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A method to study electromagnetic (EM) effects generated by a straight null cosmic string moving in
classical EM fields is suggested. The string is shown to induce an additional EM fieldwhich can be described as
a solution to homogeneous Maxwell equations with initial data set on a null surface, the string event horizon,
which the string world sheet belongs to. The initial data ensure the required holonomy of the string space-time
caused by the gravity of the string. This characteristic initial value problem is used to study the interaction of
plane waves with null strings and perturbations by the strings of the Coulomb fields of electric charges. It is
shown that parts of an incoming EM wave crossing the string horizon from different sides of the string are
refractedwith respect to each other and leave behind the string awedgelike region of interference. A null string
moving near an electric charge results in two effects: it creates a self-force of the charge and induces a pulse of
EM radiation traveling away from the charge in the direction close to the trajectory of the string.
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I. INTRODUCTION

Cosmic strings [1,2] are hypothetical astrophysical
objects which might have been produced in the early
Universe. Cosmic strings yield a variety of physical effects,
such as lensing effects, the Kaiser-Stebbins effect [3],
which result in imprints of the string’s motion on the
cosmic microwave background [4]. The cusps of tensile
strings emit strong beams of high-frequency gravitational
waves [5] which may contribute to the stochastic gravita-
tional background. These effects are potentially observ-
able [6,7] and one expects that experimental evidences of
cosmic strings would be an important step toward under-
standing physics at very high energies.
Cosmic strings which appear as a result of the Kibble

mechanism [1] are also called tensile strings since they have a
nonvanishing tension and nonzero rest mass per unit length.
A relatively less studied class of cosmic strings is null cosmic
strings which are one-dimensional objects whose points
move along trajectories of light rays, orthogonally to strings
[8]. The origin of null cosmic strings may be related to
physics of fundamental strings at the Planckian energies [9–
12]. Equivalent namesof null strings aremassless strings [13]
or tensionless strings, to distinguish them from the tensile
strings. Like tensile strings null cosmic strings create
holonomies of space-time. The holonomies are null rotations
belonging to the parabolic subgroup of the Lorentz group
[13,14]. The group parameter of the holonomies is deter-
mined by the string energy per unit length.
Possible astrophysical and cosmological effects of null

cosmic strings [14–16], such as deviations of light rays and
trajectories of particles in the gravitational field of strings as

well as scattering of strings by massive sources, are similar
to that of the tensile strings. A distinctive feature of null
strings is their optical properties. The strings behave as one-
dimensional null geodesic congruences characterized by a
complex scalar which is determined by an analog of the
Sachs’ optical equation [17]. The analysis shows that world
sheets of null strings develop caustics which accumulate
large amounts of energy [16].
The main purpose of the present paper is to describe new

electromagnetic (EM) effects generated by a straight null
string in locallyMinkowski space-time.On the technical side
our aim is to define classical electrodynamics on space-times
with null holonomy. It should be noted that field theories in
the background geometry of a straight tensile string have
been studied earlier in numerous publications in a reference
framewhere the string is at rest and the corresponding space-
time has conical singularities, see e.g., [18–27] among the
pioneering papers. Field theories in the presence of null
strings are a relatively unknown research area.
An approach to physical effects caused by null strings

has been suggested in [14]. In the string space-time the null
holonomy transformations have fixed points on the string
world sheet which belongs to a null hypersurface H, the
string event horizon. The idea of [14] is to set, for matter
crossing the string horizon, “initial” data onH to ensure the
required holonomy transformations. The approach has been
used in [14,15] to describe the Kaiser-Stebbins effect
caused by null cosmic strings.
In the present paper, we extend the method of [14] to

study observable effects of classical EM fields generated by
null cosmic strings.
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The paper is organized as follows. In Sec. II we describe
the holonomy method of [14] with the focus on free field
theories. Finding solutions to wave equations in a free field
theory on a space-time of a null string, in the domain above
H, is equivalent to solving an initial value problem with
initial data on H determined by incoming data. The initial
data are null rotated to ensure the required holonomy. In the
theory of hyperbolic second order partial differential
equations (PDE) such an initial value (Cauchy) problem
is called the characteristic initial value problem [28] since
the standard pair of initial data are not independent on H.
We discuss in detail how the initial data should be chosen in
the case of scalar field theory and in Maxwell’s theory,
where gauge constraints should be taken into account. We
also demonstrate that observers crossing H do not see
discontinuities in the stress-energy tensor of the fields.
In the next sectionswe apply thismethod to study different

EM effects induced by null strings. Scattering of mono-
chromatic plane electromagnetic waves on null strings is
considered in Sec. III. The null cosmic string cuts the wave
front into two waves and changes on H their directions
relative to each other. That is, the string horizon acts as a
refractive media. As a result, the string leaves behind a
wedgelike region, an interferencewedge,where the refracted
waves interfere. An observer inside the interference wedge
sees two waves, as if they come from different sources. This
property is the manifestation of the lensing effect. The
interference is also analogous to creation by cosmic strings
of overdensities of matter. In Sec. IV we define EM fields
created by charges in the presence of the straight null string.
The solution of the Maxwell equations above the string
horizon H is studied in detail for a single point charge. We
show that in addition to the standard Coulomb field of the
charge the string generates a rapidly changing EM field
which acts as a self-force on the charge. At large times the
additional field looks as a pulse of EM radiation traveling
away from the charge. We calculate numerically the energy
density and the energy flow of the pulse and show that its
duration and peak are determined by the impact parameter
between the string and the charge. Other applications of our
results are discussed in Sec. V. The suggested method can be
used to describe classical field effects on gravitational shock-
wave backgrounds. Section VI is a summary. Our analysis is
based on the exact solution for the Cauchy problem for a
scalar plane wave. The derivation of this solution and the
properties of the Green function with a delta-function source
on H can be found in Appendix A. Some details regarding
the homogeneous solution for the Coulomb potential are
given in Appendix B.

II. FIELD DYNAMICS AND NULL HOLONOMIES

A. Coordinate conditions on the string horizon

We consider a straight cosmic string which is stretched
along the z axis and moves along the x axis in R1;3. It is

convenient to use the light-cone coordinates v ¼ tþ x,
u ¼ t − x, where the metric is

ds2 ¼ −dvduþ dy2 þ dz2: ð2:1Þ

The string world sheet can be defined by equations
u ¼ y ¼ 0. The parabolic subgroup of the Lorentz trans-
formations (null rotations), ðx0Þμ ¼ Mμ

νðλÞxν, acts on u, v,
y, z coordinates in R1;3 as follows:

u0 ¼ u; v0 ¼ vþ 2λyþ λ2u; y0 ¼ yþ λu; z0 ¼ z;

ð2:2Þ

where λ is some real parameter. Transformation of a
vector is

V 0
u ¼ Vu − λVy þ λ2Vv; V 0

v ¼ Vv;

V 0
y ¼ Vy − 2λVv; V 0

z ¼ Vz; ð2:3Þ

or V 0
μ ¼ Mμ

νðλÞVν, where Mμ
ν ¼ ημμ0η

νν0Mμ0
ν0 .

For a null string with the world sheet u ¼ y ¼ 0 a
parallel transport of a vector V along a closed contour
around the string results in a null rotation, V 0 ¼ MðωÞV
with ω defined as (see [13])

ω≡ 8πGE: ð2:4Þ

The world sheet is a fixed point set of (2.2). The hyper-
surface u ¼ 0 is the event horizon of the string. We denote
it by H.
The holonomy method suggested in [14] is to set initial

data on the string horizon. To determine these data the
string space-time is decomposed onto two parts: u < 0 and
u > 0. We call trajectories of particles and light rays at
u < 0 and u > 0 ingoing and outgoing trajectories, respec-
tively. To describe outgoing trajectories, one introduces two
types of coordinate charts: R and L charts, with cuts on the
horizon either on the left (u ¼ 0, y < 0) or on the right
(u ¼ 0, y > 0) to the string, respectively. The initial data on
the string horizon are related to the ingoing data via null
rotations (2.2) taken at u ¼ 0. For brevity the right (u ¼ 0,
y > 0) and the left (u ¼ 0, y < 0) parts of H will be
denoted as Hþ and H−, respectively.
For the R charts the cut is along H−. The coordinate

transformations on the string horizon and the initial data for
the outgoing trajectories are

xμþ ¼ x̄μjHþ ; uμþ ¼ ūμjHþ ; ð2:5Þ

xμ− ¼ Mμ
νðωÞx̄νjH−

; uμ− ¼ Mμ
νðωÞūνjH−

; ð2:6Þ

where x̄μ, ūμ are the coordinates and velocities of the
corresponding ingoing trajectory when it reaches the
horizon. It follows from (2.2) that the coordinate
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transformations (2.5) at y < 0 are reduced to a shift of a
single coordinate:

v− ¼ v̄þ 2ωy; y < 0: ð2:7Þ

Thus, on the R charts the “right” trajectories (y > 0) behave
smoothly across the horizon, while the “left” trajectories
(y < 0) are shifted along the v coordinate and change their
direction under the null rotation.
The descriptions based on R or L charts are equivalent.

The choice of a chart is a matter of convenience depending
on the observer’s trajectory. L charts are dual to R charts.
They are smooth everywhere except the right cut on the
horizon, Hþ. The shift of the coordinate now is

vþ ¼ v̄ − 2ωy; y > 0: ð2:8Þ

Right outgoing trajectories experience null rotations like in
(2.5) and (2.6), where ω should be replaced with −ω.
The reason why descriptions in terms of R and L charts

are equivalent is that only relative transformations of left
and right outgoing trajectories have physical and geomet-
rical meanings.

B. Characteristic Cauchy problem for scalar fields

The above holonomy method can be extended to
describe classical field theories, or fiber bundles over the
null string geometry. In this section we consider non-
interacting scalar fields ϕ with equations

ð□ −m2ÞϕðxÞ ¼ jðxÞ; ð2:9Þ

□ ¼ ∂μ∂
μ ¼ −4∂u∂v þ ∂

2
y þ ∂

2
z ; ð2:10Þ

where jðxÞ is an external source. It is a second order
hyperbolic PDE which allows a well-posed Cauchy prob-
lem on initial spacelike hypersurfaces. The initial data
include fields and their first time derivatives.
Since we need solutions of (2.9) above H, u > 0, it is

natural to consider the initial value problem with H as the
initial hypersurface. The point is that H is null, and it is a
characteristic surface [28] of (2.9), where standard Cauchy
data, fields and their first derivatives are not independent. A
solution of (2.9) can be fixed just by the value of the field
ϕ̂ðxÞ ¼ ϕðxÞjH, where x≡ ðv; y; zÞ. An analog of a time
derivative, χðxÞ ¼ ∂uϕðxÞ at u ¼ 0, can be expressed from
(2.9) as

χðxÞ ¼ 1

4

Z
v

−∞
dv0

�
ð∂2y þ ∂

2
z −m2Þϕ̂ðx0Þ− jðx0Þ

�
þ fðy; zÞ;

ð2:11Þ

where x0 ≡ ðv0; y; zÞ. Asymptotic properties of χðxÞ at
future or past null infinities depend on an arbitrary function

fðy; zÞ in (2.11). This function can be fixed or eliminated
by requiring appropriate behavior of ϕ̂ðxÞ and χðxÞ at null
infinities. Under these conditions χ is fixed by ϕ̂ and j
on H.
To take into account the holonomy of the string space-

time the initial data on Hþ and H− should be considered
separately. We denote them as

ϕðxÞjH� ¼ ϕ̂�ðxÞ: ð2:12Þ

In the R chart, the continuity of solutions across H is
ensured by the following transition conditions:

ϕ̂þðxÞ ¼ ϕ̄ðxÞjHþ ; ϕ̂−ðxÞ ¼ ϕ̄ðx̄ÞjH−
;

x̄ ¼ x − 2ωyq; ð2:13Þ

where ϕ̄ is the value onH of the ingoing field at u < 0, and
qi ¼ δiv. We also require continuity of the current in the rhs
of (2.9),

jðxÞjHþ ¼ j̄ðxÞ; jðxÞjH−
¼ j̄ðx̄Þ: ð2:14Þ

Conditions (2.13) are analogous to conditions (2.5) and
(2.6) for trajectories of particles and light rays. According
to (2.13) a left observer with “ingoing” coordinates x̄ on
H− will be shifted to a coordinate x̄þ 2ωyq. The transition
condition (2.13) means that the left observer measures in
the new coordinates the same value of the field and the
current.
Let us show that vector field Vμ ¼ ∂μϕ has the required

holonomy when going around the string world sheet. To
this aim it is enough to demonstrate that outgoing and
ingoing data on H, in the R chart, are related as

VμðxÞ ¼ V̄μðxÞjHþ ; VμðxÞ ¼ Mμ
νðωÞV̄νðx̄ÞjH−

: ð2:15Þ

HereMμ
νðωÞ are defined in (2.3). It is easy to see that (2.3)

is fulfilled on H− for v and z components. For the y
component, one finds

∂yϕðxÞjH−
¼ ð∂ȳ − 2ω∂v̄Þϕ̄ðx̄ÞjH−

; ð2:16Þ

in agreement with (2.3). The result for χðxÞ ¼ ∂uϕðxÞ at
H− follows from (2.9) and (2.16) which imply

∂vχðxÞ ¼
1

4
½ð∂2y þ ∂

2
z −m2ÞϕðxÞ − jðxÞ�

¼ 1

4
½ðð∂ȳ − 2ω∂v̄Þ2 þ ∂

2
z −m2Þϕ̄ðx̄Þ − j̄ðx̄Þ�

¼ ∂v̄ðχ̄ðx̄Þ − ω∂ȳϕ̄ðx̄Þ þ ω2
∂v̄ϕ̄ðx̄ÞÞ; ð2:17Þ

where χ̄ðx̄Þ ¼ ∂uϕ̄ðx̄Þ at H−. That is, under corresponding
conditions at null infinities,
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χðxÞ ¼ χ̄ðx̄Þ − ω∂ȳϕ̄ðx̄Þ þ ω2
∂v̄ϕ̄ðx̄Þ: ð2:18Þ

This coincides with null rotation of the u component in
(2.3). It is clear that relation (2.18) is a consequence of
relativistic invariance of equation of motion (2.9).
The stress-energy tensor of the fields Tμν is constructed

of ϕ and ∂μϕ. Since

TμνðxÞ ¼ Mμ
αðωÞMν

βðωÞT̄αβðx̄ÞjH−
; ð2:19Þ

it has the required holonomy which belongs to tensor
representation of the Lorentz group. Transition conditions
(2.19) guarantee that left observers with four-velocities uo
do not see discontinuities in quantities like uμo∂μϕ or
uμouνoTμν when crossing the string horizon.
We can now formulate the characteristic initial value

problem:
(i) the solutions ϕðxÞ of hyperbolic type PDE (2.9) are

looked for in the domain u > 0;
(ii) the initial data are set on null hypersurface H

(u ¼ 0) and consist of a single variable, the value
of the field ϕ̂ðxÞ, appropriate asymptotic conditions
at null infinities are assumed;

(iii) the initial data ϕ̂ðxÞ are determined by incoming
solution ϕ̄ðx̄Þ in the domain u < 0 with the help of
transition conditions (2.13) which are synchronized
with coordinate conditions (2.5) and (2.6).

A solution to (2.9) and (2.13) can be written as

ϕðxÞ ¼ ϕIðxÞ þ ϕHðxÞ: ð2:20Þ

Here ϕIðxÞ is a particular solution to inhomogeneous
equation (2.9) in R1;3 taken at u > 0. We denote by ϕ̂I;�
the corresponding data of ϕIðxÞ on H�. The field ϕHðxÞ is
a solution to a homogeneous problem:

ð□ −m2ÞϕHðxÞ ¼ 0; ϕHðxÞjH� ¼ ϕ̂H;�ðxÞ;
ϕ̂H;�ðxÞ ¼ ϕ̂�ðxÞ − ϕ̂I;�ðxÞ: ð2:21Þ

The Cauchy data in (2.21) are chosen to ensure the required
data (2.13) for ϕðxÞ. The solution to (2.21) can be written as

ϕHðxÞ ¼
Z
y0>0

dx0Dðu;x − x0Þϕ̂H;þðx0Þ

þ
Z
y0<0

dx0 Dðu;x − x0Þϕ̂H;−ðx0Þ; ð2:22Þ

where the D function is the solution to the following
problem:

ð□ −m2ÞDðxÞ ¼ 0; Dðu;xÞju¼0 ¼ δð3ÞðxÞ: ð2:23Þ

It is convenient to assume that ϕI is the solution when the
string is absent. Then physical effects generated by the null

string are related to ϕH. It is this homogeneous part we
study in the next sections in different physical situations.

C. Characteristic Cauchy problem
for a Maxwell field

Our primary interest is electromagnetic fields on space-
time of a null cosmic string. The standard initial value
problem for the Maxwell equations in Minkowski space-
time,

∂μFμν ¼ jν; ð2:24Þ

Fμν ¼ ∂μAν − ∂νAμ, ∂j ¼ 0, with initial spacelike hyper-
surface t ¼ 0 is determined by the following initial data:

Aijt¼0 ¼ ai; F0ijt¼0 ¼ πi; i ¼ x; y; z: ð2:25Þ

The pairs ai, πi are canonical coordinates and momenta.
The gauge symmetry imposes the constraint

∂iπi ¼ −j0jt¼0; ð2:26Þ

which leaves two independent momenta. Also the gauge
transformations, δAμ ¼ ∂μλ, allow one to exclude one of
coordinates ai. Therefore there are only four independent
initial data.
For the subsequent analysis, it is convenient to use the

Lorentz gauge condition ∂A ¼ 0 since it is invariant under
holonomy transformations on H and can be imposed
globally on cosmic string space-time. The Maxwell equa-
tions are reduced to

□Aμ ¼ jμ; ∂A ¼ 0: ð2:27Þ

The initial data for (2.27) are

Aμjt¼0 ¼ aμ; _Aμjt¼0 ¼ pμ: ð2:28Þ

The data a0 and p0 are not independent: p0 is fixed by the
gauge condition, while a0 is determined by constraint (2.26).
The gauge freedom of (2.27), δAμ ¼ ∂μλ, □λ ¼ 0, which
implies transformations of the initial data,

δai ¼ ∂iλ; δa0 ¼ _λ; δpi ¼ ∂i
_λ; δp0 ¼ △λ;

leaves four independent initial data.
Consider now the characteristic initial value problem for

Maxwell equations with initial hypersurface H (u ¼ 0).
The canonical coordinates and momenta can be determined
by using the Hamilton-Jacobi method from the variation of
the Maxwell action with H as a boundary,

AbjH ¼ ab; FubjH ¼ πb; b ¼ v; y; z: ð2:29Þ

The data are subject to the constraint
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∂vπv þ ∂xπx þ ∂yπy ¼ −jujH: ð2:30Þ

The momenta πy ¼ 2Fvy, πz ¼ 2Fvz are completely deter-
mined by the initial data ab. If these momenta are known,
πv ¼ 4Fuv is fixed by (2.30). Since there is the gauge
freedom δab ¼ ∂aλ in the definition of πy, πz, the initial
value problem on H requires two independent data, twice
less than that in the initial problem on the spacelike
hypersurface.
If we fix the Lorentz gauge the initial data for (2.27) can

be formulated as

AμjH ¼ aμ; ð2:31Þ

where au should be determined by the gauge condition. The
remaining gauge freedom then leaves two independent
data. Constraint (2.30) follows from the gauge condition
and the equation for the v component.
We go now to Maxwell equations on string space-time.

Let Āμ be a solution to (2.24) with an electric current j̄μ in
the region u < 0. We continue to work in the R chart. By
analogy with (2.14), the following conditions ensure
continuity of the current across H:

jμðxÞjHþ ¼ j̄μðxÞ; jμðxÞjH−
¼ Mμ

νðωÞj̄νðx̄Þ; ð2:32Þ

where jμ is defined at u > 0, and x̄ ¼ x − 2ωyq. The
conservation law, ∂j ¼ 0, is invariant with respect to null
rotations. Together with (2.32) it implies that the electric
charge Q defined on null surfaces u ¼ C,

Q ¼
Z
u¼C

dΣμjμðu;xÞ ¼
Z
u¼C

juðu;xÞdvdydz; ð2:33Þ

does not change when crossing H.
The characteristic initial value problem for EM fields at

u > 0 includes field equations (2.27) and initial data (2.31)
set on H. The data are determined as

abðxÞ ¼ ābðxÞjHþ ; abðxÞ ¼ Mb
cðωÞācðx̄ÞjH−

; ð2:34Þ

ābðxÞ ¼ ĀbðxÞjH; b ¼ v; y; z: ð2:35Þ

Note that Mb
u ¼ 0, see (2.3). The initial data for the u

component is determined by the gauge condition ∂A ¼ 0.
By taking into account (2.17) and the fact that av is
invariant under null rotations, one finds that

∂vau ¼ ∂v̄ðāu − ωāy þ ω2āvÞ: ð2:36Þ

This relation holds on H− and is consistent with the
transformation law auðxÞ ¼ Mu

μāμðx̄Þ. By using this,
one can demonstrate the transition conditions for the
Maxwell tensor on H−:

FμνðxÞ ¼ Mμ
αðωÞMν

βðωÞF̄αβðx̄ÞjH−
; ð2:37Þ

in accord with the holonomy of the space-time.
As is explained in Sec. II B it is convenient to look for a

solution to (2.27) and (2.34) in the form

AμðxÞ ¼ AI;μðxÞ þ AH;μðxÞ; ð2:38Þ

where AI;μ is a particular solution to (2.27) and AH;μ is a
solution to a homogeneous characteristic initial value
problem:

□AH;μ ¼ 0; ∂AH ¼ 0; AH;bðxÞjH ¼ aH;bðxÞ: ð2:39Þ

If we assume that AI;μ coincides with the solution in the
absence of the string, that is AI;μ ¼ Āμ on Hþ, the initial
data in (2.39) become

aH;bðxÞjHþ ¼ 0; aH;bðxÞjH−
¼ Mb

cðωÞācðx̄Þ − aI;bðxÞ;
ð2:40Þ

where aI;bðxÞ ¼ AI;bðxÞjH ¼ ābðxÞ.

III. REFRACTION OF EM WAVES ON THE
STRING HORIZON

The first type of physically interesting effects is related to
scattering of electromagnetic waves on null strings. Consider
monochromatic plane waves which have the standard form
before scattering on the string (in the region u < 0):

Āμðx̄Þ ¼ ℜðĒμeik̄·x̄Þ; ð3:1Þ
where Ēμ is some complex polarizationvector, k̄μĒμ ¼ 0. As
earlier, we denote the incoming datawith the bar. Other types
of electromagnetic waves can be treated as a superposition of
plane monochromatic waves.
We are dealing with (2.27) when j ¼ 0. This simplifies

the choice of data on H.
On the R chart there is no transformation of the part of

the wave crossingHþ. If (2.34) are applied to (3.1) onH−,
one concludes that the wave leaves H− with the trans-
formed momentum

kμ− ¼ Mμ
νðωÞk̄ν: ð3:2Þ

The transformed momentum k− is introduced to satisfy the
condition k̄ · x̄jH−

¼ k− · x−, where x− are defined by (2.6).
The initial data (2.34) and (2.35) and the gauge ∂A ¼ 0 then
imply the following conditions:

Eþ
μ ¼ Ēμ; E−

μ ¼ Mμ
νðωÞĒν ð3:3Þ

for the polarization vectors of waves which leave Hþ and
H−, respectively.
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For the right observers the wave from H− changes its
energy and looks refracted. If E and k⃗ are, respectively, the
energy and the momentum of the incoming wave, the
refraction angle φrefr and the energy of the refracted wave
are

cosφrefr ¼
ðk⃗−k⃗Þ
E−E

¼ 1

EE−

�
E2 þ ω2

2
ðEkx − ðkxÞ2Þ þ ωEky

�

ð3:4Þ

E− ¼
�
1þ ω2

2

�
E −

ω2

2
kx þ ωky: ð3:5Þ

The refraction is absent only for the waves traveling along
the string axis z when kx ¼ ky ¼ 0.
To study physical effects caused by the refraction of

waves on H we need to solve (2.27) with the Cauchy data
(2.34). Since the problem is homogeneous its solution is
given by (2.22). In the case of the monochromatic plane
waves each component of Aμ can be treated as a scalar
wave. If one ignores the effects related to polarizations, the
basic features of the scattering problem can be understood
by studying a scalar field theory with equation

□ϕ ¼ 0: ð3:6Þ

Suppose that the scalar field ϕ behaves at u < 0 as

ϕ̄ðx̄Þ ¼ eik̄·x̄: ð3:7Þ

In the domain u > 0 the scattered wave (3.7) is a super-
position,

ϕðxÞ ¼
Z
y0>0

dx0 Dðu;x − x0Þeikþ·x0 ju0¼0

þ
Z
y0<0

dx0Dðu;x − x0Þeik−·x0 ju0¼0

≡ ϕþðxÞ þ ϕ−ðxÞ; ð3:8Þ

where kþ ¼ k̄, k− ¼ MðωÞk̄. To represent solutions ϕ�ðxÞ
we introduce the following dimensionless functions:

fðk; xÞ ¼ uky þ 2kvy; gðk; xÞ ¼ f2ðk; xÞ
4kvu

; ð3:9Þ

f� ¼ fðk�; xÞ; g� ¼ gðk�; xÞ: ð3:10Þ

After some algebra one gets, see Appendix A,

ϕ�ðxÞ ¼ ½θð�f�Þ þ εð�f�ÞGðg�Þ� expðik�xÞ;
kv > 0 ð3:11Þ

ϕ�ðxÞ ¼ ½θð∓ f�Þ þ εð∓ f�ÞG�ð−g�Þ� expðik�xÞ;
kv < 0; ð3:12Þ

where θ and ε are the step and the sign functions,
respectively. The complex factor GðgÞ is defined, for
ℜg > 0, as

GðgÞ ¼ −
eiπ=4

π

Z
∞

0

dt
t2 þ i

e−gðt2þiÞ ¼ −
1

2
Erfcð

ffiffiffiffi
ig

p
Þ:

ð3:13Þ
By using (3.9)–(3.13) one can check that □ϕ� ¼ 0
at u > 0.
The G factor has the following expansions at small and

large g:

GðgÞ ¼ −
1

2
þ eiπ=4ffiffiffi

π
p g1=2

�
1 −

i
3
gþ � � �

�
; g → 0;

ð3:14Þ

GðgÞ ¼ eiπ=4

2
ffiffiffi
π

p e−igg−1=2
�
eiπ=2 −

1

2g
þ � � �

�
; g → ∞:

ð3:15Þ

As a consequence of (3.15), G vanishes as u → 0, and ϕ�
satisfy the required boundary conditions. One can also
check with the help of (3.14) that solutions (3.11) and
(3.12) are continuous across the surfaces f� ¼ 0.
Due to the presence of the G factor the scattered wave is

not monochromatic near the string world sheet, u → 0,
g → 0, in a “near-field zone.” In a “far-field zone,” g ≫ 1,
the wave has a simple form. For instance, for kv > 0, it is

ϕðxÞ ¼ θðfþÞ expðikþxÞ þ θð−f−Þ expðik−xÞ þ ϕtailðxÞ;
ð3:16Þ

ϕtailðxÞ ¼ εðfþÞ
1ffiffiffiffiffiffiffiffiffiffiffi
4πgþ

p eikþxþiφþ

þ εð−f−Þ
1ffiffiffiffiffiffiffiffiffiffi
4πg−

p eik−xþiφ− þOðg−3=2� Þ; ð3:17Þ

where φ� ¼ g� þ π=4. Contributions ϕtailðxÞ are “tails”
whose amplitudes decay as g−1=2� . As follows from (3.9),
jg�j ∼ L=λ where λ is a wavelength and L is a distance
related to position of the observer with respect to the string
trajectory.
Physical effects in the far-field zone are interesting for

the distant observers. Right observers crossingHþ interpret
(3.16) as a refraction of the left wave on H−. The surfaces
f�ðxÞ ¼ 0 determine boundaries of diffraction of right and
left parts of the wave behind the string. The normal vectors
n� to these surfaces,
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df� ¼ nμdxμ;

are orthogonal to the wave vectors,

ðn� · k�Þ ¼ 0: ð3:18Þ

The surfaces f�ðxÞ ¼ 0 intersect at the string world sheet.
The domains of the diffraction overlap. In the overlap

region, fþ > 0, f− < 0, u > 0, the left and right waves
interfere since the wave vectors k� are related by the
nontrivial null rotation, k− ¼ MðωÞkþ. Thus, the null string
leaves behind an interference wedge. This physical effect
is similar to the effect of massive and null strings which
leave behind the regions of overdensities of nonrelativistic
matter.
To demonstrate the existence of the overlap region we fix

the moment t ¼ t0, put kþ ¼ k, and suppose that ky > 0,
k−y ¼ ky − 2ωkv > 0. In coordinates x and y conditions
fþ > 0, f− < 0, u > 0 look as

x−ðyÞ < x < xþðyÞ; x < t0; ð3:19Þ

xþðyÞ ¼ t0 þ
2kvy
ky

; x−ðyÞ ¼ t0 þ
2kvy

ky − 2ωkv
: ð3:20Þ

It is clear that conditions (3.19) hold for y < 0. The angle of
the interference wedge, φintf , can be defined as the angle
between the lines x ¼ x�ðyÞ:

cosφintf ¼
kyðky − 2ωkvÞ þ 4k2v

ðk2y þ 4k2vÞ1=2ððky − 2ωkvÞ2 þ 4k2vÞ1=2
: ð3:21Þ

One can see that φintf ¼ Oðω2Þ at small ω. The interference
wedge exists at ky ¼ 0 when cosφintf ¼ ð1þ ω2Þ−1=2.

To illustrate this effect we evaluate the energy density
T00ðxÞ, as measured by right observers for a real scalar
field ϕðxÞ ¼ ℜðϕþðxÞ þ ϕ−ðxÞÞ, where ϕ� are defined by
(3.11). Figure 1 shows T00ðxÞ at the moment t0 ¼ 2 in the
ðx; yÞ plane orthogonal to the string for the string parameter
ω ¼ 0.5. All coordinates are given in dimensionless units
(multiplied by kv ¼ 1).
We now return to solutions for EM waves. Solutions for

incoming waves of the form e−ik·x can be obtained from
(3.11) and (3.12) by changing the sign of the momentum.
As one can check by using (3.11) and (3.12), the solution is
the complex conjugate of the solution for eik·x. With these
remarks scattered EM waves look (for kv > 0) as follows:

A�
μ ðxÞ ¼ ℜf½θð�f�Þ þ εð�f�ÞGðg�Þ�E�

μ expðik�xÞg;
ð3:22Þ

where the polarization vectors E�
μ are defined by (3.3). The

interpretation of these results is the following. An observer
inside the interference wedge sees the two waves with
the same polarizations. The waves appear to come from
distant sources which move with respect to each other.
This property is a combination of two effects known for
moving cosmic strings, the lensing effect and the creation
of overdensities of matter.

IV. EM FIELD OF A POINT CHARGE NEAR
NULL STRING

Consider a null string which moves near a point electric
charge. Let a be an impact parameter between the string
and the charge. Without loss of the generality we suppose
that the charge is at rest at a point with coordinates
xe ¼ ze ¼ 0, ye ¼ a > 0. As we see, the string creates
an EM self-force which may change the velocity of the

FIG. 1. The energy density of a real scalar field is shown for the string at the moment t0. The string is stretched along the z axis,
orthogonal to plane of the figure, and is located at x ¼ t0 ¼ 2, y ¼ 0; ω ¼ 1=2. For the left figure: kv > 0, k−y ¼ ky − 2ωkv > 0. For the
right figure: ky ¼ 0, cosϕint ¼ ð1þ ω2Þ−1=2.
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charge. We neglect this effect in the considered approxi-
mation and assume that position of the charge remains
fixed. The corresponding current in (2.27) is j̄μðxÞ ¼
eδð3Þðx⃗ − x⃗eÞuμ, with uμ ¼ δμ0. The incoming field below
H is

ĀμðxÞ ¼ −
e
4π

δ0μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy − aÞ2 þ z2

p ; ð4:1Þ

x ¼ ðv − uÞ=2. Since the considered particle moves freely
and crosses Hþ, in the R chart the four-velocity of the
particle is continuous. So do components of the current,

jμðxÞ ¼ j̄μðxÞ; u > 0: ð4:2Þ

Therefore the inhomogeneous part of the solution (2.38) is
taken as

AI;μðxÞ ¼ ĀμðxÞ: ð4:3Þ

The homogeneous part is the solution to (2.40) with the
following initial data:

aH;bðxÞjHþ ¼ 0; aH;bðxÞjH−
¼ Mb

cðωÞācðx̄Þ − ābðxÞ;
ð4:4Þ

āb ¼ −
e
8π

δvbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=4þ ðy − aÞ2 þ z2

p : ð4:5Þ

The homogeneous solution at u > 0 can be represented
as (see details in Appendix B)

AH;μðxÞ ¼ −
e
8π3

Z
dΩℜ

�
bμ

xνmν þ iaε

�
; ð4:6Þ

where integration goes over a unit sphere S2, with coor-
dinatesΩ ¼ ðθ;φÞ and standard measure dΩ ¼ sin θdθdφ.
The notations used in (4.6) are the following:

bv ¼ −
1

2
cosφðg−1ðΩ;ωÞ − g−1ðΩ; 0ÞÞ;

by ¼ ω cosφg−1ðΩ;ωÞ; bz ¼ 0; ð4:7Þ

gðΩ;ωÞ ¼ eiθ þ ω sin θ cosφ; ε ¼ 2sin2θ cosφ: ð4:8Þ

The vector mμ is null, m2 ¼ 0,

mu ¼ 1 − sin2θcos2φ; mv ¼ sin2θcos2φ;

my ¼ sin 2θ cosφ; mz ¼ sin2θ sin 2φ: ð4:9Þ

The Au component is defined by the gauge condition
∂A ¼ 0, which is equivalent to bμmμ ¼ 0 and yields

bu ¼
myby − 2mubv

2mv
: ð4:10Þ

One can use (4.6) to calculate electric, E⃗H, and magnetic,
H⃗H, fields created by the null string,

E⃗H ¼ ∂⃗AH0 − ∂0A⃗H; H⃗H ¼ ½∂⃗ × A⃗H�: ð4:11Þ

The total EM field above H is H⃗ ¼ H⃗H, E⃗ ¼ E⃗C þ E⃗H,
where E⃗C is the Coulomb field of the charge in the absence
of the string.
As is known [29], a point charge, which is at rest near a

massive straight string, experiences a self-force acting in
the direction away from the string, F ∼ Gμe2=r2, where μ is
the tension of the string and r is the distance between the
charge and the string. One of the analogous effects is a self-
force of the charge in the presence of the null string. The
self-force is determined by the electric field induced by the
string, F⃗ðt; xeÞ ¼ eE⃗Hðt; xeÞ. This force at short times is
F ∼ ωe2=a2 ∼GEe2=a2, which is analogous to the self-
force created by a massive string. At large times t ≫ a the
self-force vanishes.
At large times numerical simulations for the potential

AH;0, and corresponding electric and magnetic fields are
shown on Figs. 2 and 3, respectively. We take coordinates
in (4.6) as x0 ¼ t, xi ¼ rni, where ni is a unit vector, and
study potential and fields as functions of arguments r=t and
a=t, at different fixed t. The component EH

y behaves
similarly to EH

x . Components EH
z , HH

x , HH
y are negligibly

small. As follows from these results, perturbation of the EM
field induced by the null string behaves as an EM pulse
which moves away from the charge in different directions.
The width of the pulse is determined by the impact

FIG. 2. The vector potential AH;0 for t=a ¼ 10, 50, 100, 200
(from bottom to top) is plotted as a function of r=t. The largest
amplitude of a pulse corresponds to t=a ¼ 10 (dashed curve).
Here ω ¼ 1, a ¼ 1, and e ¼ 4π. The observer coordinates are
ðx ¼ r cos π=6; y ¼ r sin π=6; z ¼ 0Þ. The string horizon is
at r=t ¼ 1.154.
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parameter a. Such pulses can be specific experimental
signatures of null strings moving near charged objects.
The energy of the EM field inside the sphere of the radius

R with the center at the point xi ¼ 0 is

EðR; tÞ ¼ −
Z
r<R

d3xT0
0; ð4:12Þ

where Tμ
ν is the stress-energy tensor of the EM field,

Tμ
ν ¼ −FμαFνα þ δμν

1

4
FαβFαβ: ð4:13Þ

The total energy density of EM field, T00, as measured in
the frame of reference where the charge is at rest, is shown
on Fig. 4.

FIG. 3. The dimensionless functions t2EH
x and t2HH

z are plotted for t=a ¼ 10 (dashed), 50,100,200. The observer’s coordinates are
ðx ¼ r cos π=6; y ¼ r sin π=6; z ¼ 0Þ, ω ¼ 1, a ¼ 1, and e ¼ 4π.

FIG. 4. The electromagnetic energy density of the system “chargeþ null string” is shown in logarithmic scale at t ¼ 1, 10, 100. The
energy density is computed in the plane z ¼ 0, the string moves from left to right, ω ¼ 1, a ¼ 1, e ¼ 1. The string horizon is the right
vertical sides of figures.

FIG. 5. The Mollweide projection of the EM energy flow for t=a ¼ 100 and R=a ¼ 99.6 (left), 99.8 (right). Here ω ¼ 1, a ¼ 1, e ¼ 1.
The equator corresponds to z ¼ 0 plane. The string position is the central vertical line in the projection plane.
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The conservation law implies that

∂tEðR; tÞ ¼
Z

dΩR2Sðt; R;ΩÞ; ð4:14Þ

Sðt; R;ΩÞ ¼ Tr
0ðt; R;ΩÞ ¼ −F0iFri: ð4:15Þ

Numerical results for the distribution of the energy flow
Sðt; R;ΩÞ at large times t ∼ r and r ≫ a are presented
on Fig. 5. The simulation shows that the maximal pulse
follows the string.
The maximum of the pulse is located on the light cone

r ¼ t, where r is approximately the distance to the charge.
The reason is that the denominator in the integral in (4.6)
has a minimum on the surface xμmμ ¼ 0 which is a light
cone with a future directed null normal vector m.

V. FIELDS ON GRAVITATIONAL SHOCK
WAVE BACKGROUNDS

The metric of space-time of a straight null string which is
stretched along the z axis and moves along the x axis is
known to be of the following form:

ds2 ¼ −dvdu − ωjyjδðuÞdu2 þ dy2 þ dz2; ð5:1Þ

where ω is defined by (2.4). This string space-time is
locally flat [30], except the world sheet, where the uu
component of the Ricci tensor has a delta-function singu-
larity. The delta function in (5.1) appears as a result of the
null holonomy [13,14].
Geometry (5.1) is a particular example of gravitational

shockwave backgrounds:

ds2 ¼ −dvduþ fðyÞδðuÞdu2 þ
X
i

dy2i ; i ¼ 1;…; n:

ð5:2Þ
Shock waves (5.2) are exact solutions of the Einstein
equations sourced by a stress energy tensor localized at
u ¼ 0 and having the only nonvanishing uu component.
Another example of (5.2) is the Aichelburg-Sexl solution
corresponding to a gravitational field generated by a
massless particle.
As has been suggested by Penrose [31], to deal with (5.2)

one should cut R1;n along the hypersurface u ¼ 0 into two
copies, shift (supertranslate) the v coordinate of the upper
copy (u > 0) to v − fðyÞ and glue the copies again. The
shift of the v coordinate can be also determined by working
with a delta-function-like potential in wave equations [32].
This potential is generated by the uu component of (5.2).
In the case of null strings the Penrose prescription

implies that fðyÞ ¼ −ωjyj. By following Sec. II A, con-
sider a coordinate chart where the cut goes over the entire
surface u ¼ 0 and choose the Penrose coordinate trans-
formations:

v ¼ v̄þ ωjyj; u ¼ 0: ð5:3Þ

According to (2.2), on the left cut the coordinates are null
rotated by the “angle” ω=2, while on the right with −ω=2.
Since the relative null rotation on the right and left cuts is
by angle ω, condition (5.3) is equivalent to (2.7) or (2.8).
Field theory near shock waves is an interesting research

subject. Previous results include calculations of the S
matrix for scattering scalar waves on shock waves created
by massless particles [33,34] and on generic gravitational
shock waves (5.2), see [32,35]. In the past decade, the
interest to shock waves has been related to black hole
formation in high energy particle collisions.
Our approach can be used to describe solutions of

hyperbolic PDE wave equations on gravitational shock
wave backgrounds. It is convenient to write the Penrose
transition condition for coordinates as

xμ ¼ ðx̄μ − ζμðx̄ÞÞju¼0; ζμ ¼ δμvfðyÞ: ð5:4Þ

Suppose jfðyÞj ≪ 1. Then the transition condition for a
field ϕ, which generalizes (2.13), is

ϕ̂ðxÞ ¼ ðϕðxÞ þ LζϕðxÞÞju¼0; ð5:5Þ

where ϕðxÞ is the value of the field in the absence of
the shock wave, and Lζϕ is the Lie derivative of the field
generated by the vector field in (5.4). Solutions to field
equations are determined by a Cauchy problem with
conditions (5.5) at u ¼ 0 and can be constructed in the
same way as for EM fields in the presence of a null string.

VI. SUMMARY AND PERSPECTIVES

In this work we suggested a method to describe free
classical fields on a gravitational background of a straight
null string and, more generally, on shock wave back-
grounds. Applications of the method have been focused
on scalar and electromagnetic fields.
We described two new physical effects: scattering of

plane electromagnetic waves by null strings and generation
of EM fields by null strings passing by near point charges.
Both effects can be used in astrophysical observations to
search for null cosmic strings.
The characteristic-initial-value-problem method, which

allows one to find corrections to classical fields driven by
the gravity (holonomy) of null cosmic string space-time, as
well as demonstrating the vitality of this method in the case
of electrodynamics are the two key results of this paper.
There are several avenues where the method can be

applied. By proceeding with EM phenomena it is interest-
ing to study effects induced by null cosmic strings near
massive objects [36] which possess strong EM fields, such
as black holes and neutron stars.
One can extend the results of Sec. IV to linearized

Einstein equations and study gravitational perturbations
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generated by null cosmic strings moving near massive
bodies. Like in the case of EM fields we expect pulses of
gravitational radiation and gravitational self-force effects
generated by the strings.
It should be pointed out that the suggested method

allows one to introduce different Green’s functions on null
string space-times, and, therefore, to pave a way to
quantum field effects related to null strings.
We are planning to return to some of these topics in

forthcoming works.
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APPENDIX A: THE D FUNCTION, SOLUTION
FOR SCATTERED SCALAR WAVE

We derive theD function for the massless field,m ¼ 0 in
(2.23), by using the following representation:

Dðu;xÞ ¼ 1

ð2πÞ3
Z

d3p eip·x; ðA1Þ

where p · x ¼ pμxμ ¼ puuþ pvvþ pyyþ pzz, d3p ¼
dpvdpydpz,

pu ¼
p2
y þ p2

z

4pv
: ðA2Þ

It is convenient to slightly shift the integration contour over
pv in (A1) to the lower part of the complex pv plane to
ensure convergence of the integrals over py and pz. A
simple formula,

DðxÞ ¼ 1

π

∂

∂v
δðx2Þ; ðA3Þ

where x2 ¼ xμxμ ¼ −uvþ y2 þ z2, can be easily derived
when one first integrates over py, pz and then over pv.
It is instructive to check that (A3) satisfies (2.23). A

direct calculation yields

□DðxÞ ¼ 4

πu
ð3δ00ðx2Þ þ x2δ000ðx2ÞÞ: ðA4Þ

If fðrÞ is a test function on the line,

Z
dr fðrÞð3δ00ðrÞ þ rδ000ðrÞÞ ¼ −lim

r→0
ðrf000ðrÞÞ: ðA5Þ

Therefore the right-hand side of (A4) vanishes for functions
which are analytical at x2 ¼ 0. Define now the functional

F½u; χ� ¼
Z

d3xDðu;xÞχðxÞ ðA6Þ

acting, say, on a L2 space of test functions χðxÞ. We need to
prove that F½0; χ� ¼ χð0Þ. By virtue of (A3),

F½u; χ� ¼ −
1

π

Z
d3xδðx2Þ∂vχðxÞ: ðA7Þ

If ρ, φ are polar coordinates in the z, y plane,

F½u; χ� ¼ −
1

π

Z
dvρdρdφ δðρ2 − uvÞ∂vχðv; ρ;φÞ

¼ −
1

2π

Z
∞

0

dv
Z

2π

0

dφ ∂vχðv;
ffiffiffiffiffiffi
uv

p
;φÞ: ðA8Þ

Since d
dvχðv;

ffiffiffiffiffiffi
uv

p
;φÞ¼∂vχðv;

ffiffiffiffiffiffi
uv

p
;φÞþ1

2

ffiffi
u
v

p
∂ρχðv;

ffiffiffiffiffiffi
uv

p
;φÞ,

F½u; χ� ¼ χð0Þ þ
ffiffiffi
u

p
4π

Z
∞

0

dvffiffiffi
v

p
Z

2π

0

dφ ∂ρχðv;
ffiffiffiffiffiffi
uv

p
;φÞ:

ðA9Þ

The last term in the right-hand side of (A9) vanishes as
u → 0, if χ is analytical at ρ ¼ 0.
We now present a derivation of basic formulas (3.11) and

(3.12) for scattering by the null string of a scalar wave. The
ϕ� parts of the scattered wave (3.8) are defined by (2.22).
One gets with the help of (A1),

ϕ�ðu;xÞ ¼
1

ð2πÞ3
Z

d3peipx exp

�
i
p2
y þ p2

z

4pv
u

�

×
Z

d3x0 e−ipx0 ϕ̂�ðx0Þθð�y0Þ; ðA10Þ

where px ¼ pvvþ pyyþ pzz and

ϕ̂�ðxÞ ¼ eik�·xjH� ; kμþ ¼ k̄μ; kμ− ¼ Mμ
νðωÞk̄ν: ðA11Þ

To simplify notations we put k̄μ ¼ kμ in what follows. One
can perform integration in (A11) first over x0, then over pz
and pv and get

ϕ�ðu;xÞ ¼ �I�ðk; xÞ exp i
�
kvvþ kzzþ

k2z
4kv

u −
kv
u
y2
�
;

ðA12Þ

I�ðk; xÞ ¼
1

2πi

Z
∞

−∞

dpei
p2

4ukv

p − ðf� � iϵÞ ; ðA13Þ

where p ¼ upy, and f� ¼ fðk�; xÞ are defined in (3.9).
Factors I� appear as a result of integration over y.
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It is convenient to rewrite (A13) by changing the contour
in the complex p plane. Since u > 0, the integration
contour over p can be rotated by the angle π=4 either
counterclockwise, if kv > 0, or clockwise, if kv < 0. This
yields

I�ðk; xÞ ¼ �½θðkvÞθð�f�Þ þ θð−kvÞθð∓ f�Þ�ei
f�
4kvu

þ θðkvÞ
2πi

Z
∞

−∞

dt

t − e−iπ=4f�
exp

�
−

t2

4kvu

�

þ θð−kvÞ
2πi

Z
∞

−∞

dt

t − eiπ=4f�
exp

�
t2

4kvu

�
: ðA14Þ

The first two terms in (A14) appear when the rotation of the
contour meets poles. Equations (3.11)–(3.13) follow from
(A14) if one replaces t in the integrals with f�t and takes
into account that ku ¼ ðk2y þ k2zÞ=4kv.

APPENDIX B: HOMOGENEOUS SOLUTION FOR
POINT ELECTRIC CHARGE

Here we present computations for Sec. IV. Define

fðv; y; zÞ ¼ θð−yÞ e
4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=4þ ðy − aÞ2 þ z2

p : ðB1Þ

By using (2.3), (4.5) the Cauchy data (4.4) can be written as

aH;vðxÞ ¼ −
1

2
ðfðv − 2ωy; y; zÞ − fðv; y; zÞÞ; ðB2Þ

aH;yðxÞ ¼ ωfðv − 2ωy; y; zÞ; aH;zðxÞ ¼ 0: ðB3Þ

Let Φωðu;xÞ be a solution at u > 0 of the following
problem:

□Φωðu;xÞ ¼ 0; Φωð0;xÞ ¼ fðv − 2ωy; y; zÞ: ðB4Þ

Then the homogeneous part of the nonzero components of
the vector potential is

AH;vðxÞ ¼ −
1

2
ðΦωðxÞ −Φ0ðxÞÞ; ðB5Þ

AH;yðxÞ ¼ ωΦωðxÞ: ðB6Þ

The solution to (B4) can be written as

ΦωðxÞ ¼
1

ð2πÞ3=2
Z

d3k eik·xf̃ωðkÞ; ðB7Þ

f̃ωðkÞ ¼
1

ð2πÞ3=2
Z

d3x e−ikxfðv − 2ωy; y; zÞ; ðB8Þ

where d3x ¼ dvdydz, and we use the same notations as in
Appendix A. A straightforward computation yields

f̃ωðkÞ

¼ e
ð2πÞ3

e−a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kvÞ2þk2z

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kvÞ2 þ k2z

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kvÞ2 þ k2z

p
− iðky þ 2ωkvÞÞ

:

ðB9Þ

It is convenient to introduce in (B7) spherical coordi-
nates in the momentum space, 2kv ¼ k sin θ cosφ, kz ¼
k sin θ sinφ, ky ¼ k cos θ. By taking into account (B9), the
integration over k in (B7) can be performed,

ΦωðxÞ ¼ −
e
8π3

Z
2π

0

dφ
Z

π

0

sin θdθ
cosφ
gðΩ; wÞ

1

xμmμ þ iaε
;

ðB10Þ

see notations (4.8) and (4.9). Equations (B5), (B6), and
(B10) imply (4.6) and (4.7).
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