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In this paper, we study codimension two holography in flat spacetimes, based on the idea of the wedge
holography. We propose that a region in a d + 1 dimensional flat spacetime surrounded by two end of the
world branes, which are given by d dimensional hyperbolic spaces, is dual to a conformal field theory
(CFT) on a d — 1 dimensional sphere. Similarly, we also propose that a d + 1 dimensional region in the flat
spacetime bounded by two d dimensional de Sitter spaces is holographically dual to a CFT on a d — 1
dimensional sphere. Our calculations of the partition function, holographic entanglement entropy and two
point functions, support these duality relations and imply that such CFTs are nonunitary. Finally, we glue
these two dualities along null surfaces to realize a codimension two holography for a full Minkowski

spacetime and discuss a possible connection to the celestial holography.

DOI: 10.1103/PhysRevD.107.026001

I. INTRODUCTION

The holographic principle [1,2] usually relates a gravi-
tational theory on a certain spacetime M to a nongravita-
tional theory on its codimension one boundary dM. This
holographic property is manifest in the AdS/CFT [3] and
the dS/CFT [4,5]. However, if we try to apply the usual
analysis of bulk to boundary relation in the AdS/CFT
[6,7] to a d 4+ 1 dimensional flat Lorentzian spacetime, its
mathematical structure strongly implies that the dual
theory is a d —1 dimensional conformal field theory
(CFT), which lives on a sphere at null infinity [8].
Motivated by the triangle equivalence between the soft
theorems, memory effects and BMS symmetries [9-15],
the celestial holography [16-22] was proposed.1 This
interesting holographic duality argues that the four-
dimensional gravity on an asymptotically flat spacetime

'A similar codimension two holography was argued in [23] in
the context of eternal inflation. Refer to e.g, [24,25] for a proposal
of holographic duality between gravity in four-dimensional
Minkowski spacetime and a three-dimensional conformal Car-
rollian field theory. Also see [26] for a possibility of a codi-
mension one holography between gravity in the d+1
dimensional Euclidean flat space R4*! and a d dimensional
CFT on S%.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2023/107(2)/026001(23)

026001-1

is equivalent to a two-dimensional CFT at null infinity,
such that the S-matrices of the four-dimensional gravity
can be computed from correlation functions in the two-
dimensional CFT via a certain Mellin-like transformation,
though the precise identification of the dual CFT has
remained to be answered.

The codimension two nature of the celestial holography
looks mysterious for those who are familiar with normal
holographic dualities such as the AdS/CFT. Recently, as a
generalization of AdS/CFT, a new type of codimension
two holography, called wedge holography, has been found
in [27] and studied further in [28,29]. As sketched in Fig. 1,
the wedge holography argues that the gravity on a d + 1
dimensional wedge region in AdS, ; is dual to a d — 1
dimensional CFT on the d —1 dimensional tip of the
wedge. We impose the Neumann boundary condition on
d dimensional boundaries of the wedge, so called the end
of the world branes (EOW branes). We can understand this
as a small width limit of the AdS/BCFT [30-32].
Alternatively, we can also understand the wedge hologra-
phy via a double holography in the light of brane-world
holography [33-37] as follows. The d 4+ 1 dimensional
gravity on the wedge is dual to quantum gravity on the two
d dimensional EOW branes via the brane-world hologra-
phy, which is further dual to a d — 1 dimensional CFT on
the tip via the standard holography.

Motivated by this, the main purpose of this paper is to
explore if we can interpret the celestial holography as an
extension of wedge holography to gravity on a flat
spacetime. We consider the two new classes of wedge

Published by the American Physical Society


https://orcid.org/0000-0003-3613-4185
https://orcid.org/0000-0001-7187-3130
https://orcid.org/0000-0002-6729-7828
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.026001&domain=pdf&date_stamp=2023-01-04
https://doi.org/10.1103/PhysRevD.107.026001
https://doi.org/10.1103/PhysRevD.107.026001
https://doi.org/10.1103/PhysRevD.107.026001
https://doi.org/10.1103/PhysRevD.107.026001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

OGAWA, TAKAYANAGI, TSUDA, and WAKI

PHYS. REV. D 107, 026001 (2023)

CFT on Rd-1

Quantum Gravity

on AdSd
'

Quantum Gravity

on AdSd
N

Classical Gravity

on AdSd+1

FIG. 1. A sketch of wedge holography, which argues that the
gravity on a wedge region in AdS;,; is dual to a d—1
dimensional CFT on the codimension two spacetime given by
the tip of the wedge.

FIG. 2. Sketches of two types of codimension two holographic
dualities in flat space. The whole diamond describes a d + 1
dimensional flat spacetime. The left and right panels describe the
hyperbolic and de Sitter sliced wedges (blue regions) surrounded
by two end of the world-brane (green surfaces), respectively. We
argue that each of them is dual to a CFT on the d — 1 dimensional
sphere (red points).

holography depicted in Fig. 2. One is a hyperbolic sliced
wedge region and the other is a de Sitter sliced wedge
region, both of which are surrounded by two spacelike or
timelike EOW branes, respectively. We argue that each of
them is dual to a CFT on the d — 1 dimensional sphere,
situated at the tip of the wedge. The former might be
interpreted as a product of lower dimensional AdS/CFT
duality for Euclidean AdS geometries, though the product
is now taken in the time direction as opposed to the
standard wedge holography in [27]. The latter may be
regarded as a product of lower dimensional dS/CFT, where
the product is taken in the spacial direction.” We will
examine these new holographic dualities by calculating the
entanglement entropy, partition function and two point
functions. Finally we will approach the celestial hologra-
phy by combining these two dualities.

This paper is organized as follows. In Sec. II, we explain
hyperbolic and de Sitter slices of Minkowski spacetime and
solutions of a free scalar field with a delta functional source

*For an earlier study of a relation between celestial holography
to the dS/CFT refer to [38].

on a sphere at null infinity. In Sec. III, we propose a wedge
holography in the hyperbolic patch and present evidence
for this duality. In Sec. IV, we propose a wedge holography
in the de Sitter patch and present evidence for this. In
Sec. V, we will try to interpret the celestial holography by
combining the wedge holography in the hyperbolic slices
and that in the de Sitter slices. In Sec. VI, we will
summarize conclusions and discuss future problems. In
appendix A, we briefly present useful identities related to
Legendre functions. In appendix B, we describe minimal
surfaces and geodesic lengths in hyperbolic spaces. In
appendix C, we describe extreme surfaces and geodesic
lengths in de Sitter spaces. In appendix D, we present
detailed calculations of scalar modes in the de Sitter sliced
wedges.

II. HYPERBOLIC AND DE SITTER SLICES
OF FLAT SPACETIME

We start from a d + 1 dimensional flat spacetime R'¢:

ds®> = —dT* + dR?> + R*dQ3_,. (2.1)
This is decomposed into two patches: the slices of hyper-
bolic spaces H; and de Sitter spaces dS,, which suggest
holographic properties [8] (see also [22,39-41]).

The hyperbolic slice is obtained by introducing the new
coordinates

T = ncoshp, R = nsinhp. (2.2)

This leads to the metric
ds*> =—dn® +n*(dp? +sinh’pdQ3_,), [hyperbolic patch],
(2.3)

On the other hand, the de Sitter slice is introduced by

T = rsinht, R = rcosht, (2.4)
which gives the metric
ds*=dr*+r*(—dr* +cosh’tdQ%_,). [de Sitter patch],
(2.5)

In these two patches, the radial coordinates # and r take
the values 0 <5 < oo and 0 < r < o0. By pasting the two
patches along # = 0 and r = 0, we obtain the full four-
dimensional Minkowski spacetime as depicted in the left
panel of Fig. 3.

We introduce a regularization of the coordinates
n and r:

0<7n <Ny,

0<r<rg. (2.6)
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FIG. 3. Hyperbolic and de Sitter slices in Minkowski Space
(left) and their regularization (right).

This allows us to effectively reduce the hyperbolic patch
and the de Sitter patch to H; and dS, via the compacti-
fication as analogous to the wedge holography for the AdS
[271, which is a doubled version of the AAS/BCFT [30,31].
If we extend the wedge holography to the d + 1 dimen-
sional Minkowski Space, one may be tempting to argue that
a d — 1 dimensional CFT on S9! is dual to the gravity on
the d + 1 dimensional wedge region (2.6). As usual in the
AdS/CFT [3] and the dS/CFT [4], it is useful to introduce
the UV cutoff of the dual CFT, which is dual to the
geometrical cutoff

P < Poos 1 <fe. (2.7)
Below we will first study the hyperbolic and de Sitter
slices separately by considering the wedge holography for
each of them. After that we will discuss a connection
between the celestial holography and the above wedge
holography.

A. Scalar field in hyperbolic patch

Consider perturbations of a real scalar field ¥ in the flat
space, which are expected to be dual to scalar operator
excitations in the dual CFT on the sphere in our wedge
holography. We focus on the four-dimensional gravity case
ie. d+1=4 just for simplicity, We write the two-
dimensional sphere metric as dQ3 = d6* + sin® 0d¢>.

We assume a massive free scalar field ¥ given by the
action

1
Iscalar = 5/ dx4v _g[_gﬂyaﬂlpaulp - m2\.P2]‘ (28)

The equation of motion reads

V%au(ﬁg””av“’) - =0 (29)

In the hyperbolic patch (2.3), the equation of motion of
the scalar field (2.9) is written as (see e.g., [42])

3 1
i ;a,,‘{' + (3Y + 2 coth pa, V)
1
——— MY —m?¥ =0, 2.10
PsinnZp 2 (2.10)

where A, is the Laplacian on the two-dimensional
sphere. We can solve this by decomposing the solution
as follows

q"(’%ﬂy 0, ¢) = fp(n)gp,l(p)ylm(ev ¢)7 (211)
where the functions f,, g,,,, and Y, satisfy
3 p?
-2 —=0 +——m2)f (n) =0,
< TR TR P
(1+1)
(0% + 2 cothpd, — sy pZ)ng =0,
AYy, = =11+ 1)Y,,. (2.12)

The first equation is explicitly solved as

1 s(m K s(m
m( ’7)+ﬂ m( '7), 213

fpn) =a p p

where @ and f are arbitrary constants. The solution to the
second one reads

1 \/
-0, v (cothp),

= 2.14
sinh p ( )

gp,l(p)

where Q is the associated Legendre function. We chose
Legendre Q function instead of Legendre P function
because we require a smooth behavior at p = 0. Finally
the function Y, is the standard spherical harmonics (A4).

B. Scalar field in de Sitter patch

To obtain the solutions in the de Sitter patch (2.5), we
only have to replace the coordinate as

n=—ir, p=t—=I (2.15)

NN

This leads to the solution

W(r.1.0.¢) = f,(r7pi(0)Y1,,(0.9).  (2.16)
where each function reads
y J —(mr)
fp(l‘) = —qe™ V1P’ ALY
,
i HU)H z(mr)

—p=emVitr NP 2.17
poe L. @)
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1 v/
t+p? (tanh7).

2.1
coshr ~! (2.18)

gpl()

Note that if we go from ¢ = oo to 1 = —oo, the function g,
gives the factor (—1)! because Q%(z) is given by z7#7+~!
times an even function of z. This explains that the future
celestial sphere is related to the past one via the antipodal
map 0 — 0 + x.

|

Yi(n,p.0.9) =

i

2

smh

C. Solution with a delta-functional source on the sphere

We input a delta functional source of the scalar field at
(69, ¢o) on S In the hyperbolic slice, we expand the scalar
field in terms of complete set of solutions to the equation of
motion for the scalar field by the standard variable
separation as in (2.13) and (2.14) under the boundary
condition which we are assuming. This leads to the
following expansion:

in (00, %o) Ql (COthﬂ)Yzm(ev ®)

(2.19)

=0 m
= fylm)- smhl<

where we employed the additivity formula (A7) in the final
line and we defined y by

cosy = cos B cos @ + sin @ sin O, cos(p — ¢y).  (2.20)
We will choose the normalization factor N as N =
1+p? 1

r(\/1+p?)

In the p — oo limit, using (A3) and (A9), we find

e—m‘

Wh(1.p. 0. ) — £,(n)- [v1+ﬂ->ﬂ62<sz Q)
+ e~ (W1t +1)p N L (1 —0057>A]

iy 4 2

(2.21)

which indeed gives the delta-functionally localized source

with the correct p dependence e(A~7 = V1P~ for g
source term in AdS;/CFT, by identifying the dimension of
dual scalar operator A as

A=1+4/1+p~ (2.22)
Moreover, we can show that the full expression of (2.19)

is expressed in the form [8]:

A—-1 1
Yo7, 0.0, ¢p) = —— - : .
0(1..0.¢) dr fpn) (cosh p — cosy sinh p)2
(2.23)
Indeed, we can prove the following expansion:
(coshp — cosysinhp)™ = Z cP(cosy),  (2.24)
1=0

> P;(cosy) l\/—(cothp),

|
where c¢; can be found from the integral formula (A8) as
follows:

e mAD2I+1) 1
r'(a)

= -0 (cothp). (2.25)

sinh p

We can analytically continue the above analysis to the
de Sitter slices via the coordinate transformation (2.15).

N i": 20+ 1
cosht = A
Vitr? (tanhp).

x P(cosy)Q,

Wi (r.1.0.9) = f,(r)

(2.26)
In the ¢+ —» oo limit, we find
‘{‘6""(1”, 1,0,¢) > ifp(r) . |:e(\/ l+p2_1)(1—§i)52(9_90)

L eV eg) VI P (1 ‘Cosy> A}.

4 2

(2.27)

The full function can be written as

A—-1

i(l-4) -fp(r)
1
(sinht — cosy cosh ¢ + i&)~

‘P‘O“(r, 1,0,¢) =

. (2.28)
where € is the regularization of ie prescription [8].

III. WEDGE HOLOGRAPHY
FOR HYPERBOLIC SLICES

First we consider a wedge holography for hyperbolic
slices depicted in the left panel of Fig. 2. We specify the
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d + 1 dimensional wedge W" by restricting the coordinate
n to the range

(3.1)

in the coordinate (2.3). We will impose the Neumann
boundary condition on the two EOW branes Q")) and
Q"@ each at # = 5, and 5 = 1,, given by

nm <n <1,

Kab - habK - _Th’ab’ (32)
where K, is the extrinsic curvature (we choose the normal
vector n¢ is out-going) and 7' is the tension of EOW brane.
Indeed we can confirm that the boundary condition (3.2) is
satisfied by setting the values of each tension to be
Th(i) — a-1 1Kh(i) _d-1
d Ni

: (3.3)

where i = 1, 2 labels the two EOW branes.

By extending the wedge holography in the AdS space
[27], we argue that the d + 1 dimensional gravity on the
wedge W" (3.1) is dual to a d — 1 dimensional CFT on
the sphere S%! at the tip p — co. We introduce the cutoff
P = Ps as in (2.7). Below we will give evidences for this
new wedge holography by evaluating the partition function,
holographic entanglement entropy and scalar field pertur-
bation. Note that each hyperbolic slice H; at a fixed value
of n has the SO(1,d) symmetry, which is the Lorentz
symmetry in the original d 4+ 1 dimensional Minkowski
spacetime. This symmetry matches with the conformal
symmetry of the Euclidean CFT on S¢~!. In particular, at
d =3, this is enhanced to a pair of Virasoro symmetries,
which origins from the superrotation symmetry in R'3,
being identified with the conformal symmetry of a dual
two-dimensional CFT.

Moreover, the results we will obtain below imply that the
dual CFT on S¢°! is nonunitary. This is not surprising
because we added a timelike interval (3.1) as an internal
direction, orthogonal to the hyperbolic space Hy, in spite
that we can apply the standard AdS/CFT to each slice.
Instead, this is analogous to the dS/CFT, where the dual
CFT is expected to be nonunitary based on the analysis of
central charge analysis [5] and explicitly known examples
of the dS/CFT are nonunitary [43-46].

A. Partition function
The gravity action is written as follows:

1
I /_
G = 167TGN wh

KM _ 7h(1)
5 | o Y )

VKA T >>]

To evaluate the on-shell action, we note the vanishing
curvature R = 0 and

[ Vimntous [Capsintp, (=12, G5)
Qh(i) 0

where we defined

(3.6)

Wy =

r@+1)’

which is the volume of a unit sphere in d — 1 dimension.
By setting,

Jy= /poo dp sinh?p, (3.7)
0

and plugging (3.3), we obtain on-shell action as follows:

1

Ig=- i Nwy_ T4y 3.8
G 872Gy (n5 iy )wa-1d 4-1 (3.8)
Note that J; obeys the recursion relation
| -1
J;= ;lsmh Poo COShp, — TJd_z. (3.9)

Below we will explicitly evaluate the on-shell action for
d=3,4,5.

1. d=3 case
When d = 3 we explicitly obtain

Id=3 ’72 771 (

Yo 4 dp).
166G, ¢ + 4peo)

(3.10)

By regarding the geometrical cutoff p in H, as the UV
cutoff ¢ in the dual two-dimensional CFT on S by
identifying

€ = e_poo,

(3.11)

we obtain

2 2
m—m ’72 ’71
Io=— 1 3.12
G Tl6Gye? | 4Gy £¢ (3.12)

This can be comparable to the standard CFT result that
the sphere partition function of two-dimensional CFT with
the central charge c¢ reads [47,48]

———loge
ZCFT ~ e’ s

(3.13)

where A is nonuniversal constant, while the log e term is
universal as this is fixed by the conformal anomaly.
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By equating this as Zcpr = e/, we can estimate the central
charge:

3(m5 = n7)
=2 T 3.14
=t 4Gy ( )
2. d=4 case

For d = 4, the on-shell action reads

3_ .3
m—m 15 3
I =" |——e*> +—e¢P 3.15
el R TE AR TS (3.15)
Using (3.11), we obtain
3_.3 3_.3
m—m 30 —n)
Ig=-— 3.16
O 48Gyed T 16Gye (3.16)

This is expected to be dual to a three-dimensional CFT. The
absence of logarithmic term in the gravity on-shell action is
|

consistent with the well-known fact that there is no
conformal anomaly in odd-dimensional CFTs.

3. d=5 case

For d = 5, we obtain

”(’73_’741‘) l, 2,
Io ="M e S —0p | (317
6= "16G, | 12° T3¢ Pl (317)

In the same way as before, we can rewrite this as follows:

Ig

_ a(ns —ni) { 1 1

1
2Gy _96e4+ +—log€]. (3.18)

12¢2 4

Now we would like to compare this result to the CFT
one. The 4-sphere partition function with central charges a,
c satisfies the following equation [47-49];

d | ,
G%IOgZCF]‘ = —2ﬂ</d4x\/§Tf4>S4

= —2ay(s")
= —4a.
In the third line, we use
Th) = <= Ry pg RO — =W, WP 3.20
< ﬂ> _g uvpo _g uvpo : ( . )

And in the fourth line, we use the Euler characteristic class
in four-dimensional manifold

o (3.21)

[y
and the fact that the Weyl tensor W vanishes in S*.
By solving (3.19), we obtain the logarithmic part
of Zcer,

log Zcpr = 4aloge + (other parts). (3.22)

By equating this as Zcpr = €'/6, we can estimate the
central charge:

3.23
32Gy (3:23)

—R

1 a
=——— [ &
271/ x\/f]( /4

HUpO Hvpo

RHvPo _ i w WHvpo
8

(3.19)

B. Holographic entanglement entropy

Now we would like to calculate the holographic entan-
glement entropy [50-52], which is given by

_ Area(T'y)

S 9
A 4Gy

(3.24)

where I'4 is the extremal surface, which ends on the
boundary of A, i.e., d['y = 0A.

The d — 1 dimensional extremal surface’ which com-
putes the holographic entanglement entropy in our d + 1
dimensional wedge W" is given by a family of the minimal
area surfaces in the hyperbolic spaces H, parametrized by
the time coordinate # in the range (3.1). Such an extreme
surface is timelike and its area takes a pure imaginary value,
as is common to the holographic entanglement entropy in
dS/CFT correspondence [46,54,55].

3Refer to [53] for earlier calculations of entanglement entropy
in asymptotically flat spacetime, where the entangling surface lies
at null infinity. On the other hand, in our case, we are considering
a different quantity, namely the entanglement entropy of two-
dimensional CFT on a celestial sphere, where the dual extremal
surface extends from the null infinity to the bulk of flat space.
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At a fixed value of 5, this is given by the standard
minimal surface y% in H, calculated in Appendix B. We
take the metric of H; to be

ds* = dp* + sinh’p(d6? + sin?0,dQ,_,). (3.25)
The minimal area which stretches between 0 = —0, to
6 = 0, is given by
1 1-— y2 %
A(rf) = w43 - / dy d-r) yd_z) . (3.26)
2

where the infinitesimally small cutoff § and the minimal
surface parameter L, are related to the cutoff p, and 6, via
(B7) and (B8). We again denote the volume of unit d
dimensional sphere by w, as in (3.6). For d = 3,4 and 5 we
obtain the following results:

2L
Ar) s = 210g? = 2log(e’= sin @),

L
A(fol)d:4 = 27?(5 - 1> = zmsinfye’~ — 2r,

L*> 1. 2L 1}

A(?’f)d5:4ﬂ[2—62_§10g 51

in 0
= gsinzﬁoezﬂm —2rlog (SIZ 0 eﬂm>
— mcos Oy (2 — cosby). (3.27)

Thus the area of the full extremal surface in W" is
given by

L[ i _ _
AT =1 [t A = 08! =AY,
m

(3.28)

In this way the total expression of the holographic
entanglement entropy reads

AT (gt =)

Sy = = A(yH. 3.29
For d = 3 we obtain
ins =n7), (sin® 6
Sy = 1 , 3.30
A 8GN 0g 62 ( )

where we employed the relation between the CFT
cutoff € and the gravity cutoff p, (3.11). We can
compare this with the standard result computed in a
two-dimensional CFT on S? with a central charge ¢, where

the subsystem A is taken to be an interval; (') < 0, < 9?2,
given by [56,57]:

(3.31)

This comparison tells us that the central charge takes the
following imaginary value

3i

C:E

(m3 = n7). (3.32)

This agrees with the value (3.14) computed from the
partition function.
For d =5 we find by setting p,, = —loge (3.11):

x(n3 —n}) [sin6 sin 6,
Sy = -21
AT 66y, |22 %8 e

—c0s6y(2 — cos HO)] . (3.33)

By comparing this with the standard formula in four-
dimensional CFTs [51,58]

Sy = coe 2 +4daloge + O(1), (3.34)
we can read off the value of the central charge a:
i 4 4
= /E 3.35
a 32G, (5 =) ( )

Indeed this agrees with our previous evaluation from the
partition function (3.23).

C. Scalar field perturbation and two point functions

Consider a free massive scalar field in the wedge
geometry W", defined by 7, <5 < #,. We expect this is
dual to scalar operators in the dual CFT on S?~!. We impose
either the Dirichlet or Neumann boundary condition at the
boundary 5 =1#;,. As we will show below, there are
infinitely many scalar modes dual to operators which have
conformal dimension A = 1 + i1, with 4, real valued. This
complex valued conformal dimension again suggests the
nonunitary nature of the dual CFT as similar to the celestial
holography [17].

1. Dirichlet boundary condition

We impose the Dirichlet boundary condition on the two
EOW-branes:

fp(’//l) =0, fp(’h) =0, (336)
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FIG. 4. Plotsof D"(v, x|, x,) forx; = 1 and x, = 5 as a function of v (left) and plots of zero point of D" (right). The color of left figure

represents D’s phase.

where the function f,(17) was defined in (2.13). Solving
this boundary condition is equivalent to searching for

values of v = +/1 + p?, which satisfy
D'(v.x1,x,) = 1 (x1)K, (x2) = I,(x2)K, (x;) = 0, (3.37)

where x;, = m#;,. Solutions exist only when v is pure
imaginary and there are infinitely many discrete solutions
as depicted in Fig. 4. We write the values of v, which satisfy
(3.37) as v = il;. Note that if v = i/, is a solution, then its
complex conjugate v = —i/; is also a solution. This shows
that a bulk scalar with mass m is dual to infinitely many
scalar operators, which have complex and discrete values of
conformal dimension:

A=1+ik. (3.38)

To see this property analytically, we take two limits:
7, = oo and 77; — 0. The first boundary condition can be
written as

1,(mn;) + ﬁKu(m’?Z)

fp(’h) = e 7

=0. (3.39)

In the limit 7, — oo, the first term diverges. Thus we must
set a = 0. In order to satisfy the second condition, we
require lim, _ K, (mn,) = 0. Recalling

0L (3) =5 (n () + s (4),

1,(x) 1
=—5 (I, (x) = 1,24 (x)),

we can write (3.42) as follows:

oy
I'(l1+v)

Ky(mn) N z 1 {F(T)_u _

~ 0 1),
2sinvr |I(1 —v) } (O <n<l)

(3.40)

itis obvious that K, (0) diverges if v has a real part. Thus we
set v = iA(1 € R).

e—i/l]ogM e+iilngm . o
g—m_if) . o# n e~itlogs!
2 isinhiz sinhAz \['(1-il))"
(3.41)

Ky (mn) =

In the last line we can see that infinitely many (but discrete)
values of A satisfy the necessary condition at nonzero 7. We
can also see that the satisfactory values of A become
continuous under # — 0 because log 5! — —co.

2. Neumann boundary condition

Now we impose the Neumann boundary condition on the
two EOW-branes:

anfp (’71) =0, anfp (772) =0, (3'42)

where the function f,(17) was defined in (2.13). By using
the recurrence formula of modified Bessel function

0K (x) = =5 (Ko () + Kims (2).

K,(x) _

) (Ko () — Ko (), (343)
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FIG. 5.
figure represents N’s phase.

v+1 v—1
a< > 1y+1(m’7a)+2—ylu—1(m71a)> —ﬂ<

v+1

Imv
10

BT ; 7 Rev

-10

Plots of N (v, x;, x,) for x; = 1 and x, = 5 as a function of v (left) and plots of zero point of N” (right). The color of the left

v—1
Ky 1(mn,) +2—Z/Ku—1(m’1a)> =0.

2v

where a = 1, 2. This is equivalent to the search of values of v = /1 + p?, which satisfy

N"(v,xp,x0) = {(w+ DI (x1) + = Do (x) Hv 4+ DKy (%) + (v = 1)K,y (x2) }
{4+ Dl(x) + (v =Dl () Hv + DKy (x1) + (v = DKy (x1) }

=0.

where x;, = mu;,. Solutions exist only when v is pure
imaginary and there are infinitely many discrete solutions
as depicted in Fig. 5. We write the values of v, which satisfy
(3.44) as v = il;. Each mode is dual to a scalar operator
with the conformal dimension (3.38). Again, if v = id; is a
solution, then its complex conjugate v = —id, is also a
solution.

We take the limit 7, — oo and ; — 0. The first equation
can be written as

v+ 11y+1(m7]2) v—= 111/—1(””72)
a =
nfp(’h) ma( v Up) * 2v p)

+1K, -1K,_
—mp v 11 (min) +’/ 1 (mn5)
2v 75 2v 1

=0. (3.45)

In the limit 77, — oo, the first term diverges. Thus we must
take a = 0. The second equation can be written as

aﬂfp(”]l) :mﬂ<y+1Kl/+l(m771)+y_1Kl/—1(mnl)> —0.

2v m 2v m
(3.46)

In order to satisfy this equation in the limit ; — 0, it is
necessary to impose

(3.44)

K
lim{(v+ l)—"H(mm) + -1 —"=
m-0 m m
(3.47)
In 0 <5, < 1, applying the asymptotic form (3.40),

(inside the limit)

— (v K1 (mn,) L K1 (mm)
=+l m * b m
7 1 m((1+v)(Z)2 (1 —p) ()2
_Esinwzi{ F(—Ii) + 1"(1/2 }

It is obvious that the last line diverges if v has a real part.
Thus we set v = il(4 € R),

T 2
sin idm mip}

eiﬁlog@
(inside the limit) ~ — ] .

(i)
(3.49)

Re [(1 —il)

We can see that infinitely many (but discrete) values of 4
satisfy the necessary condition at nonzero ;. We can also
see that the satisfactory values of A become continuous

under 7; — 0 because log =" — —co.
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3. Two point function

Now let us calculate the two point functions by extend-
ing the standard bulk to boundary relation in AdS/CFT
[6,7] to our wedge holography. For this we evaluate the on-
shell action of scalar field

. mn d}’[ .
Iscalar = l/ Ffp(ny ’ Slnh2 Poo* / szlPap\Plp:pw~
m
(3.50)

Then it is obvious that we obtain the two point function of
dual scalar operators at fixed value of p where the product
of the first and second term of (2.21) contributes:

(0,(01,901)0,(05,9,)) x (1 - cosypp) 74, (3.51)

where A is related to p via (2.22) and we also introduced
712 by

cosy |y = cosf; cos, +siné, sinf,cos(@, —@,).  (3.52)
This agrees with the expected two point function of two-
dimensional CFT on S? by identifying A with the con-
formal dimension of the scalar operator O,,.

IV. WEDGE HOLOGRAPHY
FOR DE SITTER SLICES

As the second wedge holography, we consider the d + 1
dimensional wedge W% by restricting the de Sitter sliced
metric (2.5) to the region

r<r<r, (4.1)
as sketched in the right panel of Fig. 2. The two boundaries
r=r, and r = r, are the EOW branes Q%) and Q%(?),
where we impose the Neumann boundary condition (3.2).
By solving this boundary condition, we obtain

_d gy _d-]

Tds(i)
d r;

, (4.2)

where i = 1, 2 labels the two EOW branes.

We argue that the d + 1 dimensional gravity on the
wedge W% (4.1) is dual to a d — 1 dimensional CFT on a
d — 1 dimensional sphere S¢~!. Even though two spheres
are situated at the tips of the wedge: t = —oo and 1 = oo, we
identify them via the antipodal mapping. We introduce the
cutoff r = £z, as in (2.7). As in the hyperbolic case, each
de Sitter slice dS; at a fixed value of r has SO(1,d)
symmetry. This is the Lorentz symmetry in the original
d + 1 dimensional Minkowski spacetime and matches the
conformal symmetry of the dual Euclidean CFT on S%!. At
d =3, this is again enhanced to a pair of Virasoro
symmetries. This is the superrotation symmetry [59,60]

in R and is identified with the conformal symmetry of a
dual two-dimensional CFT.

Notice that this wedge holography can be regarded simply
as a dS version of the wedge holography in the AdS [27]
because the wedge is defined by adding a spatial width to a
dS,. Therefore we again expect the dual CFT on S¢°! is
nonunitary being similar to the dS/CFT [4,5,43-46].
We will study the partition function, holographic entangle-
ment entropy and scalar field perturbation to verify this
wedge holography.

A. Partition function

The gravity action on our wedge region reads

|
I = V=GR
¢~ 162Gy A g

1
— V—=h de(l) _ Td.v(l)
Gy [ o) ( )

_ \/_—h<de(2) _ Tds(Z)):| )

st(Z)

(4.3)

We would like to limit the spacetime to be the half
0 <t < o0. This corresponds to the dual CFT setup where
the two spheres at t = co and t = —oo are identified via the
antipodal mapping. Also in the absence of this identifica-
tion, we can obtain the partition function just by dou-

bling it.
By noting
foo
/ V=h=rlw,_, / dtcosh®!'t,  (4.4)
st([) 0
and introducing
[DO
I, = / dt cosh’t, (4.5)
0
we obtain on-shell action as follows:
I = ] (rd=' = r{ N1 (4.6)
G 872Gy, 2 1 d—11d-1- .
We can find the recurrence formula as follows:
1 d-1 ; —
I;= c_z’COSh to Sinh 7y + I 5. (4.7)

Below we would like to evaluate this explicitly for d = 3, 4
and 5.
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1. d=3 case

For d = 3, the on-shell action reads

I = M( o 4 dt). (4.8)
16Gy

By regarding the geometrical cutoff 7, in the dS; as the UV
cutoff € in the dual two-dimensional CFT on S? by
identifying

€=e'>, (4.9)
we obtain
22 22
Ig=——5-2—1] 4.10
G T 16Gyel | 4G, 2¢ (4.10)

By comparing with the standard CFT result (3.13) using the
bulk to boundary relation Zcpr = e/, we obtain the
central charge ¢ of the dual two-dimensional CFT

2 _ 2
c:iM (4.11)
4Gy

2. d=4 case

For d =4, we can evaluate the on-shell action as
follows:

3 3
n—-n iB 3t %3 [ 4.12
Go |38 ri.e —|—8rooe (4.12)

IG:

Via the relation (4.9), we obtain

A-r L 3B-R)

I =
YT 48Gye® | 16Gye

(4.13)

Note that there is no logarithmic term as in odd-dimensions
there is no conformal anomaly.

3. d=5 case
For d = 5, we can estimate on-shell action as follows:
(5= [1 2
[ =22 U 21y 4.14
¢~ T 16Gy [EAE (4.14)
In terms of the CFT cutoff (4.9), we find
(”2 - rl) 1 1
I = —-1 . 4.15
6= TGy |96¢" 1282 4 08¢ (4.15)

By comparing the logarithmic term in Zqgp = e'/c with
(3.22), we can evaluate

(5 =)

__ 4.16
T TT30G6, (4.16)

B. Holographic entanglement entropy

The extremal surface, which computes the holographic
entanglement entropy (3.24) can be constructed from a
family of extremal surfaces in the de Sitter slice. Thus, for a
fixed value of r, it is given by the extremal surface y45 in
dS, calculated in Appendix C. Consider the metric of dS,
given by

ds®> = —di* + cosh? 1(d0} + sin® 0,dQ,_,).  (4.17)

The area of an extremal surface, which stretches between

0 = —6, to & = 6, on the sphere S?"! at the asymptotic
boundary t = t,, — oo is given by

. (1+ yz)%‘

A(rP) = iwgs / dy ;

. yi

(4.18)

where € and L are related to the cutoff p, and 6, via (C7)
and (C8). Note that this extremal surface is time-like and
extends to the other sphere S?~! at t = —t,, — —co instead
of going back to the original sphere as is typical in the
dS/CFT [45,46] (refer to the left panel of Fig. 6). It is also
possible to replace ¢ < 0 spacetime with an Euclidean flat
space:

ds®> = dr* + r’(de* + cos® ©dQ2_,),  (4.19)
by performing a Wick rotation z = it. This provides the
Hartle-Hawking construction of the wave function of flat
space (refer to the right panel of Fig. 6). In this case, we can
connect the extremal surface inside the Euclidean space
[45,46]. Motivated by this, we here compute the area of
extremal surface for the half of the Lorentzian dS,, i.e.,
t > 0. Thus to recover the holographic entanglement

Full Minkowski Spacetime Half Minkowski Spacetime

O=n/2 O=-71/2

Half Flat Euclidean Space

FIG. 6. Sketches of the extremal surfaces, which calculate the
holographic entanglement entropy. We chose the maximal sub-
system A i.e. 6 = 7. The left panel depicts the extremal surfaces
in the full Minkowski spacetime. The right one sketches those in
the spacetime, which describes the Hartle-Hawking wave func-
tion, i.e., a half Euclidean flat space (past) plus a half Minkowski
spacetime (future). The green and blue surfaces are the minimal
surfaces in the hyperbolic patch and the extremal surfaces in the
de Sitter patch, respectively.
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entropy for full wedge —t,, <1t <t,, We can simply
double the result as in the left panel of Fig. 6. If we would
like to consider the holographic entanglement entropy in
the Hartle-Hawking state, then we need to add a Euclidean
minimal surface area. In this paper, we have in mind the
former prescription.

For d =3, 4 and 5 we obtain the following results:

2L
A(ydS) oy = 2i log? = 2ilog(e'~ sin6y),
ds . L . .
AWYY )a—s = 21715 = misinQye’~,

AWy )yos = 4mi| =5 + slog—+—

L> 1. 2L 1
28% 2 o 4

. -
= %lsinzﬁoez’w + 2zilog <SH;O e’w)

— 7i cos 6y (2 + cos 6y). (4.20)

Thus the total area of extremal surface in W is given by

1
-1

ATP) = [7 P A = 04 = ADAGR)
r

(4.21)

In this way the final expression of the holographic
entanglement entropy reads

(g =) 4 as
A(y%S).
2a=1G, )

AT aGy

(4.22)

If we consider the Hartle-Hawking prescription of flat
space (i.e., the right panel of Fig. 6), we need to add the
extra contribution from the extremal surface in Euclidean
geometry, denoted by SZE). This is computed by setting
A(y%) to be the area of d — 2 dimensional semisphere in
(4.22), which leads to

d-1 _ .d-1

& _ (rg = ri wa

S, = 4.23

A 8(d—1)Gy (423)

For d = 3, we can explicitly evaluate S, in (4.22) as
follows:

i(ry—r?) sin” 6,
Sy = 1 , 4.24
A 8 GN 0og 62 ( )
where we employed (4.9). By comparing this with the
standard formula (3.31), we can read off the value of the
central charge ¢ of the dual two-dimensional CFT:

3i

c= Gy (r3—1r3). (4.25)

This agrees with the result (4.11) obtained from the
partition function.
For d = 5, we obtain

x(ry = r}) [sin6, sin 6,
Sy = 21 o(l)].
A= 66y |2 TRloe(g ) o)

(4.26)

By comparing this with the standard formula in 4D CFT
(3.34), we can read off the value of the central charge a:
ri(ri = )
= - 4.27
“ 32G, (4.27)

Indeed, this reproduces our previous estimation (4.16) from
the partition function.

C. Scalar field propagation

Now we consider a free massive scalar field in our wedge
geometry W% defined by r; < r < r,. We again impose the
Dirichlet or Neumann boundary condition on the boundary
r = ry,. As we will show below, the spectrum of 4, where
the dual operator dimension reads A = 1 + i, consist of
the infinitely many real values of 4; and a finite number of
imaginary values of 4;. The presence of the former, where
the conformal dimension (2.22) gets a complex valued,
again implies that the dual CFT on S? is nonunitary, as in
the dS/CFT correspondence. In the dS;/CFT, duality, we

find the formula for the conformal dimension A =1 &+

V1 — M? [4], where M is the mass of the scalar in the dS;.
If we interpret our wedge holography result in terms of
dS;/CFT,, we find a finite number of scalar fields in the
range 0 < M < 1 and an infinite number of scalar fields
with M > 1.

1. Dirichlet boundary condition

Using (2.16) and (2.17), the Dirichlet boundary con-
dition for the scalar reads

fp(rl):(l fp(rZ):O'

This is equivalent to find such values of v = /1 + p?,
which are solutions to

(4.28)

D% (v, x1, %) = J, (3 ) HY (x2) = T, (x) HY (x1) = 0.
(4.29)

By studying numerically, as plotted in Fig. 7, we find
that there is an infinite number of solutions for discrete
imaginary values of v together with a finite number of
solutions for real values of v. In appendix D1, we
analytically explain this behavior of the solutions. We also
find that the number of real valued solutions of v increase as
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FIG. 7. Plots of |[D¥(v, x;,x,)| for x; = 1 and x, = 5 as a function of v (left) and plots of zero point of D4’ (right). The color of the

left figure represents D’s phase.

r, gets larger and the solutions with imaginary v become
dense in the limit r; — O.

2. Neumann boundary condition

Next, we consider the case that we impose the Neumann
boundary condition on the two EOW-branes:

ar.;cp(rl) =0, arfp(rZ) =0, (430)

where the function ]‘p(r) was defined in (2.17). By
using the recurrence formula of the modified Bessel
function

1 1 1, 1
0, (x) = =3 (ot (0) = I (1), O HI () = =S (H1) (v) = HY ().
7, (x) HYx) 1, |
= U@ @), = () + H (). (4.31)
we can write (4.30) as follows:
v+1 v—1 v+1_ v—1_ -
a< 5 Jyp1(mr,) 5 J,,_l(mra)> + mﬁ( 0 H, | (mr,) 7 H,”\(mr,) ) =0,
where a = 0, 1. This is equivalent to the search of values of v = /1 + p?, which satisfy
N (v.xy.x0) = {0+ DJui (1) = (0 = Do (e) Hw + DHLY, (1) = (v = DEY, ()}
—{(v+ Doi (1) = (v = DI () H e+ DHY, () = (0= DHY, (x1)}
= 0. (4.32)

where x; , = mr; ;. By studying numerically, as plotted in
Fig. 8, we find that there is an infinite number of solutions
for discrete values of v together with a finite number of
solutions for real values of v. The properties of the solutions
v are similar to those in the Dirichlet case. Refer to
appendix D 2 for more details.

3. Two point function

We can evaluate the two point functions as we did for the
wedge holography in the hyperbolic patch in Sec. III C, by
using the scalar field profile (2.27). The result is identical to

|
(3.51), expect that there are two spheres in the future and
past. If we call the operator inserted in the future and past

sphere 05;”) and 0<_), respectively, then the two point
functions read

(05501, 91) 05 (0, 92)) o (1 = cosy12)™,

+ -
(0,7 (01.91)0,7 (02.92)) o (1 +cosy) ™, (4.33)
where y1, was given in (3.52). This means that an operator
inserted at a point on the future sphere is equivalent to that
inserted at its antipodal point in the past sphere. Under this
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FIG. 8.
left figure represents N’s phase.

identification, the two point functions agree with the CFT
expectation.

V. IS CELESTIAL HOLOGRAPHY A WEDGE
HOLOGRAPHY?

In the previous sections, we present two new setups
of wedge holography in a flat spacetime: hyperbolic
slices and de Sitter slices, as explained in Sec. II and
depicted in Fig. 2. In this section, we would like to
combine these two as in Fig. 3 to approach the celestial
holography, which argues that d + 1 dimensional gravity
in a full Minkowski spacetime is dual to a CFT on the
celestial sphere S?~!. As we will see below, as long as we
consider the vacuum configurations of celestial holo-
graphy, it fits nicely with the wedge holography.
However, if we consider excitations in celestial hologra-
phy by gravitational waves, we will see that we must
modify the boundary conditions of the flat space wedge
holography we considered in the previous section.

A. Partition function in Minkowski spacetime

Let us first calculate the partition function of
celestial holography in Minkowski spacetime by regarding
the on-shell gravity action as the CFT free energy, simply
by extending the standard bulk-boundary relation [6,7] of
AdS/CFT. We take the range of n and r to be (2.7). Then,
we can simply add up the on-shell actions (3.8) and (4.6) in
the wedge holography by setting

M = Ne> Iy =T, m=r =0. (51)
This leads to

L [
Ig Moo @Wa—1Ja-1- (5:2)

p— _ I _ —
47[GN Too Dd-1%d-1 47[GN

Here, we doubled the result to cover the full Minkowski
space, i.e., not only # > 0 but also ¢ < 0. This is evaluated

Imv

Rev

Plots of [N% (v, x,, x,)| for x; = 1 and x, = 5 as a function of v (left) and plots of zero points of N% (right). The color of the

in each dimension explicitly. For example, d = 3, 4, 5 we
obtain

d=3:1;= — loge,
CTRGyer | 2Gy €
3.3 3 3
d= i1y =TT 3(re 1)
24GN€‘ SGNG
4 4 4 4 4 4
dZS:IG :”(roo ’1:0) ﬂ'-(roo +’7§0) _”(roo ]700>10g€,
96G ye 12Gye 4Gy
(5.3)

where ¢ is the UV cutoff such that e#~ = 7'~ = ¢. From
the logarithmic terms, we can also read off the values of the
central charges ¢ in d =3 and a in d =5 as follows:

3(re +1%)

d=3.c=1i ,
c=1 2G,,
(g — T'%)
d=5:a=ie ") 5.4
T 66y, (54)

These are consistent with standard behavior in CFTs
except that the central charges take imaginary values,
which show that the dual CFT is nonunitary. In our limit
Ne — 00 and r — oo, the two-dimensional CFT central
charge becomes ¢ — ico. Such a divergent central charge in
the dual CFT has also been argued in [22,61]. Moreover,
itis intriguing to note that we can have a = 0 for the central
charge of the four-dimensional CFT if we tune 7o, = 7.

B. Holographic entanglement entropy
in Minkowski spacetime

We can calculate the holographic entanglement entropy
in celestial holography in a Minkowski spacetime. As
before, we chose the subsystem A to be |6] < 6, on S9!,
For this, we add the contribution in the hyperbolic patch
(3.28) and the de Sitter patch (4.21) of the wedge

026001-14



WEDGE HOLOGRAPHY IN FLAT SPACE AND CELESTIAL ...

PHYS. REV. D 107, 026001 (2023)

holography by taking the range (5.1) and double it to cover
the entire spacetime. This leads to the total expression:

AT}) +ATE)

SA —
4Gy
ad—1 d—1
Moo H T ds
=— A — A . 5.5

For example, we obtain explicit results for d = 3 and
d =5 as follows:

i sin%6
d=3:8y=— (% +r%) -1 9
A 4GN (’700 + roo) og 62
a(nd, +rd) T o, . sin 6,
d=5:5, = - I
A 16G yé2 TG, e k) 1o
+0(1), )

where ¢ is the UV cutoff. By comparing this with the
general expressions (3.31) and (3.34), we find the same
central charges ¢ and a, which we obtained from the on-
shell action in (5.4).

C. Celestial holography versus wedge holography
with excitations

The celestial holography [17,42] argues that four-
dimensional gravity on the Minkowski spacetime is dual to
a two-dimensional CFT on the celestial sphere S at null
infinity. One basic relation in the celestial holography is the
connection between scattering amplitudes A(ky, ko, - - -, k)
of N particles in four-dimensions and correlation functions
(0,0,...0y)¢ of N primary operators. For a scalar field
dual to a scalar operator O, with the dimension A, this is
explicitly written as follows

N
(04,(601.01)04,(02.9,)...04,(On.0n)) 52 = [H/dXI;QbAi'(i)(X’z‘l’ai’(/’i)/dkfeik’gx”’}/l(kl,kzw',kN)- (5.7)
i1

In this correspondence, the functions ¢*+(*) are called conformal primary wave functions. The superscripts (+) and (=)
correspond to out-going and in-coming particle, respectively. They are explicitly given in the following expression [17]:

/ZXFX )A-1
¢A’i(X”7901 @) = QKA—l(m\/ X”Xﬂ)'

("X;)»

(5.8)

Here X* is the four-dimensional Minkowski coordinate, which is related to the hyperbolic patch coordinate and de Sitter

patch one via

(XO,X',XQ,X3)|X,,Xy<0 =1 - (cosh p, sinh p sin @ cos ¢, sinh p sin & sin ¢, sinh p cos 6),

(X%, X', X?,X?)|ux, 0 = r - (sinh 7, cosh 7 sin € cos ¢, cosh sin &'sin b, cosh 7 cos 6).

and ¢* is the null vector

2
0 1 .2 3\ _
(q°. 4" ¢*. ¢°) T+ cosdy

- (1, sin Gy cos ¢y, sin G sin ¢, cos 0;),

(5.9)

which specifies the direction of particles in the celestial
sphere. We also introduced the ie regularization
XtE = X* +ie{-1,0,0,0}.

This wave function ¢*~(*) can be interpreted as a
pointlike excitation on the celestial sphere due to the
out-going or in-coming wave. In terms of hyperbolic/de
Sitter patch coordinate, the conformal primary wave
functions (5.8) read (setting ¢ = 0)

P>+ (X4, 0. ¢0)|X“X#<O =

Ka_i(mn) (14 cosfy\2
n 2

X (coshp — cosy sinh p) ™2,
(5.10)

Az XM,H . (] - =
¢ ( 0 (p0)|X X},>0 2 r 2

X (sinh ¢ — cosy cosh £)74,
(5.11)

i HY (mr) <1 + cos 90> A

where the type of Hankel function a = 1, 2 corresponds to
the out-going (+) and in-coming (—) wave. Indeed, these
are among the class of the scalar field solutions (2.23) and
(2.28) with a delta-functional source on the celestial sphere
S%. In the hyperbolic patch, the celestial holography and
our wedge holography discussed in section III have the
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same boundary condition for a massive free scalar, i.e., the
Dirichlet (or Neumann) boundary condition® at N =N
This is clear from the expression (5.11) as the Bessel
function K, appears, which exponentially decays as
K,(z) ~ e7* for large |z|.

However, the boundary condition we impose in the r
direction of the de Sitter patch looks different between the
celestial holography and our wedge holography. In the
former, as in (5.11), we impose the out-going or in-coming
boundary condition at r = r,, while in the latter we require
the Dirichlet (or Neumann) boundary condition. A similar
observation is true for the gravitational wave mode, where
we impose the out-going or in-coming boundary condition
in celestial holography and we do the Neumann boundary
condition (3.2) in our wedge holography. In this sense, if
we want to interpret the celestial holography in terms of a
wedge holography in flat space, we must modify the
boundary condition in the de Sitter patch at r = rg.
However, notice that in the computation of correlation
functions, this difference of r dependence only appears in
the overall constant and thus does not affect the dependence
of celestial sphere coordinate, e.g., in (4.33).

Here, we should also notice that the conformal dimen-
sion A, available in both hyperbolic patch and de Sitter
patch, is 1 4+ iA where A is an arbitrary real value (see
Sec. I C, IV C, Appendix D). This result from our wedge
holography is consistent with the principle series in
celestial holography, which is constrained from “normal-
izable condition [18],” not from boundary condition.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed extensions of wedge holog-
raphy to a flat spacetime, largely motivated by the recent
developments of celestial holography. A wedge holography
[27] is in general codimension two holographic duality
between a gravitational theory in a wedge region and a CFT
on its tip.

As the first example of wedge holography in a flat
spacetime, we argued that a d + 1 dimensional region
surrounded by two d dimensional hyperbolic spaces
(depicted in the left panel of Fig. 2) is dual to a nonunitary
CFT on S9!, We imposed the Neumann boundary con-
dition (3.2) for gravitational modes on the two boundaries,
i.e., the end of the world branes (EOW brane). We
calculated the on-shell gravity action, holographic entan-
glement entropy and two point functions in the gravity
dual and found that they agree with general expectations
in CFTs. The superrotation symmetry at each hyperbolic
slice explains the conformal symmetry of the dual
Euclidean CFT.

*Note that in the UV limit 5, — oo of celestial holography,
the Dirichlet and Neumann boundary condition at # = 5, for the
scalar field are identical. Thus, we can consider this as the
Neumann boundary condition.

In this example, it is intriguing that a timelike direction,
in addition to a space-like radial direction, emerges from
the Euclidean CFT. We found that the central charges in
even-dimensional CFTs dual to the wedge region take
imaginary values and that the conformal dimensions dual to
a bulk scalar become complex valued. These two unusual
properties show that the dual CFT is nonunitary. This is not
at all surprising because there is a good reason to believe
that the holographic duality where a real-time direction
emerges involves nonunitary theory, as is expected in the
dS/CFT duality [4,5]. Indeed, all the known CFT duals of
dS/CFT in four-dimensions [43] and in three-dimensions
[45] are nonunitary. It will be interesting to explore this
wedge holography from a more sophisticated viewpoint
such as higher point functions, entanglement wedges and
various excited states.

The second example of flat space wedge holography,
which we proposed in this paper, is for gravity in the d + 1
dimensional wedge region (the right panel of Fig. 2)
bounded by two d dimensional de Sitter spaces. We again
impose the Neumann boundary condition (3.2) on the two
EOW branes. We evaluated the on-shell gravity action,
holographic entanglement entropy and two point functions
in the gravity dual and again confirmed that they are
consistent with general expectations in CFTs. The super-
rotation symmetry at each de Sitter slice explains the
conformal symmetry of the dual Euclidean CFT. This
wedge holography can be regarded as a slightly “fatten”
version of dS/CFT correspondence by simply adding a
spacial interval. Therefore, our calculations and results
were parallel with that in dS/CFT. Indeed, the central
charges in even-dimensional CFTs on S¢~! turned out to
take imaginary values. We found that there are infinitely
many scalar operators dual to the bulk scalar which have
imaginary valued conformal dimensions. In addition, there
are a finite number of scalar operators with real valued
conformal dimensions.

Since the full Minkowski spacetime can be regarded as a
union of the hyperbolic patch and de Sitter patch, we finally
considered the possibility that the celestial holography for
the former can be interpreted as a combination of the
hyperbolic and de Sitter sliced wedge holography. We
found that the results of the on-shell action and holographic
entanglement for the flat Minkowski spacetime, which are
simply the sum of those in hyperbolic and de Sitter sliced
wedge holography, look consistent with the CFT expect-
ations. However, if we consider excitations such as the bulk
scalar field, we found that the wedge holography in the de
Sitter patch has a different boundary condition than that in
the celestial holography. The former is either Dirichlet or
Neumann and the latter is out-going or in-coming. On the
other hand, in the hyperbolic patch, our wedge holography
and celestial holography assume the same boundary con-
dition. Therefore, we must modify the usual boundary
condition of wedge holography, which is Neumann (3.2)
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for metric perturbation modes, to the out-going or in-
coming boundary condition to interpret the celestial holog-
raphy as a wedge holography.

It would be an intriguing future direction to explore more
the fundamental mechanism of celestial holography and
generalize the flat space holography to nontrivial geom-
etries such as Schwarzschild black holes.
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APPENDIX A: USEFUL IDENTITIES OF
LEGENDRE FUNCTIONS

The associated Legendre function is defined by (we
follow [62])

1 74+ 1\ #/2 1—z2
Py — | — F (|- 1,1 —pu— .
9=t (21) o (e it
e al(p+v+1) u+v+2 p+uv+1 31
/lf/l — —u—v—1 2_1/4/2 F . N Al
0(z) > T 1 3)2) z (2% = 1)F2,F, R ’V+2’z2 (A1)

It is useful to note the asymptotic behavior in the |z| = oo

Fv+up+1)
H eHmi , A2
Qi) = T S e (A2)
and z —> 1
" e”ﬂi 2 u/2
v(2) > r —
0= [r (-2
(=)l 1 — 1\#/2
LPElwtp+1) (2 (A3
Fv—pu+1) 2
The spherical harmonic function is defined by
(21+1)(I—m)!
Y, (0,0)=(—-1)" —P’" cos@)e™ . (A4
l0.9)= (1)) [ S os0)ei. (A4)
It satisfies the orthonormal condition:
y 3 2r
/ do sin@/ dgY;, (0,9)Y (0, ¢) = 81y6,m. (AS)
0 0

We can also show

ZZY (6, #)Y 1 (6o, bo)

=0 m=-1

= 50— 0)3(¢ — $o) = Q- Q).

sin @ (46)

The additivity theorem is also useful:

2 !
N =3y 2 Yin@ VG do). (A7)

where y is defined by (2.20).
The following integral formula is also useful (this is
Eq.(7.228) of [62])

1 P,(x) B 2 i
/—dx(z—x)”“_mw)(zz_l) 127 0h(2).

1

(A8)
In particular, by taking the limit z = 1 we obtain
1 P 27T (—p)?
/ dx"—(x)l: (=1)" (=) . (A9)
1 (T=x)rt IF(n—pu+1)I(—u—n)
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APPENDIX B: MINIMAL SURFACES AND
GEODESIC LENGTHS IN H,

Here we summarize minimal surfaces and geodesic
lengths in the hyperbolic space H,.

1. Minimal surfaces

Consider H,, whose metric is given by (3.25). This is
described by a coordinate (Xy, X, - - -, X,;) on the surface

X=X+ +X7+1, (B1)
in R4, via the coordinate transformation:
X = coshp,
X, = sinhpcos 8,
X, = sinh psin 6, cos 6,,
X, = sinhpsin@; sinf, - --sin6,_;. (B2)

We can also map this to the Poincaré coordinate as

2
Z x*+1
Xog==-11 ,
‘ 2<+z2>

X, =20 (1=2,3,--.d), (B3)
Z
leading to the metric
d }2 d 2 . d 2
ds? — 77+ dx +2 +dx;_, . (B4)

<

It is well known that a class of minimal surfaces in (B4)
is given by d — 2 dimensional semi-spheres.

xd_] = 0,

24+ +x, =12 (BS)

In terms of the original coordinate (3.25) of H,, this is
expressed as

1 + sinh?psin?@ = L?(cosh p + sinh p cos 6,)?,

04-1 = 0. (B6)
while the angles (6, ---,0,_,) are free. We introduce 6,
such that we have 6 = +60,, at the boundary p = p, — 0.
This is given by

sin 6,

= B7
1 4 cos 6, (B7)

Note also that the cutoff in the Poincaré coordinate 7 = € is
mapped into that in the original coordinate as

1 1 4 cos 6 1 —cos 6,
iy B VR I 2P0 e, B
5 < > )e + ( 5 )e (B8)
2. Geodesic length
If we consider two points, P; and P,,
Py = (p.0Y,Q,,).
P, = (p2,9(2>,9d_2). (B9)

The geodesic distance D, in the hyperbolic space
H, reads

cosh D, = cosh p, coshp, — sinh p; sinh p, cos(9)) —2)).

(B10)
In the limit p; = p, = p, this leads to
0,—-0
Dy, = 2p., + log <sin2 122> (B11)
The geodesic is explicitly given by
o) 4+ g2 1 inh?
an |02 07 P S0 (B12)
2 coshp \/ sinh“p,
where we set
(1 — 2 1
t = . B13
an[ 2 ] sinh . (B13)

APPENDIX C: EXTREME SURFACES AND
GEODESIC LENGTHS IN dS,

Here, we summarize minimal surfaces and geodesic
lengths in the de Sitter spacetime dS,.

1. Extremal surfaces

Consider dS,;, whose metric is given by (4.17). This is
described by a coordinate (X, X, -+, X,) on the surface
X3+1=X2+--+X2, (C1)

in R4, via the coordinate transformation:
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Xo = sinht,
X, = coshtcosf,
X, = coshtsinf, cos,,

ey

X, =coshtsin@,;sin@,---sinf,_;. (C2)

We can also map this to the Poincaré coordinate as

Z
X ==
)
Xi-1
Xl — (l — 2’ 3’ ’d)7 (C3)
Z
leading to the metric
—d2 4+ dx? 4+ 4 dx?
ds? — 77+ dx —1; + xd_I‘ (C4)

<

It is well known that a class of minimal surfaces in (C4)
is given by d — 2 dimensional semispheres.

Xa-1 = 0’
X+ xh, =22+ L2 (C5)

In terms of the original coordinate (4.17) of dS,, this is
expressed as

cosh?tsin?0 = L?(sinh ¢ + coshzcos 6;)? + 1,

9(1—1 = O’ (C6)

while the angles (6, --,0,_,) are free. We introduce 6,
such that we have 6 = +0,, at the boundary p = p, — 0.
This is given by

sin 60

= 7
1 4+ cos 6, (€7)

Note also that the cutoff in the Poincaré coordinate z = § is
mapped into that in the original coordinate as

1 1 +costy , 1 —cosfy\ _,
= — 2 )efe — [ ——2 . (C8
o= () ()

2. Geodesic length

If we choose two points, P, and P,, on dS,;:

Py = (t17‘9(1)79d—2)v

Py = (1,09,Q,,), (€9)
where we took the locations on $%~2 are the same without
losing generality owing to the SO(d — 1) symmetry. The
geodesic distance between P; and P,, denoted by Dy,, can
be found as

cos Dy, = cos(8) — #?)) cosh t, cosh t, — sinh ¢, sinh #,.

(C10)
If we choose t; =1, = t,, = oo, we find

o) — p2)
#ﬂ +z.  (Cl1)

The imaginary divergent contribution comes from the
timelike geodesic and the final real part z is from the
geodesic in an Euclidean space (d dim. half sphere). For
more details of this and an interpretation in dS/CFT, refer
to Fig. 5 of [46].

On the other hand, if we choose t; = —t, = 1, — o0, we

obtain
o) — p2)
=)

Note that if we replace 6, with the antipodal one 0, + 7,
then we get the behavior of (C11).

Dy, ~2it,, + ilog [sin2<

Dy, ~2ity, + ilog {c052< (C12)

APPENDIX D: SCALAR FIELD MODES
IN DE SITTER SLICED WEDGES

Here, we present analytical calculations of scalar field
modes, which satisfy either the Dirichlet or Neumann
boundary condition in the de Sitter sliced wedges
ri <r<ry In Figs. 9-12, D and N are defined as
(4.29), (4.32).

1. Dirichlet boundary condition

As opposed to the hyperbolic slice case, the values of v
satisfying the boundary condition can also be real as well as
pure imaginary. We can rewrite (2.17) as following:

(1) (2)
Fr) = aHl, (mr) +ﬂHD (mr)‘

r r

(D1)

Then, the boundary condition (4.28) can be written as
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FIG. 9. Plots of log(|D(v, x1,x;)| + 1) for x; = 1 and x, = 5 as a function of real v (left) and plots for x; = 0.1 and x, = 10 (right).
The downward pointing part of the graph indicates the zero point of D.
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FIG. 10. Plots of |D(v, x,x,)| for x; = 1 and x, = 5 as a function of imaginary v (left) and plots for x; = 0.1 and x, = 10 (right).
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FIG. 11. Plots of log(|N(v, x;,x,)| 4+ 1) for x; = 1 and x, =5 as a function of real values of v (left) and plots for x; = 0.1 and
X, = 10 (right). The downward pointing part of the graph indicates the zero point of N.
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FIG. 12. Plots of N¥(v, x,, x,) for x; = 1 and x, = 5 as a function of imaginary values of v (left) and plots for x; = 0.1 and x, = 10

(right).
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F(r) =0 e aH (x) + pHP (x;) = 0

() i
HY () _ e, () =T (x
sa=-te ) 2T gy
HV (x;) € u(x) = J_(x)

where x; = mr;,i = 1,2 and a = ‘ﬁl Note that by flipping

viewpoint of the numerical result, it would be sufficient to
focus on only real v and/or pure imaginary v case. Before
we proceed to the detailed analysis, let us review the
asymptotic form of the Hankel functions. In the limit
2| = oo,

the sign of v, we obtain (1) /2 2wt @) 2 2wl
) o | 2 Li(z—2H ) o] 2 —i(z— )
a(-v) = e 2mig(y), (D3) Hy'(2) n'ze w7, Hy'(z) ﬂ:ze 7. (D4)
which leads us to conclude that if v satisfies the boundary
condition (D2), —v also satisfies the condition. From the Also, in the region z ~v — oo,
|
mtfnhae”(“_ta“h“)(l + 0w 173)) [a =secha < 1]
H,W(av) = ¢ =£TE)(E0 + ) (&) (1 +0ow™) [a=1] (D5)
_e3m'/4 /nyénaeiv(tana—(z)(l + 0(1/‘1/5)) [a —seca > 1]
i\ e (1 4 O(9)) la = secha < 1]
H,P(a) = ¢ =5, TGE) (e =) )31+ o) la=1] (Do)

—e 737/ /—ﬂyénae_i”(‘a““_“)(l + 0 '3)) |a=seca>1].

First, we consider the positive real v case (remember that
sign-flipped vs are also solution). We would like to estimate
a in x, — o0, x; — 0. Taking x, large, we can write & as
following:

- HY (x2)
&=-—
Hy (XZ)
{ _e—i{2x2—(v+%)7r} (x2 > |1/|) (D7)
-1 (22 < [e]).
And, in small x;, we can write & as following:
o e () =T (x)
o=—
e~ (x;) = I, (x:)
ey - () -

OO
where y = g((};i;
solve (D2) as

. When we take v as positive real, we can

—emi2o-(h)m) 1 (1< xy) (D9)

—1~1 (v>x). (D10)

I

In the v < x, region, there exist solutions of v with a period
of approximately 2. Obviously, there are no solutions in the
v > x, region. Thus, we conclude that there are finitely
many solutions of real v and the number of real solutions is
bounded by x,. This result is consistent with the numerical
calculations, depicted in Fig. 9.

Next, we take v as pure imaginary v = iA and focus on
the positive A case. The conditions (D7) and (D8) are also
valid, even if v is pure imaginary. We would like to estimate
@& in x, = o0, x; — 0. Taking x, large, we can write & as
following:

HY (x))
Hl(jw(xz)

—i(2x,—4x) e

a=-

~—e

(D11)

We can see |@&| ~e™**. In small x;, we can write & as
following:

eimJu(xi) - J—v(xi)
e, (x;) = -, (x;)
e—/ln},(%l)i/{ _ (%1)—1'/1

~ emy(%)m _ (%1)—1'/1

&:

(D12)
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Then, at large 1, we can also see |@&| ~ e~**. Therefore, we
must focus on the phase matching of @ in both limits.

iy _ —(F(3)" = ey (D13)
- )P
After a little calculation, we obtain
Im[—a&'/?] 1 x|
= - tan| Alog—+ 6 D14
Re[-a'/?] tanh %% gy F (D14)
where 72 = . From (D11),
Im[—a'/?] 1
7Re[_&1/2] = —tan (Xl - Zﬂ') (DlS)

We can see that infinitely many (but discrete) values of A
yields f satisfying the Dirichlet boundary condition. We
can also see that the satisfactory values of A become
continuous under x; — 0 because log = — —oo. This result
is consistent with the numerical calculations, depicted
in Fig. 10.

2. Neumann boundary condition

From Fig. 11, we can observe the emergence of new zero
points on the real axis of v under the limits r, — oo and
r; — 0. And from Fig. 12, we can see that the gap of each
zero point of D% on the imaginary axis of v decreases as r,
approaches to oo and r; to 0. From the same calculation
in the Dirichlet boundary condition, we can show this
numerically.
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