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We study the collective transitions of a pair of static atoms near a Schwarzschild black hole. The two
atoms are assumed to be placed along the radial direction of the black hole and be coupled with fluctuating
massless scalar fields in the Hartle-Hawking and Unruh vacua. When the two-atom system is prepared in
the symmetric or antisymmetric entangled state, the average rate of change of energy of the two-atom
system is oblivious of the vacuum fluctuations and solely a result of the radiation reaction. Consequently,
the average rate, contrary to the existing results in the literature, is finite near the event horizon and is not
affected by the Hawking radiation of the black hole.
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I. INTRODUCTION

Spontaneous emission is a phenomenon in which an
atom transitions from a higher energy state to a lower one
and emits a photon, which can be attributed to vacuum
fluctuations [1], radiation reaction [2,3], or a combination
of them [4,5]. The indeterminacy of physical interpretation
arises from different choices of ordering of the operators of
the atoms and the quantum field, and this ambiguity is
settled by Dalibard, Dupont-Roc, and Cohen-Tannoudji
(DDC) [6,7], who proposed that the symmetric operator
ordering between the variables of the atoms and the field
should be adopted in order to ensure that the effective
Hamiltonians originating from vacuum fluctuations and
radiation reaction are separately Hermitian. Then, the
effects of vacuum fluctuations and radiation reaction have
independent physical meanings. Ever since, the DDC
approach has been widely used to study various phenomena
concerning atom-field interaction, such as the radiative
properties of atoms near a conducting plane [8] and the
energy-level shifts of atoms in a cavity [9].
The radiative behaviors are richer for atoms in non-

inertial motion or in curved spacetimes. With the help of the
DDC approach, it has been shown that, for uniformly
accelerated atoms in vacuum, the balance between the
contributions of vacuum fluctuations and radiation reaction
to the rate of change of the mean atomic energy that exists
for inertial atoms is broken, so spontaneous excitation

becomes possible [10]. In accordance with equivalence
principle, spontaneous excitation is also found to be
possible for static atoms outside a Schwarzschild black
hole [11]. These studies establish an interesting relationship
between quantum effects in curved spacetimes, such as the
Unruh effect [12–14] and the Hawking radiation [15,16],
and the radiative properties of atoms. In Refs. [10,11], the
atoms are assumed to be coupled with the fluctuating
vacuum scalar field. Later, these studies have been gener-
alized to the cases of the electromagnetic field [17,18], the
Dirac field [19], and as well as the gravitational field [20].
Recently, there has been growing interest in the interplay

between quantum entanglement and the radiative properties
of a multiatom system. On the one hand, the dynamics of
quantum entanglement of the atom system is crucially
dependent on the radiative properties of the atoms [21]. For
example, a pair of initially entangled atoms may get
completely disentangled within a finite time due to sponta-
neous emission, known as entanglement sudden death [22].
On the other hand, the radiative properties of entangled
atoms are also significantly different from those of sepa-
rable ones [23–25]. Therefore, a number of recent studies
have been focusing on the radiative properties of the atoms
due to the interplay between quantum entanglement and the
quantum effects in noninertial frames and curved space-
times [26–30]. In particular, in Ref. [27], based on a
generalization of the DDC formalism [6,7], the rate of
variation of the atomic energy of a pair of entangled atoms
at fixed positions outside a Schwarzschild black hole has
been investigated. It has been argued that, as the atoms
approach the event horizon of the black hole, the average
rate of variation of the atomic energy grows rapidly due to
the large proper acceleration of the atoms, and the Hawking
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radiation plays a significant role in the collective transitions
of two entangled atoms. However, as has been pointed out
in Ref. [30], the general expression for the contribution of
vacuum fluctuations derived in Ref. [27] is incorrect, and so
the total rate of change of the energy of the two-atom
system obtained there is questionable. Therefore, it is
unclear whether the conclusions in Ref. [27] are still valid.
In this paper, we reinvestigate the collective transitions of

a pair of static atoms outside a Schwarzschild black hole.
As we will show in detail, when the atoms are prepared in
the symmetric or antisymmetric entangled state, the aver-
age rate of change of the atomic energy comes solely from
the contribution of radiation reaction, and consequently, it
is not affected by the Hawking radiation of the black hole
and the result is finite in the vicinity of the event horizon.
This is sharply different from what has been found in
Ref. [27]. The structure of the paper is as follows. In Sec. II,
we review the basic procedures of the generalized DDC
formalism for the study of the average rate of change of the
energy of a two-atom system shown in Ref. [30]. In Sec. III,
we investigate the average rate of change of the energy of a
static two-atom system near a Schwarzschild black hole.
Since the geometry near the horizon of a Schwarzschild
black hole can be approximated with the Rindler spacetime,
we also investigate the rate of change of the energy of a
static two-atom system in the Rindler spacetime, and check
if the two situations are equivalent in Sec. IV. We
summarize our results in Sec. V.

II. THE DDC FORMALISM

We study the collective transitions of a pair of entangled
atoms near a Schwarzschild black hole. The system
consists of two identical two-level atoms A and B, which
are coupled with a fluctuating massless scalar field. The
ground and excited states of the two-level atoms are labeled
as jgi and jei respectively, and the corresponding eigene-
nergies are − ω0

2
and ω0

2
respectively. The Hamiltonian of the

two-atom system is

HS ¼ ω0RA
3 ðτÞ þ ω0RB

3 ðτÞ; ð1Þ
where the atomic operator R3 takes the form

R3 ¼
1

2
ðjeihej − jgihgjÞ: ð2Þ

The Hamiltonian of the scalar field is,

HFðτÞ ¼
Z

d3kωka
†
kak

dt
dτ

; ð3Þ

where t and τ represent the coordinate time and the proper
time respectively, and ak and a†k are the creation and
annihilation operators of the field mode k respectively. The
Hamiltonian describing the atom-field interaction is taken
in analogy to the electric dipole interaction as [10],

HIðτÞ ¼ λRA
2 ðτÞϕðxAðτÞÞ þ λRB

2 ðτÞϕðxBðτÞÞ; ð4Þ

where

ϕðxÞ ¼ 1

ð2πÞ3=2
Z

d3k
1ffiffiffiffiffiffiffiffi
2ωk

p ½akðtÞeik·x þ a†kðtÞe−ik·x� ð5Þ

is the operator of the massless scalar field, and R2 ¼
i
2
ðR− − RþÞ, with Rþ ¼ jgihej and R− ¼ jeihgj being the

raising and lowering operators of the atoms respectively.
In the following, we investigate the collective transitions

of two entangled atoms near a Schwarzschild black hole
following Ref. [30], which is a generalization of the
original DDC formalism [6,7] to the case of two atoms.
In this approach, the contributions from vacuum fluctua-
tions and radiation reaction to the collective transition rates
can be separately identified. For atom A, the average rate of
change of the atomic energy due to vacuum fluctuations
and radiation reaction can be obtained as [30],

�
dHAðτÞ

dτ

�
n;vf

¼ 2iμ2
Z

τ

τ0

dτ0CFðxAðτÞ;xAðτ0ÞÞ
d
dτ

χAnðτ;τ0Þ;

ð6Þ
�
dHAðτÞ

dτ

�
n;rr

¼ 2iμ2
Z

τ

τ0

dτ0χFðxAðτÞ;xAðτ0ÞÞ
d
dτ

CAA
n ðτ;τ0Þ

þ 2iμ2
Z

τ

τ0

dτ0χFðxAðτÞ;xBðτ0ÞÞ

×
d
dτ

CAB
n ðτ;τ0Þ: ð7Þ

Here,

χξnðτ; τ0Þ ¼ 1

2
hψnj½Rξ

2ðτÞ; Rξ
2ðτ0Þ�jψni; ð8Þ

Cξξ0
n ðτ; τ0Þ ¼ 1

2
hψnjfRξ

2ðτÞ; Rξ0
2 ðτ0Þgjψni; ð9Þ

are the statistical functions of the atoms, and

χFðxξðτÞ; xξ0 ðτ0ÞÞ ¼
1

2
h0j½ϕðxξðτÞÞ;ϕðxξ0 ðτ0ÞÞ�j0i; ð10Þ

CFðxξðτÞ; xξ0 ðτ0ÞÞ ¼
1

2
h0jfϕðxξðτÞÞ;ϕðxξ0 ðτ0ÞÞgj0i; ð11Þ

are the statistical functions of the quantum field, where
ξ; ξ0 ¼ A, B. Exchanging the labels A and B in Eqs. (6) and
(7), one obtains the average rate of change of energy for
atom B. Summing the contributions from atoms A and B,
the average rate of change of energy of the two-atom
system due to vacuum fluctuations and radiation reaction
can be respectively expressed as
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�
dHSðτÞ
dτ

�
n;vf

¼
X
ξ¼A;B

2iμ2
Z

τ

τ0

dτ0CFðxξðτÞ; xξðτ0ÞÞ

×
d
dτ

χξnðτ; τ0Þ; ð12Þ
�
dHSðτÞ
dτ

�
n;rr

¼
X

ξ;ξ0¼A;B

2iμ2
Z

τ

τ0

dτ0χFðxξðτÞ; xξ0 ðτ0ÞÞ

×
d
dτ

Cξξ0
n ðτ; τ0Þ: ð13Þ

Here let us note that the formula for the contribution of
vacuum fluctuations Eq. (12) is composed of two terms
depending on atoms A and B, respectively, which is
different from the corresponding formula [i.e., Eq. (9)]
in Ref. [27] containing four terms, with two redundant
cross terms depending on both of the two atoms. These
redundant cross terms originate from the erroneous expres-
sions of the source parts of the atomic dynamical variables.
In the DDC formalism [6,7], dynamical variables are
divided into two parts, i.e., the free part that exists even
when the atoms and the quantum field are decoupled,
and the source part which is induced by the interaction
between the atoms and the quantum field. As shown in
Eqs. (15)–(16) in Ref. [30], the source part of the dynamical
variables of one of the atoms is independent of the other
atom. However, in Eq. (15) in Ref. [26], a precursor work of
Ref. [27], the source part of the dynamical variable of
one of the atoms is related to both atoms. This leads to
the erroneous expression of the contribution of vacuum
fluctuations.
In the present paper, we assume that the two-atom

system is prepared in the symmetric or antisymmetric
entangled state jψ�i ¼ 1ffiffi

2
p ðjgei � jegiÞ. Then, direct cal-

culations show that χAðτ; τ0Þ ¼ χBðτ; τ0Þ ¼ 0, and

Cξξ0 ðτ; τ0Þ ¼
� 1

8
ðeiω0ðτ−τ0Þ þ e−iω0ðτ−τ0ÞÞ; ξ ¼ ξ0;

� 1
8
ðeiω0ðτ−τ0Þ þ e−iω0ðτ−τ0ÞÞ; ξ ≠ ξ0;

ð14Þ

where � refer to the cases of the symmetric state and the
antisymmetric state respectively. Therefore, for a two-atom
system prepared in the symmetric or antisymmetric
entangled state, the average rate of change of the atomic
energy comes solely from the contribution of radiation
reaction [30], and the result can be rewritten as,

�
dHSðτÞ
dτ

�
¼

X
ξ;ξ0¼A;B

�
dHSðτÞ
dτ

�
ξξ0

; ð15Þ

where

�
dHSðτÞ
dτ

�
ξξ0

¼ 2iμ2
Z

τ

τ0

dτ0χFðxξðτÞ; xξ0 ðτ0ÞÞ
d
dτ

Cξξ0
n ðτ; τ0Þ:

ð16Þ

III. RATE OF CHANGE OF ENERGY OF A TWO-
ATOM SYSTEM OUTSIDE A SCHWARZSCHILD

BLACK HOLE

The line element of the Schwarzschild spacetime is

ds2¼
�
1−

2M
r

�
dt2−

dr2

1− 2M
r

− r2ðdθ2þ sin2θdφ2Þ; ð17Þ

where M is the mass of the Schwarzschild black hole. We
assume that the two atoms are static and are aligned along
the radial direction of the Schwarzschild black hole. So, the
trajectories of the two atoms can be described as,

tA ¼ t; rA¼ rþL=2; θA ¼ θ; φA ¼φ; ð18Þ

tB ¼ t; rB¼ r−L=2; θB ¼ θ; φB¼φ; ð19Þ

where L ¼ rA − rB is the coordinate distance between the
two atoms, and r ¼ ðrA þ rBÞ=2 is the average distance of
the two atoms to the center of the black hole. Note that
r − 2M > L=2 should be satisfied so as to ensure that the
closer atom is outside the event horizon.As the two atoms are
located at different radial positions, their proper times are
different with τA¼tð1−2M=rAÞ1=2 and τB¼tð1−2M=rBÞ1=2
respectively. Here, for simplicity, we assume that the
interatomic separation L is extremely small such that
L ≪ 2ðr − 2MÞ. Then, τA ≈ τB ≈ tð1 − 2M=rÞ1=2.
In the exterior region of the Schwarzschild black hole, a

complete set of normalized field modes reads [31],

u⃗ωlmðxÞ ¼ ð4πωÞ−1=2e−iωtR⃗ωlðrÞYlmðθ;φÞ; ð20Þ

u⃖ωlmðxÞ ¼ ð4πωÞ−1=2e−iωtR⃖ωlðrÞYlmðθ;φÞ; ð21Þ

in which Ylmðθ;φÞ is the spherical harmonic function, and
R⃗ωlðrÞ and R⃖ωlðrÞ are the radial functions. Here u⃗ denotes
the outgoing field mode emerging from the event horizon,
and u⃖ the ingoing field mode coming in from infinity.
In the Schwarzschild spacetime, three different vacuum

states, i.e., the Boulware [32], Unruh [14] and Hartle-
Hawking [33] vacua, can be defined, each corresponding to
a different choice of time coordinate. Let us note that, the
Boulware vacuum corresponds to our familiar concept of a
vacuum state of a massive spherical body at large radii. The
Unruh vacuum is supposed to be the vacuum state best
approximating the state following the gravitational collapse
of a massive body to a black hole, since it corresponds to an
outgoing flux of blackbody radiation at the Hawking
temperature into empty space. The Hartle-Hawking vac-
uum, however, describes a black hole in equilibrium with a
sea of thermal radiation. In this paper, we are interested in
the scenario in which the two-atom system is placed outside
a Schwarzschild black hole with Hawking radiation, so we
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focus on the cases of the Hartle-Hawking vacuum and the
Unruh vacuum in the following.

A. The Hartle-Hawking vacuum

Let us begin with the case of the Hartle-Hawking
vacuum. The Wightman function of the massless scalar
field in the Hartle-Hawking vacuum is [34],

Gþ
HðxAðτÞ; xBðτ0ÞÞ ¼

1

16π2
X
l

ð2lþ 1Þ
Z

∞

−∞

dω
ω

×

�
e−iωðt−t0Þ

R⃗ωlðrAÞR⃗�
ωlðrBÞ

1 − e−ω=TH

þ eiωðt−t0Þ
R⃖ωlðrAÞR⃖�

ωlðrBÞ
eω=TH − 1

	
: ð22Þ

Here TH ¼ κ=2π is the Hawking temperature, where
κ ¼ 1=4M is the surface gravity of the black hole. Note
that the radial functions satisfy R⃗−ωlðrÞ ¼ R⃗�

ωlðrÞ, and
R⃖−ωlðrÞ ¼ R⃖�

ωlðrÞ, so the statistical function of the scalar
field can be further simplified as,

χFHðxAðτÞ; xBðτ0ÞÞ ¼
1

32π2
X
l

ð2lþ 1Þ
Z

∞

0

dω
ω

× ½e−iωðtA−tBÞðR⃗ωlðrAÞR⃗�
ωlðrBÞ

þ R⃖ωlðrAÞR⃖�
ωlðrBÞÞ

− eiωðtA−tBÞðR⃗ωlðrBÞR⃗�
ωlðrAÞ

þ R⃖ωlðrBÞR⃖�
ωlðrAÞÞ�: ð23Þ

That is, although the Wightman function in the Hartle-
Hawking vacuum Gþ

H is dependent on the Hawking
temperature TH, the antisymmetric correlation function
χFH is not.
Now, we calculate the average rate of change of energy

Eq. (15). We begin with hdHSðτÞ
dτ iAB. Taking Eqs. (14) and

(23) into Eq. (16), we have

�
dHSðτÞ
dτ

�
AB

¼∓ iμ2ω0

128π2
X
l

ð2lþ 1Þ

×
Z

∞

−∞

dω
ω

�
1

ω0þ ωffiffiffiffiffi
g00

p − iε
þ 1

ω0 − ωffiffiffiffiffi
g00

p þ iε

�

× ðR⃗ωlðrAÞR⃗�
ωlðrBÞþ R⃖ωlðrAÞR⃖�

ωlðrBÞÞ:
ð24Þ

So far, the result is expressed as the sum of the radial
functions R⃗ωlðrÞ and R⃖ωlðrÞ, whose exact forms at the
position r is unknown. However, they take the following
asymptotic forms near the horizon and at infinity [31],

R⃗ωlðrÞ ∼
�
r−1eiωr

� þ A⃗lðωÞr−1e−iωr� ; r → 2M;

BlðωÞr−1eiωr� ; r → ∞;
ð25Þ

R⃖ωlðrÞ ∼
�
BlðωÞr−1e−iωr� ; r → 2M;

r−1e−iωr
� þ A⃖lðωÞr−1eiωr� ; r → ∞;

ð26Þ

in which r� ¼ rþ 2M ln ð r
2M − 1Þ. Here we are interested

in the case near the event horizon, i.e., r → 2M. In this
region, the sum of the radial functions takes the following
forms,

X
l

ð2lþ 1ÞR⃗ωlðrAÞR⃗�
ωlðrBÞ ∼ −

2iω
L

ðf4iMω − f−4iMωÞ;

ð27Þ

and

X
l

ð2lþ 1ÞR⃖ωlðrAÞR⃖�
ωlðrBÞ ∼

27ω2

4
e−

iωL
g00 ; ð28Þ

where f ≡ fðr; LÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2M

r þL
2r

pffiffiffiffiffiffiffiffiffiffiffiffi
1−2M

r −
L
2r

p . The derivation of Eq. (27)

is shown in the Appendix, and the geometrical optics
approximation [31]

Blðω ffiffiffiffiffiffi
g00

p Þ ∼ θ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27Mω

ffiffiffiffiffiffi
g00

pq
− l

�
; ð29Þ

has been used in the derivation of Eq. (28).
Plugging Eqs. (27) and (28) into Eq. (24), one obtains

�
dHSðτÞ
dτ

�
AB

¼ ∓ μ2ω0

ffiffiffiffiffiffi
g00

p
16πL

× sin

�
2Mω0

ffiffiffiffiffiffi
g00

p
ln
1 − 2M

r þ L
2r

1 − 2M
r − L

2r

�
: ð30Þ

Repeating the procedures above, we obtain hdHSðτÞ
dτ iBA ¼

hdHSðτÞ
dτ iAB, and

�
dHSðτÞ
dτ

�
AA

¼ −
μ2ω2

0M
8πrA

;

�
dHSðτÞ
dτ

�
BB

¼ −
μ2ω2

0M
8πrB

:

ð31Þ

Thus, for a two-atom system near a Schwarzschild black
hole ðrA; rB → 2MÞ, the total average rate of change of
energy is,

�
dHSðτÞ
dτ

�
¼ −

μ2ω2
0

8π
∓ μ2ω0

8πL0

sin

�
ω0

2a
ln
1þ aL0

1 − aL0

�
: ð32Þ

Here L0 ¼ L=
ffiffiffiffiffiffi
g00

p
is the proper distance between the two

atoms, and a ¼ κ=
ffiffiffiffiffiffi
g00

p
is the proper acceleration of a static
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observer outside the black hole. The first term in Eq. (32) is
the same as the corresponding term in the case of two
inertial atoms in the Minkowski vacuum (See Eq. (44) in
Ref. [30]). The second term is dependent on the proper
interatomic separation L0 and the proper acceleration a.
The opposite signs of the second term reflect the interfer-
ence effect of the radiative fields of the two atoms in the
symmetric and antisymmetric entangled states, respec-
tively. In the limit L0 → 0, the average rate of change of
the atomic energy is twice that of a single excited atom
when the two-atom system is in the symmetric state, while
it vanishes when the two-atom system is in the antisym-
metric state. This is the well-known phenomena of super-
radiance and subradiance [35].

B. The Unruh vacuum

We now move on to the case of the Unruh vacuum. From
the Wightman function of the massless scalar field in the
Unruh vacuum [34],

Gþ
UðxAðτÞ; xBðτ0ÞÞ

¼ 1

16π2
X
l

ð2lþ 1Þ
Z

∞

−∞

dω
ω

e−iωðt−t0Þ

×

�
R⃗ωlðrAÞR⃗�

ωlðrBÞ
1 − e−ω=TH

þ θðωÞR⃖ωlðrAÞR⃖�
ωlðrBÞ

	
; ð33Þ

it is direct to obtain that the statistical function of the scalar
field χFUðxAðτÞ; xBðτ0ÞÞ in the Unruh vacuum takes exactly
the same form as that in the Hartle-Hawking vacuum shown
in Eq. (23), so the average rate of change of atomic energy
coincides with Eq. (32). Again, we find that the rate of
change of energy is oblivious of the Hawking radiation at
temperature TH. In fact, the same result can also be
obtained when the atoms are assume to be coupled with
a fluctuating massless scalar field in the Boulware vacuum,
which corresponds to the vacuum state of a massive
spherical body without Hawking radiation.
Now we compare our result with what has been obtained

in Ref. [27]. First, from the calculations above, it is clear
that, when the two-atom system is prepared in the sym-
metric or antisymmetric entangled state, the average rate of
change of energy comes solely from the contribution of
radiation reaction [30]. However, in Ref. [27], the general
expression for the contribution of vacuum fluctuations is
erroneous, so the total rate of change of the energy of the
two-atom system depends both on the contributions from
vacuum fluctuations and radiation reaction, and is also
incorrect. Second, as shown above, when the two-atom
system is prepared in the symmetric or antisymmetric
entangled state, the average rates of change of energy in
the cases of the Boulware, Unruh and Hartle-Hawking
vacua are the same. That is, although the two-atom system
is placed outside a black hole, the rate of change of energy
is actually the same as that in the case outside a massive

body without Hawking radiation. This is in sharp contrast
to the conclusion in Ref. [27], in which three different
results are obtained when the atoms are assumed to be in
the three different vacua, and the rate of change of atomic
energy is claimed to be significantly affected by the
Hawking radiation. Third, in the vicinity of the event
horizon, the rate of change of energy of the two-atom
system is finite instead of divergent as found in Ref. [27].
Note that the interatomic separation L is assumed to be
extremely small such that L ≪ 2ðr − 2MÞ, which implies
that aL0 ≪ 1 is satisfied here.
Actually, it can be expected that, for a two-atom system

outside a Schwarzschild black hole prepared in the sym-
metric or antisymmetric entangled state, the contribution of
vacuum fluctuations to the average rate of change of the
atomic energy is absent. From Eq. (12), we see that the
contribution of vacuum fluctuations is composed of two
terms depending on the two atoms individually. As shown
in Ref. [11], for a single two-level atom outside a
Schwarzschild black hole, the spontaneous excitation rate
for the ground state and the spontaneous deexcitation rate
for the excited state are the same when only the effects of
vacuum fluctuations are taken into account. Moreover, for
two-atom systems prepared in the symmetric/antisymmet-
ric state jψ�i ¼ 1ffiffi

2
p ðjgei � jegiÞ, the populations of the

atoms in the ground and excited states are equal. Therefore,
the contribution of vacuum fluctuations from the ground
state cancels out that from the excited state. If the two-atom
system is prepared in a more general state such that the
populations of the ground state and the excited state are not
the same, the contribution of vacuum fluctuations would
exist, and the rate of change of atomic energy would be
affected by the Hawking radiation in general.

IV. RATE OF CHANGE OF ENERGY OF A TWO-
ATOM SYSTEM IN RINDER SPACETIME

It is well known that the geometry near the horizon of a
Schwarzschild black hole can be approximated by the
Rindler spacetime. See, e.g., Ref. [36]. In this section, we
investigate the rate of change of energy of a quantum
system composed of two atoms which are static in the
Rindler spacetime, and check if the result agrees with what
has been obtained directly in the vicinity of the horizon of a
Schwarzschild black hole.
Let us begin with the geometry of the spacetime near the

horizon of a Schwarzschild black hole. After introducing a
parameter z satisfying

r − 2M ¼ z2

8M
; ð34Þ

the Schwarzschild metric Eq. (17) near the event horizon
can be written as,

ds2 ¼ ðazÞ2dτ2 − dz2 − 4M2ðdθ2 þ sin2θdφ2Þ; ð35Þ
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which is a Rindler metric with acceleration parameter
a ¼ κ=

ffiffiffiffiffiffi
g00

p
. Here, τ is the proper time. Taking

z¼ 1

a
eaξ; x¼ 2M sinθcosφ; y¼ 2M sinθ sinφ; ð36Þ

into Eq. (35), the metric takes the usual form of the Rindler
metric, i.e.,

ds2 ¼ e2aξðdτ2 − dξ2Þ − dx2 − dy2: ð37Þ

We assume that the two atoms are static, and are located at
ξA and ξB respectively. In the Rindler coordinates, the wave
equation for the scalar field takes the form [32],

�
e−2aξ

�
∂
2

∂τ2
−

∂
2

∂ξ2

�
−

∂
2

∂x2
−

∂
2

∂y2

	
ϕðxÞ ¼ 0; ð38Þ

and the positive frequency Rindler modes vω;kx;ky can be
solved as,

vω;kx;ky ¼
1

2π2
ffiffiffi
a

p sinh1=2
�
πω

a

�
Kiω=a

�
k⊥
a
eaξ

�
eikxþiky−iωτ;

ð39Þ

where k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, and KvðxÞ is the Bessel function of

imaginary argument. Then, a vacuum state of the field can
be defined, which is known as the Rindler vacuum. It is the
vacuum state perceived by a uniformly accelerated
observer, and is analogous to the Boulware vacuum in
the Schwarzschild spacetime. In this paper, we are inter-
ested in the case when the atoms are subjected to the
Hawking radiation, so we assume that the environment the
two atoms immersed in is a thermal bath of Rindler
particles at a temperature T. In the Rindler spacetime,
the Wightman function of the massless scalar field at a
finite temperature T is given by [37],

GþðxAðτÞ; xBðτ0ÞÞ

¼
Z

∞

0

dω
Z

∞

−∞
dkx

Z
∞

−∞
dky

sinhðπωa Þ
4π4a

× Kiω=a

�
k⊥
a
eaξA

�
Kiω=a

�
k⊥
a
eaξB

�

×
�

eω=T

eω=T − 1
e−iωðτ−τ0Þ þ 1

eω=T − 1
eiωðτ−τ0Þ

	
: ð40Þ

With the help of the following integral (c.f. Eq. 6.521-3 in
Ref. [38]),

Z
∞

0

xKνðaxÞKνðbxÞdx ¼ πðabÞ−νða2ν − b2νÞ
2 sinðνπÞða2 − b2Þ ; ð41Þ

the statistical functions of the scalar field can be obtained as

χFðxAðτÞ; xBðτ0ÞÞ ¼ −
a

8iπ2ðe2aξA − e2aξBÞ

×
Z

∞

0

dω
e2iωξA − e2iωξB

eiωðξAþξBÞ

× ½eiωðτ−τ0Þ − e−iωðτ−τ0Þ�: ð42Þ

Taking Eqs. (14) and (42) into Eq. (16), one obtains

�
dHSðτÞ
dτ

�
AB

¼ ∓ μ2aω0

8π

sin½ω0ðξA − ξBÞ�
e2aξA − e2aξB

: ð43Þ

Further calculations show that, hdHSðτÞ
dτ iAB ¼ hdHSðτÞ

dτ iBA, and
�
dHSðτÞ
dτ

�
AA

¼−
μ2ω2

0

16πe2aξA
;

�
dHSðτÞ
dτ

�
BB

¼−
μ2ω2

0

16πe2aξB
:

ð44Þ

Then, the total rate of change of the energy of the two-atom
system is,

�
dHSðτÞ
dτ

�
¼ −

μ2ω2
0

16π

�
1

e2aξA
þ 1

e2aξB

�

∓ μ2aω0

4π

sin½ω0ðξA − ξBÞ�
e2aξA − e2aξB

; ð45Þ

which is expressed in the Rindler coordinates ξA and ξB.
Putting Eqs. (34) and (36) into Eq. (45), and allowing for
the relations rA ¼ rþ L

2
, rB ¼ r − L

2
, and L0 ¼ L=

ffiffiffiffiffiffi
g00

p
,

the total rate of change of the energy of the two-atom
system near a Schwarzschild can be rewritten with the
proper distance between the two atoms L0, which takes
exactly the same form as Eq. (32). Again, it is shown that
the rate of change of the energy of the two-atom system
does not rely on the temperature T, which verifies our
conclusion that the result is independent of the Hawking
radiation.
Note that in accordance with the scenario that the two

atoms are placed along the radial direction of the
Schwarzschild spacetime, here we assume that the two
atoms are aligned in the same direction of the acceleration.
In a recent work [30], the average rate of change of energy
for a pair of uniformly accelerated atoms with the inter-
atomic separation perpendicular to acceleration has been
investigated. We quote the result obtained in Ref. [30] as
follows,

�
dHSðτÞ
dτ

�
¼ −

μ2ω2
0

8π
∓ μ2ω0

8πL0

sin


2ω0

a sinh−1 aL0

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
a2L2

0

q : ð46Þ
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Comparing the results Eqs. (32) and (46), it is obvious that
the average rates of change of atomic energy in the parallel
and perpendicular cases are different. This shows that the
relative direction between the interatomic separation and
the acceleration plays an important role in the collective
transitions of two entangled atoms.

V. SUMMARY

In this paper, we have investigated the average rate of
change of the atomic energy of a pair of static atoms near a
Schwarzschild black hole with the help of the DDC
formalism. We assume that the two atoms are placed along
the radial direction of the black hole and are coupled with
fluctuating massless scalar fields in the Hartle-Hawking
and Unruh vacua. Different from the result obtained in the
recent work [27], we have shown that the average rate of
change of the atomic energy for a two-atom system
prepared in the symmetric or antisymmetric entangled state
is finite and is not affected by the Hawking radiation of the
black hole, since the result comes solely from the con-
tribution of radiation reaction. In addition, we have also
verified our result by approximating the geometry in the
vicinity of the Schwarzschild black hole by the Rindler
spacetime.
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APPENDIX: CALCULATION OF THE
SUMMATION OF THE RADIAL

FUNCTIONS NEAR THE HORIZON

The appendix is devoted to the calculation of the summa-
tion of the radial functions

P
lð2lþ1ÞR⃗ωlðrAÞR⃗�

ωlðrBÞ andP
lð2lþ 1ÞR⃖ωlðrAÞR⃖�

ωlðrBÞ in statistical function of the field
Eq. (23) near the horizon. For a detailed derivation, please
refer to Appendix B in Ref. [39]. Here we summarize the
main steps in the following.
After the introductionof a newparameter ζ ¼ ð r

2M − 1Þ1=2,
the general solution of the differential equation satisfied by
the radial function can be written as

R⃗lðζÞ ¼ alKiqð2lζÞ þ blI−iqð2LζÞ; ðA1Þ

where q ¼ 4Mω, and al and bl are two coefficients to be
determined.Here,bl should be an exponential small function
of l, since the effective potential in the differential equation
the radial function satisfies tends to be infinitely large.On the
other hand, the coefficient al can be determined by compar-
ing Eq. (A1) with the approximate analytical expression
Eq. (25), and the result is

al ¼
ei

q
2l−iq

MΓðiqÞ : ðA2Þ

Then,

X
l

ð2lþ 1ÞR⃗ωlðrAÞR⃗�
ωlðrBÞ

∼
1

M2ΓðiqÞΓð−iqÞ
X
l

ð2lþ 1ÞKiqð2lζAÞKiqð2lζBÞ

¼ 2

M2ΓðiqÞΓð−iqÞ
Z

∞

0

dl lKiqð2lζAÞKiqð2lζBÞ: ðA3Þ

With the help of the integral shown in Eq. (41) and

ΓðiξÞΓð−iξÞ ¼ π

ξ sinhðπξÞ ; ðA4Þ

the equation above can be simplified as

X
l

ð2lþ 1ÞR⃗ωlðrAÞR⃗�
ωlðrBÞ ∼ −

2iω
L

ðf4iMω − f−4iMωÞ;

ðA5Þ

with

f ≡ fðr; LÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r þ L
2r

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r − L
2r

q : ðA6Þ

In the limit L → 0, Eq. (A5) becomes

X
l

ð2lþ 1ÞR⃗ωlðrÞR⃗�
ωlðrÞ ∼

8Mω2

rg00
: ðA7Þ
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