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In a holographic superfluid disk, when the rotational velocity is large enough, we find that a giant vortex
will form in the center of the system by merging several single charged vortices at some specific rotational
velocity with a phase stratification phenomenon for the order parameter. The formation of a giant vortex
can be explained, as there is not enough space for a standard vortex lattice. If we keep increasing the
rotational velocity, the giant vortex will disappear and there will be an appearance of a superfluid ring. In
the giant vortex region, the number of vortices measured from winding number and rotational velocity
always satisfies the linear Feynman relation. However, when the superfluid ring starts to appear, the number
of vortices in the disk will decrease although the rotational velocity is increasing, while most of the order
parameter is suppressed.
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I. INTRODUCTION

In quantum fluids such as superfluid, a lot of interesting
and counterintuitive phenomena occur, for example, in a
rotating vessel containing superfluid, when the rotation
velocity is large enough, topological defects with integer
winding number, also known as quantum vortices, will be
generated from the nonrotating superfluid [1–5]. Based on
the requirement of minimum free energy when the number
of quantum vortices is enough, they will be arranged in the
form of a lattice [6–9]. The vortices always have a winding
number N ¼ 1 since a giant vortex with N > 1 has a larger
free energy than a single charged vortex system [10]. The
superfluid vortex lattices were first observed in 3He experi-
ments [11–17]. Theoretical research on the properties of a
vortex lattice relies mainly on numerical simulation by
using the Gross-Pitaevskii (GP) equation, which is a mean
field theory [18–23]. The GP equation describes the ground
state of a quantum system of identical bosons by using the
Hartree-Fock approximation and the pseudopotential inter-
action model, which can simulate various behaviors of the
cold atomic Bose-Einstein condensation (BEC) well at zero
temperature, including vortex lattice formation in rotational
systems. For a single component superfluid, it is gener-
ously believed that a hexagonal vortex lattice will be

formed; however, the situation seems to be changed by
fast rotation, which has been studied for more than a decade
[24–29]. In the simulation of the GP equation with a
quadratic-plus-quartic potential [30], it is found that when
the rotation velocity is large enough, the phase singularities
will gather in the center and generate a “giant vortex”
[31,32].
Although the GP equation is a powerful tool to study

weakly interacting superfluid or BECs, it would be inter-
esting to extend the study to the holographic superfluid,
which is a strongly coupled system [33–35]. In addition,
the finite temperature description of the GP equation comes
from the artificially added dissipation coefficient, while in
the holographic superfluid model the dissipation comes
naturally from the black hole temperature [36–38]. At the
end of the last century, Maldacena’s great conjecture that
the two perspectives in string theory are equivalent brought
holographic duality theory into public view [33]. Based on
this equivalence, a complete set of duality models was
constructed—namely, the equivalence of a high-dimen-
sional gravitational field and a low-dimensional quantum
field living on its boundary [39,40]. In particular, when the
large-N limit is considered, the gravitational field degen-
erates to classical gravity, while the quantum field has a
property of strong interaction, yielded stunning success in
the study of strongly coupled systems. This model can also
be used to study condensed matter physics [41–43], such as
holographic superconductivity [36–38]. There have been
some previous studies of holographic superconductor and
superfluid vortices [44–51], and the rotating superfluid
dynamics evolution of vortices and Feynman relationship
were studied at low rotation velocity [52–54]. However,
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research on the fast rotating holographic superfluid is
still lacking.
In this paper, we use the finite temperature holographic

superfluid model to study the vortex lattice properties of a
fast rotating strongly coupled superfluid. We find that, at
some special rotational velocity, the disk center will
generate a stable giant vortex structure with a multiple
winding number, which violates the general understanding
that the energy of multiple winding number vortices is
higher than the energy of the separated vortices [10]. As the
rotation velocity continues to increase, we observe the
phase of giant vortex stratification in the radial direction on
the phase configuration chart. In an ultrafast rotating
superfluid, the vortices are distributed in rings and the
rings are isolated from each other. The outside part of it is a
superfluid ring, and the inside part of it is a vortex ring.
The paper is organized as follows. In Sec. II we derive

the fully expanded equation of motion of superfluid in the
holographic model. In Sec. III we show the process of the
time-dependent evolution at a specific rotational velocity
where a giant vortex forms by the numerical solution of
dynamic equations. And we obtain various configurations
of vortices, including a giant vortex and a superfluid ring.
In Sec. IV we discuss the relationship between the quantity
of vortices N and the rotating velocity Ω. We summarize
our results in Sec. V.

II. HOLOGRAPHIC MODEL AND EQUATIONS
OF MOTION FOR TIME EVOLUTION

We construct the holographic superfluid model with a
gauge field and a complex scalar field in the background of
a planar Schwarzschild black hole in (3þ 1)-dimensional
anti–de Sitter spacetime, which is dual to a (2þ 1)-
dimensional conformal field theory on the boundary
[36–38]. The action can be written as

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6=L2 þ 1

q2
Lmatter

�
; ð1Þ

where GN is the Newton’s constant, R is the Ricci scalar,
and L is the radius of curvature of anti–de Sitter (AdS)
spacetime. We work in the probe limit by taking the large-q
limit, which means that the matter fields decouple from
gravity. The matter field Lagrangian is

Lmatter ¼ −
1

4
FμνFμν − jDμΨj2 −m2jΨj2; ð2Þ

where Fμν ¼ ∂μAν − ∂νAμ is a component of the U(1)
gauge field and Ψ is a complex scalar field with mass
m. Dμ is the covariant derivative written as

DμΨ ¼ ∂μΨ − iqsAμΨ: ð3Þ

We choose the Eddington-Finkelstein coordinate
ffiffiffiffiffiffi−gp ¼

L4=z4, which has the form

ds2¼L2=z2ð−fðzÞdt2−2dtdzþdr2þ r2dθ2Þ; ð4Þ

where z ¼ 0 represents the AdS boundary and z ¼ zh is the
horizon of the black hole. Without loss of generality, we
can set zh ¼ L ¼ 1, then fðzÞ ¼ 1 − z3, and the Hawking
temperature can be written as T ¼ 3=4π. The only char-
acteristic parameter of the holographic superfluid is the
dimensionless ratio μ=T, where μ ¼ Atðz ¼ 0Þ is the
chemical potential on the boundary. Then the temperature
on the boundary can be expressed as T ¼ ðμc=μÞTc.
Then we can build a polar coordinate in a disk on the

dual (2þ 1)-dimensional boundary to study the rotating
superfluid. In this model, the black hole is nonrotating;
thus, the superfluid is treated as static but the disk is
rotating, which also has a relative rotation. With the
action one can obtain the equation of motion for the
scalar field

DμDμΨ −m2
sΨ ¼ 0 ð5Þ

and the equation of motion for the vector field

∂
νFνμ − iqsðΨ�DμΨ − ΨDμΨ�Þ ¼ 0: ð6Þ

Here, according to the conservation principle, Jμ ¼
iðΨ�DμΨ − ΨDμΨ�Þ is the bulk current. We take the
ansatz of nonvanishing fields Ψðt; r; θ; zÞ, Atðt; r; θ; zÞ,
Axðt; r; θ; zÞ, and Ayðt; r; θ; zÞ, and the axial gauge Az ¼ 0

is adopted as in Ref. [55]. With the ansatz, the fully
expanded equations of motion can be written as

− ½∂zðf∂zΨÞ þ ið∂zAtÞΨþ 2iAt∂zΨ�

þ
�
−∂2rΨþ ið∂rArÞΨþ 2iAr∂rΨ −

1

r
∂rΨ

�

þ 1

r2
½−∂2θΨþ ið∂θAθÞΨþ 2iAθ∂θΨ�

þ
�
A2
r þ

iAr

r
þ A2

θ

r2
þ z

�
Ψþ 2∂t∂zΨ ¼ 0; ð7Þ

∂
2
zAt − ∂z∂rAr −

1

r
∂zAr −

1

r2
∂z∂θAθ

− iðΨ�
∂zΨ −Ψ∂zΨ�Þ ¼ 0; ð8Þ

−
1

r
∂zAr − ∂t∂zAt − ∂t∂rAr −

1

r2
∂t∂θAθ þ

f
r
∂zAr

þ f∂z∂rAr þ
f
r2
∂z∂θAθ þ ∂

2
rAt þ

1

r
∂rAt þ

1

r2
∂
2
θAt

− iðΨ�
∂tΨ − Ψ∂tΨ�Þ − 2AtΨ�Ψ

þ ifðΨ�
∂zΨ − Ψ∂zΨ�Þ ¼ 0; ð9Þ
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2∂t∂zAr − ∂z∂rAt − ∂zðf∂zArÞ þ
1

r2
ð∂r∂θAθ − ∂

2
θArÞ

þ iðΨ�
∂rΨ −Ψ∂rΨ�Þ þ 2ArΨ�Ψ ¼ 0; ð10Þ

2∂t∂zAθ − ∂zðf∂zAθÞ − ∂z∂θAt − ∂
2
rAθ þ

1

r
∂rAθ

þ ∂r∂θAr −
1

r
∂θAr þ iðΨ�

∂θΨ − Ψ∂θΨ�Þ
þ 2AθΨ�Ψ ¼ 0: ð11Þ

By taking m2
s ¼ −2, the conformal dimension of the

scalar field are Δ ¼ 3
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
−m2L2

q
¼ 3

2
� 1

2
, which means

the expansion of the solution of the scalar field and gauge
field near the AdS boundary has the form

Ψ ¼ ϕzþ ψz2 þOðz3Þ; ð12Þ

Aν ¼ aν þ bνzþOðz2Þ: ð13Þ

At the boundary z ¼ 0, we turn off the source ψ jz¼0 ¼ 0.
at ¼ μ is the chemical potential and bt ¼ ρ the charge. As
we discussed above, μ is inversely proportional to temper-
ature T when μ exceeds a critical value μc ¼ 4.07, the
system spontaneously breaks the U(1) gauge symmetry and
the expectation value of the scalar operator hOi ¼ ϕjz¼0

has a finite-valued solution. Since aθ and ar represent the
superfluid velocity, we can add a rotation to the system
without radial flow ar ¼ 0,

Aθjz¼0 ¼ aθ ¼ Ωr2; ð14Þ

where Ω is the rigid rotation with angular velocity of the
disk [49]. In this paper, we fix T ¼ 0.67Tc, and the disk
size radius R ¼ 5.
For the numerical simulation, Chebyshev spectral

method is used in the ðz; rÞ direction. The Fourier spectral
method is used in the θ direction. Time evolution is
simulated by the fourth-order Runge-Kutta method. The
initial configuration at t ¼ 0 is chosen to be a homogeneous
superfluid state without any rotation at the fixed temper-
ature T ¼ 0.67Tc.

III. THE STRUCTURES OF A GIANT VORTEX
AND SUPERFLUID RING

If initially there is a nonrotating homogeneous superfluid
state, then by setting the boundary condition to inject the
angular momentum to the holographic superfluid will drive
the system to evolve. The rotational velocity Ω ranges from
0.345 to 0.45, which is the slow rotation case, and the
vortex lattice of the polygonal grid can be obtained in
both the GP equation of mean field theory [18–23] and
the holographic model [52,53]. In our simulation, after

selecting the fast rotating velocity beyond this velocity
range, we observed more special vortex structures. An
example of the dynamic formation process of a giant vortex
in a rapidly rotating superflow is shown in Fig. 1, and a
movie is included in the Supplemental Material [56]. At
t ¼ 0, the superfluid disk was homogeneous. When we
give an angular velocity to the disk, the vortices emerge on
the boundary (t ¼ 500), and they move inside and form the
formation of a giant vortex appearing in a two-layer
structure (t ¼ 2000). There are four vortices arriving at
the center that produce a giant vortex which is not supposed
to appear in a slow rotation case.
When the rotational velocity exceeds 0.45, the vortices

will enter the center of the hexagonal grid superfluid. The
giant vortex will be discovered fromΩ. Figures 2(a) and 2(b)
show how two charges combine in the disk center and form a
stable giant vortex. We cannot distinguish the number of
charges in the disk center by order parameters alone, so we
must turn to the diagram of phase configuration. In the
diagram of phase configuration, the phase difference from
blue to yellow is 2π, which corresponds to a single vortex.
The winding number of the vortex N ¼ 2, the vortex is a
giant vortex. The stable giant vortex state is not a common
phenomena, because multiple vortices tend to exist inde-
pendently in a normal case [10]. But we discover that the
giant vortex state is stable under fast rotating conditions,
the situation has also been observed using the GP
equation [31,32].
When Ω ¼ 0.5, the giant vortex is already shown.

However, in Figs. 2(c) and 2(d), where Ω ¼ 0.8, no giant
vortices appear and only four inner-layer vortices form a
quartet lattice, with 11 vortices in the outer layer. This
indicates the instability of the giant vortex. As the rotational
velocity increases, new physical images of the holographic
superfluid are constantly presented. In Figs. 2(e)–2(h), we
find the vortex in the center with a two-layer lattice
structure in the disk. When the dynamic system has the
rotational velocity Ω ¼ 1, there is only one vortex core in
the center of the disk; when Ω ¼ 1.5, there are three

FIG. 1. Formation of a giant vortex with winding numberN ¼ 4
at Ω ¼ 1.65 and R ¼ 5. The top row shows the order parameter,
while the bottom row shows the phase configuration at the
corresponding time. The temperature T ¼ 0.67Tc.
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vortices inside the octagonal grid, and they form a state of
dynamic equilibrium due to mutual interaction. We have
not yet seen the emergence of a three-layer structure, which
might be found in a larger disk. Figures 2(e) and 2(g) and
Figs. 2(f) and 2(h) have similar structures, while in
Figs. 2(g) and 2(h), the faster case, the structure of the
outer layer in the left image has begun to blur. There is a
clear tendency to form a ring, but the vortex of the outer
layer in this picture can still be distinguished. One can
count 21 vortices in the outer layer, and the inner layer is an
octagonal grid. From the phase configuration on the right, it

can be seen that the superfluid of the double lattice structure
can also form a large winding vortex in the center when the
rotational velocity is large enough. From Fig. 2, we find
that the phase configuration has a hierarchical structure,
and each layer corresponds to a circle of vortices in the
order parameter. Through Fig. 2, we discover that the
outermost phase difference is the total winding of the entire
superfluid, that the second-layer phase difference includes
the winding of the inner two layers, and that the phase
difference of the center shows only the winding number of
the giant vortex in the disk center. This can be summarized
as a regular pattern: The phase difference of the nth layer (it
is stipulated that the number of layers from the inside to the
outside is 1; 2; 3… in turn) always contains the phase
difference of all vortexes in the nth layer.
As the rotational velocity continues to increase, we

discover a new giant vortex structure which is different
from the above giant vortices shown in Figs. 2(a), 2(b),
2(g), and 2(h). The difference is not observable in the order
parameter diagram, but it is clearly discernible from the
diagram of the phase configuration. We can see that in
Fig. 3, whenΩ ¼ 1.7 and 2, there is a difference only in the
outer ring when we observe the order parameter, where the
vortices of the outer structure form a complete ring, but we
can find that the structure of the giant vortex has changed in
the diagram of the phase configuration. It is confusing to
confirm the number of charges if you do not know the
former regular pattern. According to the just-mentioned
regular pattern, it is easy to count how many charges are in
a giant vortex. We mention that the phase differences of
the second floor in the diagram of the phase configuration

FIG. 2. Order parameter (left panels) and phase (right panels)
when (a),(b) Ω ¼ 0.5, (c),(d) Ω ¼ 0.8, (e),(f) Ω ¼ 1, and (g),(h)
Ω ¼ 1.5. The value of the phase varies continuously from 0 (blue)
to 2π (yellow). When Ω ¼ 0.5, a giant vortex whose winding
number is 2 appears at the center of the dynamic system. But
when Ω is increased to 0.8, the giant vortex disappears and splits
into four single charged vortices to form a square structure. In
(e)–(h), the giant vortex appears and is surrounded by a two-layer
vortex structure. The temperature T ¼ 0.67Tc.

FIG. 3. Order parameter (left panels) and phase (right
panels) when (a),(b) Ω ¼ 1.7 and (c),(d) Ω ¼ 2. The phase
configuration of the giant vortex is stratified in both cases. We
can determine a winding number of 4 in (b) and 6 in (d). The
temperature T ¼ 0.67Tc.
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(count from the outside to the inside) contains the giant
vortex and is next to the giant vortex of the phase
differences, so the giant vortex shown in Figs. 3(a) and.
3(b) contains a winding numberN ¼ 4. This means that the
phase stratifies in the radius direction but that no charge
emerges in the disk center. And, in the same way, we can
make sure that the giant vortex on Ω ¼ 2 for Figs. 3(c) and
3(d) has a winding number N ¼ 6. Notice that the phase of
the giant vortex in Fig. 3(b) is divided into two layers and in
Fig. 3(d) into three layers, so stratification has no relation to
the number of the winding, only to Ω. In Fig. 4 with
Ω ¼ 2.5, we find a superfluid ring outside and a vortex
ring inside, which is similar to the result of the GP
equation [57].

IV. RELATIONSHIP BETWEEN THE WINDING
NUMBER AND THE ROTATING VELOCITY

We already show that as the rotating velocity increases,
more vortices enter the disk and finally result in the
formation of a giant vortex. Based on this fact, we give
a conjecture: If Ω is large enough, a lot of vortices will
emerge in the fixed size disk, a vortex can easily interact
with other vortices close by due to the limited space, so
several vortices can merge into a giant vortex in the disk
center by overcoming the repulsive force between them.
There are five regions in the overall dynamics process
shown in Fig. 5. The first region of the process (in green) is
a one-layer vortex lattice. The second region (in magenta)
is that a giant vortex appearing in the system center based
on a one-layer lattice. The situation in Figs. 2(a) and 2(b) is
represented as the magenta region. The third region (in
blue) is a two-layer vortex lattice. We mentioned that there
is no giant vortex state in the region which corresponds to
Figs. 2(c)–2(f), because the system forms a two-layer
structure from a one-layer structure lattice in the rotational
velocity. So vortices will not all squeeze into the middle of
the disk center when the vortex quantity is not very big in
the dynamics progress. The fourth region (in red) is that
a giant vortex appears at the system center based on a

two-layer lattice. Figures 1, 2(g), 2(h), and 3 are contained
in the red region. In particular, the phase of the giant vortex
will stratify in this region. The fifth region (in black) is a
superfluid ring and a vortex ring. The number of charges
decreases rapidly with an increasing angular velocity, and
the order parameter is extremely suppressed in this region.
In front of the fourth region, the quantities of the vortex
and the rotating velocity approximately yield the Feynman
relation [54], but, obviously, as the angular velocity in
the black region increases, the effect of dissipation
between the vortex and the superfluid influences the
Feynman relation.

V. SUMMARY

By numerically applying a holographic model on the
fast rotating superfluid, we found an unusual formation of
giant vortices: a giant vortex contains multiple charges and
shows a phase configuration stratification in the radius
direction. We also found the formation of a superfluid
ring and a vortex ring in the ultrafast rotating case.
Experimental developments enabled Kuga et al. [58] to
create a confinement potential that is tighter than har-
monic, thus creating a possible method to explore the
nature of fast rotating BECs. Interesting, the giant vortex
predicted by the holographic simulation has been observed
in fast rotating BECs by using the quadratic-plus-quartic
potential [59]. Moreover, the vortex ring found in a
holographic simulation was also observed in the same

FIG. 4. (a) Order parameter and (b) phase when Ω ¼ 2.5. The
order parameter in (a) shows a superfluid ring and a vortex ring.
The blue ring inside is the vortex ring, while the yellow ring
outside is the superfluid ring. The phase configuration is shown in
(b). The temperature T ¼ 0.67Tc.
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FIG. 5. Relationship between the number of vortices N and the
rotating velocity Ω. The green line is the one-layer structure
lattice state. The concrete physics picture of the green line is
given in Ref. [53]. The magenta line represents the state of the
giant vortex appearing in a one-layer structure. The blue line
represents the two-layer structure lattice state in which no giant
vortex arises. The red line represents the state of a giant vortex
appearing in a two-layer structure. And the black line represents
the superfluid ring state.
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rapidly rotating BECs by increasing the rotation frequency.
Also, in a holography with an analytical treatment, the
giant vortex is found to describe an intermediate regime
with large spin and charge, which connects superfluid
theory with the large-spin expansion [60].
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