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Pauli exclusion principle (PEP) violations induced by space-time noncommutativity, a class of
universality for several models of quantum gravity, are investigated by the VIP-2 Lead experiment at
the Gran Sasso underground National Laboratory of INFN. The VIP-2 Lead experimental bound on the
noncommutative space-time scale Λ excludes θ-Poincaré far above the Planck scale for non anishing
“electriclike” components of θμν, and up to 6.9 × 10−2 Planck scales if they are null. Therefore, this new
bound represents the tightest one so far provided by atomic transitions tests. This result strongly motivates
high sensitivity underground x-ray measurements as critical tests of quantum gravity and of the very
microscopic space-time structure.
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I. INTRODUCTION

The Pauli exclusion principle (PEP) is one of the main
pillars of quantum mechanics, so deeply rooted in the
foundations of physics to be the main responsible for the
stability of atoms, nuclei, molecules, and matter in
general. PEP forbids fermions to occupy the same quantum
mechanical state, avoiding an arbitrary number of electrons
or nucleons on the same orbital. It is worth reminding that
PEP is a direct consequence of the spin-statistics theorem
(SST), as proved by the same W. Pauli [1]: it arises from
anticommutation rules of fermionic spinor fields, in the
construction of the Fock space of the theory.
The SST is based on Lorentz invariance as a fundamental

assumption. This means that the PEP is directly related to
the fate of the space-time symmetry and structure.
Nonetheless, Lorentz symmetry may be dynamically bro-
ken at a very high energy scale, without this phenomenon

translating into a fundamental breakdown of the symmetry.
In this case, the generation of nonrenormalizable operators,
suppressed as inverse powers of the Lorentz violation scale
Λ, is expected. On the other hand, approaches to quantum
gravity, for which space-time coordinates do non commute
close to the Planck scale (about 1019 GeV), thus deforming
the Lorentz algebra at the very fundamental level, were put
forward. The idea that the space-time might be noncom-
mutative is usually accredited to W. Heisenberg (see, e.g.,
Ref. [2]), as an extension of the uncertainty principle,
having been later elaborated by H. Snyder and C.N. Yang
in Refs. [3,4]. From a symplectic-geometry approach [5],
it is possible to unveil the deep relation intertwining
space-time symmetries, statistics [6], and the uncertainty
principle [7], hence providing concrete pathways for
falsification.
Noncommutativity of space-time is common to several

quantum gravity frameworks, to which we refer as non-
commutative quantum gravity models (NCQG). The
connection of space-time noncommutativity with both
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string theory (ST) [8–12] and loop quantum gravity (LQG)

[13–19] was extensively studied in literature.1

The two main classes of noncommutative space-time
models embedding deformed Poincaré symmetries are
characterized by κ-Poincaré [22–25] and θ-Poincaré
[26–31] symmetries. Among these latter, there exists a
subclass of models which preserves unitarity of the S
matrix in the Standard Model sector [29,32]. From the
experimental point of view, the most intriguing prediction
of this class of noncommutative models is an energy
dependent probability [δ2ðEÞ] for electrons to perform
PEP violating atomic transitions. For both κ and θ
Poincaré, the PEP violation probability turns to be of order
one in the deformation parameter, when the probed energy
is close to the scale of noncommutativity Λ (nonetheless,
trivial dimensional arguments are sufficient to show that
first order results in θ Poincaré are suppressed by the square
of the energy scale). In the low energy regime, i.e., for
energies much smaller than the noncommutativity scale, the
PEP violation probability is highly suppressed, accounting
for the lack of evidence of PEP violation signals over
decades of experimental efforts in this direction.
The experimental tests of the spin-statistics connection

are based on the search for signals of PEP violating
processes, by exploiting different techniques, which may
or not respect the Messiah and Greenberg (MG) [33]
superselection rule. According to MG, even assuming
small mixed symmetry components in a primarily anti-
symmetric wave function, in a system composed by a fixed
number of particles the symmetry of the world Hamiltonian
would prevent transitions among two different symmetry
states, i.e., electrons or nucleons would not perform PEP
forbidden transitions to lower orbits.
PEP tests for electrons, respecting the constraint imposed

by MG, are performed by introducing new electrons in a
preexisting system of electrons and constraining the prob-
ability that the newly formed state is symmetric. This was
accomplished using various methods:

(i) the estimate of the primordial abundance of anoma-
lous 5Li, with three protons in the lowest level, leads
to the limit (δ2 < 2 × 10−28) [34], which is also the
strongest constraint inferred from astrophysical and
cosmological arguments;

(ii) capture of 14C β rays onto Pb atoms (δ2 <
3 × 10−2) [35];

(iii) pair production electrons captured on Ge (δ2 <
1.4 × 10−3) [36];

(iv) search for PEP violating atomic transitions in
conducting targets, a prototype experiment of this
class has been carried out in Ref. [37] following a
suggestion of Greenberg and Mohapatra [38], it
consists in measuring the x-ray emission from a
target strip where a direct current is circulated
and looking for a difference in the spectra acquired
with current on and off (best upper limit
δ2 < 8.6 × 10−31) [39,40];

(v) a generalized version of the latter experimental
technique consists in using as test fermions the free
electrons residing in the conduction band of the
target, an improved version of the original analysis
proposed in Ref. [36], based on the calculation of the
time dependence of the anomalous x-ray emission
process, lead to the best upper limit δ2 < 1.53 ×
10−43 [41].

NCQG models are not subject to the MG superselection
rule. Within this context, the prototype Reines-Sobel
experiment [42] looked for anomalous transitions in a
stable system, i.e., spontaneous PEP-violating transition in
a closed system of electrons in an established symmetry
state. In this framework strong bounds on the PEP violation
probability were set by the DAMA/LIBRA Collaboration
(δ2 < 1.28 × 10−47) [43], searching for K-shell PEP vio-
lating transitions in iodine—see also Refs. [44]. A similar
strategy was followed by the MALBEK experiment [45],
which set the bound δ2 < 2.92 × 10−47 by constraining the
rate of Kα PEP violating transitions in germanium.
This research is based on a different strategy, which is not

confined to the evaluation of a specific transition PEP
violation probability. We consider the predicted PEP vio-
lating atomic transition amplitudes, in the context of the θ
Poincaré model, whose derivation is outlined in Secs. III and
IV. The deformation of the standard transition probabilities
depends on the typical energy scales of the involved
reactions, conditioned by the value of the “electric like”
components of θμν. This enables a fine tuning of the θ tensor
components. The predicted energy dependence of the
spectral shape of the whole complex of relevant transitions
is accounted for and tested against the measured x-rays
distribution, constraining Λ, for the first time, far above the
Planck scale for θ0i ≠ 0. Within a similar theoretical
framework the DAMA/LIBRA limit on the PEP violating
atomic transition probability [43] was analyzed in Ref. [31],
and a lower limit on the noncommutativity scale Λ was
inferred as strong as Λ > 5 × 1016 GeV, corresponding to
Λ > 4 × 10−3 Planck scales.
PEP violating nuclear transitions were also investigated,

e.g., in Refs. [43,46,47]. The strongest bound (δ2 < 7.4×
10−60) was obtained in Ref. [46] searching for PEP violating
transitions of nucleons from the 1P3=2 shell to the filled 1S3=2
shell. Based on a parametrization of the PEP-violation
probability, in terms of inverse powers of the noncommuta-
tivity scale, the impact of these experimental results for

1The fact that noncommutativity emerges in both theories may
not be a coincidence but can be conjectured to be instead related
to a newly formulatedH-duality—see, e.g., Refs. [20,21]—since
a self-dual LQG formulation can be obtained from topological M
theory. Besides ST and LQG contexts, deformed symmetries may
effectively emerge from several other nonperturbative models of
quantum geometry.
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Planck scale deformed symmetries was investigated in
Ref. [28]. As a result, a class of κ-Poincaré and θ-Poincaré
models was excluded in the hadronic sector. Nonetheless,
within the context of NCQG models, tests of PEP in the
hadronic and leptonic sectors need to be considered as
independent. There is no a priori argument why the standard
model fields should propagate in the noncommutative space-
time background with the same coupling. As an example,
noncommutativity emerges in string theory as a by-product of
the constant expectation value of the B-field components,
which in turn are coupled to strings’ world sheets with
magnitudes that are not fixed a priori.
Underground x-ray surveys, searching for atomic tran-

sitions prohibited by the PEP, proved in recent years to
provide very strong and promising tests of spin statistics
[41,48,49] and, hence, tests of quantum gravity models at
unexpectedly high noncommutativity scales. The results of
the dedicated VIP-2 Lead experiment, searching for signals
of Kα and Kβ PEP violating transitions in an ultra radio-
pure Roman lead target, are analyzed in the framework of
NCQG, and summarized in Ref. [50]. We show that the
experiment sets critical bounds on θ-Poincaré. In particular,
VIP-2 Lead rules-out θ-Poincaré up to 2.6 × 102 Planck
scales, if the “electric like” components of the θμν vector are
non-null; θ-Poincaré is excluded up to 6.9 × 10−2 Planck
scales if they vanish. VIP-2 Lead provides the strongest
bound, from atomic levels transitions, on this special type
of space-time noncommutativity.

II. THEORETICAL FRAMEWORK

At a formal level, the discussion on the fate of the
spin-statistics theorem is strictly related to the deformation
of the Poincaré symmetries, which is in turn induced by
space-time noncommutativity. Few relevant caveats deserve
to be represented with further detail than the one we
deployed in the previous section, as these may affect the
outputs of the theoretical investigation. We comment here
that the arguments advocated in order to prevent the
breakdown/deformation of the spin-statistics theorem, as
a by-product of space-time noncommutativity, yield as a
consequence that the theory can not be any longer falsifiable.
This issue has been tackled inspecting the validity of

microcausality, within a quantum framework that is still

required to be unitary. Intuitively, one expects the light cone
not to retain any status in a noncommutative theory. It
might then be surprising that in the case of the Moyal-plane
noncommutativity, which we have referred to in the text as
θ-Poincaré, for a certain class of observables, for instance,
the one involving scalar fields with no time derivative,
microcausality can still hold, namely,

½OðxÞ;OðyÞ�⋆ ¼ ½∶ϕðxÞ⋆ϕðxÞ∶; ∶ϕðyÞ⋆ϕðyÞ∶�⋆ ¼ 0; ð1Þ

the equality being supposed to hold for spacelike separations,
with ∶ · ∶ denoting a fixed ordering of the noncommutative
coordinates, and the ⋆-product being defined by

∶fðxÞ⋆gðxÞ ≔ lim
y→x

fðxÞe{
2
∂
x
μθ

μν
∂
y
νgðyÞ: ð2Þ

Problems related to a-causality for noncommutative
theory were outlined in Ref. [51], in which the authors
derived the commutator ½OðxÞ;OðyÞ�⋆. Similarly, using
perturbation theory and different definitions of time order-
ing, it was pointed out in Ref. [52] that microcausality and
unitarity cannot simultaneously coexist in noncommutative
field theory. A similar result was obtained in Ref. [53],
where it was found that SO(3,1) microcausality is violated,
but that SO(1,1) microcausality in the light cone still holds
when perturbative unitarity does. In Ref. [54], it was then
pointed out that noncommutativity among space and time
coordinates violates unitarity, unless lightlike noncommu-
tativity is considered [55]. This problem was supposed to
arise because of neglecting massive string states.
A different take on the same problem was developed in

Ref. [56], where it was argued that for pure space non-
commutativity micro-causality is preserved. As a by-product
of this analysis, Pauli spin-statistics relation was shown in
these cases to remain valid in noncommutative quantum field
theories. Nonetheless, as pointed in Ref. [57], the special
case inspected in Ref. [56] involves observables with no time
derivatives. The implications of Ref. [56] for the spin-
statistic theorem were then reframed in terms of the results
found in [57], namely that the equal time commutator in D
space-time dimensions,

½OðxÞ;OðyÞ�⋆ ¼ ðe−{p·x−{p0·y þ e−{p
0·x−{p·yÞ 8{

ð2πÞ2D−1

Z
dD−1k
2Ek

sin

�
−
1

2
θijðkiðpþ p0Þj þ pip0

jÞ
�

× e{k⃗·ðx⃗−y⃗Þ cos
�
1

2
θijkipj

�
cos

�
1

2
θijkip0

j

�
; ð3Þ

does not vanish at spacelike separation. This latter result is
instead consistent with previous ones derived in the
literature—see, e.g., Refs. [51–55], and thus, hinges toward
the confirmation that the spin-statistic theorem is violated.

The existence of eventual isomorphism has also been
considered in order to instantiate a pure equivalence among
commutative and noncommutative quantum field theories
[58]—see also [59] for a critical insight. Notice that a
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complete equivalence among the commutative and non-
commutative theories, both at the level of the algebra and
the coalgebra, would turn noncommutative theory to be un-
falsifiable and unpredictive. Consequently, we do not deem
as worthy of any phenomenological interest this theoretical
approach, since it fails from distinguishing itself from the
standard theory and its predictions, and thus decide not to
speculate on the implications of this possibility.

III. TRANSITION AMPLITUDES

Noncommutative deformation as introduced by the
⋆-product induces deformation in standard processes of
QED. The interaction vertex can be extracted from the
action,

S ¼
Z

d4x
�
−
1

4
Fμν⋆Fμν þ ψ̄⋆ð{=D⋆ −mÞψðxÞ

�
; ð4Þ

with covariant derivative expressed as D⋆
μ ¼ ∂μ þ {eAμ⋆, e

denoting the electron charge, field strength of the electro-
magnetic field Aμ provided by Fμν ¼ ∂μAν − ∂νAμþ
{e½Aμ

⋆; Aν�, with ½Aμ
⋆; Aν�≡ Aμ⋆Aν − Aν⋆Aμ and fields

undergoing the usual plane waves expansion,

ψðxÞ ¼
X
s;k

½aðsÞðkÞuðsÞðkÞe−{k·x þ b†ðsÞðkÞvðsÞðkÞe{k·x�;

ψ̄ðxÞ ¼
X
s;k

½bðsÞðkÞv̄ðsÞðkÞe−{k·x þ a†ðsÞðkÞūðsÞðkÞe{k·x�;

=AðxÞ ¼
X
r;k

½αðrÞðkÞ=ϵðrÞðkÞe−{k·x þ α†ðrÞðkÞ=ϵðrÞðkÞe{k·x�;

with spinor indices s ¼ 1, 2 labeling the set of four
independent spinor solutions to the Dirac equation fuðkÞðsÞ;
vðkÞðsÞg, polarization indices r ¼ 1, 2 labelling transverse

traceless solution of the Maxwell equations ϵðrÞμ , and slash
denoting contraction of vectors with γmu matrices; sum-
mation is over discrete momenta k ¼ ðkð0Þ; k⃗Þ in some
regularization volume.
The ⋆-product induces deformed commutation and

anticommutation rules,

aðs1Þðp1Þaðs2Þðp2Þ ¼ −e{p1∧θp2aðs2Þðp2Þaðs1Þðp1Þ;
bðs1Þðp1Þbðs2Þðp2Þ ¼ −e{p1∧θp2bðs2Þðp2Þbðs1Þðp1Þ;
αðs1Þðp1Þαðs2Þðp2Þ ¼ þe{p1∧θp2αðs2Þðp2Þαðs1Þðp1Þ;

having introduced the antisymmetric product a ∧θ b≡
aμθμνbν, and

aðs1Þðp1Þa†ðs2Þðp2Þ¼−e{p1∧θp2a†ðs2Þðp2Þaðs1Þðp1Þþδp⃗1;p⃗2
;

bðs1Þðp1Þb†ðs2Þðp2Þ¼−e{p1∧θp2b†ðs2Þðp2Þbðs1Þðp1Þþδp⃗1;p⃗2
;

αðs1Þðp1Þα†ðs2Þðp2Þ¼þe{p1∧θp2α†ðs2Þðp2Þαðs1Þðp1Þþδp⃗1;p⃗2
:

Consistently with these rules, asymptotic in-coming and
out-going two-fermion states are represented as

jp1; s1;p2; s2i ¼ a†ðs1Þðp1Þa†ðs2Þðp2Þj0i
¼ e{p1∧θp2c†ðs1Þðp1Þc†ðs2Þðp2Þj0i; ð5Þ

and

jp0
1; s

0
1;p

0
2; s

0
2i ¼ a†ðs01Þðp0

1Þa†ðs
0
2
Þðp0

2Þj0i
¼ e{p

0
1
∧θp0

2c†ðs01Þðp0
1Þc†ðs

0
2
Þðp0

2Þj0i; ð6Þ

having introduced ladder operators c and d phase shifted
with respect to a and b by

ap⃗ ¼ e−
1
2
{p∧θPcp⃗; bp⃗ ¼ e−

1
2
{p∧θPdp⃗

with Pμ ¼
X
p⃗

ðc†p⃗cp⃗ þ d†p⃗dp⃗Þ;

and so forth for the Hermitian conjugates.
It is useful to consider the deformation of the Feynman

amplitude M of the electron-muon scattering process, as
recovered from the interaction vertex derived from Eq. (4)
and from the asymptotic states in Eqs. (5) and (6). This
reads

Mθ ¼ e
{
2
ðp1∧θp2−p0

1
∧θp0

2
ÞM0e−

{
2
ðp0

1
∧θp1þp0

2
∧θp2Þ;

M0 ¼
e2

2q2
ðūs01ðp0

1Þγμuðs1Þðp1Þv̄s02ðp0
2Þγμvðs2Þðp2ÞÞ;

with transferred momentum q ¼ p0
1 − p1 ¼ p0

2 − p2.
Averaging over the initial spins and summing over final
ones, the deformation rearranges, in the cross section σ,
into a multiplicative factor,

σθ ¼ jΦθj2σ0;
Φθ ¼ e{ðp1∧θp2−p0

1
∧θp0

2
Þe−

{
2
ðp0

1
∧θp1−p0

2
∧θp2Þ:

The first order expansion in the θ tensor of jΦθj2 provides
the PEP-violating phase ϕPEPV ¼ δ2.

IV. ENERGY DEPENDENCE OF THE PEP
VIOLATION PROBABILITY IN NCQG MODELS

Within the framework of NCQG models, the space-time
noncommutativity is dual to a deformation of the Lorentz/
Poincaré algebra and, hence, to new space-time symmetry
algebras’ structures (see, e.g., Refs. [60,61]). Specifically,
in order to encode deformations of the Lie algebras of
space-time symmetries, the concept of bialgebras, and the
Hopf algebras, must be introduced. These two mathemati-
cal concepts, developed from an algebraic abstract view-
point, have deep physical consequences, since the very
same structure of the statistics of fermions and bosons is
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there encoded. This property sets a direct connection
between the microscopic structure of space-time, and the
deformation of the spin-statistics relation, more specifi-
cally, the violation of PEP, which turns to be the observable
for NCQG models. More in detail, the θ-Poincaré model
leads to the prediction (see Refs. [28,62,63]) that PEP
violations are induced with a suppression δ2 ¼ ðE=ΛÞ2,
where E≡ EðE1; E2;…Þ is a combination of the character-
istic energy scales of the transition processes under scrutiny
(masses of the particles involved, their energies, the
transitions energies, etc.).
For a generic NCQG model, deviations from the PEP in

the commutation/anticommutation relations can be para-
metrized [28] as

aia
†
j − qðEÞa†jai ¼ δij: ð7Þ

For θ-Poincaré models,2 when two electrons of momenta
pμ
i ¼ ðEi; p⃗iÞ (with i ¼ 1, 2) are considered, we may

introduce the phase ϕPEPV to parametrize the deformation
of the standard transition probability W0 into
Wθ ¼ W0 · ϕPEPV. Making explicit Λ in the θ tensor
through the relation θμν ¼ θ̃μν=Λ2, with θ̃μν dimensionless,
the energy scale dependence may be introduced: (i) either
according to

ϕPEPV ¼ δ2 ≃
D
2

EN

Λ
ΔE
Λ

; ð8Þ

where D ¼ p0
1θ̃0jp

j
2 þ p0

2θ̃0jp
j
1, the quantity EN ≃mN ≃

Amp denotes nuclear energy and ΔE ¼ E2 − E1 accounts
for the atomic transition energy; (ii) or as an energy levels
difference, encoding the PEP violating x-ray line energy,
namely as in

ϕPEPV ¼ δ2 ≃
C
2

Ē1

Λ
Ē2

Λ
; ð9Þ

where Ē1;2 are the energy levels occupied by the initial and
the final electrons and C ¼ pi

1θ̃ijp
j
2. The former case,

discussed in Eq. (8), amounts to encode noncommutativity
among space and time coordinates, namely θ0i ≠ 0, while
the latter case, in Eq. (9), corresponds to selecting θ0i ¼ 0,
which ensures unitarity of the θ-Poincaré models [53,54].
In both cases, the factors D=2 and C=2 can be approxi-
mated to unity.
We further notice that Eq. (7) resembles the quon algebra

(see, e.g., Refs. [38,64]), in the case of quon fields;
however, the q factor does not show any energy depend-
ence, and it is not related to any quantum gravity model.

Thus, the q model necessarily requires a hyperfine tuning of
the q parameter. qðEÞ is related to the PEP violation
probability by

qðEÞ ¼ −1þ 2δ2ðEÞ: ð10Þ

An experimental bound on the probability that PEP may
be violated in atomic transition processes, straightfor-
wardly translates into a constrain to the new physics scale
Λ, consistently with the choice of the θ0i components.

V. THE VIP-2 LEAD EXPERIMENT

The VIP Collaboration is performing high precision tests
of the Pauli exclusion principle (PEP) for electrons, in the
extremely low cosmic background environment of the Gran
Sasso underground National Laboratory (LNGS) of INFN.
LNGS provides the ideal conditions for performing
high-sensitivity searches of extremely low-rate physical
processes. The overburden, corresponding to a minimum
thickness of 3100 m w.e. (metres water equivalent), yields a
reduction of the cosmic muon flux of about 6 orders of
magnitude. As a consequence the main background source,
apart from residual cosmic rays, is represented by the
γ-radiation produced by long-lived γ-emitting primordial
isotopes and their decay products, from the rocks of the
Gran Sasso mountain and the concrete of the laboratory
structure.
The VIP-2 Lead experimental apparatus is based on a

high purity co-axial p-type germanium detector (HPGe),
with a diameter of 8.0 cm and a length of 8.0 cm,
surrounded by an inactive layer of lithium-doped germa-
nium of 0.075 mm. The active germanium volume of the
detector is 375 cm3. The detector is surrounded by a
complex of passive and active shieldings (the latter serves
as target material). The passive shielding is composed of an
outer pure lead layer (30 cm from the bottom and 25 cm
from the sides) and an inner electrolytic copper layer
(5 cm). The volume of the sample chamber is of about
15 l ((250 × 250 × 240Þ mm3). A 1 mm thick air-tight steel
housing encloses the shielding structure and the cryostat
and is flushed with boil-off nitrogen, from a liquid nitrogen
storage tank, to minimize the radon contamination. With
the aim to reduce the neutron flux impinging the detector
this is also surrounded, on the bottom and the sides, by
5 cm thick borated polyethylene plates. The target consists
of three cylindrical sections of radio-pure Roman lead, fully
surrounding the detector. The thickness of the target is
about 5 cm, for a total volume V ∼ 2.17 × 103 cm3. The
inner part of the setup is shown in Fig. 1 of Ref. [41].
A more detailed description of the external passive shield-
ing and of the cryogenic and vacuum systems is given in
Refs. [65,66]. The data acquisition system is a Lynx digital
signal analyzer controlled via GENIE 2000 personal com-
puter software, both from Canberra-Mirion.

2In principle, there may exist other models, which may have an
energy dependence from the electron momentum or mass. It is
also interesting to remark that, in general, an angular dependence
of the PEPV emission is expected.
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The aim of the measurement is to search for the x-rays
signature of PEP-violating Kα and Kβ transitions in Pb,
when the 1s level is already occupied by two electrons.
These transitions are shifted, with respect to the standard
ones, as a consequence of the shielding effect of the
additional electron in the ground state; hence, they are
distinguishable in precision spectroscopic measurements.
Let us notice that the deformation of the algebra preserves,
at the first order, the standard atomic transition probabil-
ities, the violating transition probabilities being dumped by
factors δ2ðEÞ; hence, transitions to the 1s level from levels
higher then 4p will not be considered (see, e.g., Ref. [67]
for a comparison of the atomic transitions intensities in Pb).
The energies of the standard Kα and Kβ transitions in Pb are
given in Table I, where those expected for the correspond-
ing PEP violating ones are also reported. The PEP violating
K lines energies are obtained based on a multiconfiguration
Dirac-Fock and general matrix elements numerical code
[68]; see also Ref. [36], where the Kα lines are obtained
with a similar technique.
The efficiency for the detection of x-rays emitted inside

the Pb target, in the energy region of interest (defined in
Sec. VI), was determined by means of Monte Carlo (MC)
simulations. To this end, the detector was characterised and
all of its components have been set into a MC code
(Ref. [69]) based on the GEANT4 software library (Ref. [70]).
We present in Sec. VI, the results of a Bayesian analysis,

aimed to extract the probability distribution function (pdf)
of the expected number of photons emitted in PEP violating
Kα and Kβ transitions. The analyzed dataset corresponds to
a total acquisition time Δt ≈ 6.1 × 106 s ≈ 70 d, i.e., about
twice the statistics used in Ref. [41].

VI. DATA ANALYSIS AND RESULTS

The measured energy spectrum is shown in blue in
Fig. 1, in the energy rangeΔE ¼ ð65–90Þ keV. Considered
the energy resolution of the detector in this region, which is
σ ≃ 0.5 keV, the interval ΔE contains the Kα and Kβ—
standard and PEP violating—transitions in Pb. From a
detailed analysis of the materials of the setup, these are the
only emission lines expected in the selected range ΔE.

However, due to the extreme radio purity of the target even
the standard transitions of Pb cannot be recognized over the
flat background, which corresponds to an average of about
3 counts/bin. We also notice that the target contributes to
suppress the residual background eventually surviving the
external passive shielding complex.
The aim of the analysis is to extract the upper limit S̄ of

the expected number of total signal counts, generated
by PEP violating Kα and Kβ transitions in the target.
Comparison of S̄ with the theoretically expected photons
emission, due to PEP violating atomic transitions, provides
a limit on the scale Λ of the model. The conditional pdf of
the expected number of total signal counts S given the
measured distribution—called data—is obtained as follows:

PðSjdataÞ ¼
Z

∞

0

Z
Dp

PðS; Bjdata;pÞdmp dB; ð11Þ

where the joint posterior distribution of S and the expected
number of total background counts B is given by the Bayes
theorem,

PðS; Bjdata;pÞ

¼ PðdatajS; B;pÞ · fðpÞ · P0ðSÞ · P0ðBÞR
PðdatajS; B;pÞ · fðpÞ · P0ðSÞ · P0ðBÞdmp dS dB

:

ð12Þ

In order to account for the uncertainties in the experimental
parameters p, which characterize the measurement and the
data analysis, an average likelihood is considered, which is
weighted with the joint pdf of p. Dp represents the domain
of the parameters’ space. The likelihood is parametrized as
follows:

TABLE I. Calculated PEP-violating Kα and Kβ atomic tran-
sition energies in Pb (column labeled forb.). As a reference, the
allowed transition energies are also quoted (allow.). Energies are
in keV.

Transitions in Pb allow. (keV) forb. (keV)

1s − 2p3=2 Kα1 74.961 73.713
1s − 2p1=2 Kα2 72.798 71.652
1s − 3p3=2 Kβ1 84.939 83.856
1s − 4p1=2ð3=2Þ Kβ2 87.320 86.418
1s − 3p1=2 Kβ3 84.450 83.385

FIG. 1. The measured x-ray spectrum, in the region of the Kα

and Kβ standard and violating transitions in Pb, is shown in blue;
the magenta line represents the fit of the background distribution.
The green line corresponds to the shape of the expected signal
distribution (with arbitrary normalization) for θ0i ≠ 0.
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PðdatajS; B;pÞ ¼
YN
i¼1

λiðS; B;pÞni · e−λiðS;B;pÞ
ni!

; ð13Þ

where ni are the measured bin contents. The number of
events in the ith bin fluctuates, according to a Poissonian
distribution, around the mean value,

λiðS; B;pÞ ¼ B ·
Z
ΔEi

fBðE;αÞ dE

þ S ·
Z
ΔEi

fSðE; σÞ dE: ð14Þ

ΔEi is the energy range corresponding to the ith bin;
fBðE;αÞ and fSðE; σÞ represent the shapes of the back-
ground and signal distributions normalized to unity over
ΔE. Among the experimental uncertainties the only ones
which significantly affect S̄ are those which characterize the
shape of background (parametrized by the vector α) and the
resolutions (σ) at the energies of the violating transitions
(the resolutions are reported in Table II). All the other
experimental parameters are affected by relative uncertain-
ties of the order of 1% (or less), which are neglected; hence,
p ¼ ðα; σÞ. For the normalized background shape, we take
a flat distribution, as a result of the fit to the measured
distribution described below. In order to obtain fSðEÞ, the
expected values of the numbers of PEP violating K
transitions, predicted by the model, are to be evaluated.

A. Normalized signal shape

In order to describe the expected signal shape, corre-
sponding to PEP violating electronic transitions, let us start
noticing that electrons belonging to the 2s level are not
allowed, at the first order in δ2, to join the electrons
belonging to 1s. This is motivated by the fact that—at first
order—the angular momentum selection rule is preserved
by the deformation of the algebra.
We then consider the probability that one electron

belonging to the 2p shell undergoes the violating Kα1

transition. This is conditioned to the fact that no other
electron performs a transition to the 1s; otherwise, the
energy of the violating Kα1 transition would be shifted, as a
result of the further shielding caused by the presence of
three electrons in the ground state. The probability is then
given by

δ2ðEKα1
Þ ·

�
1 − 5 · δ2ðEKα1

Þ BRKα1

BRKα1
þ BRKα2

− 5 · δ2ðEKα2
Þ BRKα2

BRKα1
þ BRKα2

− 6 · δ2ðEKβ1
Þ BRKβ1

BRKβ1
þ BRKβ3

−6 · δ2ðEKβ3
Þ BRKβ3

BRKβ1
þ BRKβ3

− 6 · δ2ðEKβ2
Þ:
�

¼ δ2ðEKα1
Þ · ½1þ CKα1

�: ð15Þ

In Eq. (15), the EK represent the proper energy dependence
to be considered in the PEP violation probability, function
of the θ0i choice [see Eqs. (8) and (9)]. The ratios among
branching fractions are needed to weight the relative
intensities of transitions which occur from levels with
the same ðn; lÞ quantum numbers, but different j (e.g.,
the 2p1=2 and the 2p3=2). Such distinction is necessary
when the corresponding transition energies can be exper-
imentally disentangled, since, for example, transitions as
4p → 1s can not be resolved (the branching ratios are given
in Table III). The term CKα1

introduces a second order
correction in the searched violating transition probability
(and hence, on Λ) which can be neglected. The rate of
violating Kα1 transitions, predicted by the model, from the
whole sample of Pb atoms in the target, which would be
measured by the detector, is then given by

ΓKα1
¼δ2ðEKα1

Þ
τKα1

·
BRKα1

BRKα1
þBRKα2

·6 ·Natom ·ϵðEKα1
Þ: ð16Þ

We mean with τKα1
the lifetime of the PEP-allowed

2p3=2 → 1s transition (the lifetime for the generic transition
will be indicated with τK, the lifetimes from Ref. [71] are
summarized in Table IV; see also Ref. [42]). The ϵðEKÞ
factors represent the detection efficiencies, for photons
emitted inside the Pb target, at the corresponding violating
transition energies EK (the efficiencies are listed in
Table III). The rate of the generic violating K transition
ΓK can be obtained by analogy with Eq. (16).

TABLE II. The table summarizes the resolutions (σ) in keV, at
the energies of the PEP violating Kα and Kβ transitions.

Transitions in Pb σ (keV) Error (keV)

Kα1 0.492 0.037
Kα2 0.491 0.037
1s − 3p3=2 Kβ1 0.497 0.036
1s − 4p1=2ð3=2Þ Kβ2 0.498 0.036
1s − 3p1=2 Kβ3 0.497 0.036

TABLE III. The table summarizes the values of the branching
ratios of the considered atomic transitions and the detection
efficiencies at the energies corresponding to the Kα and Kβ

forbidden transitions.

Forbidden transitions BR ϵ

Kα1 0.462� 0.009 ð5.39� 0.11Þ × 10−5

Kα2 0.277� 0.006 ð4.43þ0.10
−0.09 Þ × 10−5

Kβ1 0.1070� 0.0022 ð11.89� 0.24Þ × 10−5

Kβ2 0.0390� 0.0008 ð14.05þ0.29
−0.28 Þ × 10−5

Kβ3 0.0559� 0.0011 ð11.51þ0.24
−0.23 Þ × 10−5
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The probability to observe n violating Kα1 transitions in
the time t is

Pðn; tÞ ¼ ðΓKα1
tÞne−ΓKα1

t

n!
; ð17Þ

hence, the expected number of PEP violating Kα1 events,
predicted by the model, which would be detected in the
acquisition time Δt is

μKα1
¼ ΓKα1

· Δt: ð18Þ

For a generic violating K transition, the expected number of
events μK is given by analogy with Eq. (18).
Besides the one step violating K transitions, at the

energies which are summarized in Table I, we should also
consider two (or more) steps violating transitions populat-
ing the same lines. Namely events in which an electron
from an atomic shell i undergoes a PEP violating transition
to the np level (n ¼ 2, 3, 4), followed by the violating K
transition. The two steps process probability scales as
δ2ðEi→npÞ · δ2ðEnp→1sÞ, thus introducing a second order
correction to μK . The contribution of two (or more) steps
violating transitions is then neglected.
Another set of processes to be accounted for consists in

subsequent violating transitions from the same atomic shell
np (n ¼ 2, 3, 4) to 1s. When an electron of the np
undergoes a violating transition, it is replaced because of
the (non-PEP violating) rearrangement of the atomic shells
(the typical transition timescales being much smaller then
the τK=δ2ðEKÞ lifetime of the violating process). As
mentioned above, subsequent violating transitions would
populate violating K lines, which are shifted in energy with
respect to the transitions listed in Table I. The subsequent
violating transition probability scales with the product of
the δ2, calculated at the energies corresponding to the two
transitions; such processes (as well as higher order ones)
are neglected in this analysis.
fSðEÞ is then given by the sum of Gaussian distributions,

whose mean values (EK) correspond to the energies of the
PEP violating transitions in Pb, and the widths (σK) to the
experimental resolutions at the energies EK. The intensities
of the violating lines are weighted by the rates ΓK of the
corresponding transitions [see Eq. (16)],

fSðEÞ ¼
1

N
·
XNK

K¼1

ΓK
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2K

p · e
−ðE−EK Þ2

2σ2
K : ð19Þ

It is worth noticing that the normalized signal shape
depends on the choice of θ0i (through the proper energy
dependence term EK which is contained in δ2). Two
independent analyses were then performed for the two
θ0i cases, by following the same procedure, in order to set
constraints on the Λ scale of the corresponding specific
model. fS instead does not depend on Λ, since the
dependence is re-absorbed by the normalization [see
Eq. (20)]. In Eq. (19), the sum extends over the number
NK of PEP violating K transitions which are listed in
Table I. The normalization is obtained by the condition,

Z
ΔE

fSðEÞdE ¼ 1 ⇒ N ¼
XNK

K¼1

ΓK: ð20Þ

As an example, the shape of the expected signal distribution
is shown (with arbitrary normalization) as a green line in
Fig. 1 for the θ0i ≠ 0 choice.

B. Normalized background shape

The normalized background shape is obtained from the
best maximum log-likelihood fit to the measured spectrum,
excluding 3σK intervals centered on the mean energies EK
of each violating transition. The best fit yields a flat
background amounting to LðEÞ ¼ α ¼ ð3.05� 0.29Þ
counts=ð0.5 keVÞ, the errors contain both statistical and
systematic uncertainties. The normalized background
shape is then

fBðEÞ ¼
LðEÞR

ΔE LðEÞdE
: ð21Þ

C. Prior distributions

For positive values of B, we choose a Gaussian prior
distribution, with an expected value B0 ¼ hBiG ¼R
ΔE LðEÞdE and a standard deviation σB ¼ ffiffiffiffiffiffi

B0

p
. Zero

probability is assigned to negative values of B. As a check,
a Poissonian prior was tested for B; in this case, from the
Bayes theorem, the expected value is hBiP ¼ B0 þ 1 and
σB ¼ ffiffiffiffiffiffiffiffiffiffihBiP

p
. The upper limit on S̄ is found not to be

affected by this choice, within the experimental uncertainty.
For what concerns the choice of the prior P0ðSÞ,

considered the a priori ignorance on the value of S, we
opt for a uniform distribution in the range (0 ÷ Smax), where
Smax represents the maximum value of PEP violating x-ray
counts in Pb, compatible with the best independent exper-
imental bound (Ref. [36]) on the PEP violation probability.
Smax is then obtained from Eq. (3) in Ref. [36], by
substituting the number of free electrons in the conduction

TABLE IV. Values of the lifetimes of the PEP-allowed K
transitions [71].

τKα1
1.64 × 10−17 s

τKα2
3.6 × 10−17 s

τKβ1
5.85 × 10−17 s

τKβ2 1.42 × 10−16 s
τKβ3

1.62 × 10−16 s
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band of the target, the mean number of interactions and the
efficiency with the corresponding parameters which char-
acterize our experimental apparatus (see Tables III and V).
We obtain Smax ≈ 1433 and the prior on S is

P0ðSÞ ¼
� 1

Smax
0 ≤ S ≤ Smax

0 otherwise
: ð22Þ

D. Lower limits on the noncommutativity scale Λ
The joint pdf PðS; BjdataÞ is shown in Fig. 2 for the case

θ0i ≠ 0. The upper limits S̄ are calculated, for each choice
of θ0i, from the cumulative pdf (P̃ðS̄Þ) by solving the
integral equation,

P̃ðS̄Þ ¼
Z

S̄

0

PðSjdataÞ dS ¼ Π; ð23Þ

the values obtained for S̄, corresponding to a probability
Π ¼ 0.9, are given in Table VI; they are affected by a
relative numerical error of ∼2 × 10−5.
A dedicated algorithm was developed for the calculation

of the posterior pdf in Eq. (11) and of the cumulative
distribution function. The numerical integrations are per-
formed by means of Monte Carlo techniques and a detailed
description of the numerical tools developed for this
analysis is provided in the Appendix.

The comparison of the total expected number of violat-
ing transitions μ predicted by the model and the corre-
sponding upper bound S̄, provides a constraint on the lower
limit of the scale Λ, for each choice of θ0i,

μ ¼
XNK

K¼1

μK ¼ ℵ
Λ2

< S̄ ⇒ ð24Þ

⇒ Λ >

�
ℵ
S̄

�
1=2

: ð25Þ

The lower limits on Λ, corresponding to a probability
Π ¼ 0.9, are summarized in Table VI. This measurement
rules out θ Poincaré if the “electriclike” components of θμν
are taken different from zero, since in this case the scale Λ
of noncommutativity emergence is constrained beyond the
Planck scale. If, instead, θ0i ¼ 0 the model is excluded up
to 6.9 × 10−2 Planck scales.

VII. CONCLUSIONS

The results of the analysis of the data collected by the
VIP-2 Lead experiment are presented. The measurement
was devoted to the search for signals of Pauli exclusion
principle violating Kα and Kβ transitions, generated in a
high radio-purity Roman lead target. A comparison is
performed among the measured spectrum and the expected
shape of the violating K-lines complex, as predicted in the
framework of the θ-Poicaré noncommutative quantum
gravity (NCQG) model, based on a Bayesian model. As
a result θ Poicaré is excluded up to 2.6 × 102 Planck scales
when the “electric like” components of the θμν tensor are
different from zero, and up to 6.9 × 10−2 Planck scales if
they vanish, thus providing the strongest atomic transitions
based test of the model.
The most interesting phenomenological feature, emerg-

ing from the theory, consists on the PEP violating transition
amplitude dependence on the characteristic energy scales
involved in the investigated reactions [see, e.g., Eqs. (8)
and (9)]. This, in turn, translates in a dependence on the
atomic number of the adopted target, thus opening an
intriguing scenario demanding a systematic analysis of
the data from ongoing [43,45] and forthcoming experi-
ments. Researches in analogy with what presented in

TABLE V. Values of the parameters that characterize the
Roman lead target, from left to right: free electron density,
volume, mass, and number of free electrons in the conduction
band.

ne ðm−3Þ V ðcm3Þ M ðgÞ Nfree

1.33 × 1029 2.17 × 103 22300 2.89 × 1026

FIG. 2. Joint pdf PðS; BjdataÞ of the expected number of total
signal and background counts corresponding to θ0i ≠ 0.

TABLE VI. The table summarizes the upper limits S̄ on the
expected numbers of signal counts, for a probability Π ¼ 0.9, and
the corresponding lower bounds on the noncommutativity scaleΛ
(in Planck scale unit), for the two choices of θ0i.

θ0i S̄
lower limit on Λ
(Planck scales)

θ0i ¼ 0 13.2990 6.9 × 10−2

θ0i ≠ 0 18.1515 2.6 × 102
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Refs. [28,31], addressed on a scan of possible evidences for
spin-statistics violation, would supplement the conclusions
of this study.
The VIP collaboration is presently implementing an

upgraded experimental setup, based on cutting edge Ge
detectors, aiming to probe θ Poincaré beyond the Planck
scale, independently on the particular choice of the θμν
electric like components. NCQG models, in a large number
of their popular implementations, are not far to be tested
and eventually ruled out. In this sense, contrary to naive
expectations NCQG is not only a theoretical attractive
mathematical idea but also offers a rich phenomenology,
suitable to be tested in high sensitivity x-ray spectroscopic
measurements.
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APPENDIX: METHODS

1. Details of the integration algorithm

A dedicated algorithm was developed for solving the
following integral equation:

P̃ðS̄Þ ¼
Z

S̄

0

PðSjdataÞdS

¼
Z

S̄

0

Z
∞

0

Z
Dp

PðS;Bjdata;pÞdmpdBdS¼Π: ðA1Þ

The integration over dmp and dB is performed by using
a Monte Carlo method, integration over dS is done by
applying the trapezoidal rule. The range ½0; Smax� is split
in NS intervals of width h ¼ Smax=NS. This defines a
vector fS0; S1;…; SNS

g such that Si ¼ i · h with i ¼
f0; 1;…; NSg. The posterior pdf of S is calculated for
each value of Si by solving the following integrals:

PðSijdataÞ ¼
Z

∞

0

Z
Dp

PðSi; Bjdata;pÞ dmpdB

¼ P0ðSiÞ
N

Z
∞

0

Z
Dp

PðdatajSi; B;pÞ

· fðpÞ · P0ðBÞ dmpdB; ðA2Þ

where N represents the normalization. The prior of S is
defined as

P0ðSÞ ¼
1

Smax
½ΘðSÞ − ΘðS − SmaxÞ�; ðA3Þ

where Θ is the Heaviside function. The prior of B is

P0ðBÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πB0

p exp

�
−
ðB − B0Þ2

2B0

�
· ΘðBÞ

¼ GðBjN B0;B0
Þ · ΘðBÞ; ðA4Þ

with B0 ≫ 0.
The likelihood is weighted over a number m ¼ NK þ 2

of experimental parameters p ¼ ðα; σÞ. The joint pdf of p is
a multivariate Gaussian,

fðpÞ ¼ GðpjN p0;ΣÞ; ðA5Þ

whose mean values p0 ¼ ðα0; σ0Þ are defined by the fit
parameters α0 given in Sec. VI B and by the resolutions σ0
of the transition lines reported in Table II. The m ×m
covariance matrix is Σ ¼ diagðΣα;ΣKÞ, with Σα and ΣK the
corresponding uncertainties.
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2. Monte Carlo integration

Equation (A2) can be rewritten as

PðSijdataÞ ¼
P0ðSiÞ
N

Z þ∞

−∞

Z
Dp

PðdatajSi; B;pÞ

· fðpÞ · GðBjN B0;B0
Þ · ΘðBÞdB

¼ P0ðSiÞ
N

Eh½PðdatajSi; BÞΘðBÞ�;

where hðB;pÞ ¼ GðBjN B0;B0
Þ · fðpÞ is chosen as the

importance sampling distribution and Eh represents the
expectation value calculated over h. A set fðB1;p1Þ;…;
ðBNh

;pNh
Þg of Nh values for the stochastic variables B and

p are extracted according to the distribution hðB;pÞ. The
NS þ 1 values of the posterior pdf of S are then estimated as
follows:

PðSijdataÞ ¼
P0ðSiÞ
N

1

Nh

XNh

j¼1

PðdatajSi; Bj;pjÞΘðBjÞ

¼ P0ðSiÞ
N

1

Nh

XNh

j¼1

IðSi; Bj;pjÞ: ðA6Þ

3. Calculation of the cumulative P̃ðS̄Þ
By applying the trapezoidal rule the normalization

integral is approximated by

N ¼ 1

2NS

1

Nh

XNS

i¼1

XNh

j¼1

½IðSi; Bj;pjÞ þ IðSi−1; Bj;pjÞ�:

ðA7Þ

The ith value of the posterior is then obtained as

PðSijdataÞ ¼
2NS
Smax

PNh
j¼1 IðSi; Bj;pjÞPNS

i¼1

PNh
j¼1½IðSi; Bj;pjÞ þ IðSi−1; Bj;pjÞ�

;

ðA8Þ

from which the cumulative distribution can be sampled
as well; for a given S ¼ Sn with n ¼ f0; 1;…; NSg, it is
given by

P̃ðSnÞ ¼
P

n
i¼1

PNh
j¼1½IðSi; Bj;pjÞ þ IðSi−1; Bj;pjÞ�PNS

i¼1

PNh
j¼1½IðSi; Bj;pjÞ þ IðSi−1; Bj;pjÞ�

:

ðA9Þ

To conclude the value of S̄ is obtained from a linear
interpolation, among the two values Sk and Skþ1 for which

P̃ðSkÞ < Π < P̃ðSkþ1Þ: ðA10Þ
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