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We consider mechanical systems on T�M with possibly irregular and reducible first class constraints
linear in the momenta, which thus correspond to singular foliations onM. According to a recent result, the
latter ones have a Lie-infinity algebroid ðM; QÞ covering them, where we restrict to the case of Lie-2
algebroids. We propose to consider T�M as a potential Batalin-Fradkin-Vilkovisky (BFV) extended phase
space of the constrained system, such that the canonical lift of the nilpotent vector field Q yields
automatically a solution to the BFV master equation. We show that in this case, the BFV extension of the
Hamiltonian, providing a second corner stone of the BFV formalism, may be obstructed. We identify the
corresponding complex governing this second extension problem explicitly (the first extension problem
was circumvented by means of the lift of the Lie-2 algebroid structure). We repeatedly come back to the
example of angular momenta on T�R3: in this procedure, the standard free Hamiltonian does not have a
BFVextension—while it does so on T�ðR3nf0gÞ, with a relatively involved ghost contribution singular at
the origin.
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I. INTRODUCTION

One of the main assumptions in textbooks about
constrained systems—see, e.g., [1]—is that the constraint
functions Ga are regular on the unconstrained sym-
plectic manifold. Important existence theorems about
BRST-BV [2,3] or Batalin-Fradkin-Vilkovisky (BFV) [4,5]
extensions have then been proven in this setting only—see,
however, [6–8] for a notable exception. Physically realistic
systems often do not satisfy the regularity conditions. In
realistic situations, group actions can have fixed points and
there the corresponding constraints are not regular. And in
non-Abelian Yang-Mills gauge theories on compact spaces,
for example, the constraints become nonregular at reducible
connections. Other examples from physics where non-
regular constraints appear can be found in [9–11].
On the other hand, without irreducibility and, in particu-

lar, regularity assumptions, often the BV and BFV exten-
sions become hard mathematical problems. Let us illustrate
this statement in the finite dimensional setting: Suppose you
are given a set va of vector fields on a manifoldM satisfying

½va; vb� ¼ Cc
abvc ð1Þ

for some functions Cc
ab. Then the corresponding “BRST

differential” Q is readily written down as

Q ¼ ξava −
1

2
Ca
bcξ

bξc
∂

∂ξa
; ð2Þ

where ξa are the “ghosts,” odd coordinates on an extended
graded manifold. At first sight, a short calculation, using (1)
together with the Jacobi identity for the Lie bracket of vector
fields, seems to establish Q2 ¼ 0. However, if the vector
fields va are not linearly independent at each x ∈ M, there
exist functions taI such that

taI va ≡ 0: ð3Þ

This happens already for the standard three vector fields La

generating rotations in R3 where xaLa ≡ 0. Then the
structure functions Ca

bc entering (1) are not unique:

Ca
bc ∼ Ca

bc þ taI B
I
bc: ð4Þ

The question if, within this equivalence class, there exists a
choice of the structure functions Cc

ab such that Q as defined
in (2) squares to zero is, by the work of Vaintrob [12],
equivalent to the question if the singular foliation generated
by the vector fields va comes from a Lie algebroid covering
it. [13] And this question is, as of this day, an unsolved
mathematical problem.
In the present paper, we want to consider a Hamiltonian

constrained system defined on a cotangent bundle T�M,
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with first class [14] constraints Ga linear in the momenta
and a Hamiltonian quadratic in them. Linear constraints are
of the form

Gaðx; pÞ≡ viaðxÞpi: ð5Þ

So we can identify them with the vector fields va on M
above, since the first class property of the constraints Ga is
tantamount to precisely (1). We do not restrict to merely
regular constraints, as mostly done in [15]—otherwise one
deals with regular foliations (on M as well as on T�M)—
but we permit leaves of different dimensions a priori.
A quadratic Hamiltonian has the form

Ham ¼ 1

2
gijðxÞpipj: ð6Þ

We assume the coefficient matrix gij to be nondegenerate,
thus Ham is the standard Hamiltonian corresponding to a
metric g on M. We require the usual compatibility of the
constraints with the dynamics,

fGa;Hamg ¼ ωb
aGb ð7Þ

for some functions ωb
a on T�M. This equips the base

manifold M with the structure of a singular Riemannian
foliation [15–17].
We assume here that (3) captures all dependencies of the

vector fields and there are no dependencies between the
functions taI onM. In more mathematical terms, this means
that one has a sequence of vector bundles

0 → F⟶
t
E⟶

ρ
TM; ð8Þ

such that 0 → ΓðFÞ → ΓðEÞ → F → 0 is exact. Here F
denotes the subset of vector fields obtained as the image of
ρ, a generating set of which corresponds to the vector fields
va ¼ ρðeaÞ. Likewise, the map t gives rise to the functions
taI after the choice of local bases in ea and bI in E and F,
respectively.
And now the situation is different: Under these assump-

tions, it has been proven recently [18] that there always
exists a homological vector field Q, an extension of (2),
which describes a Lie 2-algebroid covering the singular
foliation generated by the vector fields va.
Note that while (3) yields the reducibility conditions

taI Ga ≡ 0; ð9Þ

the above does not imply automatically that there are no
further reducibilities between the constraints (5). This is
because to find all reducibilities, we need to find all
independent functions taI satisfying (9) on T�M—and not
just on M.
Consider, e.g., Ga ¼ εabcxbpc, angular momenta [19].

Then besides xaGa ≡ 0, we have the additional

dependency paGa ≡ 0. But furthermore, there are depend-
encies between these dependencies and in the end one finds
an infinite set of reducibility conditions leading to an
infinite tower of ghosts for ghosts in its BFV description.
We will illustrate the beginning of this procedure at the end
of this article and provide a complete description else-
where. In principle, having such a complete description of
the tower of dependencies between the constraints (5) on
T�M, one can construct a Koszul-Tate resolution, which
then guarantees the existence of a BFVextension also in the
singular context. However, this description can be very
cumbersome for practical purposes apparently and one may
be interested in potential shortcuts.
As such the following procedure proposes itself: Let us

return to the setting described by (8). As mentioned above,
there is a homological vector fieldQ associated naturally to
(8). If we consider its Hamiltonian lift to the cotangent
bundle of the graded space underlyingQ, we get a function
QBFV of degree one. Due to Q2 ≡ 1

2
½Q;Q� ¼ 0, this

function satisfies automatically the BFV master equation

ðQBFV;QBFVÞBFV ¼ 0: ð10Þ

Also it satisfies some other necessary requirements posed
on the BFV charge, like the correct appearance of the
constraints (5) and the redundancies (3) at the lowest orders
in the ghosts. We may thus consider regarding QBFV as the
BFV charge of our constrained system.
A price to pay is that now, in general, it is no more

guaranteed that the QBFV-cohomology describes the func-
tions on the (possibly singular) reduced phase space
correctly. There is another famous example, however,
where such a deficiency is normally disregarded: The
AKSZ (Alexandrov-Kontsevich-Schwarz-Zaboronsky) for-
malism [20–22] yields a BVextension of the Poisson sigma
model or the Chern-Simons gauge theory likewise in a
much faster way than when following the usual extension
procedure. If one compares its cohomology at degree zero
with functions on the solutions space to the Euler-Lagrange
equations modulo gauge symmetries, however, the coho-
mology one finds in the AKSZ framework is in general too
large [23].
We describe the construction of the BFV phase space

obtained in this way in more detail in the subsequent
section. However, there is—in contrast to the Lagrangian
BV formalism—one more essential ingredient of the
cohomological approach on the Hamiltonian level: One
needs an extension HBFV of the Hamiltonian (6) such that

ðQBFV;HBFVÞBFV ¼ 0: ð11Þ

Equations (10) and (11) are the two indispensable corner
stones of the BFV formalism. Under the given assumptions
underlying the shortcut for the construction of QBFV, the
existence of the extension of the Hamiltonian is in general
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not guaranteed. Its potential obstructions is the main
subject of the present article.

II. BFV PHASE SPACE AND CHARGE

Much as (2) defines a Lie algebroid on E [12], every
homological vector field Q of degree 1 on

M ≔ E½1� ⊕ F½2�; ð12Þ

which is necessarily of the form

Q ¼ ξaρia
∂

∂xi
−
�
ηItaI þ

1

2
ξbξcCa

bc

�
∂

∂ξa

þ
�
1

6
ξaξbξchIabc − ΓI

Jaη
Jξa

�
∂

∂ηI
; ð13Þ

defines a Lie 2-algebroid structure on the vector bundle
E ⊕ F. Here E and F are the vector bundles appearing
in (8) and the numbers in the brackets denote the degrees
carried by the local fiber-linear coordinates ξa and ηI

on E and F, respectively, in the graded description of
the Lie 2-algebroid.
The coefficient functions entering (13) all have some

algebraic and/or geometrical meaning: One way of viewing
them is that the terms linear in ðξ; ηÞ give rise to a complex
(8)—which in our case we require, in addition, to be exact
on the level of sections—those quadratic in them are
2-brackets, which are not tensorial but satisfy a Leibniz
rule, and the cubic one, which is tensorial, is a 3-bracket,
which, if nonzero, reflects the fact that the 2-bracket
between sections of E then does not satisfy the Jacobi
identity, giving rise to a Lie 2-algebra. For some intro-
duction to Lie 2-algebras see [24], for the more general
L∞-algebras see [25,26]. Alternatively, we may view, e.g.,
the coefficients ΓI

Ja as a local expression for an E-covariant
derivative on F. The tensor h ∈ ΓðF ⊗ Λ3E�Þ then satisfies
EDh ¼ 0, where ED denotes the corresponding exterior
covariant E-derivative.
There is a vast literature on the geometry of Lie

algebroids, see, e.g., [27–29]. For further details about
the geometry of Lie 2-algebroids see [30,31]. For a general
Lie 2-algebroid, the complex (8) is not exact (also not on
the level of sections). Under the condition of exactness of
the sequence on the level sections, thus providing a
resolution of the C∞ðMÞ-module of the vector fields
generated by va, i.e., by the image of ρ∶E → TM, the
existence of a Lie 2-algebroid structure extending a given
sequence (8) was proven in [18]. As mentioned, this is
tantamount to the existence of a vector field (13) on the
corresponding M of (12) which squares to zero.
Given these data, we now construct the BFV phase space

as the cotangent bundle T�M of (12). This extends the
classical variables ðxi; piÞ ∈ T�M by a ghost ξa (odd
and of degree one) for each of the constraints and a

ghost-for-ghosts ηI (even and of degree two) for each of
the dependencies (9). Both of the latter two ghost families
are accompanied by their momenta of opposite degrees. All
this comes together with the BFV symplectic form

ωBFV ¼ dxi ∧ dpi þ dξa ∧ dπa þ dηI ∧ dPI: ð14Þ

It is of degree zero and thus so also the graded Poisson
bracket ð·; ·ÞBFV it induces, which takes the following form:

fpi; xjg ¼ δji ; fπa; ξbg ¼ δba; fPI; ηJg ¼ δJI :

Regarding the vector field (13) as a function on the BFV
phase space T�M (by replacing the derivatives simply by
the corresponding momenta), one has

QBFV ¼ ðξaρiaÞpi −
�
ηItaI þ

1

2
ξbξcCa

bc

�
πa

þ
�
1

6
ξaξbξchIabc − ΓI

Jaη
Jξa

�
PI; ð15Þ

where we use the notation ρia ≡ via. We notice that, as
required by the standard BFV procedure, it indeed extends
ξaGa by terms such that (10) holds true.
The classical constrained system on T�M considered

here is already uniquely determined by the underlying
singular foliation. This is in contrast to the coefficient
functions entering (15): they are constrained by Q2 ¼ 0,
but, at each step of an extension, they are not unique. This
should be also reflected on the BFV level: Indeed, e.g., a
change (4) of the almost Lie bracket on E can be obtained
by lifting the degree preserving diffeomorphism

ηI ↦ ηI þ 1

2
BI
abξ

aξb ð16Þ

from M to T�M. Such a change of the structure functions
Ca
bc does not come for free: also other quantities entering

QBFV are then changed correspondingly. E.g., h receives an
additive contribution by the E-covariant exterior derivative
of B ∈ ΓðF ⊗ Λ2E�Þ, h ↦ hþE DBþ � � �, where the dots
denote terms quadratic in B (see [30]).

III. GEOMETRICAL INTERPRETATION OF HBFV

We first observe that the BFV bracket decreases the
polynomial degree pol of momenta ðpi; πa;PIÞ by one.
Since, in addition, both QBFV and Ham are homogeneous
with respect to pol, we may assume always that the
extension HBFV ¼ Hamþ � � � satisfies polðHBFVÞ ¼ 2.
Identifying momenta with vector fields, we thus may view
HBFV as a graded-symmetric 2-vector field on (12),

H ≡HBFV ∈ ΓðS2TMÞ ð17Þ
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and re-interpret the second master equation (11) as

LQH ¼ 0; ð18Þ

where Q ¼ QLie2 ∈ ΓðTMÞ. For later use, we remark that
a basis of ΓðS2TMÞ is spanned by

∂

∂ηI
∂

∂ηJ
;

∂

∂ηI
∂

∂ξa
;

∂

∂ηI
∂

∂xi
;

∂

∂ξa
∂

∂ξb
;

∂

∂ξa
∂

∂xi
;

∂

∂xi
∂

∂xj
;

ð19Þ

where a graded symmetrization is understood and the
degrees are −4, −3, −2, −2, −1, and 0, respectively. H
being of degree zero, one needs coefficient functions onM
of the respective opposite degrees when using this basis.
A graded manifold equipped with a degree 1 vector field is
called a Q-manifold [32]; if there is, in addition, (17) of
degree 0 satisfying (18), we call it an HQ-manifold.
Already an H-structure alone, that is a degree zero

tensor (17) without any compatibility conditions, contains
interesting geometrical data, at least if the coefficients of
the very last term in (19) form a nondegenerate matrix—in
which case we then call the H-structure nondegenerate. It
then defines a metric g on M (subject to no further
conditions). But this is not all: Consider the terms linear
in pi ∼ ∂i. Due to the nondegeneracy of gij, we may absorb
all such terms by completing the square with a redefinition
of the momenta pi → p∇

i , where

p∇
i ≔ pi − Γa

biξ
bπa −

�
ΓI
Jiη

J −
1

2
γIabiξ

aξb
�
PI: ð20Þ

Then the 2-tensor (17), rewritten as a function H in
C∞ðT�MÞ, takes the form

H ¼ 1

2
gijp∇

i p
∇
j þ 1

2
Σab
ð2Þπaπb þ ΣaI

ð3ÞπaPI þ
1

2
ΣIJ
ð4ÞPIPJ;

ð21Þ

where Σ··
ðkÞ are functions on M of degree k. Thus, for

example,

Σab
ð2Þ ¼

1

2
Σab
cdξ

cξd þ Σab
I ηI ð22Þ

for appropriate tensors Σab
cd and Σab

I . The coefficients in (20)
have a geometrical interpretation: Consider a coordinate
transformation ξa ↦ Ma

bðxÞξb (all other coordinates un-
changed). Lifting it to T�M so as to leave (14) invariant—
or, equivalently, considering its tangent map—yields πa ↦
ðM−1Þbaπb together with pi ↦ pi þ ðM−1ÞacMc

b;iξ
bπa (all

other momenta unchanged). Requiring (20) to remain form-
invariant under such transformations shows that Γa

b ¼
Γa
bidx

i are the local 1-forms representing a connection ∇

on E. Similarly, ΓI
J ¼ ΓI

Jidx
i corresponds to a covariant

derivative ∇ on F. γ ∈ ΓðF ⊗ Λ2E� ⊗ T�MÞ is needed,
finally, to also establish form covariance of (20) with respect
to (16); it is part of a connection in a graded sense.
An almost Q-structure (a degree one vector field Q

which does not necessarily square to zero) equips the
graded manifold (12) with the structure of a (not necessarily
exact) sequence of vector bundles as in (8) together with
2-brackets and one 3-bracket. A nondegenerate H-structure
equips it in the lowest order with a metric g on the base
and in the next order—the terms linear in the momenta pi
[see also (20)]—with a connection defined on all of (8)
(note that we can always equip TM with the canonical
Levi-Civita connection of g, moreover).
Given an almost HQ-structure, where we have both, an

almost Q-structure Q and an H as above, (18) determines
compatibility conditions. To obtain tensorial formulas for
these on the nose, it is useful to reexpress (15) in terms of
the variables (20). Then, e.g., the new coefficient of the
term quadratic in ξ is −Ca

bc þ ρibΓa
ci − ρicΓa

bi≕ ETa
bc and has

the geometric interpretation of what is called an E-torsion
ET ∈ ΓðE ⊗ Λ2E�Þ [16], generalizing the ordinary torsion
on a tangent bundle to E. The bracket of two covariant
vector fields (20) yields the curvatures of ∇, both on E and
F (as well as a contribution proportional to Dγ). To lowest
orders we find:

LQH ¼ 1

2
ξaðE∇eagÞij∂∇i ∂∇j

−
1

2
ξbξcðSabci − taI γ

I
bci − Σda

bcρ
k
dgkiÞgij∂∇j

∂

∂ξa

þ bIðtaI;jgji þ Σba
I ρibÞ∂∇i

∂

∂ξa
þ…: ð23Þ

Here ∂
∇
i is the vector field corresponding to (20) and E∇

denotes the E-covariant derivative acting on TM according
to E∇sv ¼ ½ρðsÞ; v� þ ρð∇vsÞ, where s ∈ ΓðEÞ and
v ∈ ΓðTMÞ. Σab

ð2Þ has been decomposed according to

(22), a semicolon denotes a covariant derivative, and we
introduced the abbreviation

Sabci ¼ ETa
bc;i þ ρjbR

a
cji − ρjcRa

bji: ð24Þ

The tensor S ∈ ΓðE ⊗ Λ2E� ⊗ T�MÞ measures the com-
patibility of the 2-bracket and the connection ∇ on E, see
[16]. As for Jacobi identities of the brackets in a higher Lie
algebroid, also here we do not expect (18) to ensure S to
vanish on the nose, but to instead do so up to some
appropriate boundary term only; what this means precisely
is subject of the next section.
Let us mention that the current method is efficient in

obtaining Bianchi type of identities for quantities such as S.
Q2 ¼ 0, which we have when Q comes from a Lie
2-algebroid, implies that the application of another LQ
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to (23) vanishes identically. From this one can read off, for
example, that (24) satisfies

EDS −∇ht; hiF ¼ 0: ð25Þ

Here ED denotes the E-exterior covariant derivative
associated naturally to E∇: on TM it acts as specified
above, on E according to E∇ss0 ¼ ½s; s0�E þ∇ρðs0Þs for
every s; s0 ∈ ΓðEÞ, and on elements in Λ•E� by a straight-
forward generalization of the Cartan formula for the de
Rahm differential ([16,30]). The identity (25)—specialized
to a Lie algebroid, where h ¼ 0—was of essential impor-
tance in the construction of the BV-extension [33] and the
above derivation constitutes a significant simplification of
the one provided there.

IV. COMPLEX GOVERNING THE EXTENSION

In the construction of (15), the sequence of vector
bundles (8) and its exactness on the level of sections plays
a crucial role. There is a similar sequence which governs
the extension problem (6), (7), and (11), but, despite being
constructed out of the previous one, this one is in general no
longer exact on the level of sections.
Let us denote the complex (8) by E• (so, in particular,

E0 ¼ TM, E−1 ¼ E, and E−2 ¼ F) and tensor it with itself
shifted to the right, F • ≔ E• ⊗ E•½−1�, where, by defini-
tion, Ei½−1� ¼ Ei−1. At degree zero, e.g., one has
F 0 ¼ TM ⊗ E ⊕ E ⊗ TM, where in the first term both
factors carry degree 0, while in the second one, elements in
E enter with degree −1 and those in TM with degree þ1,
again adding up to 0.
By a standard construction (see, e.g., [34]), F • is again a

complex. It is, however, not yet the sequence G• we are
interested in:

G• ≔ 0⟶
δ
S2F⟶

δ
F ⊗ E⟶

δ
F ⊗ TM

⊕ Λ2E⟶
δ
E ⊗ TM⟶

δ
S2TM; ð26Þ

where the degrees are such that G0 ¼ S2TM, G−1 ¼
E ⊗ TM, etc. Now one observes that G• ↪ F •½1� (essen-
tially it is embedded as a graded symmetrization). For
example, typical elements Φ ∈ F 0 and φ ∈ G−1 are of the
form Φ ¼ Φia

∂i ⊗ ea þ Φ̄aiea ⊗ ∂i and φ ¼ φaiea ⊗ ∂i,
respectively, and then G−1 is embedded into F 0 by the
diagonal map,Φia ≔ φai, Φ̄ai ≔ φai. The codifferential δ is
easily identified with

δ ≔ ρiapi
∂

∂πa
þ taI πa

∂

∂PI
ð27Þ

when replacing the vector fields (19), which provide a basis
for G•, by the corresponding momenta.

In general, for the cohomology of a tensor product of two
complexes there is a Künneth formula. It says that even if
the cohomology of each of the complexes is trivial, which
is the case here, there can still be a nonzero contribution
called “torsion.” Below we will provide an example that, in
general, G• is not exact, even not on the level of sections.
It is remarkable that (27) also generates the coboundary

operator of the complex (8). In fact, if all the independent
relations between the constraints Ga ¼ ρiapi on T�M are
provided by the functions taI ðxÞ (these are all such depend-
encies that depend on x only, but there could be further ones
that also depend on momenta p in principle), then the
operator (27) acting on C∞ðT�MÞ would be the Koszul-
Tate differential [1]. And in that case, it would have no
cohomology on C∞ðT�MÞ and neither so when acting on
(26), which is the restriction of ðC∞ðT�MÞ; δÞ to functions
quadratic in the momenta—such as the complex (8) can be
identified with its restriction to the subcomplex linear in the
momenta. But in general, the true Koszul-Tate complex is
much bigger, as we will illustrate by means of an example
at the end of this article.
The main point here is, however, that it is precisely the

cohomology of (26) that governs the extendability problem
HBFV ¼ Hamþ � � � satisfying (11) for QBFV as in (15).
If ΓðG•Þ is exact, the existence of the BFV extension

HBFV is guaranteed. This follows from a standard consid-
eration: ðQBFV; ·Þ ¼ δþ Xrest. At each step when adding
terms from the right to the left in (26), one finds an
expression that is already δ-closed. Now, δ having no
cohomology, one can always add a δ-exact contribution
from the next level so as to cancel it. In general, the
resulting expression for HBFV will contain all possible
terms compatible with degrees, as is also the case for (15);
together they then define an HQ-structure on (12).
The converse is certainly not true: The complex ΓðG•Þ

can have nontrivial cohomology, but the extension problem
for a particular Hamiltonian (6) may still lead to trivial
cohomology classes and thus be unobstructed.
The absence of a cohomology also leads to remarkable,

purely geometrical formulas. To illustrate this, assume that

H−1ðΓðG•Þ; δÞ ¼ 0: ð28Þ

Then for every φ ∈ ΓðG−1Þ such that δφ ¼ 0, there is some
ψ ≡ΨIibI ⊗ ∂i þ 1

2
Mabea ∧ eb ∈ ΓðG−2Þ such that

φ ¼ δψ . Concretely,

ρiaφ
aj þ ρjaφai ¼ 0 ⇒ φai ¼ taIΨIi þ ρibM

ab; ð29Þ

where MabðxÞ ¼ −MbaðxÞ. The exactness at a given
degree is preserved if one tensors a complex with a fixed
C∞ðMÞ-module; this permits adding spectator indices to
the quantities in (29).
As a first application, let us return to the initial

compatibility condition (7). It can be shown [17] that (7)
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holds true in arbitrary local patches iff there exists a
connection ∇ on E such that its induced E-connection
annihilates the metric, E∇g ¼ 0. If Γb

ai denote the con-
nection coefficients of∇, we can choose ωb

a ≔ Γb
aiðxÞgijpj.

The difference between two connections is a tensor field
and then (7) implies that this tensor is δ-closed. This
provides the following equivalence for the choice of the
connection coefficients

ωai
b ∼ ωai

b þ taIΨIi
b þ ρicMac

b ; ð30Þ

where Mac
b ¼ −Mca

b , corresponding to δ-exact contribu-
tions. If (28) holds true, these are all the ambiguities in the
choice of the connection on E such that E∇g ¼ 0.
Even more remarkable is the following decomposition

that one finds for the tensor S defined in (24). Using a
connection∇ such that E∇g ¼ 0, the geometrical quantity S
is always δ-closed and therefore, assuming (28), it can be
decomposed into some γ ∈ ΓðF ⊗ Λ2E� ⊗ T�MÞ and
Σ ∈ ΓðΛ2E ⊗ Λ2E�Þ as follows:

Sabci ¼ taI γ
I
bci þ ρjdgijΣda

bc: ð31Þ

There are, in general, no explicit expressions for these
tensors. In fact, they are even not uniquely determined: We
can change γ and Σ simultaneously by

Σab
cd ↦ Σab

cd þ taI V
Ib
cd − tbI V

Ia
cd

γIabi ↦ γIabi þ gijρ
j
cVIc

ab ð32Þ

for any V ∈ ΓðF ⊗ E ⊗ Λ2E�Þ without changing S—and
these are all such ambiguities, if also H−2

δ ðΓðGÞÞ ¼ 0.
Finally, the identity ftaI Ga;Hg yields

taI;ig
ijρkapjpk ¼ 0: ð33Þ

Thus, ta;iI ≡ taI;jg
ij satisfies the condition of (29) and, if (28)

holds true, there exist tensors Ψ̃ and M̃ such that

ta;iI ¼ taJΨ̃
Ji
I þ ρibM̃

ab
I : ð34Þ

These considerations can be considered as holding true
on the purely geometrical level, without any application to
physical models.
On the other hand, as explained above, the δ-cohomology

governs the physical extension problem here. For example,
the second line in (23) says that S needs to be δ-exact
(and, by a general feature of the procedure, also shows
implicitly that it is already δ-closed), S ¼ δðγ þ ΣÞ, where γ
and Σ are the quantities entering H, see (20)–(22). In
deriving (31) we only demanded S to be δ-exact with respect
to some tensors, but in a slight abuse of notation we denoted
them already by γ and Σ, the quantities we need to choose
for the expansion (21). We have not done so in (34),

which can be rewritten as ∇t ¼ δðΨ̃þ M̃Þ and one may
wonder where the analogue of the first term on its right
hand side is in comparison to the last line in (23),
while evidently M̃ab

I can be identified with Σab
I .

In fact, this depends on the connection on F: if one uses
a different connection than the one appearing in (20), then
their difference is a tensor, which can be identified with
Ψ̃Ji

I . So also the last line in (23) says that ∇t should be
δ-exact.

V. EXAMPLES WITH t= 0

The prototype of a singular constraint T�R ≅ R2 is
G ¼ xp. It is singular at the origin, the constraint surface
has the shape of a cross. The corresponding singular foliation
onM ¼ R is generated byv ¼ x∂x or, byputtingE ¼ R ×M
with an anchor such that ρð1Þ ¼ v. The bundle F then has
rank zero and the exact sequence is of length one only. The
corresponding BFV charge is simply QBFV ¼ ξxp.
There is no compatible nondegenerate Hamiltonian

coming from a metric g in this case, since R with a
nonregular leaf structure does not admit a singular
Riemannian foliation. However, if we start with a
Hamiltonian Ham ¼ 1

2
hðxÞp2, dropping the condition that

h ¼ 1=g, then a BFVextension exists as long as h vanishes
at least quadratically near the origin; it then takes the
form: HBFV ¼ 1

2
hðxÞp2 þ x2ð hx2Þ0ξπp.

More generally, if t ¼ 0, the anchor map ρ∶E → TM
needs to be injective on a dense open subset of M: this
follows from injectivity of the induced map from ΓðEÞ to
ΓðTMÞ when t ¼ 0 (see the exactness condition expressed
in the sentence containing (8). And if one insists on a
nondegenerate metric g satisfying (7), then t ¼ 0 implies
injectivity of the anchor map ρ∶E → TM everywhere.
This in turn implies that the foliation on M and the
constraints (5) on T�M are regular.
Regular foliations can still yield geometrically interest-

ing examples. To illustrate this, consider even E ¼ TM,
ρ ¼ id. While the BFV charge is very simple in this
case, QBFV ¼ ξipi, nontrivial geometry remains in the
BFV extension of the Hamiltonian: To satisfy the compat-
ibility (7), we need a connection ∇ on TM such that

gij;k þ Tijk þ Tjik ¼ 0; ð35Þ

where Tijk ¼ gilTl
jk; here T

l
jk denote the components of the

torsion tensor. The Levi-Civita connection satisfies this
condition evidently. The ambiguity (30) translates into the
freedom of the choice of the torsion of the connection, but
maintaining (35) instead of metricity. One then finds

HBFV ¼ 1

2
gijp∇

i p
∇
j þ 1

2
Rk

ij
lξiξjπkπl þ

1

4
Tk

ij
;lξiξjπkπl;

ð36Þ
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where Ri
jkl denote the components of the Riemann tensor.

If we choose the Levi-Civita connection for Γi
jk in

p∇
i ¼ pi þ Γj

kiξ
kπj, then (35) is satisfied identically and

the last term in (36) disappears, but one is still left with the
curvature term.
Inspection of (24) shows that the last two terms in (36)

combine into the tensor S for E ¼ TM. In [15], such a BFV
extension was provided under the assumption that S
vanishes. The extension (36) of the Hamiltonian general-
izes this result, with the interesting contributions of
curvature and torsion which combe into the geometrical
quantity S, which, for E ¼ TM, in turn can be identified
also with the curvature of a dual connection, see [16].

VI. ANGULAR MOMENTUM I: EXAMPLE
OF AN OBSTRUCTION

Let us now consider the phase space T�R3 with con-
strained angular momentum, Ga ¼ εabcxbpc or G⃗ ¼ x⃗ × p⃗.
Then one has

QBFV ¼ ξ⃗ · ðx⃗ × p⃗Þ þ 1

2
ðξ⃗ × ξ⃗Þ · π⃗ − ηx⃗ · π⃗: ð37Þ

The second term is the (cotangent lift of the) Chevalley-
Eilenberg differential of the Lie algebra soð3Þ, the first two
terms the Chevalley-Eilenberg differential for soð3Þ acting
on R3, which then corresponds to the BRST charge (2) of
the action Lie algebroid E ¼ soð3Þ ×R3. The last term
takes care of the dependency x⃗ · G⃗≡ 0 of the constraints. It
is easy to verify that the expression (37) satisfies the master
equation (10).
In this example, M ¼ R3, E ¼ R3 ×M, F ¼ R ×M,

and the maps ρ and t in (8) can be identified with the
sections ρ ¼ εabcxbea ⊗ ∂

∂xc and

t ¼ xaea ⊗ b�; ð38Þ

respectively; here ðeaÞ3a¼1 denotes a basis in E� and b� a
basis in F�. The kernel of ρ is one-dimensional outside the
origin, while it is all of Ex⃗¼0 ¼ R3 at the origin 0 ∈ M. The
map t spans the radial vectors in ker ρ for all x⃗ ≠ 0, but, for
continuity reasons, vanishes at 0. Thus, the complex (8) has
no cohomology outside the origin, but H−1

x⃗¼0
ðE; δÞ ¼ R3.

And still—again for continuity reasons (every radial vector
field has to vanish at the origin)—it is exact on the level of
sections: H•ðΓðE•Þ; δÞ ¼ 0. Correspondingly, the extension
problem for the BFV charge (37) when taking into account
(only) the x-dependent dependencies of the constraints, has
not been obstructed.
Let us now turn to the extension problem of the

Hamiltonian (6), the main subject of this paper, for the
standard metric on M ¼ R3,

Ham ¼ 1

2
p⃗ · p⃗: ð39Þ

For this purpose we first equip the bundles E and F with
their canonical flat connections (for what concernsE, this is
also motivated by the fact that (7) is satisfied with ωb

a ¼ 0).
Then one has

∇t ¼ dxa ⊗ ea ⊗ b�¼∼ ∂

∂xa
⊗ ea ⊗ b�; ð40Þ

where in the second equality we used the standard metric
of M for the identification, then yielding an element in
ΓðE ⊗ TMÞ ⊗C∞ðMÞ ΓðF�Þ. It is easy to see that δð∇tÞ ¼ 0

which is equivalent to (33): applying ρ to ea and sym-
metrizing over the two ensuing entries in TM gives zero
due to the contraction with the ε-tensor.
Now the main observation of this short section: ∇t

cannot be δ exact, i.e., it cannot be of the form (34), since
both t and ρ vanish at the origin. This shows, on the one
hand, that here

H−1ðΓðG•Þ; δÞ ≠ 0; ð41Þ

and, on the other hand, that the BFV extension of (39) is
indeed obstructed: As we learn from the last line in (23), we
need ∇t to be exact for the BFV-extension of the
Hamiltonian within the present framework.
Note also that any other choice of connections on E and

F would not help, since their contribution to ∇t vanish at
x ¼ 0 as well. In fact, the cohomology class of ∇t does not
depend on such choices.

VII. EXAMPLESWITH LIE-2 GAUGE SYMMETRY

As a technically more involved example, we truncate the
expansion for the BFVextension of the Hamiltonian (while
keeping the general form for QBFV as in (15): Putting Σ3,
Σ4, and Σab

I to zero in (21), one obtains [35]

HBFV ¼ 1

2
gijp∇

i p
∇
j þ 1

4
Σab
cdξ

cξdπ∇a π∇b ; ð42Þ

where p∇
i is given by (20) and π∇a ¼ πa − λIabξ

bPI for some
λ ∈ ΓðΛ2E� ⊗ FÞ. This extension of πa to π∇a has the effect
of making (42) covariant with respect to both, changes of
frames as well as (16), where then λ ↦ λþ B. Now we
learn from (23) that, under these assumptions, necessary
conditions for the validity of (11) are

E∇g ¼ 0; ∇t ¼ 0; S ¼ δðγ þ ΣÞ: ð43Þ

Note that the second condition implies that t needs to have
constant rank. On the other hand, the last condition in (43)
is not overly restrictive, since always δS ¼ 0.
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A priori, there are many more conditions to be satisfied
for (11) to hold, but with the following trick, one may show
that they can be all reduced to one only: For this purpose,
we first remark that within (43) we can always change the
two quantities γ and Σ—which are then to enter the
extension (42)—according to (32). Since t has a constant
rank, we can choose some C ⊂ E such that E ¼ C ⊕ tðFÞ.
One may now see that the transformations (32) can be used
to assure Σ ∈ ΓðΛ2C ⊗ Λ2E�Þ. Then the only remaining
condition is

EDλΣ ¼ 0: ð44Þ

Here EDλ is defined as ED but replacing the 2-bracket
on E by ½s; s0�λ ¼ ½s; s0� þ tðλðs; s0ÞÞ, where λ is the tensor
entering π∇a .
We finally remark that from (25) one can conclude an

equation similar to (44): One first observes that the
operators ED and (27) commute, ½ED; δ� ¼ 0. Using (25),
one then finds that δðEDðγ þ ΣÞÞ ¼ ht;∇hiF, where the
h-contribution only adds to EDγ. If H−2ðΓðG•Þ; δÞ ¼ 0

holds, moreover, one finds that EDΣ is part of a coboundary
for some Ṽ ∈ ΓðΛ3E� ⊗ E ⊗ FÞ. (44) then translates into
the condition that Ṽ needs to be a contraction of λ with Σ.

VIII. ANGULAR MOMENTUM II:
OUTSIDE OF THE SPATIAL ORIGIN

We want to illustrate the above formulas by means of the
example of the angular momentum we discussed already
before, but this time excluding the origin x⃗ ¼ 0.
On the parts of T�R3 where x⃗ ≠ 0, the dependency x⃗ ·

G⃗≡ 0 is in fact already sufficient to describe all the depend-
encies of the constraints: this is the case since, assuming x⃗ ≠ 0,
the constraint surface G⃗ ¼ x⃗ × p⃗ ≈ 0 implies p⃗ ≈ λx⃗ for some
λ ∈ R. Thus the dependency p⃗ · G⃗≡ 0 is automatically
implemented when x⃗ · G⃗≡ 0 is taken care of.
Therefore now, even if one follows the Koszul-Tate

procedure, one does not need to introduce an additional
ghost of degree two to take into account all the depend-
encies of the constraints: the BFV charge (37) is the one
that gives the correct cohomology of observables when the
x⃗-origin is excluded. This is, on the other hand, not the case,
if the last term in (37) is suppressed—as one finds it
sometimes in the literature in the treatment of mechanical
models with rotational invariance in the BRST-B(F)V
formalism.
Excluding the x⃗-origin, there are now no more obstruc-

tions to BFV-extend the classical Hamiltonian (39) to an
HBFV satisfying the second master equation (11). And, as it
turns out, it can even be put into the special form (42). As
we learn from (43), we need for this that the tensor (38) is
covariantly constant. Let us choose for this purpose the
connections on E and F by means of

∇ea ¼ −
xa
r2

dxb ⊗ eb ð45Þ

and ∇b ¼ 0, respectively. Note that the first choice
implies that the radial section xaea is covariantly constant,
∇ðxaeaÞ ¼ 0. Together these choices indeed yield ∇t ¼ 0.
It was this condition that we could not satisfy previously;
here it is possible also only due to the singularity of the
connection ∇ on E when approaching the origin.
One also verifies easily, that this choice of the connection

on E guarantees E∇g ¼ 0, a necessary condition for the
BFV extension even without the restricting HBFV to be of
the form (42), see the first line in (23). The tensor S looks as
follows with the above choices for the connection:

S ¼ ϵbcexe

r2
ea ⊗ eb ⊗ ec ⊗ dxa: ð46Þ

S now has a contribution coming from the tensor γ in its
decomposition (31), which enters the covariantized
momentum (20):

p⃗∇ ¼ p⃗ −
1

r2
π⃗ðξ⃗ · x⃗Þ þ x⃗

2r4
ξ⃗ · ðξ⃗ × x⃗ÞP: ð47Þ

The complete BFVextension of the Hamiltonian then takes
the form

HBFV ¼ 1

2
p⃗∇ · p⃗∇ −

1

4r4
½ξ⃗ · ðξ⃗ × x⃗Þ�½π⃗ · ðπ⃗ × x⃗Þ�: ð48Þ

This corresponds to the following tensor Σ in (42),

Σab
cd ¼ −

εabeεcdgxexg

r4
; ð49Þ

which satisfies the consistency condition (44) for λ ¼ 0.
Together with the above choice for γ, this completes the
decomposition (31) of (46), which then satisfies the last
condition in (43). According to the discussion following
(42), this then proves the validity of (11), which certainly
one can also verify directly to hold true for (37) and (48).
The extension of (39) toHBFV is not unique, also not for

a fixed choice of the BFV charge (37). One can, at each
stage, change contributions toH ¼ HBFV in (21) by δ-exact
terms (once more underlining the importance of the
complex G• for the given extension problem). For a given
Hamiltonian, the first such ambiguity is provided by the
choice of the connection on E, which we found in (30). It is
now not difficult to see that with the choice Ψi

b ¼ 1
r2 δ

i
b,

Mac
b ¼ 1

r2 ϵacb, the connection coefficients corresponding to
(45) can be made to vanish: ∇ea ¼ 0 for this modified,
equivalent connection. Now the connection on F, if taken
as the corresponding coefficient in (20), is fixed by
requiring the vanishing of the last line in (23), i.e., by
requiring ∇t ¼ ρibΣabea ⊗ dxi: One finds
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∇b ¼ xadxa

r2
⊗ b; ð50Þ

which, in particular, has the property that the section 1
r b is

covariantly constant, ∇ð1r bÞ ¼ 0. After the dust clears, one
then finds the following, relatively short BFV-Hamiltonian

HBFV ¼ 1

2
p⃗∇ · p⃗∇ þ π⃗ · ðπ⃗ × x⃗Þ

2r2
η; ð51Þ

where

p⃗∇ ¼ p⃗ −
x⃗
r2
ηP: ð52Þ

In the extension (48), the last term in the decomposition
(22) vanishes. In (51), on the other hand, it is the first term
that does so, with the η-coefficient Σab

I ≡ Σab taking the
form

Σab ¼ εabc
xc

r2
: ð53Þ

IX. ANGULAR MOMENTUM III: AN INFINITE
KOSZUL-TATE RESOLUTION

Before ending this article, we want to address briefly
what happens if one follows the usual BFV procedure in the
singular context, not taking the shortcut by the resolution of
the singular foliation as advocated here. We want to sketch
this at the example of the angular momentum when not
excluding the spatial origin x⃗ ¼ 0. As mentioned above, in
this case, one needs to take both dependencies x⃗ · G⃗ ¼ 0

and p⃗ · G⃗ ¼ 0 into account separately. As a preparation for
the construction of the BFV charge and the BFV
Hamiltonian, one now determines a Koszul-Tate (KT)
resolution of the ideal generated by the constraints Ga.
The graded coordinates introduced for this purpose, called
the antighosts in [1], subsequently serve as the momenta
to the ghosts that one needs for the BFV charge. For the
angular momentum, we have three antighosts πa of degree−1, which provide the generators of the ideal after
application of the KT differential: δKTðπaÞ ¼ Ga. For the
two dependencies between these constraints, we introduce
two antighosts of degree −2, P and P̄, such that:

δKTP ¼ xaπa; δKTP̄ ¼ paπa: ð54Þ

Note that δKT coincides with δ on the ghost momenta we
introduced before, see (27), but now we have more of them.
And it does not stop with the additional P̄. The reducibility
functions xa and pa are not independent on-shell:
xapb − xbpa ¼ ϵabcGc ≈ 0. This implies that one needs
additional antighosts Pa

3 of degree −3, which then give

δKTPa
3 ¼ xaP̄ − paP þ 1

2
εabcπ

bπc: ð55Þ

Here the last term is needed to ensure ðδKTÞ2 ¼ 0.
However, on the space generated by ðxa; pa; πa;P;
P̄;Pa

3Þ one now finds nontrivial δKT-cohomology classes
at degree −3. This in turn requires the introduction of six
antighosts of degree −4 such that

δPa
4 ¼ εabcxbPc

3þπaP; δP̄a
4¼ εabcpbPc

3þπaP̄: ð56Þ

And this procedure does not stop. [37] By construction,
there is no cohomology of δKT except at degree zero.
Therefore, with this starting point, QBFV and the extension
HBFV of (6) always exist in principle. But there is a price to
be paid: the underlying space of ghosts and antighosts
consists of an infinite tower of them.

X. SUMMARY AND OUTLOOK

In this article we considered mechanical models of
constrained systems where, as is often the case in physics,
at least if the topology of spacetime is nontrivial, the
constraints are not necessarily everywhere regular and
where they are permitted to have reducibilities of the
first level. We provided a shortcut for the construction of
a BFV-type charge QBFV, bypassing a potentially intricate
Koszul-Tate procedure. We then addressed the conditions
under which an extension HBFV of the Hamiltonian exists.
In particular, we identified the complex (26) governing this
extension problem, providing sufficient conditions for the
exitence of HBFV in this way.
There are several challenges for future work. One is to

extend the analysis to higher level reducibilities, bringing
Lie ∞-algebroids into play. Another is to derive the honest
BFV extension using the Koszul-Tate algorithm for irregu-
lar constraints, even if at the cost of possibly introducing an
infinite tower of ghosts. Finally, one may want to see how
all this plays out at the quantum level. We intend to come
back to some of these points elsewhere.
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APPENDIX: ANGULAR MOMENTUM IV

In this appendix we want to return once more to the
example of the angular momentum in R3. While the
coordinates and momenta enter the constraint surface
x⃗ × p⃗ ≈ 0 symmetrically, this is not the case for the

Hamiltonian, see (39). Now, in a region where p⃗ ≠ 0,
excluding the origin in momentum space, one may use
the BFV charge

Q̄BFV ¼ ξ⃗ · ðx⃗ × p⃗Þ þ 1

2
ðξ⃗ × ξ⃗Þ · π⃗ − η̄ p⃗ ·π⃗; ðA1Þ

where we introduced a ghost-for-ghost pair ðη̄; P̄Þ to
implement the dependency p⃗ · ðx⃗ × p⃗Þ≡ 0. Like when
excluding the spatial origin x⃗ ≠ 0, there is no obstruction
for the BFVextension of the Hamiltonian, but in this case it
even agrees with the classical one, H̄BFV ¼ 1

2
p⃗ · p⃗.

One may wonder, if and how one might obtain the much
more involved BFV extensions (48) and (51) from this
simple solution to the extension problem in regions where
both x⃗ and p⃗ are nonvanishing.
We only have a partial, semirigorous answer to this

question: Introduce a BFV charge Q0 that incorporates the
two dependencies given by x⃗ and p⃗ in a symmetrical
fashion,

Q0 ¼ ξ⃗ · ðx⃗ × p⃗Þ þ 1

2
ðξ⃗ × ξ⃗Þ · π⃗ − ηx⃗ · π⃗ − η̄ p⃗ ·π⃗; ðA2Þ

with now two conjugate ghost-for-ghost pairs ðη;PÞ and
ðη̄; P̄Þ. The charge (A2) squares to zero in the obvious
canonical bracket, ðQ0;Q0Þ0 ¼ 0. It also agrees with a
truncation of the honestly constructed BFV charge in an
infinite tower expansion when following the Koszul-Tate
procedure mentioned at the end of the main text above. But
being such a truncation, where one drops all higher ghost-
for-ghost contributions, it does not have the correct
cohomology, however—therefore, the argument is only
semirigorous at this stage.
There now is a Q0-closed extension of the classic

Hamiltonian on this extended phase space and it is even
globally defined: The simple

H0 ¼ 1

2
p⃗ · p⃗ − ηP̄ ðA3Þ

is readily seen to satisfy ðQ0;H0Þ0 ¼ 0.
We may obtain the two sought-for BFV formulations

from the above one by two different reductions in the

extended phase space, where one has the canonical
coordinates ðx⃗; p⃗; ξ⃗; π⃗; η;P; η̄; P̄Þ. The first one follows
from the evident choice

η ≔ 0; P ≔ 0: ðA4Þ

It reproduces the BFV formulation ðQ̄BFV; H̄BFVÞ valid on
regions with p⃗ ≠ 0.
Note that the elimination of a canonical pair, here ðη;PÞ,

does not affect the brackets between the remaining vari-
ables. But one still needs to ensure that the new quantities
satisfy the two master equations after constraining to (A4).
One way of doing this is to see if they remain to have
vanishing brackets when replacing the original BFV
bracket ð·; ·Þ0 by a Dirac bracket (more precisely, by an
adaptation of the Dirac bracket, introduced originally for
second class constraints [14], to the extended phase space):
Restraining a graded symplectic space by putting two even
functions α and β which satisfy ðα; βÞ0 ¼ 1 to zero, one
replaces the original bracket ðf; gÞ0 between two functions
f and g by

ðf; gÞD ≔ ðf; gÞ0 − ðf; αÞ0ðβ; gÞ0 þ ðf; βÞ0ðα; gÞ0: ðA5Þ

Restriction to the subspace given by α ¼ β ¼ 0 and
inverting the restricted graded symplectic form, in the
end is reproduced by this bracket directly. Since both,
(A2) and (A3) commute with η in the ð·; ·Þ0 bracket, in view
of [14], it is clear that the two master equations still hold for
the induced bracket when implementing (A4).
The situation changes, however, if onewants to proceed in

the same way by replacing (A4) with the corresponding
barred equations. The reason is that now ðη̄;H0Þ0 does not
vanish, nor does ðQ0; P̄Þ0, this then would impede the
vanishing of ðQ0;H0ÞD. To take care of this, one may search
for deforming the condition P̄ ¼ 0 by P̄ ¼ F for some
functionF of the unbarred variables. This procedure permits
to find the function F by an expansion in the ghosts, which
can be chosen such that the deformed conditions become

η̄ ≔ 0; P̄ ≔
1

2r2
ð2p⃗ · x⃗P − ηP2 − π⃗ · ðπ⃗ × x⃗ÞÞ: ðA6Þ

With this “gauge” the twomaster equations remainvalid and
one obtains precisely theBFVdataQBFV andHBFV) as given
by (37) and (51), respectively. The data corresponding to
(37) and (48), on the other hand, result from these by an
additional canonical transformation.
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