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A manifestly diffeomorphism-invariant approach to canonical quantum gravity requires the use of
composite operators. These can be considered to be bound states of matter and/or gravitons,
intrinsically nonperturbative objects. An analytical approach to determine the properties of such
bound states could be the Fröhlich-Morchio-Strocchi mechanism. We explore the necessary
technology by applying it to various n-point functions, including geon propagators and black-
hole-particle vertices.
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I. INTRODUCTION

Strict independence of human choices requires that
observables are manifestly and nonperturbatively invariant
under choices of coordinate systems or gauges [1–5]. In
quantum gravity this translates to invariance of observables
under diffeomorphisms. In loop quantum gravity this is
pushed to the extreme by using exclusively diffeomor-
phism-invariant variables [6,7]. An alternative approach is
to still use diffeomorphism-dependent quantities, like the
metric or vierbein, as dynamical variables, but to determine
eventually diffeomorphism-invariant observables, just as is
done in ordinary quantum gauge theories. However, this
approach is substantially hampered by the complexity such
observables entail, as these are necessarily described by
composite operators.
However, observationally quantum gravity is dominated

at long distances by classical physics, at least for the values
of Newton’s constant and the cosmological constant
relevant to our universe. In such a situation the Fröhlich-
Morchio-Strocchi (FMS) mechanism [2,3,5] from non-
gravitational theories is a possibility to unravel composite
operators using analytic methods. The FMS mechanism
can indeed be transferred, at least in principle, to canonical
quantum gravity [8], if the theory can be formulated
in terms of a gauge theory quantizable by a path integral.

The latter is supported by results from scenarios like
asymptotic safety [9–12] as well as dynamical triangulation
approaches [13,14].
Thus, the present purpose will be to make the conceptual

ideas of [8] more concrete, though still in an exploratory
manner. These explorations are a necessary next step before
being able to go to real quantitative calculations. As it turns
out, arguably expected, that quantum gravity harbors a
couple of additional challenges in applying the FMS
mechanism in comparison to ordinary flat-space quantum
field theory. To this end, we investigate here how the FMS
approach could be applied to a selection of n-point
functions with n ≤ 4 in Secs. III–VI.
A particularly important intermediate step is the question

of a suitable gauge to apply the FMS mechanism. This will
be considered in Sec. II. In a sense, this defines a possible
framework for the quantitative application of the FMS
mechanism in quantum gravity. It also discusses in more
detail how to usefully define the fluctuation field in this
context.
We summarize our experiences in Sec. VII. We find in

particular that it is, already from a classical point of view,
far from obvious how to formulate certain questions in a
manifestly diffeomorphism invariant way. However, we
find that at the quantum level these need to be phrased very
carefully to obtain meaningful answers.

II. SETUP AND GAUGE FIXING

We consider here a path-integral approach, in which we
include Einstein-Hilbert gravity, as well as a single scalar
particle. The quantization is performed using a path-
integral approach, with the action
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where κ and l are suitable combinations of Newton’s
constant and the cosmological constant, R is the curvature
scalar, g the metric, ϕ a scalar field and m the mass the
scalar particle would have at tree-level in flat space-time.
Note that for scalars the covariant derivatives become
ordinary ones.
We assume for the moment that a path-integral quanti-

zation is possible, where ultraviolet stabilization occurs
due to a dynamical effect like asymptotic safety [9–12],
possibly supplied with further terms in the action [15–17].
This assumption will affect any quantitative results in the
following, but our qualitative steps will be unaltered. As
integration variables, we will use the metric and the scalar
field, though the vierbein or other quantities would be
possible as well. Again, the following could be conducted
analogously for any other such choice. It is here chosen
entirely for technical simplicity, and may not be suitable
eventually [8,18]. This requires us to choose the integration
range. Here, we will restrict to all compatible metrics,
which satisfy det g < 0 and have signature þ2, to allow for
local transformations to flat space.
The basic idea [8] of the FMS mechanism [2,3] is to

formulate observables in a manifestly diffeomorphism-
invariant way, and afterwards expand them in quantum
fluctuations around a classical metric. This needs to be
done after gauge-fixing, and is thus conceptually different
than in any background-field approach. The question of
how to perform the split is far from obvious at the moment.
However, defining

gμν ¼ gcμργ̃
ρ
ν ¼ gcμρðδρν þ ðgcÞρσγσνÞ ¼ gcμν þ γμν; ð2Þ

where gcμν is a fixed classical metric, shows that a linear and a
product split are both equal. This implies that det γ̃ > 0, and
it cannot alter the signature of gcμν. Thus, also γμν cannot
change the signature. The linear shift allows to switch to γ as
integration variable in the path integral without a Jacobian.
Physically, γmeasures the change of distances ds2 compared
to the reference distance ðdscÞ2 ¼ gcμνdxμdxν. It is important
to note that only gμν can be used to lower and raise indices,
while trying to do so with gcμν yields an error of order γ.
While these are so far exact statements, to apply the FMS

mechanism we will moreover assume that γ is small, or
likewise that γ̃ is close to the unit matrix. The linear split is

technically most convenient in the following, and we will
use it exclusively from here on.
By construction, it was required that ðgcÞμν is the inverse

of gcμν. As a consequence, the same does not hold true for
γμν and γμν, and it follows

δμρ ¼ gμνgνρ ¼ ððgcÞμν þ γμνÞðgcνρ þ γνρÞ
¼ δμρ þ ðgcÞμνγνρ þ gcνργμν þ γμνγνρ:

This implies the linear relation

γμνðgcνρ þ γνρÞ þ ðgcÞμνγνρ ¼ 0 ð3Þ

which is formally implicitly solved by a Dyson-like
equation

γμν ¼ −ðgcÞμσγσρgρν: ð4Þ

While in a numerical calculation an equation like (3) can
be solved, this is not always possible in an analytical
approach.
However, here we are mainly concerned with a pertur-

bative treatment, which implies that γ can be considered
small in comparison to gc. We can therefore expand (4) in
the fluctuation field, yielding

γμν ¼ −ðgcÞρνðgcÞμσγσρ þ ðgcÞρνðgcÞμσγσαðgcÞαβγβρ − � � �
ð5Þ

and thus obtain the necessary desired inverse fluctuation
field γμν in terms of the fluctuation field. Note, however,
that this immediately implies the presence of an infinite
number of tree-level terms in a perturbative expansion.1

As noted, the split needs to be done after gauge-fixing.
With the aim of technical simplification, it turns out to be
useful that the full gauge conditionC½g� ¼ 0 is also fulfilled
by the classical metric, C½gc� ¼ 0. This is certainly always
possible. In addition, a simple form of the classical metric
will also be helpful in the following calculations. Hence,
the gauge condition chosen should allow for a simple
explicit form. Given the usual expressions for flat and (anti-
)de Sitter metric, a suitable choice is the Haywood gauge

gμρ∂ρgνμ ¼ ∂
μgνμ ¼ 0:

This implies for classical metrics obeying the Haywood
gauge condition

1As it has been found that in the FMS approach divergencies
from ordinary perturbation theory can cancel at the level of
observables [19], it is an interesting question whether these
additional terms may actually help to make a perturbative
approach to quantum gravity predictive. This will have to await
the technology to do loop calculations in this setup.
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gμρ∂ργνμ ¼ 0 ¼ ðgcÞμρ∂ργνμ þ γμρ∂ργνμ: ð6Þ

Inserting (5) into (6) therefore implies that at fixed order in
γ there is always an additional term of one order higher in γ
in the gauge condition than the order to which one works,
and by which it is violated. That is, however, not different
from perturbative treatments in ordinary gauge theories.
Inserting the Haywood gauge condition in the action and

performing the usual Faddeev-Popov construction finally
yields the gauge-fixed path integral

Z ¼
Z

Dðgc̄cÞeiS

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−gÞ
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1
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þ c̄ν∂μðDνμ
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�
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1

4
gαβgμνð−4∂ν∂βgαμ þ 4∂ν∂μgαβ
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ρ ¼ ∂μδν
ρ − Γρ

μν

Γρ
μν ¼

1

2
gρσð∂μgρν þ ∂νgμρ − ∂ρgμνÞ:

Note that at this point the expression remains exact, and g is
still the full quantum metric, though restricted to obey the
Haywood gauge condition (6).

III. ONE-POINT FUNCTIONS AND COSMOLOGY

While formally the split (2) can be performed for any gc,
the aim is, of course, to simplify calculations. Thus, the
split (2) is a purely technical tool. Hence, a good choice is
essential to make progress. This needs to be accompanied
also by a suitable choice of gauge-fixing condition, as
otherwise additional technical complications will arise.
This requires a few reflections upon the anticipated

behavior of the theory. Quantum gravity is based on events,
rather than coordinates, as elementary objects. Any path
integral formulation with a fully diffeomorphism-invariant
action and measure does not introduce any preference of
events, and all events are equal. As a consequence, no
quantity which depends on a single event can be anything
but zero, except for scalars which can be nonzero, but event-
independent. Especially any expectation value of the metric
vanishes without gauge fixing. Space-time can only be
characterized by (covariantly constant) densities of curva-
ture scalars. These are primarily quantities like the curvature
scalar, the Kretschmann scalar, the Weyl scalar, and so on.
Choosing gc such that it reproduces the observed values of

these scalars implies the absence (or cancellation) of
quantum corrections for them. It is therefore a well-
motivated possibility. Of course, since these scalars are
diffeomorphism-invariant, there is still considerable

freedom in this choice. Imposing in addition the gauge
condition (6) singles out finally a particular form.2 Here, this
will be flat space-time, as the simplest case, and the de Sitter
metric in theCartesianRoberston-Walker chart, which yields
a diagonal metric. This leads to the observed cosmological
constant, and the corresponding curvature scalar.
When considering our universe, it would appear that the

Friedmann-Lemâitre-Robertson-Walker (FLRW) metric
should also be a good choice given how well it works in
cosmology. And of course, it is certainly possible. However,
in this case quantities like the curvature scalar are not
constant, implying the need for quantum corrections. This
appears odd at first sight. But there is a reason behind this. In
this case a special event, the big bang, is introduced, and the
dependence of, e.g., the curvature scalar is given in terms of
the eigentime since this special event. Hence, this choice
does not respect that all events are equal. This equalitywould
then needed to be restored by quantum corrections.
This leads immediately to the question how something

like cosmology and the existence of a universe could be
described in this setup. To answer this requires to pose the
question how to describe a universe in terms of manifestly
diffeomorphism-invariant quantities. This is a surprisingly
nontrivial question.
In fact, the closest possibility is probably the following

point of view, which considers a universe more like a
scattering process.3 For simplicity, assume that the universe
contains only two particles,4 described by two diffeomor-
phism-invariant operatorsOi. Given then thematrix element

hO†
1ðXÞO†

2ðXÞO1ðYÞO2ðZÞi

the corresponding cross section can be used to describe the
probability of the development of a universe. To this end,
determine the cross section as a function of a spacelike
geodesic distance r ¼ hσðY; ZÞi at fixed timelike geodesic
distances τ ¼ hσðX; YÞi ¼ hσðX; ZÞi, with the geodesic
distances determined as in [8]. This describes how likely
this universe’s size r is as a function of the elapsed timelike
duration τ. If there would be more than two particles, the
largest pairwise distance r would provide the size of the
universe. Note that in this way no event is preferred as
the big bang. The properties of the universe in this way
follow indeed as an expectation value and characterize
an average universe created from the employed matter
Lagrangian. An actual universe, like ours, is then the

2Up to possible Gribov copies.
3In fact, the scattering aspect only comes in because one wants

to talk about time evolution. Taking into account that this is part
of the problem, the situation is actually more akin to a many-body
problem in ordinary quantum field theory. Cosmology relates to
quantum gravity thus in a similar fashion as, e. g., a neutron star
to QCD.

4It is actually unknown to the authors if a lower limit for the
particle content of a universe to drive cosmology exists.
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consequence of a measurement process, which is governed
by this probability. Thus, in this way it is calculable how
likely a universe like ours actually is. Quantities like the
curvature of the universe would then be obtained from
distributions of geodesic distances, and are not an inherent
observable derived directly from operators like the curva-
ture scalar. This is, as it must be, since these quantities
depend on the other matter.
Of course, a practical calculation for our universe, with

its estimated 1080 particles, is not feasible (yet). However,
expecting a quasiclassical behavior, as one sees also for
cross sections of many particles in ordinary particle
physics, could lead to the hope that the probability would
peak around the observed behavior. In addition, many-body
techniques could perhaps also be developed in this case.
Note that it is important in this context to carefully

distinguish between the classical metric for the expansion
point of theFMSmechanismand the effective behavior of the
universe. The prior is determined solely by the Lagrangian
and the parameters of the theory. The latter is also affected by
the number of particles which are put into the universe, and
thus its initial condition. The former may, e.g., be flat
Minkowski space-time while the latter be what is expected
in classical general relativity with an FLRW metric.

IV. TWO-POINT FUNCTIONS AND THE GEON

When describing individual particles, this is usually done
using their propagators. In light of the previous discussion,
such propagators in the present setup describe the proper-
ties in the absence of other matter. Thus, just using the
propagator will only be a suitable approximation in our
universe if the propagation distance is small compared to
distances to other particles.5 Thus the quantities to be
discussed will be expectation values like hOðXÞOðYÞi.
As described in Sec. II, this will be done using the FMS

mechanism to lowest order. As a consequence, the argu-
ment will be just the classical geodesic distance σcðX; YÞ
between the events X and Y. Hence, the propagator of the
scalar particle

hϕðXÞϕðYÞi ¼ DϕðσcðX; YÞÞÞ ð7Þ

will be just the corresponding scalar propagator in the
respective classical space-time, e.g., in flat space-time just
the ordinary one. At higher orders these two features will
change due to quantum fluctuations. Calculations in
Euclidean dynamical triangulation indeed find that the full
propagator, including its functional dependence, differs at
most slightly from (7) [20].
It is therefore interesting to consider the simplest objects

which necessarily deviate from the flat-space time behavior
at this order. To avoid the complications with spin, we

consider only spinless objects. To obtain a nontrivial
behavior requires also that the corresponding operator
contains the metric. There are, of course, an infinite number
of these. The simplest one is arguably the curvature scalar
RðXÞ. Of course, all other scalar operators will mix with it.
However, we will operate on the prejudice from quantum-
field theory that the leading-order contribution of the
simplest operator will have overlap with the ground state.
Thus, to lowest order in the FMS mechanism the

physical, composite object has a propagator of the form
discussed above,

hRðXÞRðYÞi ¼ DRðσcðX; YÞÞ:
To obtain this form explicitly, it is necessary to apply the
split in (2) to the curvature scalars and to order the resulting
terms in powers of γ. As the curvature scalar involves also
the inverse metric, we use again (3). This yields

hRðXÞRðYÞi ¼ hRð0Þ
X Rð0Þ

Y þ ½Rð0Þ
X Rð1Þ

Y þRð1Þ
X Rð0Þ

Y �
þ ½Rð1Þ

X Rð1Þ
Y þRð0Þ

X Rð2Þ
Y þRð2Þ

X Rð0Þ
Y � þOðγ3Þi

up to second order, where superscripts denote the order in γ
and subscripts the event atwhich the object is evaluated.Now
for both of our cases the classical curvature scalar is either
vanishing or constant. At the same time, because of invari-
ance under the choice of events, the propagator cannot
depend on a single event. Hence, the only contribution

which can be nonconstant at this order is hRð1Þ
X Rð1Þ

Y i.
Thus, this requires the corresponding expression for the

Ricci scalar to first order in the FMS expansion. The second
order accurate approximation of the Ricci scalar can be
expressed as follows:

R ¼ gμνRμν ¼ ððgcÞμν þ γμνÞRμν

¼ ððgcÞμν − ðgcÞμαðgcÞνβγαβ
þ ðgcÞμαðgcÞβρðgcÞνσγαβγρσ þOðγ3ÞÞ
× ðRc

μν þ Rð1Þ
μν þ Rð2Þ

μν þOðγ3ÞÞ
Rð0Þ ¼ Rc ¼ ðgcÞμνRc

μν

Rð1Þ ¼ ðgcÞμνRð1Þ
μν − ðgcÞμαðgcÞνβγαβRc

μν

Rð2Þ ¼ ðgcÞμνRð2Þ
μν − ðgcÞμαðgcÞνβγαβRð1Þ

μν

þ ðgcÞμαðgcÞβρðgcÞνσγαβγρσRc
μν

The explicit expressions for the quantities Rð1Þ and Rð2Þ, in
terms of γμν, are determined in Appendix A. For the rest of
Sec. IV we will assume ðgcÞμν to be the index-shifting
metric, thereby taking care of occurrences of ðgcÞμν
implicitly through the use of covariant indices.6

5But this is also true in ordinary QFT, just that in this case no
dynamical description of the universe is also possible.

6It should be noted that this is merely a choice of notation,
since using the classical metric as the true index-shifter will
introduce errors, see Sec. II.
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Following this convention, the contributions to the curva-
ture scalar can be compactly rewritten:

Rð1Þ ¼ ðð∇cÞμð∇cÞν − ðgcÞμν□c − ðRcÞμνÞγμν; with

□c ¼ ðgcÞρσ∇c
ρ∇c

σ

Rð2Þ ¼ γαβð∇cÞαð∇cÞβγρρ þ γαβ□
cγαβ þ ð∇cÞαγαρð∇cÞργμμ

þ 3

4
ð∇cÞαγρμ∇c

αγ
ρ
μ −

1

4
ð∇cÞργμμð∇cÞργαα

−
1

2
ð∇cÞαγρμð∇cÞργαμ − ð∇cÞαγαρð∇cÞμγρμ

− 2γαβð∇cÞαð∇cÞργβρ þ γαβðgcÞαλRc
ρλϵ

βγϵρ ð8Þ

The Riemann tensor Rc
ρλϵ

β that is occurring in the

explicit version of Rð2Þ is defined with the sign convention
from [21], for the “classical” covariant derivative (7) and it
encodes the curvature of the manifold related to the
classical metric in the usual way.7

With the expression for Rð1Þ in (8), the lowest order
contribution to the geon propagator can be expressed more
explicitly. Assuming a convention where objects that are
evaluated at event Y are denoted with primed indices (or
merely a prime in the case of scalars),

DRðσcðX;YÞÞ ¼ hðð∇cÞμð∇cÞν − ðgcÞμν□c − Rμν
c Þγμν

× ðð∇cÞρ0 ð∇cÞσ0 − ðgcÞρ0σ0□c0 − Rρ0σ0
c Þγρ0σ0 i

¼ ðð∇cÞμð∇cÞν − ðgcÞμν□c − Rμν
c Þ

× ðð∇cÞρ0 ð∇cÞσ0 − ðgcÞρ0σ0□c0 − Rρ0σ0
c Þ

× hγμνγρ0σ0 i: ð9Þ

This therefore expresses the geon propagator as a function
of the propagator of the elementary graviton, consistent at
the leading order in the FMS expansion.8

Hence, it only remains to plug in the corresponding
classical metric and the tree-level propagator of the
elementary graviton in the Haywood gauge to obtain a
result. The expressions for (anti-)de Sitter space-time are
already too involved even at that level. Thus, we restrict
here to gc being Minkowski metric only.
The required expressions for the case of a flat classical

metric are derived in Appendix B. In this case the Riemann
tensor vanishes and the covariant derivatives become
ordinary ones. The tree-level graviton propagator in a
maximally symmetric space-time is determined by five
tensor structures [22,23],

Gμν;λ0ϵ0 ðσcÞ
¼ gcμνgcλ0ϵ0aðσcÞ þ ðπcμλ0πcνϵ0 þ πcμϵ0π

c
νλ0 ÞbðσcÞ

þ ðnμnλ0πcνϵ0 þ nμnϵ0πcνλ0 þ nνnλ0πcμϵ0 þ nνnϵ0πcμλ0 ÞcðσcÞ
þ ðnμnνgcλ0ϵ0 þ gcμνnλ0nϵ0 ÞdðσcÞ þ nμnνnλ0nϵ0eðσcÞ: ð10Þ

Herein nμ ¼ gcμνnν are determined by the tangent vectors of
the (minimum length) geodesic connecting the two events
and πcμλ0 denotes the parallel propagator along this geodesic.
The derivation in the Haywood gauge away from coinci-
dence is reported for completeness in Appendix B, and we
recover the known results of [22,24],

−2κ2Gμν;λ0ϵ0 ðσcÞ ¼ gcμνgcλ0ϵ0

�
a2 þ

f1
16ðσcÞ2 −

x1
2ðσcÞ4

�
þ ðπcμλ0πcνϵ0 þ πcμϵ0π

c
νλ0 Þ

�
b2 −

13f1
16ðσcÞ2 þ

x1
2ðσcÞ4

�

þ ðnμnλ0πcνϵ0 þ nμnϵ0πcνλ0 þ nνnλ0πcμϵ0 þ nνnϵ0πcμλ0 Þ
3f1

8ðσcÞ2 þ ðnμnνgcλ0ϵ0 þ gcμνnλ0nϵ0 Þ
�

5f1
8ðσcÞ2 þ

2x1
ðσcÞ4

�

þ nμnνnλ0nϵ0
�
−
12x1
ðσcÞ4 −

f1
2ðσcÞ2

�
:

There remain two undetermined constant terms, which
would be fixed at coincidence, but they do not play a role
here, as they drop out for the geon propagator.

Applying the operator in (9) to this expression for the
graviton propagator leads to9

DR;tlðσcðX; YÞÞ ¼ −2iκ2□0
M□MGα

α;
λ0
λ0

¼ −i6κ2□0
Mδ

ð4ÞðxX − xYÞ;

where the subscript tl indicates that we are only employ-
ing tree-level results for the fundamental graviton. The

9Where □M ¼ ημν∂μ∂ν is the wave operator on the Minkowski
space-time.

8The previous result in [8] was of lower order as it did not
include inverse fluctuations in the metric at the same order, but
rather set them to zero.

7The term containing the Riemann tensor is part of the second
order contribution since two of the covariant derivatives have
been exchanged and it could be removed again, by reverting this,
however, it will be useful to keep it this way.
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reduction of the graviton propagator, acted upon with a
wave operator, is a consequence of it being a solution to the
Green’s function equation and can be verified with the
results from Appendix B. With this result we can finally
provide an expression for the geon propagator in flat space
to second order in the FMS expansion and tree-level in the
Newton coupling,

hRðXÞRðYÞiconnected;tl ¼ −i6κ2□0
Mδ

ð4ÞðxX − xYÞ þOðγ3Þ:
ð11Þ

The result is thus a nonpropagating local term,10 as all
others drop out. Thus, to this order in the FMS expansion
around a classical Minkowski space-time there is no
nontrivial propagating geon.
This would imply that for a flat classical metric gc, which

can only be a good approximation for a vanishing cosmo-
logical constant, the hope that the geon can act as dark
matter [8] cannot be fulfilled. However, this does not
exclude either a different result at not-vanishing cosmo-
logical constant, like is the case for our universe, nor
nonscalar geonic dark matter. And, of course, there is also
the possibility that our calculations are too rough. A
possibility to improve upon the results would be to stay
at leading order in the FMS expansion, but to employ a
higher-order graviton propagator. Within the current
scope, this requires asymptotic safety for a meaningful
propagator, and such propagators are available in position
space [26,27]. Another possibility would be to evaluate the
geon propagator along the lines of [20] in dynamical
triangulation simulations, and compare it to the graviton
propagator in the Haywood gauge in the same simulations.

V. THREE-POINT FUNCTIONS
AND STATIC BLACK-HOLES

Interactions of quantum theories are encoded in vertices.
While it is possible to apply the FMS expansion strictly
also to vertices [5,28,29], this would be an even more
formidable endeavor than the geon propagator. A much
more modest idea will therefore be pursued here, which
nonetheless follows the same philosophy [8].

Arguably one of the most iconic ideas about quantum
gravity is Hawking evaporation of black holes. Likewise,
the merging of particles into a black hole would be the
corresponding reversed process. Given the scalar particle in
our setup, we assume the existence of an operator B, which
has overlap with a Schwarzschild black hole state [8].
Then, both processes are described by the same correlation
function

hBðXÞϕðYÞϕðZÞi; ð12Þ

and differs only by the nature of the pairwise geodesic
distances, if X is in the future light cone or the past light
cone of both Y and Z simultaneously. Other options would
correspond to other physical processes. Of course, this
information would require a separate calculation to actually
answer.
Moreover, there is an important feature when it comes to

black holes. Usually, black holes are considered to create a
distinctive space-time metric. However, in a quantum
gravity setup black holes themselves are observable
objects. Hence, the influence of black holes on particles
is described by correlation functions like (12), rather than
evaluating the trajectory of the scalar particles in a fixed
space-time. This has an interesting consequence in our
FMS setup: Because we fixed the space-time to be flat,
which needs to be kept, the black hole exists on top of it. If
we would be able to perform the full calculation, this would
not have any impact, as the split is purely technical. In an
actual approximate calculation, this is different.
Wewant to perform here a first exploratory investigation.

We therefore will treat the black hole as an (almost)
classical object. In that sense, we assume that the operator
BðXÞ becomes a classical field. This entails two conse-
quences. The first is that the classical metric of a black hole
does not treat all events equal. E. g., in Kruskal coordinates
the curvature singularity is an exceptional structure.
Moreover, the classical metric is a full space-time metric,
and thus does not include creation or annihilation.
However, we want to be able to evaluate (12) also if the

event X is not coinciding with the curvature singularity.
Thus, what happens is that by replacing the operator B by a
classical field Bc, we make it dependent not only on the
event X, but also of special event structure L of the classical
black hole, BcðL; XÞ.
In the spirit of our approach, when choosing a nonspin-

ning black hole, the object Bc needs to be diffeomorphism-
invariant and scalar. The scalar nature implies a Schwarzschild
blackhole, and the simplest scalar, diffeomorphism-invariant,
nonvanishing objects associated with it are the Kretschmann
scalar K and the second curvature invariant I2. Without any
further information, any linear combination of them is an
equally good choice. Putting the curvature singularityL at the
origin of coordinates on any spatial hypersurface of the metric
gc then yields

10We note that the result (11) is formally proportional to the
2-point vertex of a massless, scalar particle. While this is still not
a propagating object, this could hint to a possible further subtlety.
In the conventional quantum-field-theoretical setup of the FMS
mechanism [5], the classical quantity is a space-time independent
number, and thus allows to replace on both sides full Green’s
functions with connected and amputated ones. We have implicitly
assumed this to be applicable in the present case. The result could
also be interpreted as a hint that this is not possible, and that
amputation needs to be done explicitly. This will require further
study, and may be connected to questions concerning the
interrelation between the LSZ formalism and the FMS mecha-
nism [5,25].
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BcðL; XÞ ¼ a
ffiffiffiffi
K

p
þ b

ffiffiffiffi
I2

3
p

¼ ð
ffiffiffiffiffi
12

p
a −

ffiffiffiffiffiffiffiffi
12b3

p
Þ rS
rX

ð13Þ

where rS ¼ 2GNM is the Schwarzschild radius, with M the
“mass” of the black hole. rX ¼ rXðL; XÞ is a measure of the
distance between the eventX and the curvature singularity, and
will be specified below.Note thatwemade the assumption that
the operator BðxÞ behaves dimensionally as a curvature
operator and that the prefactors are dimensionless mixing
parameters, thus yielding the cube root of I2. Since the
functional dependence is the same in both terms,we arbitrarily
set a ¼ 1 and b ¼ 0. After all, the prefactor would eventually
be determined by the renormalization of the correlation
function. Other choices of Bc would not alter fundamentally
the outcome, but would, of course, yield quantitatively quite
different results.
While this issue is relatively straightforward, there is a

second issue, which comes from the FMS setup. Because a
fixed classical metric gc is chosen in the split (2), the usual
idea that the black hole defines the complete metric outside
its event horizon is not applicable. Since we consider the
classical metric gc to be the (quantum) average behavior of
the theory, the black hole has to be regarded as an excitation
above the space-time described by gc. If the theory would
be linear, this could be obtained by adding the effects.
However, as already our gauge condition is nonlinear, this
is not possible. We need therefore a different approach.
Since, after all, we are interested in evaluating the impact

of the black hole on other particles in (12), we will use the
following approximation. Since Bc is now a classical
object, it can be moved outside the expectation value

hBðXÞϕðYÞϕðZÞi ≈ BcðL; XÞhϕðYÞϕðZÞi: ð14Þ

Thus, the expectation value is merely the propagator of a
scalar particle from event Y to event Z. It is modified by a
factor, which depends on the event X. Expanding further-
more the propagator to leading order in the FMS expansion,
this yields

BcðL; XÞhϕðYÞϕðZÞi ≈ BcðL;ωðL; XÞÞDc
ϕðσcðY; ZÞÞ;

ð15Þ

with σc being again the geodesic distance between Y and Z
in the metric gc, and ω is a, yet to be specified, information
about the relation of the event X and L.
While it appears in (15) like Y and Z are now indepen-

dent of X, this is not so. By making the black hole operator
classical, the structure L introduced special events. The
events X, Y and Z are now relative to this structure. Thereby
the quantitative value of Dϕ will become dependent on the
proximity of Y and Z toL. This is indeed relatively indirect.
This leaves the question of what the amplitude of Bc is at

this point, and thus of the definition of ω. As ω should give
an information about the relation of the event X to L in such

a way as to make this comparable to the geodesic distance
σcðY; ZÞ, we will define it in the following way. We take the
geodesic distance in the classical metric gc on the same
spatial hypersurface to the location of the Kruskal coor-
dinate singularity given by L, s ¼ σcð0; XÞ. By our choice
above, this is just the origin of the coordinate system on any
spatial hypersurface. We then determine the event in
Schwarzschild coordinates, which has the same geodesic
distance to the black hole, σ−1BHðsÞ. Of course, by con-
struction, this translation will fail, once σcð0; XÞ reaches the
event horizon radius, and therefore (15) will at best work
outside the event horizon, and will probably not be a very
good approximation very close to the event horizon.
However, this also shows that the existence of the event
horizon is not lost in this approximation.
Thus, our final expression is11

hBðXÞϕðYÞϕðZÞi ≈ BcðL; σ−1BHðσcð0; XÞÞÞDc
ϕðσcðY; ZÞÞ:

ð16Þ

It contains only known quantities: The black hole operator,
the scalar propagator, and the geodesic distances in the
black hole metric and in the classical metric around which
we expand. It describes the interaction strength between a
black hole and a scalar particle. By its very construction, it
diverges toward the event horizon, but drops off once either
the black hole is probed far away from its event horizon, or
the propagation of the scalar particle is probed over very
large distances.
For example, when using flat Minkowski space-time for

gc, taking only the tree-level expression for Dϕ, and the
Kretschmann scalar for the black hole operator Bc with
the black hole residing at the (spatial) origin, this yields in
the Minkowski coordinate system

hBðXÞϕðYÞϕðZÞi

≈
ffiffiffiffiffi
12

p rS
r3X

signððxY − xZÞ2Þ
im2

4π2
K1ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxY − xZÞ2 þ iϵ

p
Þ

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxY − xZÞ2 þ iϵ

p
ð17Þ

σcð0; XÞ ¼ rX

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
rX

r

þ 1

2
rS ln

�
2
rX
rS

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rS
rX

r �
− 1

�
ð18Þ

where xY and xZ are the geodesic distances to the origin.
σcð0; XÞ is again the desired geodesic distance from the
origin on the spatial hypersurface in Minkowski coordi-
nates to the point at which the black hole field should be

11Keep in mind that the geodesic distance entering the
propagator is expanded around the classical metric as well.
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evaluated (event X), and needs to be solved for rX. It thus
needs to be translated by the implicit condition in (18).
Note that σcð0; XÞ can become zero, which translates in
Schwarzschild coordinates to a lower value of rX ¼ rS, the
Schwarzschild radius, as discussed previously. At large
distances, where the Schwarzschild metric becomes asymp-
totically also Minkowski, rX ∼ σcð0; XÞ. Thus, the black
hole operator is not evaluated at arbitrarily small distances
in the Schwarzschild metric. Hence, (17) is finite with
respect to rX, and can only diverge as a function of
ðxY − xZÞ. Additionally, it decays exponentially in any
spacelike direction, while only polynomial in timelike
directions.12

Especially, if all distances are chosen equal and
spacelike, which corresponds to the symmetric configura-
tion usually used in particle physics to define running
couplings [30], we find that the coupling decays like
expð−mrÞ=r4. This corresponds to a screened interaction,
similar to a screened Yukawa-type interaction, but decaying
quicker than usual Newtonian interactions.
Summarizing, in this approximation we find that the

interaction strength remains finite, and behaves in spacelike
and timelike directions as naively expected, especially at
long distances. However, at very short distances, where the
details of the black hole would necessarily be resolved, it is
unlikely that our approximations would be reliable.

VI. FOUR-POINT FUNCTIONS AND BLACK
HOLE PARTICLE SCATTERING

If we would attempt to discuss the scattering of a particle
with a black hole, we would need to study a (connected)
correlation function like

hBðXÞBðYÞϕðPÞϕðQÞi;

and demand that the expectation values of the geodesic
distances between X and Y, and P and Q are future time-
like oriented. The actual evolution of the scattering would
proceed by requiring that the spacelike distances between X
and P, and Y and Q shrink to zero, if the timelike distances
go to zero, and grow again when the timelike distances
grow again.
Using the same approach as in Sec. V would imply that

now two special worldlines appear, and the translation (18)
would need to be done twice. Of course, this then starts
to get problematic, as now the identification of either
black-hole operator to be the initial or final state scattering
partner becomes murky. Doing so simply by identifying
the two black hole center worldlines will yield the
expression

hBðXÞBðYÞϕðPÞϕðQÞi

≈ 12
r2S

r3Xr
3
Y
signððxP − xQÞ2Þ

im2

4π2

K1ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxP − xQÞ2 þ iϵ

q
Þ

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxP − xQÞ2 þ iϵ

q :

ð19Þ

Thus, except that the expression becomes more singular
when both events X and Y are closer to the event horizon,
little changes. Conversely, if X and Y are far away from the
black hole center, little changes. Of course, this cannot be a
very good approximation, as it depends on the special
structure of the black holes. Thus, for this approximation to
provide any realistic result, these events need to be close to
the actual black holes. In this case the scattering cross
section rises quickly, no matter from where the particle
starts and ends. This is not surprising, as it describes a
situation with a close approach to the black hole.
Thus, while the result is certainly plausible, it is not even

qualitatively a suitable estimate. Still, it outlines how to
approach particle black hole scattering in such a formalism.
But it will require to get rid of the classical formulation of
the black holes, and start to treat it as a genuine quantum
operator. Though this immediately raises the question what
a suitable operator would be for an even mesoscopic black
hole. It appears therefore difficult for the moment to
address such a process consistently.

VII. SUMMARY

We have explored herein how to extend FMS-augmented
perturbation theory systematically to quantum gravity,
based on the ideas put forward in [8]. One major step
was the development of the necessary gauge conditions in a
systematic way in Sec. II. As the present formalism is
different from a background formulation, it is in a quantum
gravity setting necessary to formulate the gauge fixing
already without any reference to the classical part. This
entails nonlinearities, which are absent in a background-
field formalism. We described one approach how to
perturbatively deal with them. As this creates an infinite
series of tree-level terms, this appears at first only worsen
the problems in quantization. However, since in other FMS-
augmented perturbative series the correct inclusion of
gauge degrees of freedom diminished the problem [19],
it may actually be better than before. At the very least, this
offers a new avenue to deal with the problem, which needs
to be explored further.
This is, however, technically difficult as the examples

showed. Especially, in flat space-time no nontrivial result is
obtained. It may be very interesting to expand the calcu-
lation into nonflat space-time, to see whether differences
arise. However, the exploration of 3-point functions illus-
trated that it very quickly becomes complicated to deal with
problems beyond the Planck scale. This is partly due to the

12Note that geometrically not all possible distance combina-
tions of timelike and spacelike are possible.
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question of operators, but partly also because the question
about relations of gravitationally-interacting particles with
objects like a black hole is of similar complexity as of
strongly-interacting particles with neutron stars. Here,
further developments for the description of statistical
ensembles of gravitons will be necessary, just like in the
strong-interaction case.
Summarizing, we have developed a suitable framework

to push FMS-augmented perturbation theory in canonical
quantum gravity a step forward, and explored a number
of sample applications. This should pave the way toward
more developed calculations with less approximations,
but it will be a very long way. To test, whether it would
be worthwhile to walk it, it appears feasible [31] to use
dynamical triangulation simulations [13,14] (or other
approaches [15–17]), given the encouraging results
in [20] for the scalar particle. Given the great success in
confirming the FMSmechanism in flat-space quantum field
theory [5,19], this appears a very promising avenue.
Conversely, assuming the FMS approach to work, better
accuracy could be obtained by staying at leading-order in
the FMS approach, but use better results than tree-level for
the gauge-dependent correlators, e.g., from asymptotic
safety scenarios [26,27].
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APPENDIX A: GEON PROPAGATOR

The terms that occur in the expressions for the FMS
expansion of the curvature scalar R are such that every
contravariant index occurs on the inverse of the classical
metric, i.e., ðgcÞμν, and therefore it is expedient to
introduce a new convention. While for a proper mapping
between co- an contravariant objects the full metric has to
act as the index shifter and this is still the case in the FMS
analysis, after the split the full metric does not occur
anymore and as a convention it is useful to associate every
contravariant index as with an implicit contraction of a
covariant object with the classical metric that is
tμ ¼ ðgcÞμνtν. This allows us to write the expressions after
the split in a much more compact form, albeit much care is
required when translating between objects that are
expressed with the convention that gcμν is the “index
shifter” and expressions that contain gμν as the true index
shifter. From now on we shall follow the new convention
and whenever we revert to the original definition it will be
explicitly pointed out.
Expressing first the Ricci scalar in terms of the metric

only yields

R ¼ −
1

4
gαβgμνð−4∂ν∂βgαμ þ 4∂ν∂μgαβ

þ gρσð2∂νgβσ∂ρgαμ − 3∂ρgαμ∂σgβν

þ ∂μgαβð∂νgρσ − 4∂σgνρÞ þ 4∂βgαμ∂σgνρÞÞ.

Now we can identify the terms that are proportional to the
Haywood gauge condition

RH ¼ −
1

4
gαβð4Hμð∂βgαμ − ∂μgαβÞ

þ gμνð−4∂ν∂βgαμ þ 4∂ν∂μgαβ

þ gρσð∂μgαβ∂νgρσ þ ∂ρgαμð2∂νgβσ − 3∂σgβνÞÞÞÞ.

Setting Hμ to zero provides us with the Ricci scalar in
Haywood gauge,

RH¼0 ¼ −
1

4
gαβgμνð−4∂ν∂βgαμ þ 4∂ν∂μgαβ

þ gρσð∂μgαβ∂νgρσ þ ∂ρgαμð2∂νgβσ − 3∂σgβνÞÞÞ.

Performing the split explicitly leads to the first order

Rð1Þ ¼ −
1

2
ðgcÞαβðgcÞμνð−2∂ν∂βγαμ

þ 2∂ν∂μγαβ þ ðgcÞρσð∂μgcαβ∂νγρσ
þ ∂ρgcαμð2∂νγβσ − 3∂σγβνÞÞÞ

and second order expressions

Rð2Þ ¼ 1

4
ðgcÞαβðgcÞμνðgcÞρσð−∂μγαβ∂νγρσ þ 4γαμ∂ν∂βgcρσ

− 2∂νγβσ∂ργαμ þ 3∂ργαμ∂σγβν − 8γαμ∂σ∂νgcβρ

þ 4γαμ∂σ∂ρgcβν þ ðgcÞτλγαμð−3∂βgcρτ∂νgcσλ
þ ∂βgcρσ∂νgcτλ þ 2∂ρgcβν∂σgcτλ − 6∂λgcνσ∂τgcβρ

þ 4∂νgcσλ∂τgcβρ þ 2∂σgcνλ∂τgcβρÞÞ.

While this expression is useful in its own right, it is
technically advantageous to recast them in a slightly
different way [32], which illuminates their structure better.
This is achieved by collecting the terms, where only
derivatives of the classical metric occur, in “classical”
Christoffel symbols (A1) and defining the classical covar-
iant derivative (A2) based on these:

ðΓcÞαμν ¼
1

2
ðgcÞαβð∂μgcβν þ ∂νgcμβ − ∂βgcμνÞ; ðA1Þ

∇c
μvρ ¼ ∂μvρ þ ðΓcÞρμνvν; ðA2Þ

∇c
ρgcμν ¼ 0. ðA3Þ
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Furthermore, using the identity (A4) we can map specific
combinations of partial derivatives of the γ-field to covar-
iant derivatives of the γ-field. This combination of partial
derivatives is the one occurring in the full Christoffel
symbols of gμν, after the split has been performed. Since
the Ricci scalar is the trace part of the Ricci tensor, which is
expressed in terms of Christoffel symbols, these are just the
combinations that will occur in the end. Based on (A4) we
define another auxiliary object (A5), which corresponds to
something similar to a “Christoffel” symbol for the γμν,
with the partial derivatives replaced by (A2):

∂μγτν þ ∂νγμτ − ∂τγμν ¼ ∇c
μγτν þ∇c

νγμτ −∇c
τ γμν

þ 2ðΓcÞρμνγρτ; ðA4Þ

Θα
μν ¼

1

2
ðgcÞατð∇c

μγτν þ∇c
νγμτ −∇c

τ γμνÞ. ðA5Þ

For the FMS expansion we consider the Ricci tensor at first
and afterwards we take the trace to obtain the curvature
scalar,

Rμν ¼ ∂αΓα
μν − ∂μΓα

αν þ Γβ
μνΓα

βα − Γβ
ανΓα

βμ

¼ Rð0Þ
μν þ Rð1Þ

μν þ Rð2Þ
μν þOðγ3Þ. ðA6Þ

After the split the Christoffel symbols can be rearranged
decomposed into the contributions at every order, using
(A2), (A1), (A4) and (A5):

Γα
μν ¼ ðΓcÞαμν þ Θα

μν − ðgcÞαργρσΘσ
μν þOðγ3Þ.

This decomposition can then be inserted into the definition
of the Ricci tensor and we immediately get the contribution
to each order, with the zeroth order part trivially reducing to
the classical Ricci tensor:

Rð0Þ
μν ¼ Rc

μν

Rð1Þ
μν ¼ ∇c

αΘα
μν −∇c

μΘα
αν

Rð2Þ
μν ¼ −∇c

αððgcÞατγτρΘρ
μνÞ þ∇c

μððgcÞατγτρΘρ
ανÞ

þ Θβ
μνΘα

αβ − Θβ
ανΘα

βμ.

APPENDIX B: SCALAR AND GRAVITON
PROPAGATOR

In Secs. IV and V it will be necessary to know the tree-
level propagator of the graviton and the scalar particle,
respectively. In addition, these will depend on the geodesic
distance in any setup where events are treated equally. In
this section, the necessary results will be collected.
Correlation functions involve the fields, which are

functions of the events. Consequently, any correlation
function can only depend on quantities, which respect
all symmetries with respect to the events. This is an

extension of usual translation invariance of nongravita-
tional quantum field theory. For propagators, the only such
quantity available is the geodesic distance, which itself is
again an expectation value [8,13,15]. At leading order [8],
this is just the classical geodesic distance. Thus, given the
propagator hϕðXÞϕðYÞi, where capital letters will be used
to label events, and σðX; YÞ is the geodesic distance
between both events, this yields

hϕðXÞϕðYÞi ¼ DϕðhσðX; YÞiÞ:

Of course, for an actual calculation it is necessary to
introduce coordinates, xX. E.g. in flat space-time

hσðX; YÞi ¼ jxX − xY j2 þOðγÞ ¼ σcðX; YÞ þOðγÞ;

where the coordinates are determined on the fixed metric
gc. To this order, this is for gcðXÞ ¼ η, with η the flat
Minkowski metric, indeed the ordinary flat space distance.
Since gc is fixed, this would also allow to introduce a

momentum space relative to gc. This momentum space is
then, of course, gauge-dependent. We will not do so here.
However, we will introduce an effective mass as

mðσÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ þ iϵ
p ln

�
2
7
2π

3
2σ

ð2σ þ iϵÞ14 ℑDϕðσÞ
�
;

which approaches for large timelike σ and Dϕ the usual
scalar flat-space propagator the flat-space mass.
For the scalar particle, the relevant term in the

Lagrangian at two-point level reads

L ¼ 1

2
ðgcÞμν∂μϕ∂νϕ −

1

2
m2ϕ2:

Note that in this gauge all fluctuation terms from γμν are
automatically interaction terms. Hence, the tree-level
propagator is the one of a static space-time described by
gc. E. g., in flat space-time it is

DϕðσcÞ ¼
δðσcÞ
4π

þ i
4π2

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σc þ iϵ

p K1ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σc þ iϵ

p Þ; ðB1Þ

where K1 is the modified Bessel function of the first kind.
Analogously, this yields the corresponding known tree-
level propagator if gc is (anti-)de Sitter [33].
The situation for the graviton tree-level propagator ismuch

more involved. After a lengthy calculation, a result for the
quadratic13 term in the Lagrangian arises, which is quite
similar to the usual background method [32], is obtained

13There is actually both a constant, i.e., γ-independent term and
a term linear in γ. Neither can play a role in the following.

AXEL MAAS, MARKUS MARKL, and MICHAEL MÜLLER PHYS. REV. D 107, 025013 (2023)

025013-10



L ¼ 1

4κ
γαβ

�
1

2
ðgcÞαμðgcÞβν□c −

1

2
ðgcÞαβðgcÞμν□c

− ðgcÞβμð∇cÞνð∇cÞα þ 2ðgcÞβμðRcÞαν − ðgcÞμνðRcÞαβ

−
1

2
ðgcÞβνðgcÞμαRc þ 1

4
ðgcÞμνðgcÞαβRc

�
γμν

¼ 1

2κ
γαβDαβμνγμν;

where quantities with a superscript “c” contain only the
classical metric gc and D has been symmetrized such that
Dαβμν ¼ Dμναβ. This Lagrangian results in the following
general Green’s function (GF) equation,

1

2κ
Dαβ

μνGμν;λ0ϵ0 ¼ Iαβ;λ0ϵ0δ4ðxX; xYÞ þ gauge terms; ðB2Þ

where the additional gauge terms need to be introduced to
guarantee consistency with the chosen gauge condition, see
below, and δ4ðxX; xYÞ is the generalization of the Dirac delta
distribution to curved space-time, see [33].
To make progress, it is now necessary to specify gc. In

case of a flat space-time, the resulting propagator, in de
Donder (harmonic) gauge, is

PμνλϵðσcÞ ¼ ð2ημϵηνλ þ 2ημληνϵc − 3ημνηλϵÞD0ðσcÞ;

where D0 is the zero-mass scalar propagator. We will work
out the propagator in the Haywood gauge below.
The situation is substantiallymore complicated in de Sitter

space-time. For maximally symmetric spaces one can find
the decomposition shown in (10), which wewill denote with

Gμν;λ0ϵ0 ðσcÞ ¼
X5
j¼1

OðjÞ
μν;λ0ϵ0fjðσcÞ;

for brevity.14 This decomposition makes use of the tangent
vectors to the geodesics connecting the two events in the
correlation function as well as the parallel propagator which
maps the tangent vector at one event to the tangent vector at
another event along the geodesic, nμ0 ¼ πμ0νnν. Rules for the
algebraic manipulation of these objects have been derived
in [22,23,34]. Since we are working in the lowest order FMS
approximation, all of these quantities are defined with respect
to the classical metric gc, which is why we can make use of
maximal symmetry in simple choices of the latter.
Herein the functions fjðσcÞ are solutions to the massive

scalar equation on de Sitter space-time, and a last part,
which is a solution to a more involved partial differential
equation. The important statement is that the typical mass
parameter is given to be of the order of the (tree-level)

cosmological constant. This implies a very small mass at
tree-level.
To demonstrate how this basis decomposition can be

used to solve for the propagator in position space, we will
apply this method to the graviton propagator in Haywood
gauge for a classical Minkowski space-time.15

So as to get a GF consistent with our gauge condition, we
have to modify the right-hand side (rhs) of the GF equation
with the two biscalar functions ϕ and ξ, which are defined
as the solutions to the following differential equations:

□MϕðσcÞ ¼ δð4Þ □MξðσcÞ ¼ ϕðσcÞ

These can be reduced to ODE’s in the geodesic distance,
when applying the identity

□cfjðσcÞ ¼ f00j ðσcÞ þ
3

σc
f0jðσcÞ;

see [22]. In the following we will discuss the solution for
the graviton propagator away from coincidence, which
causes the Dirac delta source to vanish and we only have to
solve simple ODEs without any distributional source terms.
Away from coincidence the equation for ϕ becomes:

□cϕjðσcÞ ¼ ϕ00
j ðσcÞ þ

3

σc
ϕ0
jðσcÞ ¼ 0;

which has the general solution

ϕðσcÞ ¼ f1
2ðσcÞ2 þ f2.

With this result the ODE for ξðσcÞ becomes

ξ00j ðσcÞ þ
3

σc
ξ0jðσcÞ ¼ ϕ ¼ f1

ðσcÞ2 þ f2;

which is solved by the function

ξðσcÞ ¼ −x1
2ðσcÞ2 þ

f1
4
logðσcÞ þ f2

8
ðσcÞ2 þ x2:

The constants f1 and x1 are just numerical factors. The rhs
of the Green’s function equation in terms of the basis
bitensors OðjÞ with the scalar prefactors in terms of ϕ and ξ
reads:

rhs ¼ Oð1Þðψ þ χÞ þOð2Þðδð4ÞðxX − xYÞ þ ψ − 2χÞ
þOð3Þð−σ þ ωÞ þOð4Þ

L ðσ þ ωÞ þOð4Þ
R σ þOð5Þτ;

ðB3Þ
14Note that in this decomposition the tensor on the rhs of

the propagator equation can be expressed as Iαβ;λ0ϵ0 ¼ 1
2
Oð2Þ

μν;λ0ϵ0 .
15Note that in Minkowski space-time the parallel propagator in

the decomposition trivially reduces to the classical metric.
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where we have suppressed the indices fαβ; λ0ϵ0g on each
basis bitensor.16 And we have introduced the following
short-hand notation

ω≡ ϕ00 − ðσcÞ−1ϕ0; ψ ≡ ðσcÞ−2ξ00 − ðσcÞ−3ξ0;
χ≡ ðσcÞ−1ϕ0; σ≡ ðσcÞ−1ξ000 − 3ðσcÞ−2ξ00 þ 3ðσcÞ−3ξ0;
τ≡ ξ0000 − ðσcÞ−1ξ000 − 5σ:

The left-hand side (lhs) of the GF equation derives from the
following two expressions,

1

2
ðOð2Þ

αβ
μν − ηαβη

μνÞGμν;λ0ϵ0

¼ð10Þ 1
2
ðð−3a − 2b − dÞOð1Þ þ bOð2Þ þ cOð3Þ

þ dOð4Þ
L þ ð4c − 3d − eÞOð4Þ

R þ eOð5ÞÞ;
and using the manipulation rules from [22,34],

□M
1

2
ðOð2Þ

αβ
μν − ηαβη

μνÞGμν;λ0ϵ0 ¼
1

2
ðOð1Þð−3□Ma − 2□Mb − ð□M þ 4ðσcÞ−2Þdþ 8ðσcÞ−2c − 2ðσcÞ−2eÞ

þOð2Þð□Mb − 4ðσcÞ−2cÞ þOð3Þðð□M − 8ðσcÞ−2Þc − 2ðσcÞ−2eÞ
þOð4Þ

L ðð□M − 8ðσcÞ−2Þdþ 2ðσcÞ−2eÞ þOð4Þ
R ð4ð□M − 8ðσcÞ−2Þc − 3ð□M − 8ðσcÞ−2Þd

− ð□M − 10ðσcÞ−2ÞeÞ þOð5Þð□M − 24ðσcÞ−2ÞeÞ; ðB4Þ

where the indices of the basis objects OðjÞ are suppressed
on the rhs, since they are always of the form fαβ; λ0ϵ0g.
Furthermore, also the argument σc of the scalar coefficient
functions is suppressed for brevity.
Now we can combine (B4) and (B3) in the Green’s

function equation and we can treat the prefactor for each
basis object OðjÞ as a separate scalar differential equation,

Oð1Þ∶ 3□Mãþ 2□Mb̃þ ð□M þ 4ðσcÞ−2Þd̃
− 8ðσcÞ−2c̃þ 2ðσcÞ−2ẽ ¼ ψ þ χ;

Oð2Þ∶ −□Mb̃þ 4ðσcÞ−2c̃ ¼ δð4ÞðxP − xQÞ þ ψ − 2χ;

Oð3Þ∶ − ð□M − 8ðσcÞ−2Þc̃þ 2ðσcÞ−2ẽ ¼ −σ þ ω;

Oð4Þ
L ∶ − ð□M − 8ðσcÞ−2Þd̃ − 2ðσcÞ−2ẽ ¼ σ þ ω;

Oð4Þ
R ∶ − 4ð□M − 8ðσcÞ−2Þc̃þ 3ð□M − 8ðσcÞ−2Þd̃

þ ð□M − 10ðσcÞ−2Þẽ ¼ σ;

Oð5Þ∶ − ð□M − 24ðσcÞ−2Þẽ ¼ τ;

where the scalar functions with a tilde are defined by the
original functions through the following rescaling

f̃j ¼ −
1

2κ2
fj:

This system of ordinary differential equations is in fact
soluble and the solutions to the five scalar coefficient
functions faðσcÞ; bðσcÞ; cðσcÞ; dðσcÞ; eðσcÞg away from
coincidence are worked out in the following. First, we
can rewrite the equations to

□Mã ¼ 1

3
ð−2□Mb̃ −□Md̃þ 8ðσcÞ−2c̃

− 4ðσcÞ−2d̃ − 2ðσcÞ−2ẽþ ψ þ χÞ;
□Mb̃ ¼ 4ðσcÞ−2c̃ − ψ þ 2χ;

□Mc̃ − 8ðσcÞ−2c̃ ¼ 2ðσcÞ−2ẽþ σ − ω;

□Md̃ − 8ðσcÞ−2d̃ ¼ −2ðσcÞ−2ẽ − σ − ω;

□Mẽ − 24ðσcÞ−2ẽ ¼ −τ; ðB5Þ

If we solve the equations from bottom to top, starting with ẽ,
the source terms on the rhs are always known.Notice that the
Dirac delta in the second equation of the system in (B5) has
been omitted in this step. The sixth equation related to the

tensor structure of Oð4Þ
L can be shown to be satisfied

automatically by the obtained solution,

ãðσcÞ ¼ a2 þ
e1

48ðσcÞ6 −
d1

2ðσcÞ4 þ
x1

2ðσcÞ4 −
a1

2ðσcÞ2

−
d2
2
ðσcÞ2 þ e2

48
ðσcÞ4;

b̃ðσcÞ ¼ b2 þ
e1

48ðσcÞ6 þ
c1

2ðσcÞ4 þ
x1

2ðσcÞ4 −
b1

2ðσcÞ2

þ c2
2
ðσcÞ2 þ e2

48
ðσcÞ4;

c̃ðσcÞ ¼ c2ðσcÞ2 þ
c1

ðσcÞ4 þ
e1 þ 3f1ðσcÞ4 þ e2ðσcÞ10

8ðσcÞ6 ;

d̃ðσcÞ ¼ d2ðσcÞ þ
d1

ðσcÞ4 þ
−e1 þ 5f1ðσcÞ4 − e2ðσcÞ10

8ðσcÞ6 ;

ẽðσcÞ ¼ e2ðσcÞ4 þ
e1

ðσcÞ6 −
24x1 þ f1ðσcÞ2

2ðσcÞ4 ; ðB6Þ16Here we had to introduce the auxiliary tensor structure
Oð4Þ

L ¼ nαnβgcλ0ϵ0 and Oð4Þ
R ¼ gcαβnλ0nϵ0 .
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which is also expected, since there are only five independent
tensor structures and the sixth only appeared because we
split the tensorOð4Þ into two parts during the calculation. For
the frame-adapted approach we also required that the
transversality condition is fulfilled. Acting the derivative
on any index of Gμν;λ0ϵ0 and using the ansatz (10) this
provides three conditions [22],

ã0 þ d̃0 þ 3ðσcÞ−1d̃− 2ðσcÞ−1c̃¼ 0;

ẽ0 þ 3ðσcÞ−1ẽþ d̃0 − 2ðσcÞ−1d̃− 2c̃0 þ 4ðσcÞ−1c̃¼ 0 and

−b̃0 − ðσcÞ−1d̃− c̃0 þ 4ðσcÞ−1c̃¼ 0:

Upon insertion of the solution (B6) for the scalar coeffi-
cients, these provide a set of eight constraints for the yet
undetermined coefficients,

−2c1 þ d1 − 2x1 ¼ 0;

a1 þ
f1
8

¼ 0;

−2c2 þ 4d2 ¼ 0;

e2 ¼ 0;

e1 ¼ 0;

−24b1 − 39f1 ¼ 0;

c2 − d2 ¼ 0;

240c1 − 24d1 þ 48x1 ¼ 0.

Thus the 12 coefficients for the general solution can be
reduced to 4 remaining coefficients,

ãðσcÞ ¼ a2 þ
f1

16ðσcÞ2 −
x1

2ðσcÞ4 ;

b̃ðσcÞ ¼ b2 −
13f1

16ðσcÞ2 þ
x1

2ðσcÞ4 ;

c̃ðσcÞ ¼ 3f1
8ðσcÞ2 ;

d̃ðσcÞ ¼ 5f1
8ðσcÞ2 þ

2x1
ðσcÞ4 ;

ẽðσcÞ ¼ −
12x1
ðσcÞ4 −

f1
2ðσcÞ2 .

With this the graviton propagator away from coincidence becomes:

−2κ2Gμν;λ0ϵ0 ðσcÞ ¼ gcμνgcλ0ϵ0

�
a2 þ

f1
16ðσcÞ2 −

x1
2ðσcÞ4

�
þ ðπcμλ0πcνϵ0 þ πcμϵ0π

c
νλ0 Þ

�
b2 −

13f1
16ðσcÞ2 þ

x1
2ðσcÞ4

�

þ ðnμnλ0πcνϵ0 þ nμnϵ0πcνλ0 þ nνnλ0πcμϵ0 þ nνnϵ0πcμλ0 Þ
3f1

8ðσcÞ2 þ ðnμnνgcλ0ϵ0 þ gcμνnλ0nϵ0 Þ
�

5f1
8ðσcÞ2 þ

2x1
ðσcÞ4

�

þ nμnνnλ0nϵ0
�
−
12x1
ðσcÞ4 −

f1
2ðσcÞ2

�
:

There remain four undetermined coefficients in the solution.
Since we employed as an approximation that the fluctuation
field should fall off fast enough for large distances, the
propagator should also vanish for large enough distances.
However, the two constant terms contradict that (at least in

Minkowski space) and should thus also vanish. As for the
constants f1 and x1, these are determined through the full
Greens function equation, which also considers the coinci-
dence term. Consequently, the current solution is still
missing the contributions from the ultralocal terms.
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