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In this paper, we study codimension two holography in flat spacetimes, based on the idea of the wedge
holography. We propose that a region in a dþ 1 dimensional flat spacetime surrounded by two end of the
world branes, which are given by d dimensional hyperbolic spaces, is dual to a conformal field theory
(CFT) on a d − 1 dimensional sphere. Similarly, we also propose that a dþ 1 dimensional region in the flat
spacetime bounded by two d dimensional de Sitter spaces is holographically dual to a CFT on a d − 1

dimensional sphere. Our calculations of the partition function, holographic entanglement entropy and two
point functions, support these duality relations and imply that such CFTs are nonunitary. Finally, we glue
these two dualities along null surfaces to realize a codimension two holography for a full Minkowski
spacetime and discuss a possible connection to the celestial holography.
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I. INTRODUCTION

The holographic principle [1,2] usually relates a gravi-
tational theory on a certain spacetime M to a nongravita-
tional theory on its codimension one boundary ∂M. This
holographic property is manifest in the AdS=CFT [3] and
the dS=CFT [4,5]. However, if we try to apply the usual
analysis of bulk to boundary relation in the AdS=CFT
[6,7] to a dþ 1 dimensional flat Lorentzian spacetime, its
mathematical structure strongly implies that the dual
theory is a d − 1 dimensional conformal field theory
(CFT), which lives on a sphere at null infinity [8].
Motivated by the triangle equivalence between the soft
theorems, memory effects and BMS symmetries [9–15],
the celestial holography [16–22] was proposed.1 This
interesting holographic duality argues that the four-
dimensional gravity on an asymptotically flat spacetime

is equivalent to a two-dimensional CFT at null infinity,
such that the S-matrices of the four-dimensional gravity
can be computed from correlation functions in the two-
dimensional CFT via a certain Mellin-like transformation,
though the precise identification of the dual CFT has
remained to be answered.
The codimension two nature of the celestial holography

looks mysterious for those who are familiar with normal
holographic dualities such as the AdS=CFT. Recently, as a
generalization of AdS=CFT, a new type of codimension
two holography, called wedge holography, has been found
in [27] and studied further in [28,29]. As sketched in Fig. 1,
the wedge holography argues that the gravity on a dþ 1

dimensional wedge region in AdSdþ1 is dual to a d − 1

dimensional CFT on the d − 1 dimensional tip of the
wedge. We impose the Neumann boundary condition on
d dimensional boundaries of the wedge, so called the end
of the world branes (EOW branes). We can understand this
as a small width limit of the AdS/BCFT [30–32].
Alternatively, we can also understand the wedge hologra-
phy via a double holography in the light of brane-world
holography [33–37] as follows. The dþ 1 dimensional
gravity on the wedge is dual to quantum gravity on the two
d dimensional EOW branes via the brane-world hologra-
phy, which is further dual to a d − 1 dimensional CFT on
the tip via the standard holography.
Motivated by this, the main purpose of this paper is to

explore if we can interpret the celestial holography as an
extension of wedge holography to gravity on a flat
spacetime. We consider the two new classes of wedge
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1A similar codimension two holography was argued in [23] in
the context of eternal inflation. Refer to e.g, [24,25] for a proposal
of holographic duality between gravity in four-dimensional
Minkowski spacetime and a three-dimensional conformal Car-
rollian field theory. Also see [26] for a possibility of a codi-
mension one holography between gravity in the dþ 1
dimensional Euclidean flat space Rdþ1 and a d dimensional
CFT on Sd.
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holography depicted in Fig. 2. One is a hyperbolic sliced
wedge region and the other is a de Sitter sliced wedge
region, both of which are surrounded by two spacelike or
timelike EOW branes, respectively. We argue that each of
them is dual to a CFT on the d − 1 dimensional sphere,
situated at the tip of the wedge. The former might be
interpreted as a product of lower dimensional AdS=CFT
duality for Euclidean AdS geometries, though the product
is now taken in the time direction as opposed to the
standard wedge holography in [27]. The latter may be
regarded as a product of lower dimensional dS=CFT, where
the product is taken in the spacial direction.2 We will
examine these new holographic dualities by calculating the
entanglement entropy, partition function and two point
functions. Finally we will approach the celestial hologra-
phy by combining these two dualities.
This paper is organized as follows. In Sec. II, we explain

hyperbolic and de Sitter slices of Minkowski spacetime and
solutions of a free scalar field with a delta functional source

on a sphere at null infinity. In Sec. III, we propose a wedge
holography in the hyperbolic patch and present evidence
for this duality. In Sec. IV, we propose a wedge holography
in the de Sitter patch and present evidence for this. In
Sec. V, we will try to interpret the celestial holography by
combining the wedge holography in the hyperbolic slices
and that in the de Sitter slices. In Sec. VI, we will
summarize conclusions and discuss future problems. In
appendix A, we briefly present useful identities related to
Legendre functions. In appendix B, we describe minimal
surfaces and geodesic lengths in hyperbolic spaces. In
appendix C, we describe extreme surfaces and geodesic
lengths in de Sitter spaces. In appendix D, we present
detailed calculations of scalar modes in the de Sitter sliced
wedges.

II. HYPERBOLIC AND DE SITTER SLICES
OF FLAT SPACETIME

We start from a dþ 1 dimensional flat spacetime R1;d:

ds2 ¼ −dT2 þ dR2 þ R2dΩ2
d−1: ð2:1Þ

This is decomposed into two patches: the slices of hyper-
bolic spaces Hd and de Sitter spaces dSd, which suggest
holographic properties [8] (see also [22,39–41]).
The hyperbolic slice is obtained by introducing the new

coordinates

T ¼ η cosh ρ; R ¼ η sinh ρ: ð2:2Þ

This leads to the metric

ds2¼−dη2þη2ðdρ2þsinh2ρdΩ2
d−1Þ; ½hyperbolic patch�;

ð2:3Þ

On the other hand, the de Sitter slice is introduced by

T ¼ r sinh t; R ¼ r cosh t; ð2:4Þ

which gives the metric

ds2¼dr2þr2ð−dt2þcosh2tdΩ2
d−1Þ: ½de Sitter patch�;

ð2:5Þ

In these two patches, the radial coordinates η and r take
the values 0 ≤ η < ∞ and 0 ≤ r < ∞. By pasting the two
patches along η ¼ 0 and r ¼ 0, we obtain the full four-
dimensional Minkowski spacetime as depicted in the left
panel of Fig. 3.
We introduce a regularization of the coordinates

η and r:

0 ≤ η ≤ η∞; 0 ≤ r ≤ r∞: ð2:6Þ

FIG. 2. Sketches of two types of codimension two holographic
dualities in flat space. The whole diamond describes a dþ 1
dimensional flat spacetime. The left and right panels describe the
hyperbolic and de Sitter sliced wedges (blue regions) surrounded
by two end of the world-brane (green surfaces), respectively. We
argue that each of them is dual to a CFTon the d − 1 dimensional
sphere (red points).

FIG. 1. A sketch of wedge holography, which argues that the
gravity on a wedge region in AdSdþ1 is dual to a d − 1
dimensional CFT on the codimension two spacetime given by
the tip of the wedge.

2For an earlier study of a relation between celestial holography
to the dS=CFT refer to [38].
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This allows us to effectively reduce the hyperbolic patch
and the de Sitter patch to Hd and dSd via the compacti-
fication as analogous to the wedge holography for the AdS
[27], which is a doubled version of the AdS/BCFT [30,31].
If we extend the wedge holography to the dþ 1 dimen-
sional Minkowski Space, one may be tempting to argue that
a d − 1 dimensional CFT on Sd−1 is dual to the gravity on
the dþ 1 dimensional wedge region (2.6). As usual in the
AdS=CFT [3] and the dS=CFT [4], it is useful to introduce
the UV cutoff of the dual CFT, which is dual to the
geometrical cutoff

ρ ≤ ρ∞; t ≤ t∞: ð2:7Þ

Below we will first study the hyperbolic and de Sitter
slices separately by considering the wedge holography for
each of them. After that we will discuss a connection
between the celestial holography and the above wedge
holography.

A. Scalar field in hyperbolic patch

Consider perturbations of a real scalar field Ψ in the flat
space, which are expected to be dual to scalar operator
excitations in the dual CFT on the sphere in our wedge
holography. We focus on the four-dimensional gravity case
i.e. dþ 1 ¼ 4 just for simplicity. We write the two-
dimensional sphere metric as dΩ2

2 ¼ dθ2 þ sin2 θdϕ2.
We assume a massive free scalar field Ψ given by the

action

Iscalar ¼
1

2

Z
dx4

ffiffiffiffiffiffi
−g

p ½−gμν∂μΨ∂νΨ −m2Ψ2�: ð2:8Þ

The equation of motion reads

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ −m2Ψ ¼ 0: ð2:9Þ

In the hyperbolic patch (2.3), the equation of motion of
the scalar field (2.9) is written as (see e.g., [42])

− ∂
2
ηΨ −

3

η
∂ηΨþ 1

η2
ð∂2ρΨþ 2 coth ρ∂ρΨÞ

þ 1

η2 sinh2 ρ
Δ2Ψ −m2Ψ ¼ 0; ð2:10Þ

where Δ2 is the Laplacian on the two-dimensional
sphere. We can solve this by decomposing the solution
as follows

Ψðη; ρ; θ;ϕÞ ¼ fpðηÞgp;lðρÞYlmðθ;ϕÞ; ð2:11Þ

where the functions fp, gp;l, and Ylm satisfy

�
−∂2η −

3

η
∂η þ

p2

η2
−m2

�
fpðηÞ ¼ 0;�

∂
2
ρ þ 2 coth ρ∂ρ −

lðlþ 1Þ
sinh2ρ

− p2

�
gp;l ¼ 0;

Δ2Ylm ¼ −lðlþ 1ÞYlm: ð2:12Þ

The first equation is explicitly solved as

fpðηÞ ¼ α
I ffiffiffiffiffiffiffiffi

1þp2
p ðmηÞ

η
þ β

K ffiffiffiffiffiffiffiffi
1þp2

p ðmηÞ
η

; ð2:13Þ

where α and β are arbitrary constants. The solution to the
second one reads

gp;lðρÞ ¼
1

sinh ρ
·Q

ffiffiffiffiffiffiffiffi
1þp2

p
l ðcoth ρÞ; ð2:14Þ

where Q is the associated Legendre function. We chose
Legendre Q function instead of Legendre P function
because we require a smooth behavior at ρ ¼ 0. Finally
the function Ylm is the standard spherical harmonics (A4).

B. Scalar field in de Sitter patch

To obtain the solutions in the de Sitter patch (2.5), we
only have to replace the coordinate as

η ¼ −ir; ρ ¼ t −
π

2
i: ð2:15Þ

This leads to the solution

Ψðr; t; θ;ϕÞ ¼ f̃pðrÞg̃p;lðtÞYlmðθ;ϕÞ; ð2:16Þ

where each function reads

f̃pðrÞ ¼ −αeπi
ffiffiffiffiffiffiffiffi
1þp2

p
·
J ffiffiffiffiffiffiffiffi

1þp2
p ðmrÞ

r

− β
πi
2
e−πi

ffiffiffiffiffiffiffiffi
1þp2

p
·
Hð1Þffiffiffiffiffiffiffiffi

1þp2
p ðmrÞ

r
; ð2:17Þ

FIG. 3. Hyperbolic and de Sitter slices in Minkowski Space
(left) and their regularization (right).
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g̃p;lðtÞ ¼
1

cosh t
·Q

ffiffiffiffiffiffiffiffi
1þp2

p
l ðtanh tÞ: ð2:18Þ

Note that if we go from t ¼ ∞ to t ¼ −∞, the function g̃p;l
gives the factor ð−1Þl because Qμ

νðzÞ is given by z−μ−ν−1

times an even function of z. This explains that the future
celestial sphere is related to the past one via the antipodal
map θ → θ þ π.

C. Solution with a delta-functional source on the sphere

We input a delta functional source of the scalar field at
ðθ0;ϕ0Þ on S2. In the hyperbolic slice, we expand the scalar
field in terms of complete set of solutions to the equation of
motion for the scalar field by the standard variable
separation as in (2.13) and (2.14) under the boundary
condition which we are assuming. This leads to the
following expansion:

Ψh
0ðη; ρ; θ;ϕÞ ¼ fpðηÞ ·

N
sinh ρ

X∞
l¼0

Xl

m¼−l
Y�
lmðθ0;ϕ0ÞQ

ffiffiffiffiffiffiffiffi
1þp2

p
l ðcoth ρÞYlmðθ;φÞ

¼ fpðηÞ ·
N

sinh ρ

X∞
l¼0

�
2lþ 1

4π

�
Plðcos γÞQ

ffiffiffiffiffiffiffiffi
1þp2

p
l ðcoth ρÞ; ð2:19Þ

where we employed the additivity formula (A7) in the final
line and we defined γ by

cos γ ¼ cos θ0 cos θ þ sin θ sin θ0 cosðφ − φ0Þ: ð2:20Þ

We will choose the normalization factor N as N ¼
e−πi

ffiffiffiffiffiffiffiffi
1þp2

p
1

Γð
ffiffiffiffiffiffiffiffi
1þp2

p
Þ
.

In the ρ → ∞ limit, using (A3) and (A9), we find

Ψh
0ðη; ρ; θ;ϕÞ → fpðηÞ ·

�
eð

ffiffiffiffiffiffiffiffi
1þp2

p
−1Þρδ2ðΩ −Ω0Þ

þ e−ð
ffiffiffiffiffiffiffiffi
1þp2

p
þ1Þρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
4π

�
1 − cos γ

2

�
Δ
�
;

ð2:21Þ

which indeed gives the delta-functionally localized source

with the correct ρ dependence eðΔ−dÞρ ¼ eð
ffiffiffiffiffiffiffiffi
1þp2

p
−1Þρ for a

source term in AdS3=CFT2 by identifying the dimension of
dual scalar operator Δ as

Δ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q
: ð2:22Þ

Moreover, we can show that the full expression of (2.19)
is expressed in the form [8]:

Ψh
0ðη; ρ; θ;ϕÞ ¼

Δ − 1

4π
· fpðηÞ ·

1

ðcosh ρ − cos γ sinh ρÞΔ :

ð2:23Þ

Indeed, we can prove the following expansion:

ðcosh ρ − cos γ sinh ρÞ−Δ ¼
X∞
l¼0

clPlðcos γÞ; ð2:24Þ

where cl can be found from the integral formula (A8) as
follows:

cl ¼
e−πiðΔ−1Þð2lþ 1Þ

ΓðΔÞ ·
1

sinh ρ
·QΔ−1

l ðcoth ρÞ: ð2:25Þ

We can analytically continue the above analysis to the
de Sitter slices via the coordinate transformation (2.15).

Ψds
0 ðr; t; θ;ϕÞ ¼ f̃pðrÞ ·

N
cosh t

X∞
l¼0

�
2lþ 1

4π

�

× Plðcos γÞQ
ffiffiffiffiffiffiffiffi
1þp2

p
l ðtanh ρÞ: ð2:26Þ

In the t → ∞ limit, we find

Ψds
0 ðr; t;θ;ϕÞ→ if̃pðrÞ ·

�
eð

ffiffiffiffiffiffiffiffi
1þp2

p
−1Þðt−π

2
iÞδ2ðΩ−Ω0Þ

þe−ð
ffiffiffiffiffiffiffiffi
1þp2

p
þ1Þðt−π

2
iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2

p
4π

�
1−cosγ

2

�
Δ
�
:

ð2:27Þ

The full function can be written as

Ψds
0 ðr; t; θ;ϕÞ ¼ Δ − 1

4π
e
π
2
ið1−ΔÞ · f̃pðrÞ

·
1

ðsinh t − cos γ cosh tþ iϵ̃ÞΔ ; ð2:28Þ

where ϵ̃ is the regularization of iϵ prescription [8].

III. WEDGE HOLOGRAPHY
FOR HYPERBOLIC SLICES

First we consider a wedge holography for hyperbolic
slices depicted in the left panel of Fig. 2. We specify the
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dþ 1 dimensional wedge Wh by restricting the coordinate
η to the range

η1 ≤ η ≤ η2; ð3:1Þ

in the coordinate (2.3). We will impose the Neumann
boundary condition on the two EOW branes Qhð1Þ and
Qhð2Þ each at η ¼ η1 and η ¼ η2, given by

Kab − habK ¼ −Thab; ð3:2Þ

where Kab is the extrinsic curvature (we choose the normal
vector na is out-going) and T is the tension of EOW brane.
Indeed we can confirm that the boundary condition (3.2) is
satisfied by setting the values of each tension to be

ThðiÞ ¼ d − 1

d
KhðiÞ ¼ d − 1

ηi
; ð3:3Þ

where i ¼ 1, 2 labels the two EOW branes.
By extending the wedge holography in the AdS space

[27], we argue that the dþ 1 dimensional gravity on the
wedge Wh (3.1) is dual to a d − 1 dimensional CFT on
the sphere Sd−1 at the tip ρ → ∞. We introduce the cutoff
ρ ¼ ρ∞ as in (2.7). Below we will give evidences for this
new wedge holography by evaluating the partition function,
holographic entanglement entropy and scalar field pertur-
bation. Note that each hyperbolic slice Hd at a fixed value
of η has the SOð1; dÞ symmetry, which is the Lorentz
symmetry in the original dþ 1 dimensional Minkowski
spacetime. This symmetry matches with the conformal
symmetry of the Euclidean CFT on Sd−1. In particular, at
d ¼ 3, this is enhanced to a pair of Virasoro symmetries,
which origins from the superrotation symmetry in R1;3,
being identified with the conformal symmetry of a dual
two-dimensional CFT.
Moreover, the results we will obtain below imply that the

dual CFT on Sd−1 is nonunitary. This is not surprising
because we added a timelike interval (3.1) as an internal
direction, orthogonal to the hyperbolic space Hd, in spite
that we can apply the standard AdS=CFT to each slice.
Instead, this is analogous to the dS=CFT, where the dual
CFT is expected to be nonunitary based on the analysis of
central charge analysis [5] and explicitly known examples
of the dS=CFT are nonunitary [43–46].

A. Partition function

The gravity action is written as follows:

IG ¼ 1

16πGN

Z
Wh

ffiffiffiffiffiffi
−g

p
Rþ 1

8πGN

�Z
Qhð1Þ

ffiffiffi
γ

p ðKhð1Þ − Thð1ÞÞ

−
Z
Qhð2Þ

ffiffiffi
γ

p ðKhð2Þ − Thð2ÞÞ
�
: ð3:4Þ

To evaluate the on-shell action, we note the vanishing
curvature R ¼ 0 andZ

QhðiÞ

ffiffiffi
γ

p ¼ηdiωd−1

Z
ρ∞

0

dρsinhd−1ρ; ði¼1;2Þ; ð3:5Þ

where we defined

ωd−1 ¼
dπ

d
2

Γðd
2
þ 1Þ ; ð3:6Þ

which is the volume of a unit sphere in d − 1 dimension.
By setting,

Jd ¼
Z

ρ∞

0

dρ sinhdρ; ð3:7Þ

and plugging (3.3), we obtain on-shell action as follows:

IG ¼ −
1

8πGN
ðηd−12 − ηd−11 Þωd−1Jd−1: ð3:8Þ

Note that Jd obeys the recursion relation

Jd ¼
1

d
sinhd−1ρ∞ cosh ρ∞ −

d − 1

d
Jd−2: ð3:9Þ

Below we will explicitly evaluate the on-shell action for
d ¼ 3, 4, 5.

1. d = 3 case

When d ¼ 3 we explicitly obtain

Id¼3
G ¼ η22 − η21

16GN
ð−e2ρ∞ þ 4ρ∞Þ: ð3:10Þ

By regarding the geometrical cutoff ρ∞ in Hd as the UV
cutoff ϵ in the dual two-dimensional CFT on S2 by
identifying

ϵ ¼ e−ρ∞ ; ð3:11Þ

we obtain

IG ¼ −
η22 − η21
16GNϵ

2
−
η22 − η21
4GN

log ϵ: ð3:12Þ

This can be comparable to the standard CFT result that
the sphere partition function of two-dimensional CFT with
the central charge c reads [47,48]

ZCFT ∼ e
A
ϵ2
−c
3
log ϵ; ð3:13Þ

where A is nonuniversal constant, while the log ϵ term is
universal as this is fixed by the conformal anomaly.
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By equating this as ZCFT ¼ eiIG , we can estimate the central
charge:

c ¼ i
3ðη22 − η21Þ

4GN
: ð3:14Þ

2. d = 4 case

For d ¼ 4, the on-shell action reads

IG ¼ η32 − η31
GN

�
−

1

48
e3ρ∞ þ 3

16
eρ∞

�
ð3:15Þ

Using (3.11), we obtain

IG ¼ −
η32 − η31
48GNϵ

3
þ 3ðη32 − η31Þ

16GNϵ
: ð3:16Þ

This is expected to be dual to a three-dimensional CFT. The
absence of logarithmic term in the gravity on-shell action is

consistent with the well-known fact that there is no
conformal anomaly in odd-dimensional CFTs.

3. d = 5 case

For d ¼ 5, we obtain

IG ¼ πðη42 − η41Þ
16GN

�
−

1

12
e4ρ∞ þ 2

3
e2ρ∞ − 2ρ∞

�
: ð3:17Þ

In the same way as before, we can rewrite this as follows:

IG ¼ πðη42 − η41Þ
2GN

�
−

1

96ϵ4
þ 1

12ϵ2
þ 1

4
log ϵ

�
: ð3:18Þ

Now we would like to compare this result to the CFT
one. The 4-sphere partition function with central charges a,
c satisfies the following equation [47–49];

ϵ
d
dϵ

logZCFT ¼ −
1

2π

�Z
d4x

ffiffiffi
g

p
Tμ
μ

�
S4

¼ −
1

2π

Z
d4x

ffiffiffi
g

p �
a
8π

R̃μνρσRμνρσ −
c
8π

WμνρσWμνρσ

�
¼ −2aχðS4Þ
¼ −4a: ð3:19Þ

In the third line, we use

hTμ
μi ¼ a

8π
R̃μνρσRμνρσ −

c
8π

WμνρσWμνρσ: ð3:20Þ

And in the fourth line, we use the Euler characteristic class
in four-dimensional manifold

1

32π2

Z
d4x

ffiffiffi
g

p
R̃μνρσRμνρσ ¼ χðMÞ; ð3:21Þ

and the fact that the Weyl tensor W vanishes in S4.
By solving (3.19), we obtain the logarithmic part
of ZCFT,

logZCFT ¼ 4a log ϵþ ðother partsÞ: ð3:22Þ

By equating this as ZCFT ¼ eiIG , we can estimate the
central charge:

a ¼ i
πðη42 − η41Þ
32GN

: ð3:23Þ

B. Holographic entanglement entropy

Now we would like to calculate the holographic entan-
glement entropy [50–52], which is given by

SA ¼ AreaðΓAÞ
4GN

; ð3:24Þ

where ΓA is the extremal surface, which ends on the
boundary of A, i.e., ∂ΓA ¼ ∂A.
The d − 1 dimensional extremal surface3 which com-

putes the holographic entanglement entropy in our dþ 1

dimensional wedgeWh is given by a family of the minimal
area surfaces in the hyperbolic spaces Hd parametrized by
the time coordinate η in the range (3.1). Such an extreme
surface is timelike and its area takes a pure imaginary value,
as is common to the holographic entanglement entropy in
dS=CFT correspondence [46,54,55].

3Refer to [53] for earlier calculations of entanglement entropy
in asymptotically flat spacetime, where the entangling surface lies
at null infinity. On the other hand, in our case, we are considering
a different quantity, namely the entanglement entropy of two-
dimensional CFT on a celestial sphere, where the dual extremal
surface extends from the null infinity to the bulk of flat space.
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At a fixed value of η, this is given by the standard
minimal surface γHA in Hd calculated in Appendix B. We
take the metric of Hd to be

ds2 ¼ dρ2 þ sinh2ρðdθ21 þ sin2θ1dΩd−2Þ: ð3:25Þ

The minimal area which stretches between θ ¼ −θ0 to
θ ¼ θ0 is given by

AðγHA Þ ¼ ωd−3 ·
Z

1

δ
L

dy
ð1 − y2Þd−42

yd−2
; ð3:26Þ

where the infinitesimally small cutoff δ and the minimal
surface parameter L, are related to the cutoff ρ∞ and θ0 via
(B7) and (B8). We again denote the volume of unit d
dimensional sphere by ωd as in (3.6). For d ¼ 3, 4 and 5 we
obtain the following results:

AðγHA Þd¼3 ¼ 2 log
2L
δ

¼ 2 logðeρ∞ sin θ0Þ;

AðγHA Þd¼4 ¼ 2π

�
L
δ
− 1

�
¼ π sin θ0eρ∞ − 2π;

AðγHA Þd¼5 ¼ 4π

�
L2

2δ2
−
1

2
log

2L
δ

−
1

4

�

¼ π

2
sin2θ0e2ρ∞ − 2π log

�
sin θ0
4

eρ∞
�

− π cos θ0ð2 − cos θ0Þ: ð3:27Þ

Thus the area of the full extremal surface in Wh is
given by

AðΓH
A Þ¼ i

Z
η2

η1

ηd−1dη ·AðγHA Þ¼
i

d−1
ðηd−12 −ηd−12 ÞAðγHA Þ:

ð3:28Þ

In this way the total expression of the holographic
entanglement entropy reads

SA ¼ AðΓH
A Þ

4GN
¼ iðηd−12 − ηd−11 Þ

4ðd − 1ÞGN
AðγHA Þ: ð3:29Þ

For d ¼ 3 we obtain

SA ¼ iðη22 − η21Þ
8GN

log

�
sin2 θ0
ϵ2

�
; ð3:30Þ

where we employed the relation between the CFT
cutoff ϵ and the gravity cutoff ρ∞ (3.11). We can
compare this with the standard result computed in a
two-dimensional CFT on S2 with a central charge c, where

the subsystem A is taken to be an interval; θð1Þ ≤ θ1 ≤ θð2Þ,
given by [56,57]:

SA ¼ c
6
log

�
sin2ðθð1Þ−θð2Þ

2
Þ

ϵ2

�
: ð3:31Þ

This comparison tells us that the central charge takes the
following imaginary value

c ¼ 3i
4GN

ðη22 − η21Þ: ð3:32Þ

This agrees with the value (3.14) computed from the
partition function.
For d ¼ 5 we find by setting ρ∞ ¼ − log ϵ (3.11):

SA ¼ i
πðη42 − η41Þ
16GN

�
sin θ20
2ϵ2

− 2 log

�
sin θ0
4ϵ

�

− cos θ0ð2 − cos θ0Þ
�
: ð3:33Þ

By comparing this with the standard formula in four-
dimensional CFTs [51,58]

SA ¼ c0ϵ−2 þ 4a log ϵþOð1Þ; ð3:34Þ

we can read off the value of the central charge a:

a ¼ πi
32GN

ðη42 − η41Þ: ð3:35Þ

Indeed this agrees with our previous evaluation from the
partition function (3.23).

C. Scalar field perturbation and two point functions

Consider a free massive scalar field in the wedge
geometry Wh, defined by η1 ≤ η ≤ η2. We expect this is
dual to scalar operators in the dual CFTon Sd−1. We impose
either the Dirichlet or Neumann boundary condition at the
boundary η ¼ η1;2. As we will show below, there are
infinitely many scalar modes dual to operators which have
conformal dimensionΔ ¼ 1þ iλk with λk real valued. This
complex valued conformal dimension again suggests the
nonunitary nature of the dual CFT as similar to the celestial
holography [17].

1. Dirichlet boundary condition

We impose the Dirichlet boundary condition on the two
EOW-branes:

fpðη1Þ ¼ 0; fpðη2Þ ¼ 0; ð3:36Þ
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where the function fpðηÞ was defined in (2.13). Solving
this boundary condition is equivalent to searching for
values of ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
, which satisfy

Dhðν; x1; x2Þ ¼ Iνðx1ÞKνðx2Þ − Iνðx2ÞKνðx1Þ ¼ 0; ð3:37Þ

where x1;2 ¼ mη1;2. Solutions exist only when ν is pure
imaginary and there are infinitely many discrete solutions
as depicted in Fig. 4. We write the values of ν, which satisfy
(3.37) as ν ¼ iλk. Note that if ν ¼ iλk is a solution, then its
complex conjugate ν ¼ −iλk is also a solution. This shows
that a bulk scalar with mass m is dual to infinitely many
scalar operators, which have complex and discrete values of
conformal dimension:

Δ ¼ 1þ iλk: ð3:38Þ

To see this property analytically, we take two limits:
η2 → ∞ and η1 → 0. The first boundary condition can be
written as

fpðη2Þ ¼ α
Iνðmη2Þ

η2
þ β

Kνðmη2Þ
η2

¼ 0: ð3:39Þ

In the limit η2 → ∞, the first term diverges. Thus we must
set α ¼ 0. In order to satisfy the second condition, we
require limη1→0 Kνðmη1Þ ¼ 0. Recalling

KνðmηÞ ≃ π

2

1

sin νπ

	 ðmη
2
Þ−ν

Γð1 − νÞ −
ðmη
2
Þν

Γð1þ νÞ



ð0 < η ≪ 1Þ;

ð3:40Þ

it is obvious thatKνð0Þ diverges if ν has a real part. Thus we
set ν ¼ iλðλ ∈ RÞ.

KiλðmηÞ ≃ π

2

e−iλ log
mη
2

Γð1−iλÞ −
eþiλ log

mη
2

Γð1þiλÞ
i sinh λπ

¼ π

sinh λπ
Im

�
e−iλ log

mη
2

Γð1 − iλÞ
�
:

ð3:41Þ

In the last line we can see that infinitely many (but discrete)
values of λ satisfy the necessary condition at nonzero η. We
can also see that the satisfactory values of λ become
continuous under η → 0 because log mη

2
→ −∞.

2. Neumann boundary condition

Nowwe impose the Neumann boundary condition on the
two EOW-branes:

∂ηfpðη1Þ ¼ 0; ∂ηfpðη2Þ ¼ 0; ð3:42Þ

where the function fpðηÞ was defined in (2.13). By using
the recurrence formula of modified Bessel function

∂xIνðxÞ ¼
1

2
ðIνþ1ðxÞ þ Iν−1ðxÞÞ; ∂xKνðxÞ ¼ −

1

2
ðKνþ1ðxÞ þ Kν−1ðxÞÞ;

IνðxÞ
x

¼ −
1

2ν
ðIνþ1ðxÞ − Iν−1ðxÞÞ;

KνðxÞ
x

¼ 1

2ν
ðKνþ1ðxÞ − Kν−1ðxÞÞ; ð3:43Þ

we can write (3.42) as follows:

FIG. 4. Plots ofDhðν; x1; x2Þ for x1 ¼ 1 and x2 ¼ 5 as a function of ν (left) and plots of zero point ofDh (right). The color of left figure
represents D’s phase.
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α

�
νþ 1

2ν
Iνþ1ðmηaÞ þ

ν − 1

2ν
Iν−1ðmηaÞ

�
− β

�
νþ 1

2ν
Kνþ1ðmηaÞ þ

ν − 1

2ν
Kν−1ðmηaÞ

�
¼ 0:

where a ¼ 1, 2. This is equivalent to the search of values of ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
, which satisfy

Nhðν; x1; x2Þ ¼ fðνþ 1ÞIνþ1ðx1Þ þ ðν − 1ÞIν−1ðx1Þgfðνþ 1ÞKνþ1ðx2Þ þ ðν − 1ÞKν−1ðx2Þg
− fðνþ 1ÞIνþ1ðx2Þ þ ðν − 1ÞIν−1ðx2Þgfðνþ 1ÞKνþ1ðx1Þ þ ðν − 1ÞKν−1ðx1Þg

¼ 0: ð3:44Þ

where x1;2 ¼ mη1;2. Solutions exist only when ν is pure
imaginary and there are infinitely many discrete solutions
as depicted in Fig. 5. We write the values of ν, which satisfy
(3.44) as ν ¼ iλk. Each mode is dual to a scalar operator
with the conformal dimension (3.38). Again, if ν ¼ iλk is a
solution, then its complex conjugate ν ¼ −iλk is also a
solution.
We take the limit η2 → ∞ and η1 → 0. The first equation

can be written as

∂ηfpðη2Þ ¼ mα

�
νþ 1

2ν

Iνþ1ðmη2Þ
η2

þ ν − 1

2ν

Iν−1ðmη2Þ
η2

�

−mβ

�
νþ 1

2ν

Kνþ1ðmη2Þ
η2

þ ν − 1

2ν

Kν−1ðmη2Þ
η2

�
¼ 0: ð3:45Þ

In the limit η2 → ∞, the first term diverges. Thus we must
take α ¼ 0. The second equation can be written as

∂ηfpðη1Þ¼mβ

�
νþ1

2ν

Kνþ1ðmη1Þ
η1

þν−1

2ν

Kν−1ðmη1Þ
η1

�
¼0:

ð3:46Þ

In order to satisfy this equation in the limit η1 → 0, it is
necessary to impose

lim
η1→0

	
ðνþ 1ÞKνþ1ðmη1Þ

η1
þ ðν − 1ÞKν−1ðmη1Þ

η1



¼ 0:

ð3:47Þ

In 0 < η1 ≪ 1, applying the asymptotic form (3.40),

ðinside the limitÞ

¼ ðνþ 1ÞKνþ1ðmη1Þ
η1

þ ðν − 1ÞKν−1ðmη1Þ
η1

≃ −
π

2

1

sin νπ
m
2

	ð1þ νÞðmη1
2
Þ−2−ν

Γð−νÞ þ ð1 − νÞðmη1
2
Þ−2þν

ΓðνÞ


:

ð3:48Þ

It is obvious that the last line diverges if ν has a real part.
Thus we set ν ¼ iλðλ ∈ RÞ,

ðinside the limitÞ ≃ −
π

sin iλπ
2

mη21
Re

�
ð1 − iλÞ e

iλ log
mη1
2

ΓðiλÞ
�
:

ð3:49Þ

We can see that infinitely many (but discrete) values of λ
satisfy the necessary condition at nonzero η1. We can also
see that the satisfactory values of λ become continuous
under η1 → 0 because log mη1

2
→ −∞.

FIG. 5. Plots of Nhðν; x1; x2Þ for x1 ¼ 1 and x2 ¼ 5 as a function of ν (left) and plots of zero point of Nh (right). The color of the left
figure represents N’s phase.

WEDGE HOLOGRAPHY IN FLAT SPACE AND CELESTIAL … PHYS. REV. D 107, 026001 (2023)

026001-9



3. Two point function

Now let us calculate the two point functions by extend-
ing the standard bulk to boundary relation in AdS=CFT
[6,7] to our wedge holography. For this we evaluate the on-
shell action of scalar field

Iscalar ¼ i
Z

η2

η1

dη
η
fpðηÞ2 · sinh2 ρ∞ ·

Z
d2ΩΨ∂ρΨjρ¼ρ∞

:

ð3:50Þ

Then it is obvious that we obtain the two point function of
dual scalar operators at fixed value of p where the product
of the first and second term of (2.21) contributes:

hOpðθ1;φ1ÞOpðθ2;φ2Þi ∝ ð1 − cos γ12Þ−Δ; ð3:51Þ

where Δ is related to p via (2.22) and we also introduced
γ12 by

cosγ12¼ cosθ1 cosθ2þ sinθ1 sinθ2 cosðφ1−φ2Þ: ð3:52Þ

This agrees with the expected two point function of two-
dimensional CFT on S2 by identifying Δ with the con-
formal dimension of the scalar operator Op.

IV. WEDGE HOLOGRAPHY
FOR DE SITTER SLICES

As the second wedge holography, we consider the dþ 1

dimensional wedge Wds by restricting the de Sitter sliced
metric (2.5) to the region

r1 ≤ r ≤ r2; ð4:1Þ

as sketched in the right panel of Fig. 2. The two boundaries
r ¼ r1 and r ¼ r2 are the EOW branes Qdsð1Þ and Qdsð2Þ,
where we impose the Neumann boundary condition (3.2).
By solving this boundary condition, we obtain

TdsðiÞ ¼ d − 1

d
KdsðiÞ ¼ d − 1

ri
; ð4:2Þ

where i ¼ 1, 2 labels the two EOW branes.
We argue that the dþ 1 dimensional gravity on the

wedge Wds (4.1) is dual to a d − 1 dimensional CFT on a
d − 1 dimensional sphere Sd−1. Even though two spheres
are situated at the tips of the wedge: t ¼ −∞ and t ¼ ∞, we
identify them via the antipodal mapping. We introduce the
cutoff t ¼ �t∞ as in (2.7). As in the hyperbolic case, each
de Sitter slice dSd at a fixed value of r has SOð1; dÞ
symmetry. This is the Lorentz symmetry in the original
dþ 1 dimensional Minkowski spacetime and matches the
conformal symmetry of the dual Euclidean CFTon Sd−1. At
d ¼ 3, this is again enhanced to a pair of Virasoro
symmetries. This is the superrotation symmetry [59,60]

in R1;3 and is identified with the conformal symmetry of a
dual two-dimensional CFT.
Notice that thiswedge holography can be regarded simply

as a dS version of the wedge holography in the AdS [27]
because the wedge is defined by adding a spatial width to a
dSd. Therefore we again expect the dual CFT on Sd−1 is
nonunitary being similar to the dS=CFT [4,5,43–46].
We will study the partition function, holographic entangle-
ment entropy and scalar field perturbation to verify this
wedge holography.

A. Partition function

The gravity action on our wedge region reads

IG ¼ 1

16πGN

Z
Wds

ffiffiffiffiffiffi
−g

p
R

−
1

8πGN

�Z
Qdsð1Þ

ffiffiffiffiffiffi
−h

p
ðKdsð1Þ − Tdsð1ÞÞ

−
Z
Qdsð2Þ

ffiffiffiffiffiffi
−h

p
ðKdsð2Þ − Tdsð2ÞÞ

�
: ð4:3Þ

We would like to limit the spacetime to be the half
0 ≤ t < ∞. This corresponds to the dual CFT setup where
the two spheres at t ¼ ∞ and t ¼ −∞ are identified via the
antipodal mapping. Also in the absence of this identifica-
tion, we can obtain the partition function just by dou-
bling it.
By noting

Z
QdsðiÞ

ffiffiffiffiffiffi
−h

p
¼ rdiωd−1

Z
t∞

0

dt coshd−1t; ð4:4Þ

and introducing

Id ¼
Z

t∞

0

dt coshdt; ð4:5Þ

we obtain on-shell action as follows:

IG ¼ 1

8πGN
ðrd−12 − rd−11 Þωd−1Id−1: ð4:6Þ

We can find the recurrence formula as follows:

Id ¼
1

d
coshd−1 t∞ sinh t∞ þ d − 1

d
Id−2: ð4:7Þ

Below we would like to evaluate this explicitly for d ¼ 3, 4
and 5.
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1. d = 3 case

For d ¼ 3, the on-shell action reads

IG ¼ r22 − r21
16GN

ðe2t∞ þ 4t∞Þ: ð4:8Þ

By regarding the geometrical cutoff t∞ in the dS3 as the UV
cutoff ϵ in the dual two-dimensional CFT on S2 by
identifying

ϵ ¼ e−t∞ ; ð4:9Þ
we obtain

IG ¼ r22 − r21
16GNϵ

2
−
r22 − r21
4GN

log ϵ: ð4:10Þ

By comparing with the standard CFT result (3.13) using the
bulk to boundary relation ZCFT ¼ eiIG , we obtain the
central charge c of the dual two-dimensional CFT

c ¼ i
3ðr22 − r21Þ

4GN
: ð4:11Þ

2. d = 4 case

For d ¼ 4, we can evaluate the on-shell action as
follows:

IG ¼ r32 − r31
GN

�
1

48
r3∞e3t∞ þ 3

8
r3∞et∞

�
ð4:12Þ

Via the relation (4.9), we obtain

IG ¼ r32 − r31
48GNϵ

3
þ 3ðr32 − r31Þ

16GNϵ
: ð4:13Þ

Note that there is no logarithmic term as in odd-dimensions
there is no conformal anomaly.

3. d = 5 case

For d ¼ 5, we can estimate on-shell action as follows:

IG ¼ πðr42 − r41Þ
16GN

�
1

12
e4t∞ þ 2

3
e2t∞ þ 2t∞

�
: ð4:14Þ

In terms of the CFT cutoff (4.9), we find

IG ¼ πðr42 − r41Þ
2GN

�
1

96ϵ4
þ 1

12ϵ2
−
1

4
log ϵ

�
: ð4:15Þ

By comparing the logarithmic term in ZCFT ¼ eiIG with
(3.22), we can evaluate

a ¼ −i
πðr42 − r41Þ
32GN

: ð4:16Þ

B. Holographic entanglement entropy

The extremal surface, which computes the holographic
entanglement entropy (3.24) can be constructed from a
family of extremal surfaces in the de Sitter slice. Thus, for a
fixed value of r, it is given by the extremal surface γdSA in
dSd calculated in Appendix C. Consider the metric of dSd
given by

ds2 ¼ −dt2 þ cosh2 tðdθ21 þ sin2 θ1dΩd−2Þ: ð4:17Þ

The area of an extremal surface, which stretches between
θ ¼ −θ0 to θ ¼ θ0 on the sphere Sd−1 at the asymptotic
boundary t ¼ t∞ → ∞ is given by

AðγdSA Þ ¼ iωd−3 ·
Z

∞

ϵ
L

dy
ð1þ y2Þd−42

yd−2
; ð4:18Þ

where ϵ and L are related to the cutoff ρ∞ and θ0 via (C7)
and (C8). Note that this extremal surface is time-like and
extends to the other sphere Sd−1 at t ¼ −t∞ → −∞ instead
of going back to the original sphere as is typical in the
dS=CFT [45,46] (refer to the left panel of Fig. 6). It is also
possible to replace t < 0 spacetime with an Euclidean flat
space:

ds2 ¼ dr2 þ r2ðdτ2 þ cos2 τdΩ2
d−1Þ; ð4:19Þ

by performing a Wick rotation τ ¼ it. This provides the
Hartle-Hawking construction of the wave function of flat
space (refer to the right panel of Fig. 6). In this case, we can
connect the extremal surface inside the Euclidean space
[45,46]. Motivated by this, we here compute the area of
extremal surface for the half of the Lorentzian dSd, i.e.,
t ≥ 0. Thus to recover the holographic entanglement

FIG. 6. Sketches of the extremal surfaces, which calculate the
holographic entanglement entropy. We chose the maximal sub-
system A i.e. θ0 ¼ π

2
. The left panel depicts the extremal surfaces

in the full Minkowski spacetime. The right one sketches those in
the spacetime, which describes the Hartle-Hawking wave func-
tion, i.e., a half Euclidean flat space (past) plus a half Minkowski
spacetime (future). The green and blue surfaces are the minimal
surfaces in the hyperbolic patch and the extremal surfaces in the
de Sitter patch, respectively.
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entropy for full wedge −t∞ < t < t∞, we can simply
double the result as in the left panel of Fig. 6. If we would
like to consider the holographic entanglement entropy in
the Hartle-Hawking state, then we need to add a Euclidean
minimal surface area. In this paper, we have in mind the
former prescription.
For d ¼ 3, 4 and 5 we obtain the following results:

AðγdSA Þd¼3 ¼ 2i log
2L
δ

¼ 2i logðet∞ sin θ0Þ;

AðγdSA Þd¼4 ¼ 2iπ
L
δ
¼ πi sin θ0et∞ ;

AðγdSA Þd¼5 ¼ 4πi

�
L2

2δ2
þ 1

2
log

2L
δ

þ 1

4

�

¼ πi
2
sin2θ0e2t∞ þ 2πi log

�
sin θ0
4

et∞
�

− πi cos θ0ð2þ cos θ0Þ: ð4:20Þ

Thus the total area of extremal surface in Wds is given by

AðΓdS
A Þ ¼

Z
r2

r1

rd−1dr ·AðγdSA Þ ¼ 1

d− 1
ðrd−12 − rd−11 ÞAðγdSA Þ:

ð4:21Þ

In this way the final expression of the holographic
entanglement entropy reads

SA ¼ AðΓdS
A Þ

4GN
¼ ðrd−12 − rd−11 Þ

4ðd − 1ÞGN
AðγdSA Þ: ð4:22Þ

If we consider the Hartle-Hawking prescription of flat
space (i.e., the right panel of Fig. 6), we need to add the
extra contribution from the extremal surface in Euclidean
geometry, denoted by SðEÞA . This is computed by setting
AðγdsA Þ to be the area of d − 2 dimensional semisphere in
(4.22), which leads to

SðEÞA ¼ ðrd−12 − rd−11 Þωd−1

8ðd − 1ÞGN
: ð4:23Þ

For d ¼ 3, we can explicitly evaluate SA in (4.22) as
follows:

SA ¼ iðr22 − r21Þ
8GN

log

�
sin2 θ0
ϵ2

�
; ð4:24Þ

where we employed (4.9). By comparing this with the
standard formula (3.31), we can read off the value of the
central charge c of the dual two-dimensional CFT:

c ¼ 3i
4GN

ðr22 − r21Þ: ð4:25Þ

This agrees with the result (4.11) obtained from the
partition function.
For d ¼ 5, we obtain

SA ¼ i
πðr42 − r41Þ
16GN

�
sin2θ0
2ϵ2

þ 2 log

�
sin θ0
4ϵ

�
þOð1Þ

�
:

ð4:26Þ

By comparing this with the standard formula in 4D CFT
(3.34), we can read off the value of the central charge a:

a ¼ −
πiðr42 − r41Þ

32GN
: ð4:27Þ

Indeed, this reproduces our previous estimation (4.16) from
the partition function.

C. Scalar field propagation

Nowwe consider a free massive scalar field in our wedge
geometryWds defined by r1 ≤ r ≤ r2. We again impose the
Dirichlet or Neumann boundary condition on the boundary
r ¼ r1;2. As we will show below, the spectrum of λk, where
the dual operator dimension reads Δ ¼ 1þ iλk consist of
the infinitely many real values of λk and a finite number of
imaginary values of λk. The presence of the former, where
the conformal dimension (2.22) gets a complex valued,
again implies that the dual CFT on S2 is nonunitary, as in
the dS=CFT correspondence. In the dS3=CFT2 duality, we
find the formula for the conformal dimension Δ ¼ 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

p
[4], where M is the mass of the scalar in the dS3.

If we interpret our wedge holography result in terms of
dS3=CFT2, we find a finite number of scalar fields in the
range 0 < M < 1 and an infinite number of scalar fields
with M > 1.

1. Dirichlet boundary condition

Using (2.16) and (2.17), the Dirichlet boundary con-
dition for the scalar reads

f̃pðr1Þ ¼ 0; f̃pðr2Þ ¼ 0: ð4:28Þ

This is equivalent to find such values of ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
,

which are solutions to

Ddsðν; x1; x2Þ ¼ Jνðx1ÞHð1Þ
ν ðx2Þ − Jνðx2ÞHð1Þ

ν ðx1Þ ¼ 0:

ð4:29Þ

By studying numerically, as plotted in Fig. 7, we find
that there is an infinite number of solutions for discrete
imaginary values of ν together with a finite number of
solutions for real values of ν. In appendix D 1, we
analytically explain this behavior of the solutions. We also
find that the number of real valued solutions of ν increase as
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r2 gets larger and the solutions with imaginary ν become
dense in the limit r1 → 0.

2. Neumann boundary condition

Next, we consider the case that we impose the Neumann
boundary condition on the two EOW-branes:

∂rf̃pðr1Þ ¼ 0; ∂rf̃pðr2Þ ¼ 0; ð4:30Þ

where the function f̃pðrÞ was defined in (2.17). By
using the recurrence formula of the modified Bessel
function

∂xJνðxÞ ¼ −
1

2
ðJνþ1ðxÞ − Jν−1ðxÞÞ; ∂xH

ð1Þ
ν ðxÞ ¼ −

1

2
ðHð1Þ

νþ1ðxÞ −Hð1Þ
ν−1ðxÞÞ;

JνðxÞ
x

¼ 1

2ν
ðJνþ1ðxÞ þ Jν−1ðxÞÞ;

Hð1Þ
ν ðxÞ
x

¼ 1

2ν
ðHð1Þ

νþ1ðxÞ þHð1Þ
ν−1ðxÞÞ; ð4:31Þ

we can write (4.30) as follows:

α

�
νþ 1

2ν
Jνþ1ðmraÞ −

ν − 1

2ν
Jν−1ðmraÞ

�
þmβ

�
νþ 1

2ν
Hð1Þ

νþ1ðmraÞ −
ν − 1

2ν
Hð1Þ

ν−1ðmraÞ
�

¼ 0;

where a ¼ 0, 1. This is equivalent to the search of values of ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
, which satisfy

Ndsðν; x1; x2Þ ¼ fðνþ 1ÞJνþ1ðx1Þ − ðν − 1ÞJν−1ðx1Þgfðνþ 1ÞHð1Þ
νþ1ðx2Þ − ðν − 1ÞHð1Þ

ν−1ðx2Þg
− fðνþ 1ÞJνþ1ðx2Þ − ðν − 1ÞJν−1ðx2Þgfðνþ 1ÞHð1Þ

νþ1ðx1Þ − ðν − 1ÞHð1Þ
ν−1ðx1Þg

¼ 0: ð4:32Þ

where x1;2 ¼ mr1;2. By studying numerically, as plotted in
Fig. 8, we find that there is an infinite number of solutions
for discrete values of ν together with a finite number of
solutions for real values of ν. The properties of the solutions
ν are similar to those in the Dirichlet case. Refer to
appendix D 2 for more details.

3. Two point function

We can evaluate the two point functions as we did for the
wedge holography in the hyperbolic patch in Sec. III C, by
using the scalar field profile (2.27). The result is identical to

(3.51), expect that there are two spheres in the future and
past. If we call the operator inserted in the future and past

sphere OðþÞ
p and Oð−Þ

p , respectively, then the two point
functions read

hOð�Þ
p ðθ1;φ1ÞOð�Þ

p ðθ2;φ2Þi ∝ ð1 − cos γ12Þ−Δ;
hOð�Þ

p ðθ1;φ1ÞOð∓Þ
p ðθ2;φ2Þi ∝ ð1þ cos γ12Þ−Δ; ð4:33Þ

where γ12 was given in (3.52). This means that an operator
inserted at a point on the future sphere is equivalent to that
inserted at its antipodal point in the past sphere. Under this

FIG. 7. Plots of jDdSðν; x1; x2Þj for x1 ¼ 1 and x2 ¼ 5 as a function of ν (left) and plots of zero point of DdS (right). The color of the
left figure represents D’s phase.
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identification, the two point functions agree with the CFT
expectation.

V. IS CELESTIAL HOLOGRAPHY A WEDGE
HOLOGRAPHY?

In the previous sections, we present two new setups
of wedge holography in a flat spacetime: hyperbolic
slices and de Sitter slices, as explained in Sec. II and
depicted in Fig. 2. In this section, we would like to
combine these two as in Fig. 3 to approach the celestial
holography, which argues that dþ 1 dimensional gravity
in a full Minkowski spacetime is dual to a CFT on the
celestial sphere Sd−1. As we will see below, as long as we
consider the vacuum configurations of celestial holo-
graphy, it fits nicely with the wedge holography.
However, if we consider excitations in celestial hologra-
phy by gravitational waves, we will see that we must
modify the boundary conditions of the flat space wedge
holography we considered in the previous section.

A. Partition function in Minkowski spacetime

Let us first calculate the partition function of
celestial holography in Minkowski spacetime by regarding
the on-shell gravity action as the CFT free energy, simply
by extending the standard bulk-boundary relation [6,7] of
AdS=CFT. We take the range of η and r to be (2.7). Then,
we can simply add up the on-shell actions (3.8) and (4.6) in
the wedge holography by setting

η2 ¼ η∞; r2 ¼ r∞; η1 ¼ r1 ¼ 0: ð5:1Þ

This leads to

IG ¼ 1

4πGN
rd−1∞ ωd−1Id−1 −

1

4πGN
ηd−1∞ ωd−1Jd−1: ð5:2Þ

Here, we doubled the result to cover the full Minkowski
space, i.e., not only t > 0 but also t < 0. This is evaluated

in each dimension explicitly. For example, d ¼ 3, 4, 5 we
obtain

d¼ 3∶IG ¼ r2∞ − η2∞
8GNϵ

2
−
r2∞þ η2∞
2GN

logϵ;

d¼ 4∶IG ¼ r3∞ − η3∞
24GNϵ

3
þ 3ðr3∞þ η3∞Þ

8GNϵ
;

d¼ 5∶IG ¼ πðr4∞ − η4∞Þ
96GNϵ

4
þ πðr4∞ þ η4∞Þ

12GNϵ
2

−
πðr4∞ − η4∞Þ

4GN
logϵ;

ð5:3Þ

where ϵ is the UV cutoff such that e−ρ∞ ¼ e−t∞ ¼ ϵ. From
the logarithmic terms, we can also read off the values of the
central charges c in d ¼ 3 and a in d ¼ 5 as follows:

d ¼ 3∶c ¼ i
3ðr2∞ þ η2∞Þ

2GN
;

d ¼ 5∶a ¼ i
πðη4∞ − r4∞Þ

16GN
: ð5:4Þ

These are consistent with standard behavior in CFTs
except that the central charges take imaginary values,
which show that the dual CFT is nonunitary. In our limit
η∞ → ∞ and r∞ → ∞, the two-dimensional CFT central
charge becomes c → i∞. Such a divergent central charge in
the dual CFT has also been argued in [22,61]. Moreover,
it is intriguing to note that we can have a ¼ 0 for the central
charge of the four-dimensional CFT if we tune η∞ ¼ r∞.

B. Holographic entanglement entropy
in Minkowski spacetime

We can calculate the holographic entanglement entropy
in celestial holography in a Minkowski spacetime. As
before, we chose the subsystem A to be jθj ≤ θ0 on Sd−1.
For this, we add the contribution in the hyperbolic patch
(3.28) and the de Sitter patch (4.21) of the wedge

FIG. 8. Plots of jNdsðν; x1; x2Þj for x1 ¼ 1 and x2 ¼ 5 as a function of ν (left) and plots of zero points of Nds (right). The color of the
left figure represents N’s phase.
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holography by taking the range (5.1) and double it to cover
the entire spacetime. This leads to the total expression:

SA ¼ AðΓH
A Þ þ AðΓdS

A Þ
4GN

¼ iηd−1∞

2ðd − 1ÞGN
AðγHA Þ þ

rd−1∞

2ðd − 1ÞGN
AðγdSA Þ: ð5:5Þ

For example, we obtain explicit results for d ¼ 3 and
d ¼ 5 as follows:

d ¼ 3∶SA ¼ i
4GN

ðη2∞ þ r2∞Þ · log
sin2θ0
ϵ2

;

d ¼ 5∶SA ¼ i
πðη4∞ þ r4∞Þ
16GNϵ

2
þ i

π

4GN
ðr4∞ − η4∞Þ log

�
sin θ0
4ϵ

�
þOð1Þ; ð5:6Þ

where ϵ is the UV cutoff. By comparing this with the
general expressions (3.31) and (3.34), we find the same
central charges c and a, which we obtained from the on-
shell action in (5.4).

C. Celestial holography versus wedge holography
with excitations

The celestial holography [17,42] argues that four-
dimensional gravity on the Minkowski spacetime is dual to
a two-dimensional CFT on the celestial sphere S2 at null
infinity. One basic relation in the celestial holography is the
connection between scattering amplitudesAðk1; k2; � � � ; kNÞ
of N particles in four-dimensions and correlation functions
hO1O2…ONiS2 of N primary operators. For a scalar field
dual to a scalar operator OΔ with the dimension Δ, this is
explicitly written as follows

hOΔ1
ðθ1;φ1ÞOΔ2

ðθ2;φ2Þ…OΔN
ðθN;φNÞiS2 ¼

�YN
i¼1

Z
dXμ

iϕ
Δi;ð�ÞðXμ

i ; θi;φiÞ
Z

dkμi e
ikμi Xμi

�
Aðk1; k2; � � � ; kNÞ: ð5:7Þ

In this correspondence, the functions ϕΔi;ð�Þ are called conformal primary wave functions. The superscripts (þ) and (−)
correspond to out-going and in-coming particle, respectively. They are explicitly given in the following expression [17]:

ϕΔ;�ðXμ; θ0;φ0Þ≡ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−XμXμ

p ÞΔ−1
ðqμX�

μ ÞΔ
KΔ−1ðm

ffiffiffiffiffiffiffiffiffiffiffi
XμXμ

p Þ: ð5:8Þ

Here Xμ is the four-dimensional Minkowski coordinate, which is related to the hyperbolic patch coordinate and de Sitter
patch one via

ðX0; X1; X2; X3ÞjXμXμ<0 ¼ η · ðcosh ρ; sinh ρ sin θ cosϕ; sinh ρ sin θ sinϕ; sinh ρ cos θÞ;
ðX0; X1; X2; X3ÞjXμXμ>0 ¼ r · ðsinh t; cosh t sin θ cosϕ; cosh t sin θ sinϕ; cosh t cos θÞ:

and qμ is the null vector

ðq0; q1; q2; q3Þ ¼ 2

1þ cos θ0
· ð1; sin θ0 cosϕ0; sin θ0 sinϕ0; cos θ0Þ;

ð5:9Þ

which specifies the direction of particles in the celestial
sphere. We also introduced the iϵ regularization
Xμ;� ¼ Xμ � iϵf−1; 0; 0; 0g.
This wave function ϕΔi;ð�Þ can be interpreted as a

pointlike excitation on the celestial sphere due to the
out-going or in-coming wave. In terms of hyperbolic/de
Sitter patch coordinate, the conformal primary wave
functions (5.8) read (setting ϵ ¼ 0)

ϕΔ;�ðXμ; θ0;φ0ÞjXμXμ<0 ¼
KΔ−1ðmηÞ

η

�
1þ cos θ0

2

�
Δ

× ðcosh ρ − cos γ sinh ρÞ−Δ;
ð5:10Þ

ϕΔ;�ðXμ; θ0;φ0ÞjXμXμ>0 ¼ −
πi
2

HðaÞ
Δ−1ðmrÞ

r

�
1þ cos θ0

2

�
Δ

× ðsinh t − cos γ cosh tÞ−Δ;
ð5:11Þ

where the type of Hankel function a ¼ 1, 2 corresponds to
the out-going (þ) and in-coming (−) wave. Indeed, these
are among the class of the scalar field solutions (2.23) and
(2.28) with a delta-functional source on the celestial sphere
S2. In the hyperbolic patch, the celestial holography and
our wedge holography discussed in section III have the
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same boundary condition for a massive free scalar, i.e., the
Dirichlet (or Neumann) boundary condition4 at η ¼ η∞.
This is clear from the expression (5.11) as the Bessel
function Kν appears, which exponentially decays as
KνðzÞ ∼ e−z for large jzj.
However, the boundary condition we impose in the r

direction of the de Sitter patch looks different between the
celestial holography and our wedge holography. In the
former, as in (5.11), we impose the out-going or in-coming
boundary condition at r ¼ r∞, while in the latter we require
the Dirichlet (or Neumann) boundary condition. A similar
observation is true for the gravitational wave mode, where
we impose the out-going or in-coming boundary condition
in celestial holography and we do the Neumann boundary
condition (3.2) in our wedge holography. In this sense, if
we want to interpret the celestial holography in terms of a
wedge holography in flat space, we must modify the
boundary condition in the de Sitter patch at r ¼ r∞.
However, notice that in the computation of correlation
functions, this difference of r dependence only appears in
the overall constant and thus does not affect the dependence
of celestial sphere coordinate, e.g., in (4.33).
Here, we should also notice that the conformal dimen-

sion Δ, available in both hyperbolic patch and de Sitter
patch, is 1þ iλ where λ is an arbitrary real value (see
Sec. III C, IV C, Appendix D). This result from our wedge
holography is consistent with the principle series in
celestial holography, which is constrained from “normal-
izable condition [18],” not from boundary condition.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed extensions of wedge holog-
raphy to a flat spacetime, largely motivated by the recent
developments of celestial holography. Awedge holography
[27] is in general codimension two holographic duality
between a gravitational theory in a wedge region and a CFT
on its tip.
As the first example of wedge holography in a flat

spacetime, we argued that a dþ 1 dimensional region
surrounded by two d dimensional hyperbolic spaces
(depicted in the left panel of Fig. 2) is dual to a nonunitary
CFT on Sd−1. We imposed the Neumann boundary con-
dition (3.2) for gravitational modes on the two boundaries,
i.e., the end of the world branes (EOW brane). We
calculated the on-shell gravity action, holographic entan-
glement entropy and two point functions in the gravity
dual and found that they agree with general expectations
in CFTs. The superrotation symmetry at each hyperbolic
slice explains the conformal symmetry of the dual
Euclidean CFT.

In this example, it is intriguing that a timelike direction,
in addition to a space-like radial direction, emerges from
the Euclidean CFT. We found that the central charges in
even-dimensional CFTs dual to the wedge region take
imaginary values and that the conformal dimensions dual to
a bulk scalar become complex valued. These two unusual
properties show that the dual CFT is nonunitary. This is not
at all surprising because there is a good reason to believe
that the holographic duality where a real-time direction
emerges involves nonunitary theory, as is expected in the
dS=CFT duality [4,5]. Indeed, all the known CFT duals of
dS=CFT in four-dimensions [43] and in three-dimensions
[45] are nonunitary. It will be interesting to explore this
wedge holography from a more sophisticated viewpoint
such as higher point functions, entanglement wedges and
various excited states.
The second example of flat space wedge holography,

which we proposed in this paper, is for gravity in the dþ 1
dimensional wedge region (the right panel of Fig. 2)
bounded by two d dimensional de Sitter spaces. We again
impose the Neumann boundary condition (3.2) on the two
EOW branes. We evaluated the on-shell gravity action,
holographic entanglement entropy and two point functions
in the gravity dual and again confirmed that they are
consistent with general expectations in CFTs. The super-
rotation symmetry at each de Sitter slice explains the
conformal symmetry of the dual Euclidean CFT. This
wedge holography can be regarded as a slightly “fatten”
version of dS=CFT correspondence by simply adding a
spacial interval. Therefore, our calculations and results
were parallel with that in dS=CFT. Indeed, the central
charges in even-dimensional CFTs on Sd−1 turned out to
take imaginary values. We found that there are infinitely
many scalar operators dual to the bulk scalar which have
imaginary valued conformal dimensions. In addition, there
are a finite number of scalar operators with real valued
conformal dimensions.
Since the full Minkowski spacetime can be regarded as a

union of the hyperbolic patch and de Sitter patch, we finally
considered the possibility that the celestial holography for
the former can be interpreted as a combination of the
hyperbolic and de Sitter sliced wedge holography. We
found that the results of the on-shell action and holographic
entanglement for the flat Minkowski spacetime, which are
simply the sum of those in hyperbolic and de Sitter sliced
wedge holography, look consistent with the CFT expect-
ations. However, if we consider excitations such as the bulk
scalar field, we found that the wedge holography in the de
Sitter patch has a different boundary condition than that in
the celestial holography. The former is either Dirichlet or
Neumann and the latter is out-going or in-coming. On the
other hand, in the hyperbolic patch, our wedge holography
and celestial holography assume the same boundary con-
dition. Therefore, we must modify the usual boundary
condition of wedge holography, which is Neumann (3.2)

4Note that in the UV limit η∞ → ∞ of celestial holography,
the Dirichlet and Neumann boundary condition at η ¼ η∞ for the
scalar field are identical. Thus, we can consider this as the
Neumann boundary condition.
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for metric perturbation modes, to the out-going or in-
coming boundary condition to interpret the celestial holog-
raphy as a wedge holography.
It would be an intriguing future direction to explore more

the fundamental mechanism of celestial holography and
generalize the flat space holography to nontrivial geom-
etries such as Schwarzschild black holes.
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APPENDIX A: USEFUL IDENTITIES OF
LEGENDRE FUNCTIONS

The associated Legendre function is defined by (we
follow [62])

Pμ
νðzÞ ¼ 1

Γð1 − μÞ
�
zþ 1

z − 1

�
μ=2

2F1

�
−ν; νþ 1; 1 − μ;

1 − z
2

�
:

Qμ
νðzÞ ¼ eπμi

ffiffiffi
π

p
Γðμþ νþ 1Þ

2νþ1Γðνþ 3=2Þ z−μ−ν−1ðz2 − 1Þμ=22F1

�
μþ νþ 2

2
;
μþ νþ 1

2
; νþ 3

2
;
1

z2

�
: ðA1Þ

It is useful to note the asymptotic behavior in the jzj → ∞

Qμ
νðzÞ ≃ eμπi

ffiffiffi
π

p Γðνþ μþ 1Þ
Γðνþ 3=2Þð2zÞνþ1

; ðA2Þ

and z → 1

Qμ
νðzÞ ≃ eπμi

2

�
ΓðμÞ

�
2

z − 1

�
μ=2

þ Γð−μÞΓðνþ μþ 1Þ
Γðν − μþ 1Þ

�
z − 1

2

�
μ=2

�
: ðA3Þ

The spherical harmonic function is defined by

Ylmðθ;ϕÞ¼ð−1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þðl−mÞ!
4πðlþmÞ!

s
Pm
l ðcosθÞeimϕ: ðA4Þ

It satisfies the orthonormal condition:

Z
π

0

dθ sin θ
Z

2π

0

dϕY�
lmðθ;ϕÞYl0m0 ðθ;ϕÞ ¼ δll0δmm0 : ðA5Þ

We can also show

X∞
l¼0

Xl

m¼−l
Y�
lmðθ;ϕÞYlmðθ0;ϕ0Þ

¼ 1

sin θ
δðθ − θ0Þδðϕ − ϕ0Þ≡ δ2ðΩ −Ω0Þ: ðA6Þ

The additivity theorem is also useful:

Yl;0ðγÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r Xl

m¼−l
Y�
lmðθ;ϕÞYlmðθ0;ϕ0Þ; ðA7Þ

where γ is defined by (2.20).
The following integral formula is also useful (this is

Eq.(7.228) of [62])

Z
1

−1
dx

PnðxÞ
ðz − xÞμþ1

¼ 2

Γð1þ μÞ ðz
2 − 1Þ−μ=2e−iπμQμ

nðzÞ:

ðA8Þ

In particular, by taking the limit z ¼ 1 we obtain

Z
1

−1
dx

PnðxÞ
ð1− xÞμþ1

¼ ð−1Þn 2−μΓð−μÞ2
Γðn− μþ 1ÞΓð−μ− nÞ : ðA9Þ
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APPENDIX B: MINIMAL SURFACES AND
GEODESIC LENGTHS IN Hd

Here we summarize minimal surfaces and geodesic
lengths in the hyperbolic space Hd.

1. Minimal surfaces

Consider Hd, whose metric is given by (3.25). This is
described by a coordinate ðX0; X1; · · ·; XdÞ on the surface

X2
0 ¼ X2

1 þ · · ·þ X2
d þ 1; ðB1Þ

in R1;d, via the coordinate transformation:

X0 ¼ cosh ρ;

X1 ¼ sinh ρ cos θ1;

X2 ¼ sinh ρ sin θ1 cos θ2;

…;

Xd ¼ sinh ρ sin θ1 sin θ2 � � � sin θd−1: ðB2Þ

We can also map this to the Poincaré coordinate as

X0 ¼
z
2

�
1þ x2 þ 1

z2

�
;

X1 ¼ −
z
2

�
1 −

1 − x2

z2

�
;

Xi ¼
xi−1
z

ði ¼ 2; 3; � � � ; dÞ; ðB3Þ

leading to the metric

ds2 ¼ dz2 þ dx21 þ � � � þ dx2d−1
z2

: ðB4Þ

It is well known that a class of minimal surfaces in (B4)
is given by d − 2 dimensional semi-spheres.

xd−1 ¼ 0;

z2 þ x21 þ � � � þ x2d−2 ¼ L2: ðB5Þ

In terms of the original coordinate (3.25) of Hd, this is
expressed as

1þ sinh2ρsin2θ ¼ L2ðcosh ρþ sinh ρ cos θ1Þ2;
θd−1 ¼ 0; ðB6Þ

while the angles ðθ2; � � � ; θd−2Þ are free. We introduce θ0
such that we have θ ¼ �θ0 at the boundary ρ ¼ ρ∞ → ∞.
This is given by

L ¼ sin θ0
1þ cos θ0

: ðB7Þ

Note also that the cutoff in the Poincaré coordinate z ¼ ϵ is
mapped into that in the original coordinate as

1

δ
¼

�
1þ cos θ0

2

�
eρ∞ þ

�
1 − cos θ0

2

�
e−ρ∞ : ðB8Þ

2. Geodesic length

If we consider two points, P1 and P2,

P1 ¼ ðρ1; θð1Þ;Ωd−2Þ;
P2 ¼ ðρ2; θð2Þ;Ωd−2Þ: ðB9Þ

The geodesic distance D12 in the hyperbolic space
Hd reads

coshD12 ¼ coshρ1 coshρ2 − sinhρ1 sinhρ2 cosðθð1Þ − θð2ÞÞ:
ðB10Þ

In the limit ρ1 ¼ ρ2 ¼ ρ∞, this leads to

D12 ¼ 2ρ∞ þ log

�
sin2

θ1 − θ2
2

�
: ðB11Þ

The geodesic is explicitly given by

tan

�
θ −

θð1Þ þ θð2Þ

2

�
¼ 1

cosh ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ρ
sinh2ρ�

− 1

s
; ðB12Þ

where we set

tan

�
θð1Þ − θð2Þ

2

�
¼ 1

sinh ρ�
: ðB13Þ

APPENDIX C: EXTREME SURFACES AND
GEODESIC LENGTHS IN dSd

Here, we summarize minimal surfaces and geodesic
lengths in the de Sitter spacetime dSd.

1. Extremal surfaces

Consider dSd, whose metric is given by (4.17). This is
described by a coordinate ðX0; X1; � � � ; XdÞ on the surface

X2
0 þ 1 ¼ X2

1 þ � � � þ X2
d; ðC1Þ

in R1;d, via the coordinate transformation:
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X0 ¼ sinh t;

X1 ¼ cosh t cos θ1;

X2 ¼ cosh t sin θ1 cos θ2;

…;

Xd ¼ cosh t sin θ1 sin θ2 � � � sin θd−1: ðC2Þ

We can also map this to the Poincaré coordinate as

X0 ¼ −
z
2

�
1 −

x2 þ 1

z2

�
;

X1 ¼
z
2

�
1þ 1 − x2

z2

�
;

Xi ¼
xi−1
z

ði ¼ 2; 3; � � � ; dÞ; ðC3Þ

leading to the metric

ds2 ¼ −dz2 þ dx21 þ � � � þ dx2d−1
z2

: ðC4Þ

It is well known that a class of minimal surfaces in (C4)
is given by d − 2 dimensional semispheres.

xd−1 ¼ 0;

x21 þ � � � þ x2d−2 ¼ z2 þ L2: ðC5Þ

In terms of the original coordinate (4.17) of dSd, this is
expressed as

cosh2tsin2θ ¼ L2ðsinh tþ cosh t cos θ1Þ2 þ 1;

θd−1 ¼ 0; ðC6Þ

while the angles ðθ2; � � � ; θd−2Þ are free. We introduce θ0
such that we have θ ¼ �θ0 at the boundary ρ ¼ ρ∞ → ∞.
This is given by

L ¼ sin θ0
1þ cos θ0

: ðC7Þ

Note also that the cutoff in the Poincaré coordinate z ¼ δ is
mapped into that in the original coordinate as

1

δ
¼

�
1þ cos θ0

2

�
et∞ −

�
1 − cos θ0

2

�
e−t∞ : ðC8Þ

2. Geodesic length

If we choose two points, P1 and P2, on dSd:

P1 ¼ ðt1; θð1Þ;Ωd−2Þ;
P2 ¼ ðt2; θð2Þ;Ωd−2Þ; ðC9Þ

where we took the locations on Sd−2 are the same without
losing generality owing to the SOðd − 1Þ symmetry. The
geodesic distance between P1 and P2, denoted by D12, can
be found as

cosD12 ¼ cosðθð1Þ − θð2ÞÞ cosh t1 cosh t2 − sinh t1 sinh t2:

ðC10Þ

If we choose t1 ¼ t2 ¼ t∞ → ∞, we find

D12 ≃ 2it∞ þ i log

�
sin2

�
θð1Þ − θð2Þ

2

��
þ π: ðC11Þ

The imaginary divergent contribution comes from the
timelike geodesic and the final real part π is from the
geodesic in an Euclidean space (d dim. half sphere). For
more details of this and an interpretation in dS=CFT, refer
to Fig. 5 of [46].
On the other hand, if we choose t1 ¼ −t2 ¼ t∞ → ∞, we

obtain

D12 ≃ 2it∞ þ i log

�
cos2

�
θð1Þ − θð2Þ

2

��
: ðC12Þ

Note that if we replace θ2 with the antipodal one θ2 þ π,
then we get the behavior of (C11).

APPENDIX D: SCALAR FIELD MODES
IN DE SITTER SLICED WEDGES

Here, we present analytical calculations of scalar field
modes, which satisfy either the Dirichlet or Neumann
boundary condition in the de Sitter sliced wedges
r1 ≤ r ≤ r2. In Figs. 9–12, D and N are defined as
(4.29), (4.32).

1. Dirichlet boundary condition

As opposed to the hyperbolic slice case, the values of ν
satisfying the boundary condition can also be real as well as
pure imaginary. We can rewrite (2.17) as following:

f̃ðrÞ ¼ α
Hð1Þ

ν ðmrÞ
r

þ β
Hð2Þ

ν ðmrÞ
r

: ðD1Þ

Then, the boundary condition (4.28) can be written as
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FIG. 9. Plots of logðjDðν; x1; x2Þj þ 1Þ for x1 ¼ 1 and x2 ¼ 5 as a function of real ν (left) and plots for x1 ¼ 0.1 and x2 ¼ 10 (right).
The downward pointing part of the graph indicates the zero point of D.

FIG. 10. Plots of jDðν; x1; x2Þj for x1 ¼ 1 and x2 ¼ 5 as a function of imaginary ν (left) and plots for x1 ¼ 0.1 and x2 ¼ 10 (right).

FIG. 11. Plots of logðjNðν; x1; x2Þj þ 1Þ for x1 ¼ 1 and x2 ¼ 5 as a function of real values of ν (left) and plots for x1 ¼ 0.1 and
x2 ¼ 10 (right). The downward pointing part of the graph indicates the zero point of N.

FIG. 12. Plots of NdSðν; x1; x2Þ for x1 ¼ 1 and x2 ¼ 5 as a function of imaginary values of ν (left) and plots for x1 ¼ 0.1 and x2 ¼ 10
(right).
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f̃ðriÞ ¼ 0 ⇔ αHð1Þ
ν ðxiÞ þ βHð2Þ

ν ðxiÞ ¼ 0

⇔ α̃ ¼ −
Hð2Þ

ν ðxiÞ
Hð1Þ

ν ðxiÞ
¼ eiνπJνðxiÞ − J−νðxiÞ

e−iνπJνðxiÞ − J−νðxiÞ
ðD2Þ

where xi ¼ mri; i ¼ 1, 2 and α̃ ¼ α
β. Note that by flipping

the sign of ν, we obtain

α̃ð−νÞ ¼ e−2νπiα̃ðνÞ; ðD3Þ
which leads us to conclude that if ν satisfies the boundary
condition (D2), −ν also satisfies the condition. From the

viewpoint of the numerical result, it would be sufficient to
focus on only real ν and/or pure imaginary ν case. Before
we proceed to the detailed analysis, let us review the
asymptotic form of the Hankel functions. In the limit
jzj → ∞,

Hð1Þ
ν ðzÞ∼

ffiffiffiffiffi
2

πz

r
eiðz−

2νþ1
4
πÞ; Hð2Þ

ν ðzÞ∼
ffiffiffiffiffi
2

πz

r
e−iðz−

2νþ1
4
πÞ: ðD4Þ

Also, in the region z ∼ ν → ∞,

Hν
ð1ÞðaνÞ ¼

8>>>>><
>>>>>:

−i
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2
πν tanh α

q
eνðα−tanh αÞð1þOðν−1=5ÞÞ ½a ¼ sech α < 1�

− 1
3π Γð13Þðe5πi=6 þ iÞð6νÞ1=3ð1þOðν−1=4ÞÞ ½a ¼ 1�

−e3πi=4
ffiffiffiffiffiffiffiffiffiffiffi

2
πν tan α

q
eiνðtan α−αÞð1þOðν−1=5ÞÞ ½a ¼ secα > 1�

ðD5Þ

Hν
ð2ÞðaνÞ ¼

8>>>>><
>>>>>:

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2
πν tanh α

q
eνðα−tanh αÞð1þOðν−1=5ÞÞ ½a ¼ sech α < 1�

− 1
3π Γð13Þðe−5πi=6 − iÞð6νÞ1=3ð1þOðν−1=4ÞÞ ½a ¼ 1�

−e−3πi=4
ffiffiffiffiffiffiffiffiffiffiffi

2
πν tan α

q
e−iνðtan α−αÞð1þOðν−1=5ÞÞ ½a ¼ sec α > 1�:

ðD6Þ

First, we consider the positive real ν case (remember that
sign-flipped νs are also solution). We would like to estimate
α̃ in x2 → ∞, x1 → 0. Taking x2 large, we can write α̃ as
following:

α̃ ¼ −
Hð2Þ

ν ðx2Þ
Hð1Þ

ν ðx2Þ

∼
	
−e−if2x2−ðνþ1

2
Þπg ðx2 ≫ jνjÞ

−1 ðx2 < jνjÞ: ðD7Þ

And, in small x1, we can write α̃ as following:

α̃ ¼ eiνπJνðxiÞ − J−νðxiÞ
e−iνπJνðxiÞ − J−νðxiÞ

∼
eiνπγðx1

2
Þν − ðx1

2
Þ−ν

e−iνπγðx1
2
Þν − ðx1

2
Þ−ν ðD8Þ

where γ ≡ Γð1−νÞ
Γð1þνÞ. When we take ν as positive real, we can

solve (D2) as

−e−if2x2−ðνþ1
2
Þπg ∼ −1 ðν ≪ x2Þ ðD9Þ

−1 ∼ 1 ðν > x2Þ: ðD10Þ

In the ν < x2 region, there exist solutions of ν with a period
of approximately 2. Obviously, there are no solutions in the
ν > x2 region. Thus, we conclude that there are finitely
many solutions of real ν and the number of real solutions is
bounded by x2. This result is consistent with the numerical
calculations, depicted in Fig. 9.
Next, we take ν as pure imaginary ν ¼ iλ and focus on

the positive λ case. The conditions (D7) and (D8) are also
valid, even if ν is pure imaginary. We would like to estimate
α̃ in x2 → ∞, x1 → 0. Taking x2 large, we can write α̃ as
following:

α̃ ¼ −
Hð2Þ

ν ðx2Þ
Hð1Þ

ν ðx2Þ
∼ −e−ið2x2−1

2
πÞe−λπ: ðD11Þ

We can see jα̃j ∼ e−λπ . In small x1, we can write α̃ as
following:

α̃ ¼ eiνπJνðxiÞ − J−νðxiÞ
e−iνπJνðxiÞ − J−νðxiÞ

∼
e−λπγðx1

2
Þiλ − ðx1

2
Þ−iλ

eλπγðx1
2
Þiλ − ðx1

2
Þ−iλ ðD12Þ

WEDGE HOLOGRAPHY IN FLAT SPACE AND CELESTIAL … PHYS. REV. D 107, 026001 (2023)

026001-21



Then, at large λ, we can also see jα̃j ∼ e−λπ . Therefore, we
must focus on the phase matching of α̃ in both limits.

eλπα̃ ¼ −ðγ1
2ðx1

2
Þiλ − eλπγ−

1
2ðx1

2
Þ−iλÞ2

jeλπγðx1
2
Þiλ − ðx1

2
Þ−iλj2 ðD13Þ

After a little calculation, we obtain

Im½−α̃1=2�
Re½−α̃1=2� ¼ −

1

tanh λπ
2

tan

�
λ log

x1
2
þ θ

�
ðD14Þ

where γ
1
2 ≡ eiθ. From (D11),

Im½−α̃1=2�
Re½−α̃1=2� ¼ − tan

�
x1 −

1

4
π

�
ðD15Þ

We can see that infinitely many (but discrete) values of λ
yields f̃ satisfying the Dirichlet boundary condition. We
can also see that the satisfactory values of λ become
continuous under x1 → 0 because log x1

2
→ −∞. This result

is consistent with the numerical calculations, depicted
in Fig. 10.

2. Neumann boundary condition

From Fig. 11, we can observe the emergence of new zero
points on the real axis of ν under the limits r2 → ∞ and
r1 → 0. And from Fig. 12, we can see that the gap of each
zero point ofDds on the imaginary axis of ν decreases as r2
approaches to ∞ and r1 to 0. From the same calculation
in the Dirichlet boundary condition, we can show this
numerically.
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