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In classical Bianchi I spacetimes, underlying conditions for what dictates the singularity structure—
whether it is anisotropic shear or energy density, can be easily determined from the generalized Friedmann
equation. However, in nonsingular bouncing anisotropic models these insights are difficult to obtain in the
quantum gravity regime where the singularity is resolved at a nonvanishing mean volume which can be
large compared to the Planck volume, depending on the initial conditions. Such nonsingular models may
also lack a generalized Friedmann equation making the task even more difficult. We address this problem
in an effective spacetime description of loop quantum cosmology (LQC) where energy density and
anisotropic shear are universally bounded due to quantum geometry effects, but a generalized Friedmann
equation has been difficult to derive due to the underlying complexity. Performing extensive numerical
simulations of effective Hamiltonian dynamics, we bring to light a surprising, seemingly universal
relationship between energy density and anisotropic shear at the bounce in LQC. For a variety of initial
conditions for a massless scalar field, an inflationary potential, and two types of ekpyrotic potentials we
find that the values of energy density and the anisotropic shear at the quantum bounce follow a novel
parabolic relationship which reveals some surprising results about the anisotropic nature of the bounce,
such as that the maximum value of the anisotropic shear at the bounce is reached when the energy density
reaches approximately half of its maximum allowed value. The relationship we find can prove very useful
for developing our understanding of the degree of anisotropy of the bounce, isotropization of the
postbounce universe, and discovering the modified generalized Friedmann equation in Bianchi I models
with quantum gravity corrections.
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I. INTRODUCTION

The Bianchi I spacetime serves as a simple yet phe-
nomenologically rich framework to understand the impor-
tance of anisotropies in the very early Universe. For perfect
fluids and matter content such as massive scalar fields with
energy density ρ and pressure Pwhich the satisfy equation
of state w ¼ P=ρ < 1, anisotropies dictate the dynamics
close to the classical singularity and its geometrical shape,
which is generally a cigarlike singularity. For stiff matter,
or a massless scalar field, the approach to singularity with
some fine tuning can be isotropic (or pointlike) but a
cigarlike singularity remains prevalant [1,2]. It is only
when one considers a matter content allowing w > 1, such

as in ekpyrotic scenarios [3–6], that a more probable
isotropization of the spacetime structure near the singu-
larity can happen. These insights are easily accessible via
the availability of a generalized Friedmann equation in the
classical Bianchi I spacetime which relates the expansion
scalar to anisotropic shear and energy density [7]. But
the classical theory is incomplete due to the presence of
singularities and it has been long expected that the latter
would be resolved by quantum gravity. An important
question is how does the new physics responsible for
singularity resolution change the interplay between aniso-
tropic shear and energy density? To resolve the singularity,
such a modified theory of gravity must tame the diver-
gences in anisotropic shear and energy density, and as a
result the spacetime curvature. Given that a generalized
Friedmann equation with quantum gravity corrections may
no longer be available in such a setting and the singularity
may be resolved via a bounce at a nonvanishing mean
volume, insights from classical theory have a limited
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validity. Certainly one can not expect that the geometrical
nature of the bounce would be the same as that of the to-be
singularity in the classical theory for a given equation of
state. Another way to state this issue is to ask that if in a
nonsingular anisotropic model, a bounce occurs at a
nonzero scale factor for some given matter content, how
anisotropic or isotropic is the bounce?
The goal of this paper is to answer these questions in the

setting of loop quantum cosmology (LQC) [8] which is
based on using techniques of nonperturbative quantization
of gravity as understood in loop quantum gravity (LQG).
The main result of LQC is the resolution of the big bang
singularity which is replaced by a quantum bounce in the
Planck regime [9–11], a prediction which has been tested
for a wide variety of states using high performance
computing [12–16]. For a spatially-flat isotropic model
sourced with a massless scalar field, an exactly soluble
model shows that expectation values of the energy density
operator have a universal maximum value fixed by the area
gap in quantum geometry [17]. Further, the probability of
bounce in consistent histories formalism turns out to be
unity [18]. A fair amount of work has been done to
understand the Bianchi I model in LQC in recent years
which can be summarized as follows. Loop quantization of
the Bianchi I model results in a quantum difference equation
[19,20] as in isotropic models and it has been shown
through extensive numerical simulations that the quantum
dynamics of the Bianchi I model can be extremely well
captured by an effective continuum spacetime description
[15]. Moreover, it has been shown that the energy density
and the shear scalar are bounded from above in this effective
spacetime [21,22]. An analysis of singularities shows that
the effective Bianchi I spacetime is generically devoid of
any strong curvature spacetime singularities [23], a result
also valid for Bianchi II [24] and Bianchi IX spacetimes
[25]. Numerical investigations show that the quantum
bounce is accompanied by certain specific Kasner transi-
tions in the effective Bianchi I spacetime [26–28]. It
has been further demonstrated that a viable nonsingular
inflationary model can be constructed starting from highly-
anisotropic initial conditions in Bianchi I effective space-
time [29,30]. With the assumption that anisotropies are
small at the bounce, imprint on cosmological perturbations
in the effective Bianchi I spacetime for inflationary models
has been studied [31]. The Bianchi I model in LQC has also
been studied for ekpyrotic potentials and it has been shown
that singularity can be resolved with bounded anisotropies
[32]. Finally, ongoing work on Gowdy models aims to
include Fock quantized inhomogenities in a loopy Bianchi I
setting (see Ref. [33] for a review).
Despite this progress for understanding quantum geo-

metric effects in Bianchi I model in LQC, some important
questions have remained open. Let us note that in LQC it is
the gravitational part of the Hamiltonian constraint which is

modified, and in isotropic models of LQC, quantum gravity
effects from geometrical part of the effective Hamiltonian
can be translated to the modifications of energy density to
result in a modified Friedmann equation which captures
quantum evolution and nonsingular bounce quite accurately
[10,34]. But, this exercise to transfer quantum geometric
modifications in gravitational side to matter side quickly
becomes complicated in more general models. As discussed
in Sec. III, such an equation has been difficult to derive in
anisotropic models from the effective Hamiltonian con-
straint due to underlying complexity. As a result, while the
availability of a generalized Friedmann equation in the
classical regime aids in understanding of the interplay
between the energy density and anisotropic shear, no such
equation is yet known for the effective spacetimes in
anisotropic models in LQC. As a result, there are few
analytical insights on the way quantum geometry affects
energy density and shear in the Planck regime and any
relationship between them is cloaked. So far it is only
known that the anisotropic shear scalar as well as the energy
density of the matter content are universally bounded in the
Planck regime but in the anisotropic model the energy
density and shear in general never reach these values
because they both contribute to the spacetime curvature.
The complicated form of the equations of motion in the
effective spacetime do not lend themselves easily to a
qualitative analysis. Taking cue from the fact that numerical
simulations have in the recent past been key to uncovering
the rich phenomenology of the effective Bianchi I spacetime
in the quantum regime, we employ extensive numerical
simulations in this work and uncover a surprisingly simple
relationship between the energy density and the shear scalar
at the bounce.
We perform a large number of simulations with initial

conditions chosen randomly from a given range, we note
the value of the energy density and shear scalar at the
bounce in each case. Such a computationally-heavy
approach is necessitated in this case as the overall trend
cannot be discerned from the data of only a few simu-
lations. A set of more than 150 such simulations is
performed for each different scalar field potential we
consider in this manuscript. The fields considered here
are the massless scalar field, the massive scalar field with
quadratic potential and two types of ekpyrotic fields. The
quadratic potential is the simplest case of a matter field
with a potential and is also extensively used in studies
involving inflation. The ekpyrotic fields, though originally
introduced in the context of string theory [3,4], are often
used in matter-ekpyrotic alternatives to inflation where a
dust-dominated contracting regime produces a scale invari-
ant spectrum while the ekpyrotic field becomes important
near the bounce to guard against the anisotropic Belinski-
Khalatnikov-Lifshitz (BKL) instability [4,6,32,35–37]. We
consider two different ekpyrotic potentials, the original
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form introduced in [3] and a closely related form often
employed in matter-bounce scenarios [6].
Examining the data for various distinct choices of the

matter fields, we find that there exists a so far unknown
parabolic relationship between the energy density and the
shear scalar at the bounce for each type of matter field.
Availability of such a relationship is a priori unobvious if
one considers only a few simulations as is generally the
case so far in LQC. And, this simple parabolic relationship
at the bounce is in a stark contrast to the complicated
expressions for the equations of motion and other physical
quantities in the effective dynamics which would have been
very difficult to guess from the dynamical equations of
effective spacetime without performing simulations with
extensive initial conditions. Moreover, the fit parameters
seem to depend weakly on the choice of the matter field,
indicating that the parabolic relationship at the bounce may
be a feature of the underlying effective dynamics of the
Bianchi I model in LQC. We discuss some implications of
this parabolic relationship at the bounce on the generalized
effective Friedmann equation. An unexpected finding is
that the anisotropic shear at the bounce σ2b takes its
maximum allowed value in LQC approximately when
energy density at the bounce ρb reaches half of its
maximum value. We also find that earlier approximations
to the generalized effective Friedmann equation [38],
derived with the assumptions of low anisotropies, are
disfavored by our numerical results. This is expected as
we find from our numerical simulations that on average, the
anisotropic shear dominates the isotropic energy density at
the bounce. We provide a general form for the generalized
effective Friedmann equation which is consistent with our
results. We note that much further exploration is required to
probe the nature of dynamics in the quantum regime, and
hope that our result can provide a crucial stepping stone
in that direction. While our analysis is restricted to LQC,
our methodology can be easily applied to other bouncing
models and we hope that results presented here would yield
insights on the degree of anisotropy of bounce in a more
general setting.
This manuscript is organized as follows. Section II

provides a brief summary of the classical dynamics of the
Bianchi I model using Ashtekar-Barbero variables. This is
followed by Sec. III discussing the essential features of
the effective dynamics of the Bianchi I model in LQC,
including the effective equations of motion we use for
numerical simulations. The results of numerical simula-
tions with a variety of initial conditions and different
matter fields are described in Sec. IV. Note that in this
section all values are in Planck units. In Sec. V we use
results from numerical simulations to develop some
insights on the form of the modified Friedmann equation
in Bianchi I model in LQC. We summarize our conclusions
in Sec. VI.

II. CLASSICAL SETTING OF THE BIANCHI I
SPACETIME

In this section we discuss some of the classical aspects of
the Bianchi I spacetime in the canonical framework using
Ashtekar-Barbero variables. We consider the diagonal
Bianchi I spacetime with foliation Σ ×R where Σ is a
spatially-flat hyperspace with R3 topology. Taking the
lapse as N ¼ 1, the line element of the spacetime in
comoving coordinates is given by

ds2 ¼ −dt2 þ a21dx
2 þ a22dy

2 þ a23dz
2; ð1Þ

where a1ðtÞ, a2ðtÞ, and a3ðtÞ are the directional scale
factors. Due to the underlying symmetries of the spacetime,
once we impose the Gauss and the spatial-diffeomorphism
constraints, the Ashtekar-Barbero connection Ai

a and the
triads Ea

i have only one independent component per spatial
direction. The symmetry reduced connections ci and triads
pj satisfy the following Poisson brackets

fci; pjg ¼ 8πGγδij; ð2Þ

where γ is the Barbero-Immirizi parameter. For numerical
simulations we will fix its value as γ ¼ 0.2375 using
black hole thermodynamics in LQG. In terms of the
symmetry reduced Ashtekar-Barbero variables, the classical
Hamiltonian constraint for Bianchi I spacetimewith a matter
content minimally coupled to gravity is given by1

Hcl ¼ −
1

8πGγ2v
ðc1p1c2p2 þ cyclic termsÞ þHm: ð3Þ

Here Hm denotes the matter Hamiltonian and v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p ¼ a1a2a3 is the physical volume of a unit
comoving cell.2 With all other constraints fixed, and the
lapse equal to unity, the Hamiltonian is given by the above
expression.
While the triads are kinematically related to the direc-

tional scale factors as

p1 ¼ a2a3; p2 ¼ a1a3; p3 ¼ a1a2; ð4Þ

the directional connection components are determined via
Hamilton’s equations as ci ¼ γ _ai. The Hamilton’s equa-
tions can be computed as

1The directional triad can have positive and negative orienta-
tion. We assume the orientation to be positive.

2In noncompact models in LQC, one introduces a fiducial cell
to define symplectic structure whose coordinate lengths enter the
relation between triads and scale factors. We assume the
coordinate lengths of this fiducial cell to be unity.
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_pi ¼ fpi;Hclg ¼ −8πGγ
∂Hcl

∂ci
;

_ci ¼ fci;Hclg ¼ 8πGγ
∂Hcl

∂pi
: ð5Þ

In this work, we consider the case where matter is a
perfect fluid with equation of state w ¼ P=ρ where ρ ¼
Hm=v and P ¼ −∂Hm=∂v denote the energy density and
pressure of the perfect fluid respectively. The Hamilton’s
equations of motion yield the following evolution equations
for the directional Hubble rates,

H1H2 þH2H3 þH3H1 ¼ 8πGρ; ð6Þ

and similarly

_H2 þ _H3 þH2
1 þH2

2 þH2
3 ¼ −8πGP;

and its cyclic permutations; ð7Þ

The directional Hubble rates Hi are given by

H1 ¼
_a1
a1

¼ 1

2

�
_p2

p2

þ _p3

p3

−
_p1

p1

�
; ð8Þ

and similarly for H2 and H3.
An important measure of the anisotropy of the spacetime

is the shear scalar, which is defined as σ2 ¼ σijσij where σij
is the anisotropic shear tensor. The anisotropic shear is the
traceless part of the expansion tensor θαβ given by the
covariant derivative of the unit fluid velocity, and takes a
diagonal form σij ¼ diagðσ1; σ2; σ3Þ for the diagonal
Bianchi I spacetime. The diagonal components are given
as σi ¼ Hi − 1

3
θ where θ is the trace of the expansion tensor

θ ¼ H1 þH2 þH3 ¼ 3H ð9Þ

andH is the mean Hubble rate. The shear scalar is given by

σ2 ¼
X
i

σ2i ¼
1

3
ððH1 −H2Þ2þðH2 −H3Þ2þðH3−H1Þ2Þ:

ð10Þ

Note that above relations of expansion scalar and shear to
Hubble rates are kinematical relations which do not depend
on whether the underlying theory is GR or LQC.
The dynamical equations for matter with vanishing

anisotropic stress imply that ðHi −HjÞ ¼ αij=a3 where
a≡ ða1a2a3Þ1=3 is the mean scale factor and αij are
constants. The shear scalar can thus be written as

σ2 ¼ 6
Σ2

a6
; ð11Þ

where Σ2 ¼ ðα212 þ α223 þ α231Þ=18 is a constant of motion
in the classical theory. Using the shear scalar and the mean
Hubble rate H, evolution equations for directional Hubble
rates can be recasted as the following generalized
Friedmann and Raychaudhuri equations:

H2 ¼ 8πGρ
3

þ σ2

6
; ð12Þ

_H ¼ −
1

2

�
8πGðρþ PÞ þ 3σ2

2

�
: ð13Þ

The generalized Friedmann equation shows the way aniso-
tropic shear can be understood at the same level of matter
energy density to understand the expansion rate of the
Universe. Note that this involved expressing directional
Hubble rates appearing on the left hand side of (6) in terms
of the anisotropic shear on the right hand side of (12). While
classically this is possible due to a simple form the
Hamiltonian constraint or equivalently (6), it is not guaran-
teed to occur when the Hamiltonian constraint gets on-trivial
modifications as in LQC.
The availability of the generalized Friedmann equation

aids greatly in analyzing and understanding the dynamics
of the universe. For example, let us note that the energy
density and pressure satisfy the conservation law,

_ρþ 3Hðρþ PÞ ¼ 0 ð14Þ

which implies ρ ∝ a−3ð1þwÞ for a constant equation of state.
Since the shear scalar scales as a−6, it grows faster than any
perfect fluid with equation of state w < 1 on approach to
singularity. If one considers a stiff matter which has
equation of state w ¼ 1, or equivalently a massless scalar,
there is a competition between the anisotropic shear and the
energy density in dictating the dynamics. Yet, the structure
of the spacetime near the singularity is not isotropic but
generally anisotropic in the sense that the approach to the
singularity favors a cigarlike singularity [1]. Thus, the
contribution of anisotropies in the generalized Friedmann
equation is likely to dominate over the energy density in
the regime when volume is small and equation of state is
w ≤ 1. For this reason, anisotropies are expected to play an
important role in the very early Universe. However, if one
has matter content which satisfies w > 1, such as for a
scalar field in a negative potential in ekpyrotic scenarios
[3,4,6], then we can easily see from (12) that the energy
density plays a dominant role near the singularities and
effects of anisotropic shear can be dampened under right
conditions.

III. EFFECTIVE DYNAMICS OF THE BIANCHI
I MODEL IN LQC

LQC applies the concepts and methods from LQG to
symmetry reduced cosmological models. The quantization
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in this approach is based on the holonomies of the connection and the fluxes of the triads as the basic variables. Often, a
continuum effective description can be found in LQC, which has been shown to faithfully approximate the quantum
dynamics of a wide variety of quantum states for various models such as the isotropic model [12–14], and in particular for
Bianchi I model [15,16]. In this work, we rely on this effective description of the loop quantized Bianchi I model. The
effective Hamiltonian for the Bianchi I model for lapse N ¼ 1 is given by [19,32,38]

H ¼ −
1

8πGγ2v

�
sinðμ̄1c1Þ

μ̄1

sinðμ̄1c2Þ
μ̄2

p1p2 þ cyclic terms

�
þHm

¼ −
v

8πGγ2λ2
ðsinðμ̄1c1Þ sinðμ̄1c2Þ þ cyclic termsÞ þHm; ð15Þ

where λ ¼ ffiffiffiffi
Δ

p
with Δ ¼ 4

ffiffiffi
3

p
πγl2

Pl. The holonomy edge lengths are given by

μ̄1 ¼ λ

ffiffiffiffiffiffiffiffiffiffi
p1

p2p3

r
; μ̄2 ¼ λ

ffiffiffiffiffiffiffiffiffiffi
p2

p3p1

r
; μ̄3 ¼ λ

ffiffiffiffiffiffiffiffiffiffi
p3

p1p2

r
: ð16Þ

While modified generalized Friedmann and Raychaudhuri equations are not known for the Bianchi I model in LQC, the
effective Hamiltonian given in (15) determines the dynamics of the spacetime through the triad and connection variables.
The equations of motion can be determined using the fundamental Poisson bracket (2) as follows:

_p1 ¼
p1

γλ
ðsinðμ2c2Þ þ sinðμ̄3c3ÞÞ cosðμ̄1c1Þ; ð17Þ

_c1 ¼
V

2γλ2p1

½c2μ2 cosðμ̄2c2Þðsinðμ̄3c3Þ þ sinðμ̄1c1ÞÞ þ c3μ̄3 cosðμ̄3c3Þðsinðμ̄1c1Þ þ sinðμ̄2c2ÞÞ

− c1μ̄1 cosðμ̄1c1Þðsinðμ̄2c2Þ þ sinðμ̄3c3ÞÞ − ðsinðμ̄1c1Þ sinðμ̄2c2Þ þ sinðμ̄2c2Þ sinðμ̄3c3Þ þ sinðμ̄3c3Þ sinðμ̄1c1ÞÞ�

þ 8πGγ
∂Hm

∂p1

; ð18Þ

with similar equations for the other triad and connection components. From the vanishing of the Hamiltonian constraint, we
can also obtain the following expression for the energy density:

ρ ¼ 1

8πGγ2λ2
ðsinðμ̄1c1Þ sinðμ̄2c2Þ þ sinðμ̄2c2Þ sinðμ̄3c3Þ þ sinðμ̄1c1Þ sinðμ̄3c3ÞÞ; ð19Þ

which is bounded as opposed to the divergent behavior of ρ in the classical case. The upper bound on energy density turns
out to be

ρ ≤ ρmax ¼
3

8πGγ2λ2
≈ 0.41ρPl ð20Þ

which is the same as the upper bound on energy density in LQC of the isotropic model [11,34].
From the equations of motion for triads, and using (8) we can obtain the directional Hubble rates in effective dynamics as

H1 ¼
_a1
a1

¼ 1

2γλ
ðsinðμ1c1 − μ̄2c2Þ þ sinðμ̄1c1 − μ̄3c3Þ þ sinðμ̄2c2 þ μ̄3c3ÞÞ ð21Þ

with similar equations for H2 and H3. It is clear from this equation that unlike in the classical case, the Hubble rates are
bounded in the effective LQC dynamics. We can use these to evaluate the shear scalar,
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σ2 ¼ 1

3
ððH1 −H2Þ2 þ ðH2 −H3Þ2 þ ðH3 −H1Þ2Þ

¼ 1

3γ2λ2
½ðcosðμ̄3c3Þðsinðμ̄1c1Þ þ sinðμ̄2c2ÞÞ − cosðμ̄2c2Þðsinðμ̄1c1Þ þ sinðμ̄3c3ÞÞÞ2

þ ðcosðμ̄3c3Þðsinðμ̄1c1Þ þ sinðμ̄2c2ÞÞ − cosðμ̄1c1Þðsinðμ̄2c2Þ þ sinðμ̄3c3ÞÞÞ2
þ ðcosðμ̄2c2Þðsinðμ̄3c3Þ þ sinðμ̄2c2ÞÞ − cosðμ̄1c1Þðsinðμ̄2c2Þ þ sinðμ̄3c3ÞÞÞ2�: ð22Þ

It is important to note that unlike classical theory, the shear
scalar is bounded by a universal value in LQC [21]. The
maximum anisotropic shear possible in the LQC effective
dynamics is

σ2 ≤ σ2max ¼
10.125
3γ2λ2

≈ 11.57l−2Pl : ð23Þ

The boundedness of the energy density, Hubble rates and
shear scalar are strong indicators that classical singular-
ities are absent from the effective spacetime. This turns out
to be true and it can be shown that for arbitrary matter,
strong curvature singularities are absent in the effective
spacetime of Bianchi I model in LQC [23]. Moreover,
numerical simulations show that the singularities are
replaced by a bounce which in the case of Bianchi I
spacetimes is accompanied by Kasner transitions in the
geometry of the spacetime [26].
While the existence of the bounce is a generic feature of

Bianchi I LQC as in the isotropic models, there are some
important differences due to anisotropies. Unlike in the
isotropic case, the interplay between the energy density and
the anisotropic shear can result in neither ρ nor σ2 obtaining
their maximum values ρmax and σ2max at the bounce. The
exact values taken by these physical quantities varies from
one set of initial data to another with a priori no simple
governing relation between them. As a result, the question
of how anisotropic is the bounce under a generic set of
initial conditions and the choice of matter has been a
difficult question to answer. This can be answered by
understanding the relationship of energy density and shear
scalar such as the case in the classical model where a
generalized Friedmann equation is available. However,
unlike the isotropic model in LQC, a modified generalized
Friedmann equation has not been possible to obtain for the
Bianchi I model in LQC due to the very complicated
expressions for the equations of motion as shown above and
the form of the Hamiltonian constraint. The lack of a
generalized Friedmann equation is a hindrance to under-
stand details of the dynamics, in particular to gain insights
on the way energy density and anisotropic shear play roles
in singularity resolution. Apart from noting some important
generalities, such as, the energy density, the Hubble rates
and the shear scalar are generically bounded during evo-
lution and the singularities are resolved, it is not possible to

gain physical intuition analytically. Hence, the only possible
resort at present is to perform numerical simulations using
Hamilton’s equations.
We note that any modified generalized Friedmann equa-

tion obtained for Bianchi I model must reduce to Eq. (12) in
the classical limit. Thus it must depend on both ρ and σ2. An
attempt has been made earlier in [38] to obtain a modified
generalized Friedmann equation for Bianchi I model in
LQC in the limit of small anisotropic shear, where an
expression quadratic in both ρ and σ2 is obtained. However,
as we have noted in the previous section, anisotropies are
likely to play a key role near the classical singularities and
are likely to be the dominant contributor to the dynamics
near the quantum bounce where departures from classical
behavior are expected to become significant. Thus, the
approximation of weak anisotropic shear is expected to be
invalid in this regime, which is the main regime of interest,
for which the modified generalized Friedmann equation is
lacking.3 In absence of a modified Friedmann equation in
Bianchi I models in LQC, the only way to understand the
relationship between energy density and shear at the bounce
is via numerical simulations using Hamilton’s equations.
This is the goal of our numerical studies in this paper where
using extensive numerical simulations we uncover surpris-
ingly simple and generic relationship between the energy
density and the shear scalar at the bounce.

IV. NUMERICAL ANALYSIS OF BIANCHI-I
SPACETIME IN LQC

In order to explore the relationship between ρ and σ2 at
the bounce, denoted as ρb and σ2b respectively, we perform
extensive numerical simulations using the effective equa-
tions of motion obtained in the previous section. We also
consider a variety of different matter content to understand
the genericity of relationship between energy density and
shear at the bounce. Since the anisotropic shear always

3It is possible to recast the Hamiltonian constraint in the form
of a “modified Friedmann equation” albeit by changing the
kinematical definition of the shear scalar. For an attempt in this
direction, see Ref. [39], where one defines a “quantum shear”
which has no transparent relation to Hubble rates and also
depends on matter Hamiltonian. As a result, such an equation
can not capture the relation between energy density and aniso-
tropic shear as defined through differences in directional Hubble
rates (10).
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dominates evolution unless the equation of state of matter is
such that w ≥ 1, the interesting cases to understand the
relationship between energy density and anisotropic shear
in the bounce regime are massless scalar field with w ¼ 1,
inflationary potential, which allows regime with w ≈ 1, and
ekpyrotic and ekpyroticlike potentials which allow the
ekpyrosis phase with w ≫ 1. In every simulation, the
initial conditions for gravitational phase space variables
were given for c1, c2, p1, p2, p3, while that of c3 was
determined by imposing the effective Hamiltonian con-
straint H ¼ 0 once the initial conditions for matter content
were specified. These were given either by specifying the

initial value of ϕ and pϕ, or the value of ϕ at some specific
energy density ρ. For the results presented below, 150
simulations were used for each type of matter content, and
the majority of the simulations used randomized initial
conditions from a uniform distribution within the given
ranges: c1; c2 ∈ ½−0.6; 0.6�, ρ ∈ ½0; 0.01�, and ϕ ∈ ½0; 0.4�.
Additionally, the triad components were chosen from a
uniform distribution of integers between 300 and 5000, and
c3 was solved for to ensureH ¼ 0. (All values above and in
the following are in Planck units). These initial conditions
were then used to obtain numerical solution using effective
Hamilton’s equations of motion for the triad and connec-
tion variables (17).

A. Massless scalar field

We begin with the effective dynamics of the Bianchi I
spacetime with a massless scalar field as the matter content.
The matter Hamiltonian in this case is

Hm ¼ p2
ϕ

2v
¼

_ϕ2

2
v; ð24Þ

which using Hamilton’s equations gives pϕ ¼ constant and
P ¼ ρ, so that the equation of state is w ¼ 1. The energy
density ρ ¼ p2

ϕ=2v
2 is proportional to 1=v2. Thus, ρ has

maxima precisely at the minima of v, i.e., at the bounce. We
show a typical example of the numerical evolution in this
case in Figs. 1 and 2. The evolution of the mean scale factor
in effective dynamics in LQC, a in Fig. 1, shows a
nonsingular bounce. Figure 2 shows that energy density
and the shear scalar both peak at the bounce. Note that the
anisotropies dominate the bounce regime in this particular
simulation, as the value of σ2=σ2max is much greater than
ρ=ρmax as seen in Fig. 2. While in this simulation σ2 has a
single peak at the bounce, this does not reflect a generic
behavior since σ2 is not monotonic in mean scale factor a.

FIG. 1. A typical evolution of the directional scale factors for a
universe with a massless scalar field in Bianchi I model of LQC
is shown. All the scale factors undergo a nonsingular bounce.
The approach to bounce in the prebounce epoch is cigarlike
with two scale factors decreasing and one increasing. The
same is true in the postbounce epoch. The initial conditions are
c1 ¼ 0.57112; c2 ¼ 0.09828; p1 ¼ 4130; p2 ¼ 630; p3 ¼ 2745;
ϕ ¼ 0.19234; ρ ¼ 0.00355, and c3 is determined from the van-
ishing of effective Hamiltonian constraint.

FIG. 2. Time evolution of anisotropic shear (left) and energy density (right) for the simulation corresponding to Fig. 1. Unlike classical
theory, anisotropic shear and energy density are bounded in LQC.
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In fact, it is common for σ2 to have an additional peak near
the bounce. Unlike the ekpyrotic and ekpyroticlike cases
considered in later subsections, we only find one bounce
for the massless scalar field in our simulations. This is
expected because, as the universe quickly becomes
classical after the bounce, the classical Friedmann equa-
tion (12) is a good approximation in this regime and a
turnaround in volume can only happen if ρ ¼ −σ2=16πG.
This cannot happen in this case as both σ2 and ρ ¼ p2

ϕ=2v
2

are positive definite. As we will see for other matter
content, this is not necessarily true for all the potentials
we have considered.
So far we discussed only one example simulation of the

Bianchi I model in LQC. We now consider the relationship
between ρ and σ2 at the bounce for the Bianchi I universe
with a massless scalar field for a variety of initial conditions
leading to more than 150 numerical simulations. As
discussed above, the anisotropic shear and energy density
in LQC effective dynamics are bounded above. The results
from our numerical simulations are plotted in Fig. 3. The
values obtained for σ2=σ2max versus ρ=ρmax at the bounce for
various initial conditions for the case of massless scalar
field are shown.
The resulting plot gives us crucial and previously

unknown insights into the behavior of the effective dynam-
ics of the Bianchi I model in LQC in the vicinity of the
bounce. The inverted parabolic relation obtained between
σ2 and ρ at the bounce is surprisingly simple, considering
that a generalized effective Friedmann equation for
Bianchi-I model in LQC is not known. We note that the
ratio σ2b=σ

2
max has maximum value when the ratio ρb=ρmax is

nearly half. Later we will see that the same features are
observed for different potentials. Fitting the equation of a

parabola, where as before ρb denotes bounce density and σ2b
denotes anisotropic shear at the bounce,

σ2b
σ2max

¼ a

�
ρb
ρmax

�
2

þ b

�
ρb
ρmax

�
þ c ð25Þ

to the data in Fig. 3, we find that a ≈ −4.0043; b ≈ 3.8148,
and c ≈ 0.0812.
Note that in contrast to these results from numerical

simulations, the approximate expression for the generalized
effective Friedmann equation derived in [38] under
assumptions of low shear scalar gives a tilted-elliptic curve
in the σ2 versus ρ plane at the bounce which does not match
the data points obtained in Fig. 3. This is because the
assumption of low-shear scalar throughout the evolution
can be severely limiting since the dynamics in Bianchi I is
more likely to be dominated by the shear scalar in the
bounce regime as we have discussed above. In fact, for
the set of initial conditions considered here, we find that the
average values for the anisotropic shear and energy density
at the bounce are σ2 ≈ 6.1415 and ρ ≈ 0.0849, which
implies that on average σ2=σ2max > ρ=ρmax and the aniso-
tropic shear often dominates over the energy density at the
bounce when we consider matter content as a massless
scalar field.
We further note that as a consequence of the parabolic

relation, a larger energy density at the bounce is not always
accompanied by a decrease in the anisotropic shear at the
bounce, and an opposite behavior can also occur. For
example, if as a consequence of changing the initial
conditions, the bounce point moves upwards toward the
peak from the left half of the parabola, then an increase in
both ρ and σ2 will be observed at the bounce. Another
curious feature from Fig. 3 is the occurrence of bounces at
relatively low values of both ρ=ρmax and σ2=σ2max, which lie
on the left side of the parabola. We note that the values of
energy density and shear scalar at these bounces are of the
order of about 1% of the Planckian values and are still very
high compared to the classical limit. An important question
is whether this novel parabolic relationship between the
anisotropic shear and the energy density at the bounce is
robust to change in the matter content. As we show in the
following subsections, this parabolic behavior is obtained
for all the matter fields considered in this manuscript,
indicating that it may be a feature of the dynamics of the
model itself.

B. Inflationary potential

An important question in the inflationary paradigm is the
way inflation onsets in presence of anisotropies. In par-
ticular, whether starting from generic initial conditions for
anisotropic shear there exists an inflationary attractor. In
LQC, this question has been answered earlier where
naturalness of inflation was explored in the Bianchi I
model in LQC [29,30]. For simplicity we consider the case

FIG. 3. The ratio of anisotropic shear at the bounce (σ2b) and the
maximum allowed valued of anisotropic shear is plotted versus
the ratio of energy density at the bounce (ρb) and its maximum
allowed value for various numerical simulations with varying
initial conditions. Each dot represents results from one simulation
with randomized initial conditions.
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of a ϕ2 potential, and the results reported here are expected
to be valid for other inflationary potentials too. It turns out
that near the classical singularity the kinetic-energy term of
the scalar field generally becomes dominant compared
to the potential energy. For this reason, results from the
inflationary potential turn out to be quite similar to the case
of the massless scalar field.
The Hamiltonian for the scalar field in this case is

given by

Hm ¼ p2
ϕ

2v
þ 1

2
m2ϕ2: ð26Þ

Since we are interested in finding qualitative behavior of
bounce we choose for simplicity of numerics m ¼ 0.001.
Using effective dynamical equations a typical evolution of
the directional scale factors and the mean scale factor is
shown in Fig. 4. The bounce being a generic feature of the
dynamics of the effective Bianchi I spacetime, is also found
in this case with a similar behavior for energy density and
anisotropic shear as in the massless case. Similarly to the
massless case, the energy density in this case is also positive
definite. Thus, there is no turning point for dynamics in the
classical regime as per the classical generalized Friedmann
equation (12), so we see only a single bounce in this case as
well. The plots for the evolution of the shear scalar and the
energy density in this case are similar to those of the
massless case shown in Fig. 2.
We now discuss the relationship of ρ and σ2 at the

bounce in the inflationary case. For this, we perform a large
number of numerical simulations with varying initial
conditions as described above. The data for the energy
density and the shear scalar at the bounce in this case is
plotted in Fig. 5 for 150 simulations. As in the case of the
massless scalar field, the relationship between σ2b=σ

2
max and

ρb=ρmax turns out to be parabolic with the maximum value
of σ2b=σ

2
max occurring, as in the massless scalar case, at

ρb=ρmax ≈ 1=2. Fitting the parabolic equation (25) to the
data in Fig. 5 yields the values a ≈ −3.9279; b ≈ 3.7739,
and c ≈ 0.0828 for the parameters of the parabola, which
are very close to those observed for the massless case in
Fig. 3. As in the case of the massless scalar field, the
distribution of points tells us that the bounces in general are
not occurring at values of energy density close to its
maximum value and hence anisotropic shear plays an
important role in singularity resolution.

C. Ekpyrotic potential

In this and the next subsection, we consider two slightly
different potentials, named ekpyrotic and ekpyroticlike
potentials which are considered in models for alternatives
of inflation. The ekpyrotic/cyclic model is motivated by
M-theory where the interbrane separation is determined by
a moduli field, ϕ, with an ekpyrotic potential given as [3]

U1ðϕÞ ¼ U1o
ð1 − e−σ1ϕÞ expð−e−σ2ϕÞ; ð27Þ

where U1o
, σ1 and σ2 are parameters of the potential. In this

model, ϕ slowly rolls in an almost flat and positive portion
of the potential as the branes move away from each other,
but becomes steep and negative as the branes begin
approaching each other and the visible universe begins to
contract. While the model was originally motivated from
brane dynamics in a bulk spacetime, the above potential is
generally used as an effective potential in cosmological
models. The shape of the potential is such that it can lead
to a phase of ekpyrosis in which the equation of state is
w ¼ P=ρ ≫ 1. This can result in isotropization near the
classical singularity. Previous work in LQC using this
potential shows that singularity is resolved in isotropic
[40,41] as well as Bianchi I spacetime [32]. However,

FIG. 4. Evolution of scale factors for a universe with a massive
scalar field in a ϕ2 potential is shown. The initial conditions are
c1 ¼ 0.0178; c2 ¼ 0.5631; p1 ¼ 1800; p2 ¼ 4431; p3 ¼ 2564;
ϕ ¼ 0.4569; Pϕ ¼ −13124.6061, and c3 solved from Hamilto-
nian constraint.

FIG. 5. Anisotropic shear vs energy density at the bounce for
150 numerical simulations with varying initial conditions for
m2ϕ2 potential with m ¼ 0.001.
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details of the interplay between the energy density and
anisotorpic shear in the bounce regime have so far remained
unexplored.
We now consider numerical simulations of Bianchi I

spacetimes with the ekpyrotic potential given in (27) in this
subsection. The matter component of the Hamiltonian in
this case is given by

Hm ¼ p2
ϕ

2v
þU1ðϕÞv: ð28Þ

Simulations of the dynamics in this case are performed
for a variety of initial conditions with the potential
parameters taken to be U1o

¼ 0.02, σ1 ¼ 0.3
ffiffiffiffiffiffi
8π

p
, and

σ2 ¼ 0.09
ffiffiffiffiffiffi
8π

p
. We note that similar results have been

obtained for variations in the value of these parameters. The

behavior of the scale factors, anisotropic shear and energy
density in this case are shown in Figs. 6 and 7.
In contrast to the previous two cases of massless scalar

field and inflationary potential, each individual scale factor,
as well as the mean scale factor a ¼ ða1a2a3Þ1=3 can
bounce many times as can be seen in Fig. 6. This is
because the energy density, ρ in this case is not positive
definite and a recollapse occurs in the classical regime
whenever the negative value of the energy density balances
the contribution of the shear scalar in the classical gener-
alized Friedmann equation (12). We note that due to the
effect of the ekpyrotic potential, the universe seems to have
isotropized after the last bounce as the scale factors are seen
to be evolving with almost the same rate after the last
bounce. Corresponding to the multiple bounces seen in the
scale factors, there are a large number of peaks in the
anisotropic shear scalar and energy density plots. The peaks
in the energy density and shear scalar do not necessarily
take place exactly at the bounce, but generally happen in
the vicinity of the bounce. In Fig. 7 we see that most of the
peaks in the anisotropic shear are extremely small with
σ2 ≪ σ2max, and we also find that most of the peaks have ρ
very close to ρmax. This implies that most bounces are
highly isotropic, apart from the larger middle bounce which
corresponds with the highest σ2 peak and lowest ρ peak.
Note that in the presence of ekpyrosis, since the equation

of state w can be larger than unity, the energy density of the
scalar field can grow faster than a−6 during the contracting
phase. Energy density can thus dominate over the aniso-
tropic shear in the dynamics and the approach to the bounce
becomes pointlike. We see this behavior in Fig. 6.
However, this does not imply that in the ekpyrotic case
the approach to singularity in the classical theory and
the bounce in LQC can not be cigarlike. The shape of the
singularity and the resulting bounce is determined by the
initial conditions and the parameters in the potential. As an
example, in Fig. 8 we see that the approach to some
bounces is pointlike as well as cigarlike.

FIG. 6. Behavior of scale factors for the ekpyrotic potential
(27) in a typical simulation is shown. The initial conditions are
c1 ¼ 0.57112; c2 ¼ 0.09828; p1 ¼ 4130; p2 ¼ 630; p3 ¼ 2745;
ϕ ¼ 0.19234; ρ ¼ 0.00355, and c3 is determined from the
vanishing of Hamiltonian constraint at the initial surface.

FIG. 7. Evolution of anisotropic shear (left) and energy density (right) for the ekpyrotic potential. Results correspond to the simulation
shown in Fig. 6.
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We performed many simulations for different initial
conditions for the ekpyrotic potential and results from
150 such simulations are shown in Fig. 9 where we plot
the value of shear scalar versus energy density at the last
bounce in the given time range of evolution, generally taken
as t ¼ ½−500; 500� in Planck units. Unlike the massless
scalar case there are nowmultiple bounces and choice has to
be made about which bounce to consider. While one could
consider the first or the most prominent bounce, the last
bounce is the final nontrivial quantum gravity event before
the expanding phase starts and for this reason is more
interesting to understand isotropization of postbounce
branch. It should be noted that the results shown in
Fig. 9 (and similarly in the next subsection) were qualita-
tively similar if instead we chose the first bounce, the most
prominent bounce or some intermediate bounce. As in the
case of the massless scalar field and inflationary potential,
we find that the points lie on a parabola. Fitting a parabolic
equation of the form (25) in this case gives a ≈ −3.7494,
b ≈ 3.6582, and c ≈ 0.0851, which matches closely with the
fits found in the massless scalar field and inflationary case.
As in the previous two cases, we find that σ2b=σ

2
max takes its

maximum value when the ratio ρb=ρmax ≈ 1=2. Changing
the parameters of the potential has only a little affect on the
values of the fit parameters. We see that the parabolic
relation between energy density and shear scalar at the
bounce seems to survive even when we have matter with
equation of state higher than unity, where the bounce is
more likely to be dominated by energy density as compared
to the shear scalar, in contrast to the previous cases. As a

result, in this case, we also see an isotropization effect of the
ekpyrotic potential as many points in Fig. 9 lie on the right
half of the parabola indicating higher energy density at the
bounce. However, due to the parabolic relation, a higher
energy density at the bounce may be accompanied by an
increased shear scalar at the bounce in some cases. These
correspond to the bounce points lying near the peak of the
parabola which have both energy density and the shear
scalar comparable to their maximum values.

D. Ekpyroticlike potential

We now consider the effective Bianchi I spacetime with
an ekpyroticlike potential used in [6]. This potential also
shows the isotropization effects seen for the ekpyrotic
potential in a bouncing universe. The phenomenological
consequences of this potential for the background evolution
and the power spectrum of curvature perturbations have
been recently explored in detail in [37]. The potential is
given by

U2ðϕÞ ¼ −
2U2o

e−
ffiffiffiffi
16π
p

p
ϕ þ eβ

ffiffiffiffi
16π
p

p
ϕ
; ð29Þ

with the parametersU2o
, p, and β all taking positive values.

The matter Hamiltonian in this case becomes

Hm ¼ p2
ϕ

2v
þU2ðϕÞv; ð30Þ

where we take the potential parameters to beU2o
¼ 0.0366,

p ¼ 0.1, and β ¼ 5 in the simulations presented here, with
similar results obtained for variations in values of these
parameters.
The typical behavior of the scale factors, anisotropic

shear and energy density in this case are shown in Figs. 10
and 11. The simulation shown in Fig. 10 depicts two

FIG. 8. Behavior of scale factors for the ekpyrotic potential
(27) in a typical simulation is shown. The initial conditions are
c1 ¼−0.0201;c2 ¼−0.38704;p1 ¼ 4413;p2 ¼ 4309;p3 ¼ 3194;
ϕ¼ 0.17514;ρ¼ 0.00215, and c3 is determined from the vanish-
ing of Hamiltonian constraint at the initial surface. Note that
approach to bounces is pointlike as well as cigarlike such as the
prominent bounce neat t ≈ 0 where a1 and a3 have opposite
behavior than a2.

FIG. 9. Shear scalar vs energy density at the last bounce in the
time range for an ekpyrotic potential. Results are similar if some
other bounce out of the multiple bounces is chosen.
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bounces as is apparent from the evolution of the mean scale
factor a. The ekpyroticlike potential typically results in
multiple bounces in volume since the energy density ρ can
become negative and can cause a recollapse in the classical
regime if it cancels the contribution of the shear scalar. Here
again, all the three directional scalar factors are seen to be
increasing with almost the same rate after the last bounce
in Fig. 10, indicating that the universe emerges in a nearly
isotropic state after the last bounce due to the ekpyrotic
phase induced by the ekpyroticlike potential. Figure 11
shows the anisotropic shear and energy density plots in the
vicinity of the two bounces. As discussed above, there is a
period of slightly negative energy density between the two
bounces where the recollapse happens. Additionally, note
that the anisotropy is significantly decreased in the second
bounce while the energy density is increased resulting in
the second bounce being more isotropic, as was seen by the

more isotropic behavior of the scale factors after the second
bounce for directional scale factors shown in Fig. 10.
Similar to the previous cases, we can obtain a general

understanding of the anisotropic shear and energy density
conditions at the time of a bounce with the ekpyroticlike
potential by determining their values at the bounce in a
variety of different simulations. The values for σ2=σ2max

versus ρ=ρmax under an ekpyroticlike potential at the last
bounce are plotted in Fig. 12, which result in a parabolic
shape for this plot analogous to previous cases with a
maximum in the middle corresponding to σ2b=σ

2
max ≈ 1 and

ρb=ρmax ≈ 1=2. In this case number of bounces turn out to
be smaller than the ekpyrotic potential, and results do not
significantly change if one considers first or the last bounce
in a given time range. As before we consider the last bounce
as it serves as a exit to a long phase of the expanding
branch. The fit parameters in this case for the parabola (25)
come out to be a ≈ −3.6936, b ≈ 3.5765, and c ≈ 0.1033,
which are very close to the values obtained in the cases of
the massless scalar field, the ϕ2 potential and the ekpyrotic
potential discussed above. We also note that the values of
the fit parameters depend weakly on the type of potential
used. These results are a strong indication that the parabolic
relation between σ2 and ρ at the bounce may be a feature of
the underlying dynamics of the effective Bianchi I model
in LQC.

V. TOWARDS A GENERALIZED EFFECTIVE
FRIEDMANN EQUATION

Extensive numerical simulations reported in the previous
section with different types of matter fields which includes
a massless scalar field, and a massive scalar field in an
inflationary potential, an ekpyrotic and an ekpyroticlike
potential strongly indicate that energy density and shear
scalar have a parabolic relation at the bounce in the
effective dynamics of the Bianchi I model in LQC. We
can use the equation

FIG. 10. Behavior of scale factors from a simulation in
an ekpyroticlike potential (29). The initial conditions are
c1 ¼ 0.57112; c2 ¼ 0.09828; p1 ¼ 4130; p2 ¼ 630; p3 ¼ 2745;
ϕ ¼ 0.19234; ρ ¼ 0.00355, and c3 determined from the vanish-
ing of effective Hamiltonian constraint.

FIG. 11. Evolution of anisotropic shear (left) and energy density (right) in ekpyroticlike potential for the simulation shown in Fig. 10.
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σ2b
σ2max

¼ a

�
ρb
ρmax

�
2

þ b

�
ρb
ρmax

�
þ c ð31Þ

to fit the parabolas and Table I summarizes the coefficients
of the fits obtained for each of the different matter fields
considered in this manuscript. Note that, similar values are
obtained for the coefficients a, b and c even when very
different types of potentials are used. In other words, the fit
parameters seem to depend only weakly on the potential
used for the scalar field. We further note that a and b are
similar in magnitude, and the vertical intercept c of the
parabola is very small and positive.
An important question is, what does this parabolic

relation at bounce imply for the yet unknown generalized
effective Friedmann equation for Bianchi I spacetime? In
the rest of this section, we use our results to draw some
conclusions for the form of the generalized effective
Friedmann equation for the effective Bianchi I spacetime
in LQC. Based on our results for the different types of
matter fields considered here, we make the assumption that
the parabolic relation obtained at the bounce between the
energy density and the shear scalar is a general feature of
the effective dynamics of the Bianchi I model. This implies
that the generalized effective Friedmann equation must
satisfy two requirements. It must reduce to the well known
expression (12) in the classical limit, while producing the
parabolic relation (31) between ρ and σ2 at the bounce in

the quantum regime. Since both the expressions (12) and
(31) are polynomials in ρ and σ2 at the bounce, we work
with the assumption that the generalized effective
Friedmann equation is a polynomial in both ρ and σ2.
First, note that the parabola is obtained at the bounce

point, where the mean volume has a turning point and the
mean Hubble rate is zero, i.e., the lhs of the generalized
Friedmann equation is zero. Since we are in the quantum
regime at the bounce where higher-order terms in ρ and σ2

cannot be ignored, thus, the parabola is either the full
effective expression on the rhs of the Friedmann equation
or at least a factor of it. For further analysis, we rewrite the
parabola as

σ2b
σ2max

þ α

�
ρb
ρmax

�
2

− β

�
ρb
ρmax

�
− η ¼ 0; ð32Þ

where α ¼ jaj; β ¼ jbj, and η ¼ jcj are the magnitudes of
the fit parameters. Note that the terms linear in ρ and σ2 at
the bounce are of opposite signs in the parabola. On the
other hand, ρ and σ2 terms have the same sign in the
classical limit as seen from the classical generalized
Friedmann equation (12). Thus, the parabola cannot reduce
to the classical expression in the classical limit due to the
above mentioned sign discrepancy. Also, no other poly-
nomial, which is first order in σ2b and quadratic in ρb will be
viable as it will not produce the parabola (32) in the
quantum regime where we cannot ignore the quadratic
terms in ρb. Thus the parabola cannot be the full expression
on the rhs of the effective generalized Friedmann equation,
and hence this equation must be a polynomial of higher
order than the parabola. This implies that the parabola must
be a factor of the full expression such that when the mean
Hubble rate vanishes at the bounce a parabolic relation
emerges. This motivates the following form,

H2 ¼
�

σ2

σ2max
þ α

�
ρ

ρmax

�
2

− β

�
ρ

ρmax

�
− η

�
fðρ; σ2Þ; ð33Þ

for the generalized effective Friedmann equation, where
fðρ; σ2Þ is a polynomial in ρ and σ2. This equation
produces a parabola in the σ2 versus ρ plane at the bounce
as observed in our extensive numerical simulations. We
now have to determine the form of fðρ; σ2Þ so that the
Eq. (33) also reduces to Eq. (12) in the classical limit. The
only class of polynomial functions which satisfies these
conditions is given by fðρ; σ2Þ ¼ η−1ð−8πGρ=3 − σ2=
6þOðρ2; σ4ÞÞ, causing the generalized effective
Friedmann equation to take the form,

H2 ¼
�
−
1

η

��
σ2

σ2max
þ α

�
ρ

ρmax

�
2

− β

�
ρ

ρmax

�
− η

�

×

�
8πGρ
3

þ σ2

6
þOðρ2; σ4Þ

�
: ð34Þ

FIG. 12. Anisotropic shear versus energy density at the bounce
is shown for an ekpyroticlike potential. Each dot corresponds to
one simulation. There are 150 simulations in above plot.

TABLE I. Best fit coefficients for the parabola (31) for different
matter fields at the bounce.

Matter content a b c

Massless scalar field −4.0043 3.8148 0.0812
ϕ2 potential −3.9279 3.7739 0.0828
Ekpyrotic potential V0 ¼ 0.02 −3.7494 3.6582 0.0851
Ekpyroticlike potential u0 ¼ 0.0366 −3.6936 3.5765 0.1033
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The Eq. (34) clearly satisfies the two requirements men-
tioned above. It reduces to the classical expression (12)
when the energy density and shear scalar are small enough
that terms of order quadratic and higher in these can be
ignored. In addition, the parabola (32) provides a set of
turning points, i.e., vanishing mean Hubble rate indicating
a bounce or recollapse, in the quantum regime where
higher-order terms in ρ and σ2 cannot be ignored.
We conclude this section by noting that further explora-

tion is needed on this issue in different directions. First, one
needs to expand the analysis to other matter content such as
conventional perfect fluids. One also needs to understand
the form of the higher-order terms Oðρ2; σ4Þ required in
fðρ; σ2Þ in the generalized effective Friedmann equation.
However, the presence of these higher-order terms will
imply additional bounce/recollapse points in the σ2 versus ρ
plane apart from the currently known turning points. Apart
from the parabolic relation at the bounce, the only other set
of turning points presently known for the dynamics of
Bianchi I model are in the classical regime, given by the
vanishing of the Hubble rate in Eq. (12), which gives a
negatively sloped straight line σ2 ¼ −16πGρ passing
through the origin in the σ2 versus ρ plane. Thus, informa-
tion about the higher-order terms can be obtained by finding
new, as yet unknown turning points in the evolution of
volume in the effective LQC dynamics of the Bianchi I
model. Finally, given the complexity of interplay of aniso-
tropic shear and energy density in quantum geometry one
must not discount the possibility that the generalized
effective Friedmann equation may be sensitive to the
explicit form of the equation of state. At least in certain
quantizations of isotropic model in LQC this possibility
exists [42,43].

VI. CONCLUSIONS

As their isotropic counterparts, homogeneous Bianchi I
models are free of the cosmological singularities at the level
of effective spacetime description in LQC. Thanks to the
underlying quantum geometry, the energy density and
anisotropic shear are universally bounded. The big bang
is replaced by a big bounce which generally occurs at a
volume much larger than the Planck volume. While in the
classical theory, the role of anisotropic shear and energy
density on the dynamics as the singularity is approached is
extremely well-understood, a detailed understanding of the
anisotropic nature of the bounce is difficult to obtain,
especially for matter with equation of state close to and
greater than unity. This is the case for inflationary models
as well since the kinetic energy of the inflaton field
dominates near the singularity. In anisotropic models in
LQC one also lacks a generalized effective Friedmann
equation which can provide important insights. The physi-
cal insights on the interplay of energy density and anisot-
ropies in the bounce regime have been few and the way

energy density and shear compare with their maximum
values at the bounce or any trend was so far unknown.
Understanding the detailed nature of bounce, especially in
presence of anisotropies, is also important to construct
phenomenologically viable models of a bouncing universe
and to understand robust potential signatures in the CMB.
Further this issue is important to understand the resolution
of singularities in more general models such as Bianchi II
and Bianchi IX spacetimes and effects on mixmaster
dynamics.
In this manuscript we bring to light a surprising,

seemingly universal, relationship between the anisotropic
shear and energy density at the bounce in Bianchi I models
in LQC. Since the energy density only has some potential
dominant role for matter content with equation of state
w ≈ 1 and can play an important role for w > 1 we
consider the cases of a massless scalar field, inflation,
and two types of ekpyrotic potentials. Assuming the
validity of effective spacetime description we performed
extensive numerical simulations with Hamilton’s equa-
tions with randomized initial conditions. For each case
more than 150 simulations were performed. We find that
the values of energy density and the anisotropic shear at the
quantum bounce follow a novel parabolic relationship.
This is a strong indication that the parabolic relation is very
likely a feature of the effective spacetime of the Bianchi I
model itself. This is further indicated by the fact that the fit
parameters of the parabola are found to depend only very
slightly on the type of matter field used. Further inves-
tigations with a variety of other matter fields are required to
compliment these results.
We note that the existence of the parabolic relationship

between energy density and shear scalar at the bounce
implies that there is not necessarily a tradeoff between them
at the bounce. In other words, it is possible that changing
initial conditions may lead to both of them increasing or
decreasing together at the bounce relative to the previous
initial conditions. This is a direct consequence of the
parabolic relation, and has been seen in the simulations.
Further, as the quantum regime is often dominated by the
shear scalar as seen in the simulations, the parabolic trend
of the bounce points obtained in the σ2 versus ρ plane do
not agree with the elliptic relation yielded by the approxi-
mate effective Friedmann equation derived in [38] under
assumptions of low shear scalar. A surprising result is that
the maximum value of anisotropic shear at the bounce is
obtained when energy density at the bounce reaches
approximately half of its universal maximum. While the
bounce density can be quite close to maximum energy
density for small anisotropic shear, our results show that the
converse seems difficult. Due to the parabolic nature of
relationship which is centered around ρb=ρmax ≈ 1=2, the
anisotropic shear at the bounce never seems to reach a
maximum value for small energy density at the bounce at
least for the matter content studied in this manuscript.
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Due to the complicated form of the equations of motion
in the effective spacetime, so far it has not been possible to
obtain a generalized effective Friedmann equation which
holds in the quantum regime. Using our results at the
bounce along with the classical limit, we have described
a general form which the effective Friedmann equation
may take. However, there are still open questions. It is
important to realize that even though the relation obtained
at the bounce is simple, the dynamics in the vicinity of
the bounce is seen to be much more complicated in our
simulations. Thus, using only the results at the exact
moment of the bounce and the classical limit, it is not
possible to fully grasp the nature of effective dynamics in
the whole quantum regime. This is the reason that the
higher-order terms in our proposed form of the effective
Friedmann equation are left unspecified. Knowing the full
effective Friedmann equation could lead to an intuitive

understanding of the variety of effects seen in the LQC of
the Bianchi I models. We leave it to future investigations
to understand the nature of these higher-order terms and
implications from considering other matter content.
Finally, though our results used LQC as the background
dynamics they may yield some insights for bouncing
anisotropic models in general. It will be interesting to see
if this parabolic relation is tied to LQC or is a robust
feature of nonsingular bouncing anisotropic models.
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