theory side. The area of
the holographic covariant entanglement entropy (an
extremal surface) can probe the interior of the black hole
horizon, ending on a boundary [22]. The double Wick
rotated version of the entanglement entropy is called
geometric entropy. Holographic models are useful for
computing geometric entropy. Using geometric entropy,
[23] analyzed the confinement/deconfinement phase
transition of the Yang-Mills theory on compact space at
finite temperature on both sides of duality.2 Geometric
entropy also played the role of the order parameter in 2d
Yang-Mills theory [25]. The geometric entropy probed
AdS Schwarzschild black holes [26] and the Reissner-
Nordstrom AdS background (effects of background
charges) [27,28] by using a minimal surface. However,
the standard modular Hamiltonian is unusual in geometric

entropy. A space direction is considered as the time in
geometric entropy. By making use of the analytic continu-
ation, one can define ρðtÞ, which is the density matrix of
geometric entropy. One usually relies on the path integral
formulation to compute geometric entropy. Thus, the
entanglement entropy is a good starting point to analyze
spacetime with general periodicity.
The rest of this paper is structured as follows. In Sec. II,

we review the rotating BTZ black hole. We derive the
periodicity of Euclidean coordinates and the thermody-
namics of the rotating BTZ black hole. In Sec. III, we
analyze the double Wick rotated version of a rotating BTZ
black hole. We obtain the periodicity of Euclidean coor-
dinates via the double Wick rotation. In Sec. IV, we derive
the holographic covariant entanglement entropy of the
double Wick rotated spacetime. In Sec. V, we derive the
entanglement entropy in the dual CFT.

II. THE ROTATING BTZ BLACK HOLE

This section is the review of [29,30]. We derive the
periodicity of Euclidean coordinates in the rotating BTZ
black hole by using coordinate transformations. We derive
the stress energy tensor and free energy by using holo-
graphic renormalization. We analyze the thermodynamic
properties of the rotating BTZ black hole, which describes
theory at high temperature.
The rotating BTZ metric becomes a solution of the 3d

Einstein-Hilbert action as follows:

ds2 ¼ r2
�
dxþ rþr−

r2L
dt

�
2

þ L2r2dr2

ðr2 − r2þÞðr2 − r2−Þ

−
ðr2 − r2−Þðr2 − r2þÞ

r2L2
dt2;

8G3M ¼ r2þ þ r2−
L2

; J ¼ rþr−
4G3L

; ð6Þ

where x ∼ xþ 2π and L denotes the AdS radius. Two
integration constants are the mass M and angular momen-
tum J, which are conserved charges. J is related to
rotational invariance.
It is useful to perform coordinate transformation

ðr; tÞ → Lðr; tÞ and ðrþ; r−Þ → Lðrþ; r−Þ in (6) as it is
used later. Coordinates then become dimensionless. The
metric is rewritten as

ds2 ¼ L2

�
r2
�
dxþ rþr−

r2
dt

�
2

þ r2dr2

ðr2 − r2þÞðr2 − r2−Þ

−
ðr2 − r2−Þðr2 − r2þÞ

r2
dt2
�
; ð7Þ

8G3M ¼ r2þ þ r2−; J ¼ Lrþr−
4G3

; ð8Þ

1Reference [17] shows that potential between quarks conveys
more information than entanglement entropy [17].

2Third order phase transitions were captured by geometric
entropy in free QCD-like theory with flavor on S1 × S3 [24].

MITSUTOSHI FUJITA and JUN ZHANG PHYS. REV. D 107, 026007 (2023)

026007-2



Recall that the dimensions of M;G−1
3 ; J=L are all 1.3 The

blackening factor (or the lapse function) vanishes for two
roots as follows:

r2þ ¼ 4G3

 
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

J2

L2

r !
;

r2− ¼ 4G3

 
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

J2

L2

r !
: ð9Þ

The metric mentioned above is defined with the
Lorentzian coordinates. The Euclidean version t → −iτE
and r− → −ir̃− ðJ → −iJEÞ becomes

ds2E ¼ L2

�
r2
�
dx −

rþr̃−
r2

dτE

�
2

þ r2dr2

ðr2 − r2þÞðr2 þ r̃2−Þ

þ ðr2 þ r̃2−Þðr2 − r2þÞ
r2

dτ2E

�
: ð10Þ

The blackening factor vanishes when

rþ ¼ 2

�
G3M

�
1þ

�
1þ J2E

M2L2

�1
2

��1
2

;

r̃− ¼ 2

�
G3M

�
−1þ

�
1þ J2E

M2L2

�1
2

��1
2

: ð11Þ

These two values do not agree when M and JE are finite.
This difference shows that there are no extreme limits,
unlike Lorentzian black holes.4 Note that r̃− is zero when
JE ¼ 0. The metric becomes the BTZ black hole in the
Euclidean signature.
The rotating BTZ metric in the Euclidean signature

has constant negative curvature and the spacetime becomes
locally equivalent to hyperbolic three-space. The following
Euclidean coordinate transformation maps to a Poincaré
AdS metric

X¼ r1cosθ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−r2þ
r2þ r̃2−

s
cosðrþτEþ r̃−xÞexpðrþx− r̃−τEÞ;

Y¼ r1 sinθ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−r2þ
r2þ r̃2−

s
sinðrþτEþ r̃−xÞexpðrþx− r̃−τEÞ;

Z¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þþ r̃2−
r2þ r̃2−

s
expðrþx− r̃−τEÞ; ð12Þ

where a spherical coordinate is represented by θ ¼ rþτE þ
r̃−x and r1 ¼

ffiffiffiffiffiffiffiffiffi
r2−r2þ
r2þr̃2−

q
expðrþx − r̃−τEÞ. When r → ∞,

coordinates mentioned above describe ðX; YÞ plane at
Z ¼ 0. When r → rþ, coordinates mentioned above
describe the Z axis at r1 ¼ 0. The Euclidean metric is
rewritten as

ds2E ¼ L2

z2
ðdX2 þ dY2 þ dZ2Þ ¼ L2

Z2
ðdr21 þ r21dθ

2 þ dZ2Þ:
ð13Þ

Recalling transformations into a spherical coordinate, the
periodicity of x means

ðr1; θÞ ∼ ðr1e2πrþ ; θ þ 2πr̃−Þ; ð14Þ

where a translation is along a radial direction and a
2πr̃− rotation is a rotation around the Z axis.
There is another periodic boundary condition. The

periodicity of the trigonometric functions ðθ ∼ θ þ 2πÞ
and nonsingular transformation at the Z axis (r ¼ rþ
and r1 ¼ 0) require

ðx; τEÞ ∼ ðxþ ϕ0; τE þ β0Þ; ð15Þ

β0 ¼
1

TL
¼ 2πrþ

r2þ þ r̃2−
; ϕ0 ¼

2πr̃−
r2þ þ r̃2−

: ð16Þ

If we do not require the periodicity mentioned above,
the Euclidean black hole receives a conical singularity at
the black hole horizon.
The periodicity can be related each other when we define

the chemical potential as the shift of the rotating BTZ black
hole ΩE ¼ 4G3JE

r2þL
2 ¼ r̃−

rþL
. We then find the relationship

ϕ0 ¼ β0ΩEL: ð17Þ

We use a complex coordinate z ¼ xþ iτE. Periodicity of z
is given by

z ∼ zþ β0ΩELþ iβ0; z̄ ∼ z̄þ β0ΩEL − iβ0: ð18Þ

Following the analytic continuation Ω ¼ −iΩE, left and
right temperature are as follows:

z ∼ zþ iβ0ð1þ LΩÞ; z̄ ∼ z̄ − iβ0ð1 − LΩÞ: ð19Þ

A. The stress energy tensor and free energy

We then compute the holographic stress energy tensor.
The expectation value of the renormalized stress energy
tensor of 2d CFT can be obtained from the action with a
Gibbons-Hawking term and counterterms at the AdS
boundary. To compute the holographic stress energy tensor,

3However, we keep G3 because it is a dimensional quantity.
4In a Lorentzian rotating black hole, JE ¼ iJ and r̃− ¼ ir−.

The extreme limit means rþ ¼ r− when J ¼ ML. Moreover, the
black hole mass should be larger than the angular momentum
ML ≥ J when the black hole horizon exists.
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we perform the coordinate transformation and use the
Fefferman-Graham coordinate with gμρ ¼ 0 as follows:

ds2 ¼ L2

ρ2
ðdρ2 þ ḡijdxidxjÞ; ð20Þ

where

ḡij ¼ ḡð0Þij þ ḡð2Þij ρ
2 þ ḡð4Þij ρ

4 þ… ð21Þ

The FG coordinate can perturbatively be obtained in the
small ρ expansion of the radial coordinate r as follows:

r ¼ ρ−1 þ r2þ þ r2−
4

ρ −
1

8
r2−r2þρ3

−
8r6− þ 5r4−r2þ þ 5r2−r4þ þ 8r6þ

96
ρ5 þ… ð22Þ

After substituting (22) into (7), metric becomes the
form (20) with

ḡð0Þtt ¼ −1; ḡð0Þxx ¼ 1; ḡð0Þtx ¼ 0;

ḡð2Þtt ¼ ḡð2Þxx ¼ r2þ þ r2−
2

; ḡð2Þtx ¼ rþr−: ð23Þ

The stress energy tensor in terms of the metric (20) is
obtained by the variation of the renormalized action and the
holographic principle. Using the metric (20), the stress
energy tensor is given by the following formula [31,32]:

hT̃μνðxÞi ¼
L

8πG3

ðḡð2Þμν − ḡð0Þμν ḡð2ÞααÞ: ð24Þ

Substituting (23) into (24),

hT̃tti ¼ hT̃xxi ¼
ML
2π

; hT̃txðxÞi ¼
J
2π

: ð25Þ

The stress tensor mentioned above is written in terms
of dimensionless parameters. By recovering dimensions
hTμνi ¼ hT̃μνi=L2, we find

hTtti ¼ hTxxi ¼
M
2πL

; hTtxi ¼
J

2πL2
: ð26Þ

Energy is obtained as the integration of energy density (26)
as follows:

E ¼
Z

dxhTtti ¼ M; ð27Þ

P ¼
Z

dxhTtx̃i ¼
J
L
; ð28Þ

where x has a periodicity of x. Note that the zero point
energy is zero when the mass vanishes. The normalization
of energy shows that the anti–de Sitter space with the
Poincare coordinate has zero mass.
Using the gravity dual, we compute entropy and free

energy. We must evaluate the grand canonical partition
function to obtain the Euclidean path integral

Z ¼
Z

½dg�e−IE½g�; ð29Þ

where IE½g� becomes the Euclidean action. Because the
classical limit is taken into account, the classical approxi-
mation is defined as the steepest descent approxima-
tion Z ∼ e−IE½g�.
We add Gibbons-Hawking terms and counterterms to

renormalize the action IE½g� as follows:

Iren ¼ −
1

16πG3

Z
d3x

ffiffiffi
g

p ðR − 2ΛÞ

þ 1

8πG3

Z
∂M

d2x
ffiffiffi
γ

p �
Θþ 1

L

�
; ð30Þ

where the second term makes the variation principle well
defined. According to the AdS=CFT correspondence, free
energy is temperature times the value of the Euclidean
action on the Euclidean continuation of the black hole

F ¼ TIren½g�; ð31Þ

where 1=T is the inverse temperature (the Euclidean Killing
time). This temperature is obtained as an analytic continu-
ation JE → iJ and r̃− ¼ ir− of (15) as follows:

β0 ¼
1

TL
¼ 2πrþ

r2þ − r2−
: ð32Þ

Using the metric (7), free energy becomes

F̄ ¼ −L2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

J2

M2L2

r
: ð33Þ

We can recover dimensions after the coordinate trans-
formation ðt; x; rÞ → ðt=L; x=L; r=LÞ and ðrþ; r−Þ →
ðrþ=L; r−=LÞ (see the measure part). Free energy
is represented by energy M and a rotational chemical
potential Ω,

F ¼ −M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

J2

L2M2

r
¼ M − Ts − ΩJ; ð34Þ

where the spatial volume is Vx ¼ 2πL. According to the
Euler relation M ¼ Ts − PVx þ μQ, free energy is related
to pressure F ¼ −PVx. The chemical potential is defined as
the angular shift of a rotating BTZ black hole at r ¼ rþ,
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namely, Ω ¼ − 4G3J
r2þ

¼ − r−
rþL

. Note that J and Ω are

thermodynamical conjugates. An entropy is given by
Bekenstein-Hawking formula s ¼ 2πrþ

4G3
. The first law of

thermodynamics then follows: dE ¼ Tds − PdVx þ μdQ.
The result of holographic renormalization (34) is consistent
with [29,33].
Free energy (34) mentioned above is consistent with

the form of the density matrix e−βHþiβΩELP ¼ e−βHþβΩLP in
the CFT side, where ΩE ¼ iΩ and momentum P is defined
in (27). That is, the periodicity of a complex coordinate
z ¼ xþ iτE is 2πτ ¼ βΩELþ iβ: z ∼ zþ 2πτ.
We have reviewed the rotating BTZ black hole.

The rotating BTZ black hole has the following properties.
When the black hole horizon vanishes, temperature (32)
becomes zero. The extreme rotating black hole (J ¼ Ml or
rþ ¼ r−) has zero temperature and non-zero entropy.
Moreover, the quantum correction to the path integral
was computed in [34,35]. The quantum corrected temper-
ature and entropy were obtained [36].

III. THE DOUBLE WICK ROTATED VERSION
OF A ROTATING BTZ BLACK HOLE

In this section, we consider the double Wick rotated
version of a rotating BTZ black hole. We perform most
of the computation in the Euclidean frame and derive
the periodicity of this metric. We argue that this spacetime
does not have Hawking temperature and entropy in the
Lorentzian signature.
A rotating asymptotic AdS3 background can be obtained

by doing the double Wick rotation (by taking t̃, x̃ to ix, it)
on the metric (7), which is

ds2 ¼ L2

�
−r2
�
r−rþ
r2

dxþ dt

�
2

þ ðr2 − r2−Þðr2 − r2þÞ
r2

dx2

þ r2dr2

ðr2 − r2−Þðr2 − r2þÞ
�
: ð35Þ

We perform a complete square once again to rewrite (35) in
the ADM form as follows:

ds2 ¼ −N2dt2 þ habðdya þ NadtÞðdyb þ NbdtÞ

¼ l2
�
−
ðr2 − r2þÞðr2 − r2−Þ
ðr2 − r2þ − r2−Þ

dt2

þ ðr2 − r2þ − r2−Þ
�
dx −

rþr−
ðr2 − r2þ − r2−Þ

dt

�
2

þ r2dr2

ðr2 − r2þÞðr2 − r2−Þ
:

�
ð36Þ

The above formula shows that a hypersurface Σt is spanned
by x and r at a constant t. The lapse and the shift are
obtained as follows:

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − r2−Þðr2 − r2þÞ

r2 − r2− − r2þ

s
;

Nμ ¼
�
0;−

r−rþ
r2 − r2− − r2þ

; 0

�
; ð37Þ

where Nt ¼ 0 because it is perpendicular to a hypersurface.
We take the analytical continuation by letting t → −iτE

and r− → ir̃− ðJ → iJEÞ

ds2 ¼ L2

�
r2
�
r̃−rþ
r2

dx − dτE

�
2

þ ðr2 þ r̃2−Þðr2 − r2þÞ
r2

dx2

þ r2dr2

ðr2 þ r̃2−Þðr2 − r2þÞ
�
: ð38Þ

Correspondingly, we have

r2þ ¼ 4G3

 
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ J2E

L2

r !
;

r2− ¼ 4G3

 
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ J2E

L2

r !
: ð39Þ

Note that the metric in (38) becomes equivalent to (10)
after interchanging x and τE. We can obtain periodicity
in spacetime by the double Wick rotation of x and τE
directions in (10) and (15). Alternatively, periodicity can
be obtained by requiring the regularity of the metric on a
cone spanned by ðx; rÞ. The black hole horizon is at r ¼ rþ,
and the metric near the black hole horizon can be
approximated as

ds2 ¼ L2

�
r2þ

�
r̃−
rþ

dx − dτE

�
2

þ 2ðr2þ þ r̃2−Þðr − rþÞ
rþ

dx2

þ rþdr2

2ðr2þ þ r̃2−Þðr − rþÞ
�
: ð40Þ

By taking

ρ ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rþðr − rþÞ
r2þ þ r̃2−

s
; ð41Þ

we can have

ds2 ¼ L2r2þ

�
r̃−
rþ

dx − dτE

�
2

þ ρ2d

�
r2þ þ r̃2−

rþ
x

�
2

þ dρ2:

ð42Þ

To avoid a conical singularity at the black hole horizon, we
need to make the following identification

ðτE; xÞ ∼ ðτE þ η; xþ ζÞ ð43Þ
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with

η ¼ 2πr̃−
r2þ þ r̃2−

;

ζ ¼ 2πrþ
r2þ þ r̃2−

: ð44Þ

One can also see periodicity in the ADM decomposition
of (40). When we require the regularity of the metric on a
cone spanned by ðτE; rÞ, we obtain periodicity in (44).
We also define the chemical potential, which is equal to

the shift (37) as follows:

μ1 ¼ −
Nx

E

L
¼ rþ

r̃−L
: ð45Þ

η and ζ satisfy the following equation

μ1Lη ¼ ζ: ð46Þ

Compared with the density matrix ρ ¼ e−2πτ2Hþ2πτ1iP in the
dual CFT, we obtain the complex parameter as follows:

τ1 ¼
ζ

2π
¼ μ1Lη

2π
; τ2 ¼

η

2π
: ð47Þ

We then consider an analytic continuation of the double
Wick rotated metric (36) to the Lorentz signature. We
employ a complex coordinate system z ¼ xþ iτE.
Periodicity of z is given by

z ∼ zþ ζ þ iη: ð48Þ

After the analytic continuation r̃− → −ir− (η → −iηL),
only the periodicity of spatial directions is obtained as
follows:

z ∼ zþ L1; z̄ ∼ z̄þ L2; ð49Þ

where the periodicity is defined as

L1 ≡ ζ þ ηL ¼ 2π

Δ−
¼ 2π

rþ − r−
;

L2 ≡ ζ − ηL ¼ 2π

Δþ
¼ 2π

rþ þ r−
: ð50Þ

Note that the two periodicities of holomorphic and anti-
holomorphic sectors are different (see also left and right
temperature (19) of the rotating BTZ black hole). The
periodicity of τE is considered to be infinite in (49). Thus,
the temperature of (35) vanishes. Note that t ¼ const and
r ¼ rþ surfaces become timelike gxx ¼ −L2r2− ≤ 0 after
the analytic continuation to the Lorentzian frame. It shows
that the Bekenstein entropy cannot be defined and
the background (35) has a closed timelike surface [29].

Using the stress energy tensor computed in appendix
and changing into the Lorentzian frame t → −iτE and
r− → ir̃−, moreover, we obtain energy density and momen-
tum density as follows:

ϵ1¼hTtti¼−
M
2πL

; hTtxi¼−
J

2πL2
; hTxxi¼−

M
2πL

:

ð51Þ

Energy density in (51) is negative for any r− [containing r̃−
in (11)] and analogous to the Casimir energy of dual field
theory as described by [37]. By setting r− ¼ 0, actually, the
metric becomes the AdS3 soliton. It is dual to field theory at
low temperature. These results show that the Lorentzian
background (35) is not a black hole.

IV. HOLOGRAPHIC ENTANGLEMENT ENTROPY
IN THE DOUBLE WICK ROTATED METRIC

We derive covariant entanglement entropy in the double
Wick rotated version of the rotating BTZ black hole.
This background is considered to be dual to CFT with
changed periodicity of Euclidean time and spatial direction
ðx; tEÞ ∼ ðxþ ζ; tE þ ηÞ, while the computation is per-
formed in the Lorentzian signature (35) because the time
slice of a time dependent system is well defined.
We consider the subsystem A as a strip with a length

Δl ¼ x1 − x2. The subsystem B is the complement of A.
The holographic formula is a codimension 2 extremal
surface γA defined as the saddle point of the area function
in the Lorentzian spacetime as follows: [8]

SA ¼ AreaðγAÞ
4GN

; ð52Þ

where γA has the same boundary as the region A and γA is
homotopic to A. The extremal surface corresponds to the
spacelike geodesic in the bulk connecting points of ∂A
when the 3d bulk spacetime is considered. The extremal
surface condition is equivalent to the vanishing of null
expansions.
The metric (35) is the double Wick rotated version of the

rotating BTZ (by taking t̃, x̃ to ix, it). It is locally equivalent
to the pure AdS3. The transformation from pure AdS3 to the
double Wick rotated metric (35) becomes

wþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ
r2 − r2−

s
eiðtþxÞΔþ ¼ X þ T;

w− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ
r2 − r2−

s
eiðt−xÞΔ− ¼ X − T;

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − r2−
r2 − r2−

s
eiðtrþþxr−Þ; ð53Þ
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where Δ� ¼ rþ � r−. The pure AdS is written as

ds2 ¼ L2ðdwþdw−þdz2Þ
z2 . The spacelike geodesic in pure

AdS3 becomes ðX − X�Þ2 þ z2 ¼ R2. The extremal surface
is obtained by mapping geodesics in pure AdS3 into the one
in the double Wick rotated metric.
The extremal surface should be on the hypersurface

γwþ − γ−1w− ¼ const; ð54Þ
where γ means boosts. The subsystem is on a constant time
slice of t0. The value of t should be the same. When the
extremal surface has two endpoints, x1 and x2, the con-
straint of the extremal surface becomes

γ2eiðt0þx1ÞΔþ −eiðt0−x1ÞΔ− ¼ γ2eiðt0þx2ÞΔþ −eiðt0−x2ÞΔ− : ð55Þ
The cutoff and the length of the interval near the AdS

boundary become

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − r2−

p
r∞

eiðrþt0þr−x1Þ;

ðΔxÞ2 ¼ ΔwþΔw−

¼ ðeiΔþðt0þx1Þ − eiΔþðt0þx2ÞÞðeiΔ−ðt0−x1Þ − eiΔ−ðt0−x2ÞÞ:
ð56Þ

The holographic entanglement entropy becomes the
geodesic in AdS3. Substituting the cut-off and the length
into the formula of the geodesic, we obtain the entangle-
ment entropy in the double Wick rotated metric as follows:

SA ¼ c
6
log

�ðΔxÞ2
ϵ1ϵ2

�

¼ c
6
log

�
4r2∞
ΔþΔ−

sin
ΔþΔl
2

sin
Δ−Δl
2

�

¼ c
6
log

�ðζ2 − η2LÞ
π2ϵ2

sin
πΔl
ζ − ηL

sin
πΔl

ζ þ ηL

�
; ð57Þ

where Δl ¼ x1 − x2 and r∞ ¼ l2=ϵ. The central charge c is
defined as c ¼ 3L=ð2G3Þ. The entanglement entropy
factorizes into the left and right sector

SA ¼ SR þ SL; ð58Þ
where

SL ¼ c
6
log

�
L1

πϵ
sin

πΔl
L1

�
;

SR ¼ c
6
log

�
L2

πϵ
sin

πΔl
L2

�
: ð59Þ

Here, L1 ¼ ζ þ ηL and L2 ¼ ζ − ηL are the periodicities
of the (anti-)holomorphic sector z (and z̄), respectively
[see Eq. (50)]. The left sector will decouple from the
right sector. SL and SR are proportional to entanglement

entropy of a single interval along a spatial direction with a
periodic boundary condition (periodicity L1 and L2). When
r− ¼ 0 (ηL ¼ 0), SL ¼ SR and entanglement entropy SA
becomes (2).

V. THE CFT SIDE

We periodically identify the two dimensional Euclidean
manifold. The partition function of bosons becomes

ZðτÞ ¼ tr½expð2πiτ1P − 2πτ2HÞ� ¼ trðqL0− c
24q̄L̃0− c̃

24Þ; ð60Þ
where we have used q ¼ e2πiτ. Momentum generates the
translation along the x direction P ¼ L0 − L̃0 and the
Hamiltonian generates the translation along the time
direction H ¼ L0 þ L̃0 − cþc̃

24
. To match the gravity dual,

the periodicity is chosen as

τ1 ¼
ζ

2π
; τ2 ¼

η

2π
¼ −

ζΩE

2π
; ð61Þ

whereΩE ¼ 1=ðμ1LÞ. Because the metric is invariant under
the complex conjugation and degenerate for a real τ, we
restrict to ImðτÞ > 0 (ΩE < 0) or vice versa [38].
This is realized in terms of the following conformal map

w ¼ exp

�
iv
τ

�
; ð62Þ

where the new coordinate v ¼ xþ itE has the periodicity
v ∼ vþ 2πτ with modulus τ ¼ ζð1−iΩEÞ

2π . Coordinates are
transformed as follows:

ðx; tEÞ ∼ ðxþ ζ; tE − ζΩEÞ: ð63Þ
One can compare the above result with dual CFT to the

rotating BTZ black hole. Recall that it is obtained by
the conformal map w ¼ expðw̃=τÞ, where τ is the same as
the above case with ζ ¼ β. The new coordinate w̃ has the
periodicity w̃ ∼ w̃þ i2πτ or

ðx̃; t̃EÞ ∼ ðx̃þ βΩE; t̃E þ βÞ; ð64Þ
where iτ becomes the new modulus. Thus, the periodicity is
inversed when it is compared with (63).

A. Entanglement entropy in the dual CFT

The value of trðρnAÞ for the reduced density matrix is
equivalent to the correlation functions of twisted operators
with conformal weights δn ¼ δ̄n ¼ c

24
ðn − 1

nÞ.
When CFT lives on 2d Euclidean space and the region A

is ðu1 ≤ x ≤ u2Þ at a constant time slice,

trðρnAÞ ¼ hΦðu1ÞΦðu2Þi ¼ cn

�ju1 − u2j
ϵ

�
−c
6
ðn−1

nÞ
; ð65Þ

where the UV cutoff is ϵ and cn is a constant.

HOLOGRAPHIC ENTANGLEMENT ENTROPY OF THE DOUBLE … PHYS. REV. D 107, 026007 (2023)

026007-7



Under the general conformal transformation, trρnA trans-
forms as a 2-point function of primary fields Φ. This
implies that one can compute it in different geometries.
Under the conformal transformation (62), the twisted field
is transformed as

hΦðw0
1ÞΦðw0

2Þi¼
����∂w0

1

∂w1

����−2δn
����∂w0

2

∂w2

����−2δnhΦðw1ÞΦðw2Þi; ð66Þ

where ∂w0=∂w ¼ τ=ðiwÞ and ∂w̄0=∂w̄ ¼ −τ̄=ðiw̄Þ.
We then have

trðρnAÞ ¼

0
BB@ ϵ2e

i
2

�
w0
1
τ −

w̄0
1
τ̄

	
e

i
2

�
w0
2
τ −

w̄0
2
τ̄

	

jτj2
�
ei

w0
1
τ − ei

w0
2
τ

	�
e−i

w̄0
1
τ̄ − e−i

w̄0
2
τ̄

	
1
CCA

2δn

¼
�

π2ϵ2

ζ2ð1þ Ω2
EÞ sinðΔl2τÞ sinðΔl̄2τ̄Þ

�
2δn

; ð67Þ

where the length of the interval becomes
Δl ¼ w0

1 − w0
2 ¼ x1 − x2.

By differentiating in terms of n, the entanglement
entropy is obtained as

SA ¼ −
∂

∂n
log trðρnAÞjn¼1

¼ c
6
log

�
ζ2ð1þΩ2

EÞ
π2ϵ2

sin

�
Δl
2τ

�
sin

�
Δl̄
2τ̄

��

¼ c
6
log

�ðζ2 þ η2Þ
π2ϵ2

���� sin πΔl
ζ þ iη

����2
�
: ð68Þ

Note that the entanglement entropy factorizes into two
modes, which will decouple in 2d CFT. We perform the
analytic continuation r̃− → −ir− ðη → −iηLÞ and then
realize (57) is obtained from the gravity dual.

VI. DISCUSSION

In this paper, the holographic covariant entanglement
entropy was analyzed in the double Wick rotated version
of a rotating BTZ black hole and agreed with entangle-
ment entropy in the CFT side (68). Equation (57) in the
Lorentzian signature shows that entanglement entropy
factorizes into the left and right sectors. Each sector is
proportional to entanglement entropy of a single interval
along a compact spatial direction with periodicity L1 and
L2 (50). Actually, the factorization occurs regardless of
the double Wick rotation of spacetimes. The expression
of the covariant EE also factorizes into the left and right
moving sectors in the rotating BTZ black hole (see
Ref. [8]). At that time, the coordinates to identify (the
replica circle) [39] are interchanged. The reason for the
factorization is that our model has a toruslike structure.

If we let one of the periodicity (η or ζ) go to infinity, then
from (58), we can see that the left part of the entangle-
ment entropy will be equal to the right part, which means
that the phenomenon of factorization disappears. The
constraint of the causality annoys in the Lorentzian
signature as mentioned below. However, analysis on
the CFT side implies that it will also work for any places
where the extremal surface probes the interior of the
background (35).
The entanglement entropy has also been computed on

the CFT side. The entanglement entropy was obtained by a
conformal transformation (62) of correlation functions of
twisted operators in the analogue of [8]. The entanglement
entropy factorized into two modes, which would decouple
like the one in the gravity dual. Because a cylinder can be
considered as the infinite limit of a torus periodicity,
our result should be realized from entanglement entropy
on the torus [40,41]. The modular transformation of
entanglement entropy on the torus will also be interesting.
When the chemical potential conjugate to momentum is
zero, τ → −1=τ transforms from zero temperature to high
temperature. The modular transformation analysis with
τ1 ≠ 0 should be applicable for ours.
The double Wick rotated geometry may have problems

with causality in the Lorentzian frame. We make use of a
Killing vector to analyze the causal structure of the back-
ground. A Killing vector ∂x has the norm ξ ·ξ¼ r2−r2−−r2þ,
which is spacelike for r2 ≥ r2þ þ r2−. However, it becomes
timelike for r2 ≤ r2þ þ r2−.

5 It shows that the double Wick
rotated geometry has a closed timelike curve [29]. The
closed timelike curve is restricted behind the Cauchy horizon
at r2 ¼ r2þ þ r2−, which is a lightlike boundary. This feature
is expected in general [42]. It will be possible to explore how
the law of physics allows a closed timelike curve [43].
Second, the background is not a black hole in the Lorentzian
signature because it does not have Hawking temperature,
which vanishes after the analytic continuation r̃− → −ir−
[see (44)]. It also has negative energy, unlike thermal field
theory. This negative energy will correspond to Casimir
energy in the CFT side [37].
In the Euclidean signature, on the other hand, the

periodicity of Euclidean time and spatial direction for the
double Wick rotated version of the rotating BTZ black
hole is changed as in (44). This background has proper-
ties of rotating AdS black holes, such as Hawking
temperature by requiring regularity at the black hole
horizon. The black hole entropy will appear in this frame.
It will be interesting to analyze the thermodynamics of
the double Wick rotated geometry. The entanglement
entropy (68) in the Euclidean signature will realize the
results of dual CFT to black holes.

5In addition, t ¼ const and r ¼ rþ surfaces become timelike
gxx ¼ −L2r2− ≤ 0.
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It will be interesting when we identify the periodicity of
both a rotating BTZ and the double Wick rotated metric in
the Euclidean frame as follows:

ðx; τEÞ ∼ ðxþ ζ; τE þ ηÞ: ð69Þ

Substituting η ¼ β0 and ζ ¼ ϕ0 in (15) and using (44), rþ is
interchanged with r̃− between two backgrounds. The
observable of both theories will then be consistent because
both theories are CFTwith the same periodicity. We call the
holographic stress energy tensor of a rotating BTZ (the
double Wick rotated metric) hTμνiBTZ (26) [hTμνiDWR (51)],
respectively. We find that both theories have the same form
of the holographic stress tensor as follows:

hTttiBTZ ¼ hTttiDWR ¼ πLðη2 − ζ2Þ
4G3ðζ2 þ η2Þ2 :

hTtxiBTZ ¼ hTtxiDWR ¼ −
iπLζη

2G3ðζ2 þ η2Þ2 ; ð70Þ

Physical quantities such as entropy density and free energy
can also be computed. Free energy should be consistent
with the form of the density matrix on the CFT side. It will
be interesting to proceed in this direction furthermore.
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APPENDIX: HOLOGRAPHIC STRESS
ENERGY TENSOR

In this appendix, we compute the holographic stress
tensor for the double Wick rotated metric. We compute the
holographic stress energy tensor in the FG coordinate

ds2¼ L2

ρ2
ðdρ2þ ḡEijdx

idxjÞ, where ḡEij¼ ḡEð0Þij þ ḡEð2Þij ρ2þ���.
Metric for (36) becomes

ḡEð0ÞτEτE ¼ 1; ḡEð0Þxx ¼ 1; ḡEð0ÞτEx ¼ 0;

ḡEð2ÞτEτE ¼ r2þ − r̃2−
2

; ḡEð2Þxx ¼ −r2þ þ r̃2−
2

; ḡEð2ÞτEx ¼ −rþr̃−:

ðA1Þ

The boundary stress tensor becomes

hT̃E
μνðxÞi ¼

L
8πG3

ðḡð2Þμν − ḡð0Þμν ḡ2ααÞ: ðA2Þ

Substituting (A1) into (A2) and performing the coordinate
transformation into ðτ0E; x0Þ ¼ ðLτE; LxÞ, we obtain the stress
energy tensor in the dual CFT as follows:

hTE
τEτEi¼

ME

2πL
; hTτExi¼−

JE
2πL2

; hTxxi¼−
ME

2πL
: ðA3Þ
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