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We reconsider D ≥ 4 dimensional asymptotically flat eternal Schwarzschild black hole and focus on the
situation where the inner boundary of the radiation region is chosen to be near the horizon (i.e., β ≪ 1). The
tension between the near-horizon condition and the short-distance approximation emerges in large
dimensions in [K. Hashimoto, N. Iizuka, and Y. Matsuo, J. High Energy Phys. 06 (2020) 085]. We
remove this tension by introducing a more proper near horizon condition; thus, the resulting island solution
is well-behaved in any D ≥ 4 dimensional spacetime. Interestingly, a novel constraint is obtained in this
situation as required by the existence of the island solution, which directly leads to the constraints on the size
of the Schwarzschild black hole, the position of the inner boundary for the radiation region, or the value of

c · G̃N in any D ≥ 4 dimension. When considering the large D limit, the constraint on the size of the
Schwarzschild black hole obtained in this situation is in agreement with the result given in [F. Holdt-
Sordrensen, D. A. McGady, and N.Wintergerst, Phys. Rev. D 102, 026016 (2020)]. We interpret these as the
unitary constraints implied by the presence of island in semiclassical gravity.
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I. INTRODUCTION

The black hole information paradox [1] has been plaguing
physics community for many years since Hawking raised it,
as it seemingly indicates the breakdown of unitarity in
semiclassical description of gravity. The paradox can be
reflected by the monotonically increasing behavior of the
entanglement entropy of radiation in Hawking’s calcula-
tions. While the unitarity requires that the entanglement
entropy of radiation should follow the so-called Page curve
[2,3]. Remarkably, recent breakthrough has been made in
solving the black hole information paradox via semiclassical
gravitational calculations [4–6], benefiting from the Ryu-

Takayanagi formula [7,8] and its quantum corrected gener-
alizations [9,10]. The proposed island formula in [4–6]
directly came from the quantum extremal surface prescrip-
tion [10] and was further confirmed by the gravitational
replica calculations [11,12]. See recent works on islands for
black holes in various gravitational theories [13–52].
As a brand-new concept, the island formalism can

reproduce the Page curve and help preserve the unitarity
in semiclassical gravity. One may wonder whether there are
more implications that the island can bring for us. In the
present paper, we reconsider the island solution in asymp-
totically flat eternal Schwarzschild black hole when the
inner boundary of the radiation region is chosen to be near
the horizon, i.e., β ≪ 1. We will show the general island
solution in situation β ≪ 1, including the solution satisfying
α ∼ β. The tension between the original near-horizon
condition and the short-distance approximation emerges
in large dimensions in Ref. [17], and we remove this tension
by introducing a more proper near horizon condition;
see the Appendix. We will show a constraint on the
Schwarzschild black hole in the presence of the island
solution in situation β ≪ 1, which we interpret as the
unitary constraint in semiclassical gravity. Similar results
may be obtained for other types of black holes.
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This paper is organized as follows. In Sec. II, we review
the entropy formulas in Ref. [17] used to calculate the
entanglement entropy in Schwarzschild black hole space-
time. In Sec. III, we reconsider D ≥ 4 dimensional asymp-
totically flat eternal Schwarzschild black hole, and we focus
on the situation in which the inner boundary of the radiation
region R is chosen to be near the horizon. The general island
solution in this situation is studied. Moreover, a general
constraint is found as required by the existence of the island
solution in this situation. Then in Sec. IV, some implications
from this constraint are discussed. In Sec. V, the Page time is
obtained while some doubts about the estimation of the
scrambling time are raised in this situation. The conclusion
and discussion are in the Sec. VI.

II. ISLAND FORMULA IN SCHWARZSCHILD
BLACK HOLE SPACETIME

The island formula has been widely and successfully
used to find the island solution in black hole spacetime.
This gives us the entanglement entropy of the radiation as

SR ¼ min

�
ext

�
Areað∂IÞ
4G̃N

þ SfinitematterðI ∪ RÞ
��

; ð2:1Þ

where the optimal ∂I is given by the quantum extremal
surface prescription [10]. And the arealike divergence
[53,54] of the entanglement entropy of matter fields has
been absorbed into the renormalized Newton’s constant
G̃N [55].
To evaluate the finite part of the entanglement entropy of

matter fields in D-dimensional Schwarzschild black hole
spacetime, it is useful to utilize the following two formulas
corresponding to two limits [17]:
(1) At large distance limit, by assuming the s-wave

approximation, the finite part of the matter’s entan-
glement entropy can be approximated by the mutual
information of the two-dimensional massless fields
as [17]

IðA∶BÞ ¼ −
c
3
log dðA;BÞ; ð2:2Þ

where c is the central charge and dðA; BÞ is the
distance between the boundaries of region A, B.

(2) For sufficiently small distance L, the mutual in-
formation is approximately given by [17,56,57]

IðA∶BÞ ¼ cκD
Area
L2

; ð2:3Þ

where c is the central charge of the free massless
matter fields and κD is a dimensionally dependent
constant. To guarantee validity of this formula in

curved spacetime, L should be sufficiently smaller
than the length scale of the curvature denoted as lR,
i.e., L ≪ lR.

III. ISLAND FOR ASYMPTOTICALLY FLAT
ETERNAL SCHWARZSCHILD BLACK HOLE

In the following, we consider the asymptotically flat
eternal Schwarzschild black hole. The metric for the
Schwarzschild black hole in D≡ nþ 3 dimensions is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
nþ1; fðrÞ≡ 1−

�
rh
r

�
n
;

ð3:1Þ

where dΩnþ1 is the line element of the unit sphere Snþ1.
And the temperature of the Schwarzschild black hole
is Th ¼ 1=βh ¼ n=ð4πrhÞ.
We will adopt the coordinate ρ ¼ ðr=rhÞn as introduced

in large dimension gravity [58,59], where the space-time
dimension can also be regarded as a variable. The metric of
the Schwarzschild black hole is rewritten as

ds2 ¼ −
ρ − 1

ρ
dt2 þ r2hρ

2
n

n2ρðρ − 1Þ dρ
2 þ r2hρ

2
ndΩ2

nþ1; ð3:2Þ

with an event horizon at ρ ¼ 1. Note that we still work in
the general D-dimensional cases and will not take the
near-horizon and large dimension limit D → ∞ as in
Refs. [58,59]. The reason why we choose to work in
the coordinate ρ will be clear later. Now defining the
tortoise coordinate as

r�ðρÞ≡
Z

r 1

fðrðρÞÞ dr ¼
Z

ρ rhρ
1
n

nðρ − 1Þ dρ

¼ −
rhρðnþ1Þ=n

nþ 1 2F1

�
1; 1þ 1

n
; 2þ 1

n
; ρ

�
; ð3:3Þ

where 2F1 is the hypergeometric function. The Kruskal
coordinates on the right wedge of the Penrose diagram are

U ¼ −2rhe
−nt−r�ðρÞ

2rh ; V ¼ 2rhe
ntþr�ðρÞ

2rh :ðoutside horizonÞ
ð3:4Þ

Thus, the metric can be converted into

ds2 ¼ −
dUdV
WðρÞ2 þ r2hρ

2
ndΩ2

nþ1; ð3:5Þ
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where

WðρÞ≡ n
ffiffiffiffiffiffiffiffiffiffiffi
ρ

ρ − 1

r
en

r�ðρÞ
2rh : ð3:6Þ

A. Without an island

For the case without an island, the total entanglement
entropy of the radiation is purely given by the finite part
entanglement entropy of the matter fields. We consider two
inner boundary points of the radiation’s region R ¼ Rþ ∪
R− on the right and left wedges of the Penrose diagram,
denoted as bþ ¼ ðtb; rbÞ and b− ¼ ð−tb þ iβh=2; rbÞ,
respectively (see the Fig. 1). From [17], the total entangle-
ment entropy of the radiation is

SR ¼ SfinitematterðRÞ ¼ −IðRþ∶R−Þ; ð3:7Þ

then by using the formula (2.2) and working in the Kruskal
coordinates, we obtain

SR ¼ c
6
log

½Uðb−Þ −UðbþÞ�½VðbþÞ − Vðb−Þ�
WðbþÞWðb−Þ

¼ c
6
log

�
16r2hðρb − 1Þcosh2 ntb

2rh

n2ρb

�
: ð3:8Þ

At the late time tb ≫ rb > rh, SR becomes

SR ≈
nc
6rh

tb; ð3:9Þ

for finite rh and ρb > 1 in any dimension n ≥ 1 (as for the
large dimension limit, one can omit the logarithm divergent
term of n relative to its linearly divergent term). The result
leads to Hawking’s result, which violates the unitarity at
late time.

B. With an island

We denote the boundary points of the island I on the
right and left wedges of the Penrose diagram as aþ ¼
ðta; raÞ and a− ¼ ð−ta þ iβh=2; raÞ, respectively (see the
Fig. 2). Here, we assume the boundary of the island is
outside and near the horizon. As elucidated detailedly in the
Appendix, to remove the tension between the original near-
horizon condition used in Ref. [17] and the short-distance
approximation in large dimensions, we will take α < β ≪ 1

as the new near-horizon condition with the parameters α≡ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρa − 1

p
> 0 and β≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρb − 1
p

> 0, where ρa ¼ ðra=rhÞn
and ρb ¼ ðrb=rhÞn so that the geodesic distance can be
estimated well by the first order term of α, β, i.e.,

L ≃
2rhðβ − αÞ

n
; ð3:10Þ

which is valid for any n ≥ 1 even for large dimension case.
Remember that as required by the validity of the for-
mula (2.3), we must ensure L ≪ lR. Note that the character-
istic curvature length outside and near the horizon is [58]

lR ≃ K−1=4 ¼ rhffiffiffi
4

p
nðnþ 1Þ2ðnþ 2Þ ∼

rh
n
; ð3:11Þ

where K ≡ RμνρσRμνρσ is the Kretschmann scalar. By
comparing with formulas (3.10) and (3.11), one can find
the condition ðβ − αÞ < β ≪ 1 is also sufficient to guar-
antee L ≪ lR even in large dimensions.
With the island, the finite part of the matter’s entangle-

ment entropy is given by [17]

SfinitematterðR ∪ IÞ ¼ −2IðRþ∶IÞ: ð3:12Þ

Then by the formulas (2.3) and (3.12), the total entangle-
ment entropy of the radiation in coordinate ρ is equal to

FIG. 1. The Penrose diagram of the asymptotically flat eternal
Schwarzschild spacetime without island, where b� represent the
inner boundaries of the radiation region R ¼ Rþ ∪ R−.

FIG. 2. The Penrose diagram of the asymptotically flat eternal
Schwarzschild spacetime with an island, where a� and b�
represent the boundaries of the island region I and the inner
boundaries of the radiation region R ¼ Rþ ∪ R−, respectively.
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SR ¼ Ωnþ1r
nþ1
h ρ

nþ1
n
a

2lnþ1
p

− 2cκD
Ωnþ1r

nþ1
h ρ

nþ1
n
b

Lnþ1
; ð3:13Þ

where G̃N ≡ lnþ1
p with the Planck length lp, and the factor 2

is due to the double contributions from the left and right
wedges. Here, Ωnþ1 ≡ 2πðnþ2Þ=2=Γ½ðnþ 2Þ=2� is the vol-
ume of unit sphere Snþ1.
To find the island solution, we put ρa ¼ 1þ α2, ρb ¼

1þ β2 and (3.10) into the formula (3.13), we have

SR ≃
Ωnþ1

2

��
rh
lp

�
nþ1

−
cκDnnþ1

2n−1
ðβ − αÞ−ðnþ1Þ

�
; ð3:14Þ

where we used the condition α ≪ 1 and β ≪ 1. Then in
order to find the minimal value of SR, we take the derivative
with respect to α and solve the following equation, as

∂αSR ¼ ðnþ 1ÞΩnþ1β

n

�
α

β

�
rh
lp

�
nþ1

−
cκDnnþ2

2nβnþ3

�
1 −

α

β

�
−ðnþ2Þ�

¼ 0: ð3:15Þ

However, it is hard to give an exact analytical solution due
to the complex form of above equation for any n ≥ 1. We
further assume the condition α ≪ β1 and expand the
Eq. (3.15) to the first order of small α=β, which is
equivalent to

α

β

�
rh
lp

�
nþ1

−
cκDnnþ2

2nβnþ3

�
1þðnþ 2Þα

β
þO

��
nα
β

�
2
��

¼ 0;

ð3:16Þ

where we used n ≫ 1 in order to see the large dimension
behavior. A more specific condition α ≪ β=n is required so
that we can omit the higher order terms even for the large
dimension case. We obtain an island solution as

α ≃
β

2n

cκDnnþ2

�
rh
lp

�
nþ1

βnþ3 − ðnþ 2Þ
; ð3:17Þ

which is valid under the condition α ≪ β=n ≪ 1 and also
can be applicable for the large dimension case.2 This result
only differs from the result of Ref. [17] by a next-to-leading
order correction in finite lower dimensions. With this
solution, one may assume the condition cG̃N=r

nþ1
h ¼

clnþ1
p =rnþ1

h ≪ 1 to make a semiclassical approximation
and drop the second term in the denominator of (3.17).
However, as β itself can be very small, the condition
clnþ1

p =rnþ1
h ≪ 1 is not a sufficient condition to drop the

second term in the denominator, and we do not make such
an approximation in the paper. Furthermore, by putting the
condition α ≪ β=n on the result (3.17) to make sure the
consistency, we obtain that

βnþ3

�
rh
lp

�
nþ1

≫
cκDðnþ 1Þnnþ2

2n−1
: ð3:18Þ

The constraint (3.18) is required by the existence of the
consistent island solution for the special case
α ≪ β=n ≪ 1. By plugging the solution (3.17) back into
the formula (3.14), the entanglement entropy in this special
case is given by

SR ≃
Ωnþ1

2

�
rh
lp

�
nþ1

2
641 − 2β2

nðnþ 3Þ
cκDðnþ 3Þnnþ2

2nβnþ3
	
rh
lp



nþ1

×

�
2nβnþ3

	
rh
lp



nþ1

− cκDnnþ2

�
�
2nβnþ3

	
rh
lp



nþ1

− cκDðnþ 2Þnnþ2

�
3
775: ð3:19Þ

Note that the island solution (3.17) and the constraint
(3.18) are only valid for the special case α ≪ β=n ≪ 1.
However, we wonder whether there exists a general island
solution and a general constraint for α < β ≪ 1 because it is
reasonable to take β to be small enough so that β get close to
α, i.e., α ∼ β. This requires us to solve Eq. (3.15) without
assuming α ≪ β=n, which is poorly investigated in higher
dimensions in previous papers but has been studied inD ¼ 4

1In fact, the island solution in Ref. [17] was similarly obtained
under the assumption α̃ ≪ β̃ (with α̃≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðra − rhÞ=rh

p
and

β̃≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrb − rhÞ=rh
p

) by implicitly assuming that rb − rh is much
larger than the Planck length, as ra − rh ∼OðG̃2

NÞ ≪
rb − rh ∼Oðl0pÞ. As we will discuss later, it is necessary to
investigate the general island solution for α̃ < β̃, while we use α,
β in the paper.

2It is worth mentioning that there also exists an island solution
in the large dimension case n → ∞ if assuming α ∼ β=n [differing
from the solution (3.17) under the assumption α ≪ β=n for
any n ≥ 1]. In this case, we can assume nα

β ¼ λ ∼Oð1Þ, thus
ð1 − α

βÞ−ðnþ2Þ ¼ ð1 − λ
nÞ−ðnþ2Þ ≃ eλ in the limit n → ∞. Then by

solving Eq. (3.15), two branches of real number solutions can be
found, i.e., α1 ≃ − β

nProductlog½− 1
X� and α2 ≃ − β

n Productlog
½−1;− 1

X�, where X is a real value defined in (3.21). In this case,
SR reaches its local minimum and local maximum at α1 and α2,
respectively; thus the island solution is given by α1 (which are
valid for n → ∞ while α ∼ β=n). Meanwhile the existence of this
real number solution requires the constraint X > e, which is in
keeping with the constraint (3.23) as Xc → e for n → ∞.
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case in Ref. [29]. Motivated by this consideration, we
reanalyze Eq. (3.15) with α < β ≪ 1, which can be equiv-
alently written as

xð1 − xÞnþ2 ¼ cκDnnþ2

2nβnþ3

�
rh
lp

�
nþ1

¼ 1

ðnþ 3ÞX ; ð3:20Þ

where we define x≡ α=β ∈ ð0; 1Þ and

X ¼ X

�
n; c; β;

rh
lp

�
≡

2nβnþ3

�
rh
lp

�
nþ1

cκDðnþ 3Þnnþ2
: ð3:21Þ

The existence of the island solution for general α < β ≪
1 can be easily confirmed (see the Fig. 3). In the interval
x ∈ ð0; 1Þ, one can find the function y ¼ xð1 − xÞnþ2 is
monotonically increasing with x in the interval ð0; xcÞ and
monotonically decreasing with x in the interval ðxc; 1Þ. A
local maximum of function y can be found as

yc ¼
ðnþ 2Þnþ2

ðnþ 3Þnþ3
; at xc ¼

1

nþ 3
: ð3:22Þ

And the constraint y0 < yc is required to make sure the
existence of the island solution for this situation, i.e.,

X >

�
1þ 1

nþ 2

�
nþ2 ≡ Xc; ð3:23Þ

where Xc has a finite range as 64=27 ≤ Xc < e for any
n ≥ 1. The constraint (3.18) obtained by assuming α ≪
β=n only reflects the limited behavior of the constraint
(3.23), as

X ≫ Xc >
2ðnþ 1Þ
nþ 3

≥ 1; ð3:24Þ

for any n ≥ 1. And the result (3.17) only represents a
special class of solutions subject to the condition

X ≫ Xc > 1, i.e., y0 → 0 (see the Fig. 3). We will discuss
the constraint (3.23) in more details in next section.
Once the constraint (3.23) is satisfied, two solutions x1

and x2 (where x1 < xc < x2) can be found for x ∈ ð0; 1Þ.
The entanglement entropy SR reaches its local minimum
and local maximum at x1 and x2, respectively. The island
solution is exactly given by x ¼ x1, whose exact value is
determined by the value of y0. Therefore, we confirm the
existence of the island solution for general case α < β ≪ 1
satisfying X > Xc, where we have

0 <
α

β
< xc ¼

1

nþ 3
and

α

β
¼

(
1

ðnþ3ÞX−ðnþ2Þ ; for X ≫ Xc

1
nþ3

; for X → Xc

; ð3:25Þ

by considering the solution (3.17). However, it is hard to
give a general analytical expression of the island solution
for α < β ≪ 1. Note if we take X ¼ Xc, x1 and x2 will meet
at x ¼ xc, then there would be no local minimum for SR at
x1, and SR will monotonically decrease with x for
x ∈ ð0; 1Þ; thus, there is no nontrivial island solution and
SR will also monotonically decrease with x if X < Xc (see
the Fig. 4), without nontrivial island solution. This analysis
is essentially the same as in Ref. [29] for D ¼ 4 case, here
we generalize it to higher dimensions.

IV. UNITARY CONSTRAINTS IN THE PRESENCE
OF ISLAND

The constraint (3.23) is the significant point in the paper,
as it can be understood as an unitary constraint from the
presence of the island in semiclassical gravity. The con-
straint (3.23) is equal to

βnþ3

�
rh
lp

�
nþ1

>
cκDðnþ 3Þnnþ2Xc

2n
≡ c · χ; ð4:1Þ

where χ ≡ κDðnþ 3Þnnþ2Xc=2n, which is dependent on
the spacetime dimension (see the value of dimensionally
dependent constant κD in Ref. [57]). Remember this result

FIG. 3. Island solution for the general case α < β ≪ 1, where y0 ¼ 1=½ðnþ 3ÞX�. (a) For odd n and (b) for even n.
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is only valid for the situation β ≪ 1, and our following
discussions are limited to this situation. There are some
aspects from the constraint (4.1) in this situation as shown
in the following:

(i) Constraint on rh when n, c, and β are fixed
From the constraint (4.1), for fixed n, c, and β, we

can obtain

rh
lp

>
ðc · χÞ 1

nþ1

β
nþ3
nþ1

≫ ðc · χÞ 1
nþ1; ð4:2Þ

which is valid for β ≪ 1. We substituted the condition
β ≪ 1 into the inequality in order to show a general
result in this situation, i.e., rh=lp ≫ ðc · χÞ 1

nþ1, and we
allow the value of rh=lp can be varied. The above
constraint can not hold for the black hole whose size
satisfying rh=lp ∼ ðc · χÞ 1

nþ1. For such black holes,
there would be no consistent island solution and thus,
no well-behaved Page curve for the situation β ≪ 1.
The constraint rh=lp ≫ ðc · χÞ 1

nþ1 can be regard as a
physical constraint on the size of the black hole
implied by the existence of the island in situation
β ≪ 1, in order to recover unitarity in this situation.
One may wonder whether ðc · χÞ 1

nþ1 represents a strict
and universal lower bound on the value of rh=lp for
any β > 0; however, it is not clear so far. As it
requires to concretely calculate the entanglement
entropy and give the complete constraint by the
existence of the island solution for any β > 0, which
would be complicated. In Refs. [41–44], an explosive
behavior of the entropy curve for small black holes
(with rh → 0) inD ¼ 4 dimensions has been noticed,
when the inner boundary of radiation region was far
from the horizon, i.e., β ≫ 1. These prompt us to
investigate whether there is a strict and universal

lower bound on the size of the black hole implied by
the existence of the island for any β > 0.

(ii) Constraint on rh when c and β are fixed but n → ∞
We note that the value of ðc · χÞ 1

nþ1 in (4.2) will
increase with the spacetime dimension. If we con-
sider the large dimension case and utilize the

approximation κD ¼ Γ
h
nþ1
2

i
=ð2nþ5πðnþ1Þ=2Þ [57] in

large dimensions, where D ¼ dþ 1 ¼ nþ 3. For
finite c and n → ∞, we find

rh
lp

≫ ðc · χÞ1n → n3=2ffiffiffiffiffiffiffiffiffiffi
32πe

p : ð4:3Þ

This constraint for large dimension black holes is
exactly in agreement with the constraint found in
Ref. [60] as rh

lp
≳ n3=2, which was mainly motivated

by the requirement of unitarity that the scrambling
time should not exceed the evaporating time of the
semiclassical black holes in large dimensions. As we
discussed before, the existence of the island in
situation β ≪ 1 provides the constraint rh=lp ≫
ðc · χÞ 1

nþ1, but it does not mean ðc · χÞ 1
nþ1 is a strict

and universal lower bound on rh=lp for any β > 0. It
would be interesting to further investigate why our
constraint gives the consistent bound as in Ref. [60]
for large dimension black holes, which may help
figure out whether ðc · χÞ 1

nþ1lp represents a strict and
universal lower bound on the size of black holes for
any β > 0.

Note that our result (4.3) is much tighter than that
of Ref. [60]. A possible interpretation is that the black
hole with the size rh=lp ∼ ðc · χÞ 1

nþ1 in (4.2) has the
manifest quantum gravity effects, where the near-
horizon semiclassical approximation is invalid. As it
will be clear in the last point that the constraint (4.1)

FIG. 4. The entropy curve of SR with respect to x ¼ α=β for X > Xc and X ≤ Xc, where SR → −∞ for x → 1 (i.e., α → β) by
formula (3.14). (a) X > Xc and (b) X ≤ Xc.

DU, GAN, SHU, and SUN PHYS. REV. D 107, 026005 (2023)

026005-6



can indeed be regarded as a semiclassical constraint
to make sure the validity of semiclassical approxi-
mation for situation β ≪ 1. It indicates that the
quantum-gravity effects of the large-dimension black
holes would be obvious at a much larger scale than
we usually expect in low dimension case, as rh ∼
n3=2lp ≫ lp when n → ∞.

(iii) Constraint on β when n, c, and rh are fixed
From the constraint (4.1), for fixed n, c, and rh,

we can obtain

β > ðc · χÞ 1
nþ3

�
lp
rh

�nþ1
nþ3 ≡ βmin; ð4:4Þ

which can be transformed into rb by the definition
ρb ¼ ðrb=rhÞn ¼ 1þ β2, i.e.,

rb >

��
cκDðnþ 3Þnþ3nnþ2lnþ1

p

2nðnþ 2Þnþ2rnþ1
h

� 2
nþ3 þ 1

�1
n

rh

¼ ðrbÞmin: ð4:5Þ

This puts a lower bound on the position of the inner
boundary of the selected radiation region. Note α=β
will increase monotonically when β is decreasing to
βmin (as y0 is increasing), until α=β → 1=ðnþ 3Þ (as
shown in the Fig. 3). For D ¼ 4 dimension, if
β ¼ βmin, we will obtain

ra ¼ rh þ
ffiffiffiffiffiffiffi
cκ4
54

r
lp and rb ¼ ðrbÞmin

¼ rh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128cκ4
27

r
lp; ð4:6Þ

where the proper distance between the horizon and
the inner boundary of the radiation region is of
order Oð ffiffiffiffiffiffiffiffiffi

rhlp
p Þ [which is much larger than the

Planck scale for the black hole satisfying rh=lp ≫ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128cκ4=27

p
∼Oð1Þ from (4.2)]. We conclude that

ðrbÞmin is an exact solution of Eq. (3.20). Note that
in Ref. [29], a critical value bc [i.e., Eq. (4.3) in
Ref. [29]] was also found for rb in D ¼ 4 dimen-
sion by solving the same equation as Eq. (3.20)
[i.e., Eq. (4.2) in Ref. [29]]. Nevertheless, one can
check that bc is not an exact solution of Eq. (3.20)
for D ¼ 4 [by substituting Eq. (4.3) into (4.2) in
Ref. [29]]. Thus ðrbÞmin in Eq. (4.5) takes over the
role of bc and related discussion of Ref. [29] on the
stretched horizon can also be drawn in higher
dimensions.

(iv) Constraint on c (or cG̃N) when n; rh, and β are fixed
Note that we do not assume the semiclassical

approximation clnþ1
p =rnþ1

h ≪ 1 that was usually
assumed when solving the equation. Instead, we

can infer this condition from the constraint (4.1) for
the situation β ≪ 1. For fixed n; rh, and β, we can
obtain

clnþ1
p

rnþ1
h

<
2nβnþ3

κDðnþ 3Þnnþ2Xc
≪

2n

κDðnþ 3Þnnþ2Xc
¼ 1

χ
:

ð4:7Þ

Again we substituted the condition β ≪ 1 into the
inequality in order to show a general result in this
situation, i.e., clnþ1

p =rnþ1
h ≪ 1=χ. Let us see the first

inequality in (4.7), it will be tighter than the condition
clnþ1

p =rnþ1
h ≪ 1 due to the extremely tiny factor βnþ3

for finite n. Or namely, profiting by the constraint
(4.7), a sufficiently small β ≪ 1 will ensure the
semiclassical approximation clnþ1

p =rnþ1
h ≪ 1. This

indicates that the constraint (4.1) can be regarded as a
semiclassical constraint for the situation β ≪ 1.
Moreover, the constraint (4.7) becomes tighter in
higher dimensions as 1=χ will decrease sharply when
n is increasing, and clnþ1

p =rnþ1
h ≪ 1=χ ≪ 1 for

n → ∞. It is interesting that this large dimension
behavior will be obviously different from our usual
expectation clnþ1

p =rnþ1
h ≪ 1 in lower dimensions.

The constraint clnþ1
p =rnþ1

h ≪ 1=χ on the value
of the clnþ1

p (with fixed rh) is required by the
existence of the island in the situation β ≪ 1, where
we allow the value of clnþ1

p can be varied. Once
clnþ1

p =rnþ1
h ∼ 1=χ, there would be no consistent

island solution can be found in this situation. In
Ref. [45], similar conclusion about the existence of
the upper bound on clnþ1

p (or cG̃N) was also drawn
for the Schwarzschild black hole and numerically
checked in two-dimensional generalized dilaton the-
ories, when the inner boundary of the radiation region
was far from the horizon, i.e., β ≫ 1. Here, we give
the β-dependent upper bound of clnþ1

p [i.e., the first
inequality in (4.7)] for situation β ≪ 1, while it is still
not clear whether rnþ1

h =χ represents a strict and
universal upper bound on the value of clnþ1

p for
any β > 0. Remember that this discussion about the
constraint on clnþ1

p is equivalent to the discussion
about the constraint on rh through Eq. (4.1) for
situation β ≪ 1, which encourages us to think about
whether there is also a connection between the result
of Refs. [41–44] and that of Ref. [45] for situa-
tion β ≫ 1.

In summary, the constraint (3.23) shows us some unitary
implications on the size of Schwarzschild black hole, the
position of the inner boundary for the selected radiation
region, or the value of cG̃N for situation β ≪ 1, which
indicates that the above three seemingly different aspects
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(4.2), (4.5), and (4.7) can be attributed to the same origin,
i.e., the unitary constraint (3.23) in semiclassical gravity.
However, it remains to study the situation beyond β ≪ 1,
which may help us reveal more aspects in the presence of
island.

V. PAGE TIME AND SCRAMBLING TIME

Let us evaluate the Page time. For the special case α ≪
β=n ≪ 1 with the existence of an island, the corresponding
island solution (3.17) can be written as

α ≃
β

ðnþ 3ÞX − ðnþ 2Þ ≃
β

ðnþ 3ÞX ; ð5:1Þ

where we used X ≫ 1 from (3.24) to drop the second term
in the denominator, and note that the condition
clnþ1

p =rnþ1
h ≪ 1 is not a sufficient condition to drop that

term. For this special case, the corresponding entanglement
entropy (3.19) can be estimated as

SR ≃ 2SBH

�
1 −

2β2

nðnþ 3Þ
1

X
ðnþ 3ÞX − 1

ðnþ 3ÞX − ðnþ 2Þ
�

≃ 2SBH

�
1 −

2β2

nðnþ 3Þ
1

X

�
≃ 2SBH; ð5:2Þ

where we used X ≫ 1 and β=n ≪ 1. Therefore, for the
special case α ≪ β=n ≪ 1, the Page curve can be repro-
duced and the Page time can be obtained by combining
(3.9) and (5.2), thus,

tPage ≃
3

πc
SBH
Th

: ð5:3Þ

Furthermore, we can show that the approximate result (5.3)
still holds for general case α < β ≪ 1, even without general
analytical expression of the island solution for this case. By
considering the entropy formula (3.14) and using (3.21),
we have

SR ¼ 2SBH

�
1 −

1

X
2β2

nðnþ 3Þ
1

ð1 − α
βÞnþ1

�

> 2SBH

�
1 −

Xc

X
2β2

nðnþ 3Þ
nþ 2

nþ 3

�

> 2SBH

�
1 −

Xc

X
2β2

nðnþ 3Þ
�
≃ 2SBH; ð5:4Þ

where in the first inequality we utilized the fact 0 < α=β <
1=ðnþ 3Þ from (3.25), and in the final approximation, we
used the constraint X > Xc from (3.23) and the condition
β=n ≪ 1. Note that SR < 2SBH by the first equality in
Eq. (5.4); thus, we have the approximate result SR ≃ 2SBH
and the Page time (5.3) still holds for general case
α < β ≪ 1.

Now let us turn to the scrambling time. With the
presence of the island, it was argued that the scrambling
time tscr ðwith tscr ≃ 1

2πTh
log SBH [61,62]) can be estimated

by the traveling time Δt ¼ ta − t0 from ρb to ρa, by
assuming that a lightlike message sent from ρb at t0 to
the island can be instantly reconstructed from the Hawking
radiation once it reaches the boundary of island ρa at
ta ¼ tb. This was supported by the approximate resultΔt ≃
1

2πTh
log SBH obtained in Ref. [17] under the condition

α̃ ≪ β̃ ≪ 1. However, generally we do not obtain this
approximate result for more general case α < β ≪ 1. To
show this, let us calculate the traveling time, i.e.,

Δt ¼ ta − t0 ¼ r�ðρbÞ − r�ðρaÞ ≃
rh
n2

�
β2 − α2 þ 2n log

β

α

�

≃
2rh
n

log
β

α
; ð5:5Þ

where we used (3.3) and omitted the higher order terms of
α, β.
For the special case α ≪ β=n ≪ 1, the constraint X ≫ 1

should be considered, which equivalently requires that

2n

cκDðnþ 3Þnnþ2
·
rnþ1
h

lpnþ1
≫

1

βnþ3
≫ 1: ð5:6Þ

By plugging the solution (5.1) into (5.5), we obtain

Δt ¼ 2rh
n

log ½ðnþ 3ÞX� ¼ 2rh
n

log
2nβnþ3

�
rh
lp

�
nþ1

cκDnnþ2

¼ 2rh
n

�
log

Ωnþ1r
nþ1
h

4lnþ1
p

þ log
2nþ2

cκDnnþ2Ωnþ1

− log
1

βnþ3

�

≃
1

2πTh
log SBH ≃ tscr; ð5:7Þ

where in the first approximation, we ignored the sublead-
ing term of β by using (5.6) and also dropped the finite
terms of n, c (for finite n, c). This happens to give us the
result of the scrambling time at leading order in special
case α ≪ β=n ≪ 1, similarly obtained in Ref. [17] for
α̃ ≪ β̃ ≪ 1.
While for general case α < β ≪ 1, we have no analytical

expression of Δt without general analytical island solution.
But we note that the island solution α=β ¼ x1 is mono-
tonically increasing when β is decreasing for fixed n, c, and
rh (see the Fig. 3). It means the traveling time (5.5) will
monotonically decrease when β decreases. If β → βmin, we
will have α=β → 1=ðnþ 3Þ, meanwhile,

Δt → ðΔtÞmin ¼
2rh
n

logðnþ 3Þ ∼OðrhÞ; ð5:8Þ

DU, GAN, SHU, and SUN PHYS. REV. D 107, 026005 (2023)

026005-8



which becomes obviously smaller than the scrambling time
of order Oðrh logðrh=lpÞÞ for black holes satisfying
rh ≫ lp. Thus, for a general case α < β ≪ 1, we do not
receive the result like the scrambling time, thus Δt ≠ tscr.
Δt is highly dependent on the position of the inner
boundary of the radiation region, where the β-dependent
terms can no longer be ignored for general α < β ≪ 1.
Similar position dependent results of Δt were also obtained
in Refs. [16,19], although the authors considered the case in
which the inner boundary of the radiation region was far
from the horizon of CGHS [63] black holes.

VI. CONCLUSION AND DISCUSSION

In this paper, we redefine a proper near-horizon con-
dition in higher dimensions, which avoids the ill behavior
of a short-distance approximation in large dimensions
under the near-horizon condition adopted in Ref. [17].
The general island solution for α < β ≪ 1 is investigated in
any D ≥ 4 dimension. An analytical island solution (3.17)
is obtained by assuming α ≪ β=n ≪ 1, accompanying
with the constraint (3.18). And the existence of the island
solution for general condition α < β ≪ 1 is also confirmed;
meanwhile, a more general constraint (3.23) is obtained by
the existence of the island solution in this case. We discuss
the constraint (3.23) for situation β ≪ 1 from three equiv-
alent aspects: constraint (4.2) on the size of the black holes,
constraint (4.5) on the position of the inner boundary of the
radiation region, and constraint (4.7) on the value of c · G̃N .
Moreover, the large dimension behavior of constraint (4.3)
on the size of black hole is in agreement with the constraint
in Ref. [60]. These results are simply required by the
presence of the island in situation β ≪ 1, which can be
understood as the unitary constraints in semiclassical
gravity. The entanglement entropy of the radiation follows
the Page curve, and the Page time is obtained for
α < β ≪ 1, while some doubts about the estimation of
the scrambling time by Δt are raised in this case. For
special case α ≪ β=n ≪ 1, Δt gives the result as the
scrambling time at leading order, i.e., Δt ≃ tscr, as similarly
obtained in Ref. [17] for α̃ ≪ β̃ ≪ 1. However, for general
α < β ≪ 1, we find Δt ≠ tscr generally, and Δt is highly
dependent on position of the inner boundary of the selected
radiation region.
The existence of the constraint (3.23) implied by the

island solution for α < β ≪ 1 is surprising, which reveals
some aspects from the unitarity in semiclassical gravity
once we admit the island formalism. Some implications
are shown in the paper, but much remains to be further
investigated. We expect similar results can be obtained
for other types of black holes, such as dynamical
Schwarzschild black holes and the Reissner-Nordström
black holes and so on. In this paper, we only consider the
situation where the inner boundary of the radiation region
is near the horizon, i.e., β ≪ 1, and the constraint (3.23) is

only valid for this situation. It is possible that there exists a
more general and completed constraint for any β > 0 by
requiring the existence of the island solution. However,
the calculation of the entanglement entropy in generalD ≥
4 dimensional Schwarzschild black hole spacetime for any
β > 0 is still a hard task. One may also consider another
special situation where the inner boundary of radiation
region is chosen to be far from the horizon, i.e. β ≫ 1,
which is not considered in our paper as the results of
Refs. [41–45] strongly indicate that there may also be a
unitary constraint required by the existence of the island
solution for situation β ≫ 1. Moreover, when rh=lp∼
ðc · χÞ 1

nþ1 (or equivalently, clnþ1
p =rnþ1

h ∼ 1=χ), we find no
consistent island solution for situation β ≪ 1, as we think
it has been out of the semiclassical validity. This even
occurs for a large black hole with size rh ∼ n3=2lp ≫ lp in
large dimension limit. The studies of large dimension
gravity may help provide some insights into the future
studies of quantum-gravity effects.
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APPENDIX: SHORT-DISTANCE
APPROXIMATION UNDER ORIGINAL AND NEW

NEAR-HORIZON CONDITION

The island solution in higher dimensional spacetime
has been studied in Ref. [17] when the inner boundary
of the radiation region was chosen to be near the horizon
and the boundary of the island was assumed to be outside
and near the horizon in which the near-horizon condition
was defined by α̃ < β̃ ≪ 1 with parameters α̃≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðra − rhÞ=rh
p

> 0 and β̃≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrb − rhÞ=rh
p

> 0, thus
β̃ − α̃ < β̃ ≪ 1. However, we would like to point out that
this near-horizon condition is not sufficient if one wants
to simultaneously take a well-behaved short-distance
approximation in large dimension case when applying
the formula (2.3).
In any high dimension D ¼ nþ 3 ≥ 4, n can also be

treated as a variable and we need be careful when taking
short-distance approximation under the original near-
horizon condition β̃ − α̃ < β̃ ≪ 1. To see the subtleties,
we look at the geodesic distance and take the expansions
for small α̃, β̃ (α̃ is at most the order of β̃), thus,
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L ¼
Z

rb

ra

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
rh
r

�
n

s

¼ rhffiffiffi
n

p
�
2ðβ̃ − α̃Þ þ 1

6
ðnþ 1Þðβ̃3 − α̃3Þ

þ 1

240
ðnþ 1Þðn − 7Þðβ̃5 − α̃5Þ þ � � �

�

¼ 2rhðβ̃ − α̃Þffiffiffi
n

p ð1þOðnβ̃2ÞÞ; ðA1Þ

where “…” are the higher order terms, and in the last
equality, we used n ≫ 1 to specify the order in large
dimensions. Note that when n is very large, a tighter
condition β̃ ≪ 1=

ffiffiffi
n

p
(or nβ̃2 ≪ 1) is required in order to

effectively approximate L by the first order term of α̃, β̃.
This requires a much stronger constraint than the con-
dition β̃ ≪ 1 if n → ∞. The short-distance approximation
used in Ref. [17], i.e., L ≃ 2rhðβ̃ − α̃Þ= ffiffiffi

n
p

, only behaves
well when the dimension is far below a critical dimension
nc ¼ 1=β̃2 with a small but finite β̃. And huge corrections
of order Oðnβ̃2Þ would be required once n ∼ nc, even not
taking n → ∞. This tension between the original near-
horizon condition and the short-distance approximation in
large dimension case is always existing if we take a small
but finite β̃. This short-distance approximation in terms of
small but finite α̃, β̃ is highly constrained by the dimen-
sion, and we need to find a more proper near-horizon
condition which gets rid of this large dimension
constraint.
The above problem can be avoided by using the

coordinate ρ and defining α≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρa − 1

p
> 0 and β≡ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρb − 1
p

> 0, where ρa ¼ ðra=rhÞn and ρb ¼ ðrb=rhÞn.
Also we assume boundary of the island is outside and
near the horizon. And we take α < β ≪ 1 as the new near-
horizon condition with horizon at ρ ¼ 1; thus,
β − α < β ≪ 1. Considering the geodesic distance in

coordinate ρ and taking the expansions for small α, β
(α is at most the order of β), i.e.,

L ¼
Z

rb

ra

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
rh
r

�
n

s ¼
Z

ρb

ρa

rhρ
1
ndρ

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðρ − 1Þp

¼ rh
n4

�
2n3ðβ − αÞ − 1

3
n2ðn − 2Þðβ3 − α3Þ

þ 1

20
nðn − 2Þð3n − 2Þðβ5 − α5Þ þ � � �

�

¼ 2rhðβ − αÞ
n

ð1þOðβ2ÞÞ; ðA2Þ

where “…” represent the higher order terms, and in the last
equality, we used n ≫ 1 to specify the order in large
dimensions. One can see the condition β ≪ 1 is sufficient
to ensure the validity of taking the first-order approxima-
tion of small but finite α, β, even in the large dimension
limit n → ∞ since ρ

1
n → 1 as n → ∞ for finite ρ, which

guarantees that each term in (A2) has the same order of n.
Therefore, this new near-horizon condition can help us
remove the tension with the short-distance approximation
in the large dimension case so that we are able to estimate
L by the first order term of α, β in any higher dimension.
By definition, we have β̃ ¼ βffiffi

n
p ð1þOðβ2ÞÞ (where we still

use n ≫ 1 to specify the order in large dimensions) for
β ≪ 1; it turns out that the condition β ≪ 1 is equal to the
condition β̃ ≪ 1=

ffiffiffi
n

p
for finite n. But in order to properly

reproduce the large dimension behavior, it is more proper
to adopt condition β ≪ 1, where we take a small but finite
β (thus, nβ̃2 ≃ β2 ≪ 1 is always satisfied), which avoids
the problem when we take a small but finite β̃ in large
dimension n ∼ nc (as nβ̃

2 ∼ 1, for which the higher order
correction can not be ignored). Then it allows us to omit
the higher order terms in (A1) or (A2) in any high
dimension and back to Sec. III B.
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