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In a (1þ 1)-dimensional scalar quantum field theory, we calculate the leading-order probability of
meson multiplication, which is the inelastic scattering process: kinkþmeson→ kink þ2 mesons. We also
calculate the differential probability with respect to the final meson momenta and the probability that one or
two of the final mesons recoils back towards the source. In the ultrarelativistic limit of the initial meson,
the total probability tends to a constant, which we calculate analytically in the ϕ4 model. At this order the
meson sector conserves energy on its own, while the incoming meson applies a positive pressure to the
kink. This is in contrast with the situation in classical field theory, where Romanczukiewicz and
collaborators have shown that, in the presence of a reflectionless kink, only meson fusion is allowed,
resulting in a negative radiation pressure on the kink.
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I. INTRODUCTION

Two-dimensional scalar models provide an ideal sandbox
for developing tools to treat real-world solitons. If a scalar
field is subjected to a potential with degenerateminima, then
the theory will enjoy kink and antikink solutions. In general,
at weak coupling, one can decompose a given configuration
into kinks and also perturbative, elementary quanta of the
scalar field, called mesons. An understanding of these
theories at weak coupling is then reduced to understanding
the interactions of mesons with one another, of kinks with
(anti)kinks and of kinks with mesons.
The interactions of mesons with one another is largely as

in the perturbative theory with no kinks, and so is well
understood. Interactions of kinks with (anti)kinks in
classical field theory are a rich field and have been a subject
of intense investigation since the discovery of resonance
windows [1] and related phenomena [2,3]. It was once
thought that these phenomena can be understood in terms of

the internal excitations of the kink, but it has been found in
Ref. [4] that resonances persist in the ϕ6 theory, whose kink
has no internal excitations. Instead, although certainly the
internal excitations do affect the scattering phenomenol-
ogy [5,6], it is now widely believed [7,8] that a decisive role
is played by the interactions of kinks with bulk excitations,
which are not localized to a single kink and in this sense are
related to mesons.
Kink-meson interactions have received relatively little

attention, despite being the simplest nonperturbative scat-
tering processes in such models. In classical field theory,
the mesons correspond to radiation. Using the perturbative
approach to the classical equations of motion for radiation
introduced in Ref. [9], incident radiation upon a kink was
studied in Refs. [10,11]. It was found that if the kink is
reflectionless, and the radiation is monochromatic with
frequency ω, then some of the transmitted radiation will
have a frequency of 2ω and this frequency doubling will
exert a negative pressure on the kink. In a quantized model
this is easy to understand, it represents the process
kinkþ 2mesons → kinkþmeson. One can show that
energy conservation among the mesons, which is exact
at leading order, implies that the final state meson has more
momentum than the two merged mesons, with the differ-
ence causing a negative recoil of the kink. This, including
higher-order meson merging, is the only process admit-
ted in the case of classical reflectionless kinks. In the case
of reflective kinks, Ref. [12] found that there is also
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meson reflection, yielding a positive contribution to the
pressure.
In the present article we consider a new process, meson

multiplication, in which a meson incident on a kink splits
into two mesons. This process appears to have no classical
counterpart, in the sense that the perturbative approach of
Ref. [9] is able to solve any initial value problem which
begins with frequency ω monochromatic radiation pertur-
batively, and it only yields radiation components whose
frequencies are integer multiples of ω.
We will thus show that meson-kink interactions have a

very different character in the quantum regime as compared
with the classical regime, with the former leading to
positive pressure and the second negative pressure. To
some extent this is not surprising, as an initial state
consisting of N mesons will yield a number of meson
multiplication events proportional to N, while the proba-
bility of meson fusion will be of order OðN2Þ. Thus one
expects meson fusion to dominate for sufficiently intense
meson sources.
We begin in Sec. II with a review of the linearized kink

perturbation theory of Refs. [13,14]. This quantum field
theoretic approach is much more economical than the tradi-
tional collective coordinate approach of Refs. [15,16], in
particular in the one-kink sector. Next in Sec. III we calculate
the probability of mesonmultiplication in a general ð1þ 1Þd
scalar field theory. In Sec. IV we apply this formula to two
reflectionless kinks: the sine-Gordon soliton and theϕ4 kink.
As a result of integrability, of course, this process does not
occur in the sine-Gordon case. In Sec. V, we numerically
evaluate various probabilities associated with meson multi-
plication in the ϕ4 model, such as probability densities and
recoil probabilities. Finally in Sec. VI we address quantum
corrections to the initial and final states, which are necessary
for them to travel without evolving when far from the kink.
We find that these do not contribute to the meson multipli-
cation probability at the order computed.

II. REVIEW

We will consider a 1þ 1d quantum field theory of a
Schrodinger picture scalar field ϕðxÞ and its conjugate
πðxÞ, defined by the Hamiltonian

H ¼
Z

dx∶HðxÞ∶a;

HðxÞ ¼ π2ðxÞ
2

þ ð∂xϕðxÞÞ2
2

þ Vð ffiffiffi
λ

p
ϕðxÞÞ
λ

: ð2:1Þ

Here λ is a coupling constant. We consider a potential V
with degenerate minima, so that the classical equations of
motion have a kink solution ϕðx; tÞ ¼ fðxÞ. Here ∶∶a is the
usual normal ordering at the mass scale m, defined by

m2 ¼ Vð2Þð
ffiffiffi
λ

p
fð�∞ÞÞ;

VðnÞð
ffiffiffi
λ

p
ϕðxÞÞ ¼ ∂

nVð ffiffiffi
λ

p
ϕðxÞÞ

ð∂ ffiffiffi
λ

p
ϕðxÞÞn : ð2:2Þ

We assume that the two values of the mass, as defined at
x ¼ ∞ and x ¼ −∞, are equal, as otherwise the vacuum on
one side of the kink will be a false vacuum [17].
As usual, creation operators can be constructed via a

plane wave decomposition of the fields. These create
elementary mesons. Acting them on the vacuum state
creates the Fock space of mesons, which we will call
the vacuum sector.1 Similarly, we will construct creation
operators which create mesons in the one-kink sector.
Configurations consisting of a single kink plus any number
of mesons will be called the one-kink sector.
Consider the unitary displacement operator

Df ¼ Exp
�
−i
Z

dxfðxÞπðxÞ
�
: ð2:3Þ

Acting Df on the vacuum,2 one arrives at a state in the one-
kink sector. As always, this state can be time-translated
using the Hamiltonian H.
Instead of this active transformation point of view, we

wish to view Df as a passive transformation of the Hilbert
space which preserves the states but transforms the oper-
ators. Let us explain this more precisely. We refer to the
usual representation of the Hilbert space as the defining
frame, in which H is the Hamiltonian which generates time
translations and whose eigenvalues are energies. We define
the kink frame as follows. The Dirac ket jψi in the kink
frame is defined to represent the state Dfjψi in the
defining frame.
Let us try to understand the properties of the kink frame.

First, consider a state represented by the ket jKi in the
defining frame. Then in the kink frame, this state will be
represented by the ket D†

fjKi. These are two representa-
tions of the same state and so clearly they the have the same
number of kinks. Now, if we used the same operator to
measure the number of kinks in both frames, then D†

fjKi
would have one less kink than jKi, which is not the case.
Therefore the kink number operator is different in the two

1Recall that we are considering theories with at least two
vacua, and so at least two vacuum sectors. When necessary to
avoid confusion, we will distinguish between the vacuum sectors
corresponding to the vacua at fð−∞Þ and fð∞Þ, which we will
call the left and right vacuum sectors.

2Here we have assumed that the vacuum corresponds to
ϕðx; tÞ ¼ 0. More generally, at a vacuum ϕðx; tÞ is equal to a
constant f and one needs to first act with the adjoint of the
displacement operator Exp½−if R dxπðxÞ�. In general we will
leave this correction to the displacement operator implicit, except
in Sec. VI where we need to distinguish between the two vacua on
the two sides of the kink.
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frames, in fact the two realizations of the kink number
operator are related by conjugation with Df, as is the case
with all operators. For example, the Hamiltonian and
momentum operators in the kink frame are the kink
Hamiltonian H0 and kink momentum P0

H0 ¼ D†
fHDf; P0 ¼ D†

fPDf: ð2:4Þ

To see this, note that if jKi has energy EK, so that

HjKi ¼ EKjKi; ð2:5Þ

then

H0D†
fjKi ¼ D†

fHjKi ¼ ED†
fjKi; ð2:6Þ

and so its eigenvalues yield the correct spectrum. Similarly,
e−iH

0t is the time evolution operator in the kink frame.
The reason that we introduce the kink frame is that, while

the defining-frame eigenvalue Eq. (2.5) is nonperturbative
if jKi is in the one-kink sector, the corresponding kink-
frame Eq. (2.6) is perturbative. Thus, one can solve for kink
states D†

fjKi using perturbation theory in the kink frame,
and then transform the answer back to the defining frame if
needed using Df. This has been done to obtain quantum
corrections to kink states and masses in Refs. [13,14].
What is the kink Hamiltonian H0? Let Qn be the n-loop

quantum correction to the kink mass. Then we may expand
H0 into terms H0

n which have n factors of ϕðxÞ and πðxÞ
when normal-ordered. One easily finds

H0
0 ¼ Q0; H0

1 ¼ 0;

H0
n>2 ¼ λ

n
2
−1
Z

dx
VðnÞð ffiffiffi

λ
p

fðxÞÞ
n!

∶ϕnðxÞ∶a: ð2:7Þ

What about H0
2? This is the most important term, as its

eigenstates are the starting points of the perturbative
expansion of the entire one-kink sector. To write it simply,
we will need a short digression.
The kink’s normal modes gðxÞ are the constant frequency

solutions of the classical equations of motion correspond-
ing to H0

2

Vð2Þð
ffiffiffi
λ

p
fðxÞÞgðxÞ ¼ ω2gðxÞ þ g00ðxÞ;

ϕðx; tÞ ¼ e−iωtgðxÞ: ð2:8Þ

There are three kinds of normal mode. The first is the real
zero-mode gBðxÞ which has zero frequency ωB ¼ 0. Next,
there are complex continuum modes gkðxÞ with frequencies
ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. Finally, some kinks enjoy discrete, real

shape modes gSðxÞ with 0 < ωS < m. We will fix their
normalization via the conditions g�k ¼ g−k and

Z
dxjgBðxÞj2¼1;

Z
dxgk1ðxÞg�k2ðxÞ¼2πδðk1−k2Þ;Z

dxgS1ðxÞg�S2ðxÞ¼δS1S2 : ð2:9Þ

As gðxÞ satisfies a Sturm-Liouville Eq. (2.8), they are a
complete basis of the space of bounded functions and
so can be used to decompose the Schrodinger picture
field [18]

ϕðxÞ ¼ ϕ0gBðxÞ þ
XZ dk

2π

�
B‡
k þ

B−k

2ωk

�
gkðxÞ;

πðxÞ ¼ π0gBðxÞ þ i
XZ dk

2π

�
ωkB

‡
k −

B−k

2

�
gkðxÞ; ð2:10Þ

where B‡
k ¼ B†

k=ð2ωkÞ and B−S ¼ BS. The symbol
PR

is an
integral over continuum modes k plus a sum over shape
modes S. We have decomposed ϕðxÞ and πðxÞ into
operators ϕ0; π0; B and B‡ which satisfy the algebra

½ϕ0; π0� ¼ i; ½BS1 ; B
‡
S2
� ¼ δS1S2 ;

½Bk1 ; B
‡
k2
� ¼ 2πδðk1 − k2Þ: ð2:11Þ

Using this basis, we can write H0
2 as

H0
2¼Q1þHfree; Hfree ¼

π20
2
þ
XZ dk

2π
ωkB

‡
kBk: ð2:12Þ

Now we can interpret the operators. ϕ0 and π0 are the
position and momentum of a free quantum mechanical
particle representing the center of mass of the kink. The
operators B‡

S and B‡
k create bound and continuum normal

modes, respectively. The ground state j0i0 of H0
2, which is

the kink frame first approximation to the kink ground state
j0i, is the simultaneous ground state of each of the quantum
mechanics terms in Eq. (2.12). Therefore it is the solution
of the conditions

π0j0i0 ¼ Bkj0i0 ¼ BSj0i0 ¼ 0: ð2:13Þ

A general one-meson, one-kink state is, at this leading
order, jki0 ¼ B‡

kj0i0 while acting on this with B‡
k0 yields a

two-meson, one-kink state

jkk0i0 ¼ B‡
kB

‡
k0 j0i0: ð2:14Þ

What has become of translation invariance? In the
defining frame, the time translations are generated by H
and spatial translations by P. These commute, and states
such as the ground kink and its Fock space excitations are
simultaneous eigenvectors of both. In the kink frame, they
are generated by H0 and P0. A quick calculation, using the
sign convention
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gBðxÞ ¼ −
f0ðxÞffiffiffiffiffiffi
Q0

p ð2:15Þ

yields

P0 ¼ Pþ
ffiffiffiffiffiffi
Q0

p
π0; P ¼ −

Z
dxπðxÞ∂xϕðxÞ: ð2:16Þ

Intuitively, P is the meson momentum and
ffiffiffiffiffiffi
Q0

p
π0 is the

kink momentum. These are not separately conserved in
the kink frame. However P0 and H0 commute and all of the
simultaneous eigenstates of P and H in the defining frame
are also simultaneous eigenstates of P0 andH0 when written
in the kink frame, with the same eigenvalues.
Linearized kink perturbation theory can be applied to

localized wave packets,3 where it has been used to compute
quantum corrections to form factors in Refs. [19,20]. In the
case of integrable models, these corrections reduce to the
known results of Refs. [21,22].
However in the present paper, we will instead be in

interested exclusively in translation-invariant states. These
are states which, in the kink frame, are annihilated by P0.
The fact that P0 yields zero, and not a constant, means that
we work in the center-of-mass frame. The kink ground
state, for example, is translation-invariant. These trans-
lation-invariant states are the quantum field theory ana-
logues of constant wave functions in quantum mechanics.4

Constant wave function states in quantum mechanics are
infinite superpositions of position eigenstates, with a
coefficient that is independent of the particle position.
Similarly, here the translation-invariant states are super-
positions of kink-meson complexes, with an infinite sum
over the position of the center of mass weighted by a
coefficient that is independent of this position. Therefore
the kink and the mesons are equally likely to be anywhere.
However P0 shifts the kink-meson system rigidly, and so
the distance between the kink and meson can be localized.
In 1þ 1 dimensions, massless scalar fields are an

obstruction to quantization [24]. Therefore we will consider
only models with m > 0. As a result, the force exerted by
the kink on the mesons is suppressed exponentially in the
distance times m. This means that at separations much
larger than 1=m, the meson and kink contributions to P0 are

essentially separately conserved. Furthermore, at such large
separations, the contribution of each meson to the momen-
tum is given simply by k, up to corrections of order OðλÞ.
This is not to say that the kink does not affect the mesons at
very large distances, but rather to say that a distant kink
serves only to shift the values of some translation-invariant
meson self-couplings, and it does not cause the mesons to
accelerate.

III. MESON MULTIPLICATION

A. Gaussian wave packets

Our initial condition will be a meson wave packet
centered at x0

ΦðxÞ ¼ Exp
�
−
ðx − x0Þ2

4σ2
þ ixk0

�
;

x0 ≪ −
1

m
;
1

k0
;
1

m
≪ σ ≪ jx0j: ð3:1Þ

The bounds on x0 and jx0j ensure that the initial wave
packet, which starts at x ¼ x0, does not overlap with the
kink, which is centered at x ¼ 0. The lower bounds on σ
ensure that the meson momentum is sufficiently strongly
peaked so that all components move towards the kink and
also we can approximate, as described below, the wave
packet to be monochromatic.
The evolution of the wave packet will be simpler after a

kind of Fourier transform

ΦðxÞ ¼
Z

dk
2π

αkg�kðxÞ; αk ¼
Z

dxΦðxÞgkðxÞ: ð3:2Þ

Unlike a Fourier transform, this transform is not with
respect to the plane waves, which are solutions of the free
equations of motion in the vacuum sector, but rather with
respect to the normal modes, which are solutions in the one-
kink sector. The shape modes and zero mode need not be
included in the transform, as they have support at jxj of
order Oð1=mÞ, where ΦðxÞ is negligibly small.
The initial one-kink, one-meson state jΦi0 can be

constructed, in the kink frame, in terms of the free kink
ground state j0i0 as

jΦi0 ¼
Z

dxΦðxÞjxi0 ¼
Z

dk
2π

αkjki0; jki0 ¼ B‡
kj0i0;

jxi0 ¼
Z

dk
2π

gkðxÞjki0: ð3:3Þ

Equation (3.3) is a choice of initial state. Our strategy, in
this section, will be to simply assume this initial condition
and evaluate the probability that the final state is in some
similarly arbitrarily defined subspace of the Hilbert
space. This is well defined. However, the claim that this
choice of initial state and final states is related to meson

3Here we are discussing wave packets in which the center of
mass of the kink-meson system is localized, breaking the rigid
translation symmetry, which simultaneously displaces the kink
and the mesons. These are distinct from the meson wave packets
that we will use below, in which the distance between the meson
and kink is localized but the states are invariant with respect to the
rigid translation operator P0.

4Like those, these states are not normalizable. Below we will
see that the same norms appear in the numerator and denominator
of various expressions and so will naively cancel them. In a
companion paper [23] we introduce an infrared regularization
scheme and show that this cancellation does not lead to
corrections at the order considered here.
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multiplication is nontrivial. In particular, quantum correc-
tions to these initial and final states enter at the same order
as the amplitude that we will calculate. We will discuss
these initial and final state corrections in Sec. VI.

B. Time evolution

The interactions in the kink frame are summarized by the
Hamiltonian terms in Eq. (2.7). These are organized into a
power series in

ffiffiffi
λ

p
. At order Oðλ0Þ, only Hfree contributes

to the evolution

jΦðtÞi0jOðλ0Þ ¼ e−iHfreetjΦi0 ¼
Z

dk
2π

αke−iωktjki0

¼
Z

dx
Z

dk
2π

αke−iωktg−kðxÞjxi0: ð3:4Þ

The coefficient

Φðx; tÞ ¼
Z

dk
2π

αke−iωktg−kðxÞ

¼
Z

dyΦðyÞ
Z

dk
2π

gkðyÞe−iωktg−kðxÞ ð3:5Þ

is, to this order, the profile of the meson wave packet. We
may write it in terms of the propagator G as

Φðx; tÞ ¼
Z

dyΦðyÞGðx; y; tÞ;

Gðx; y; tÞ ¼
Z

dk
2π

gkðyÞe−iωktg−kðxÞ: ð3:6Þ

For concreteness, consider a reflectionless kink. Then we
will see below that at x ≪ −1=m

αkg−kðxÞ ¼ 2σ
ffiffiffi
π

p
e−σ

2ðk−k0Þ2eik0xþiðk−k0Þðx−x0Þ: ð3:7Þ

Using the linear expansion of ωk at k ∼ k0, which will be
introduced in Eq. (3.22), one finds

Φðx; tÞ ¼ 2σ
ffiffiffi
π

p
eik0x−iωk0

t

×
Z

dk
2π

e
−iðk−k0Þ k0tωk0e−σ

2ðk−k0Þ2eiðk−k0Þðx−x0Þ

¼ eik0x−iωk0
tExp

�
−

1

4σ2

�
x − x0 −

k0t
ωk0

�
2
�
: ð3:8Þ

We thus identify x0 þ k0t=ωk0 as the position of the
leading order part of the localized wave packet at time t.
In particular, before nearing the kink, the meson wave
packet moves at a constant velocity of k0=ωk0 . It does not
accelerate.
At the next order, Oð ffiffiffi

λ
p Þ, the only term which contrib-

utes to meson multiplication is5

HI ¼
ffiffiffi
λ

p

4

Z
dk1
2π

dk2
2π

dk3
2π

V−k1k2k3
1

ωk1

B‡
k2
B‡
k3
Bk1 ;

V−k1k2k3 ¼
Z

dxVð3Þð
ffiffiffi
λ

p
fðxÞÞg−k1ðxÞgk2ðxÞgk3ðxÞ: ð3:9Þ

HI converts a one-meson state into a two-meson state

HIjk1i0 ¼
ffiffiffi
λ

p

4ωk1

Z
dk2
2π

dk3
2π

V−k1k2k3 jk2k3i0: ð3:10Þ

At time t, at order Oð ffiffiffi
λ

p Þ, the wave packet evolves to

jΦðtÞi0 ¼ e−iðHfreeþHIÞtjOð ffiffiλp ÞjΦi0

¼
X∞
n¼1

ð−itÞn
n!

ðHfree þHIÞnjOð ffiffiλp ÞjΦi0 ¼
X∞
n¼1

ð−itÞn
n!

Xn−1
m¼0

Hm
freeHIHn−m−1

free jΦi0

¼
Z

dk1
2π

dk2
2π

dk3
2π

ffiffiffi
λ

p

4
αk1V−k1k2k3

X∞
n¼1

ð−itÞn
n!

Xn−1
m¼0

ðωk2 þ ωk3Þmωn−m−2
k1

jk2k3i0

¼ −
i
ffiffiffi
λ

p

4

Z
dk1
2π

dk2
2π

dk3
2π

αk1
ωk1

V−k1k2k3Exp
�
−i

ωk1 þ ωk2 þ ωk3

2
t
� sin

�
ωk2

þωk3
−ωk1

2
t

�
ðωk2 þ ωk3 − ωk1Þ=2

jk2k3i0: ð3:11Þ

Here we dropped the Oðλ0Þ term which will not contribute
to the matrix elements below.
One may define the Dirac bra corresponding to a one-

kink, two-meson state (2.14) by

0hk2k3j ¼ ðB‡
k2
B‡
k3
j0i0Þ† ¼ 0h0j

Bk2

2ωk2

Bk3

2ωk3

: ð3:12Þ

5Here we have exchanged the order of the k and x integrals
with respect to the definition in Eqs. (2.7) and (2.10). These
integrals do not actually commute, and as a result V−k1k2k3
appears to be the integral of a nonintegrable function. It should
therefore be remembered that to make sense of this integral, one
needs to perform the k integration first. It turns out that this is
equivalent to first performing the x integration using a principal
value prescription which will be defined in Eq. (4.10).
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This leads to the normalization6

0hk2k3jk02k03i0 ¼ 0h0j0i0
4ωk2ωk3

ð2πδðk02 − k2Þ2πδðk03 − k3Þ

þ 2πδðk02 − k3Þ2πδðk03 − k2ÞÞ: ð3:13Þ
Our master formula for the unnormalized meson multipli-
cation amplitude is then

0hk2k3jΦðtÞi0
0h0j0i0

¼ −
i
ffiffiffi
λ

p

8ωk2ωk3

Z
dk1
2π

αk1
ωk1

V−k1k2k3

× Exp

�
−i

ωk1 þ ωk2 þ ωk3

2
t

�

×
sin ðωk2

þωk3
−ωk1

2
tÞ

ðωk2 þ ωk3 − ωk1Þ=2
: ð3:14Þ

C. Amplitude at finite times

Writing the amplitude as

0hk2k3jΦðtÞi0 ¼
ffiffiffi
λ

p

8ωk2ωk3

Z
dk1
2π

αk1
ωk1

V−k1k2k3

×
e−iðωk2

þωk3
Þt − e−iωk1

t

ðωk2 þ ωk3 − ωk1Þ 0h0j0i0; ð3:15Þ

we may factor out an overall phase and constant

Ak2k3ðtÞ ¼
eiðωk2

þωk3
Þt

0h0j0i0 0hk2k3jΦðtÞi0

¼
ffiffiffi
λ

p

8ωk2ωk3

Z
dk1
2π

αk1
ωk1

V−k1k2k3
1 − eiðωk2

þωk3
−ωk1

Þt

ðωk2 þ ωk3 − ωk1Þ
:

ð3:16Þ

At t ¼ 0, the matrix element vanishes as the sine in the
numerator of Eq. (3.14) vanishes. Taking the time deriva-
tive one finds

_Ak2k3ðtÞ ¼ −i
ffiffiffi
λ

p

8ωk2ωk3

Z
dk1
2π

αk1
ωk1

V−k1k2k3e
iðωk2

þωk3
−ωk1

Þt:

ð3:17Þ

This can be simplified with a few good approximations.

1. Reflectionless kinks

First of all, jx0j ≫ σ and jx0j ≫ 1=m and so the
Gaussian factor in αk1 has support in the large jxj region,

where g�k1 is a sum of plane waves. Let us first consider the
case of a reflectionless kink, in which case

gkðxÞ¼
�
Bke−ikx if x≪−1=m
Dke−ikx if x≫ 1=m

;

jBkj2¼ jDkj2¼ 1; B�
k ¼B−k; D�

k ¼D−k; ð3:18Þ

where the phases Bk and Dk vary on scales of order OðmÞ
in k-space

∂kBk

Bk
∼
∂kDk

Dk
∼O

�
1

m

�
: ð3:19Þ

As x0 ≪ −1=m, this approximation yields

αk1 ¼ 2σ
ffiffiffi
π

p
Bk1e

−σ2ðk1−k0Þ2eiðk0−k1Þx0 : ð3:20Þ

Next, let us consider t ≫ 1=m. We will not assume that
the time is big enough for the meson to arrive at the kink,
so, with this approximation, the process will be roughly on-
shell, and so ωk1 can be replaced with ωk2 þ ωk3 . This
needs to be done delicately, as terms of orderωk2þωk3−ωk1
have appeared in various places. Each expression should be
treated as an expansion in powers of ωk2 þ ωk3 − ωk1 .
However, this replacement can safely by done on the ωk1 in
the denominator of Eq. (3.17), as this term is of zeroth order
in ωk2 þ ωk3 − ωk1 .
With these two approximations we find

_Ak2k3ðtÞ ¼ −i2σ
ffiffiffi
π

p ffiffiffi
λ

p

8ωk2ωk3ðωk2 þ ωk3Þ

×
Z

dk1
2π

Bk1e
−σ2ðk1−k0Þ2eiðk0−k1Þx0

×

�Z
dyVð3Þð

ffiffiffi
λ

p
fðyÞÞg−k1ðyÞgk2ðyÞgk3ðyÞ

�

× eiðωk2
þωk3

−ωk1
Þt: ð3:21Þ

k1 is always close to k0, as σ ≫ 1=m, and so we may
expand

ωk1 ¼ ωk0 þ ðk1 − k0Þ
k0
ωk0

; Bk1 ¼ Bk0 ; g−k1 ¼ g−k0 :

ð3:22Þ

Inserting Eq. (3.22) into Eq. (3.21),

6The matrix elements 0hk2k3jk02k03i0 and 0h0j0i0 are both
infinite, however only their ratio will appear in the probability
of meson multiplication. In Ref. [23] we show that, to leading
order, this ratio agrees with the naive calculation in Eq. (3.13).
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_Ak2k3ðtÞ ¼ −i2σ
ffiffiffi
π

p
Bk0

ffiffiffi
λ

p
eiðωk2

þωk3
−ωk0

Þt

8ωk2ωk3ðωk2 þ ωk3Þ

×

�Z
dyVð3Þð

ffiffiffi
λ

p
fðyÞÞg−k0ðyÞgk2ðyÞgk3ðyÞ

�

×
Z

dk1
2π

e−σ
2ðk1−k0Þ2e

iðk0−k1Þðx0þ k0
ωk0

tÞ

¼ −iBk0

ffiffiffi
λ

p
eiðωk2

þωk3
−ωk0

Þt

8ωk2ωk3ðωk2 þ ωk3Þ

× Exp

�
−
ðx0 þ k0

ωk0
tÞ2

4σ2

�
V−k0k2k3 : ð3:23Þ

Note that in replacing V−k1k2k3 by V−k0k2k3 we have assumed
that the k1-dependence of V is on scales much broader than
1=σ. This assumption breaks down near k1 þ k2 þ k3 ¼ 0

if Vð3Þð ffiffiffi
λ

p
fðxÞÞ does not have compact support, as V may

have a δ function term and also a pole. These occur far from
the mass shell, and so do not reflect any interesting
dynamical processes, but rather are an artifact of the fact
that our initial condition (3.3) did not include the quantum
corrections necessary to propagate rigidly far from the kink.
We will return to this point in Sec. VI.

2. Reflective kinks

So far we have only considered reflectionless kinks, such
as those of the sine-Gordon and ϕ4 models. However, in
general kinks are reflective, and so asymptotically the
normal modes are of the form

gkðxÞ ¼
�
Bke−ikx þ Ckeikx if x≪−1=m
Dke−ikx þ Ekeikx if x≫ 1=m

jBkj2 þ jCkj2 ¼ jDkj2 þ jEkj2 ¼ 1; B�
k ¼ B−k;

C�k ¼ C−k; D�
k ¼D−k; E�

k ¼ E−k: ð3:24Þ

Again, our initial wave packet is supported near x0≪−1=m
and so this approximation allows us to simplify the
coefficients αk1

αk1 ¼ 2σ
ffiffiffi
π

p ½Bk1e
−σ2ðk1−k0Þ2eiðk0−k1Þx0

þ Ck1e
−σ2ðk1þk0Þ2eiðk0þk1Þx0 �: ð3:25Þ

Substituting this into Eq. (3.17) one finds

_Ak2k3ðtÞ ¼ −i2σ
ffiffiffi
π

p ffiffiffi
λ

p

8ωk2ωk3ðωk2 þ ωk3Þ

×
Z

dk1
2π

V−k1k2k3e
iðωk2

þωk3
−ωk1

Þt

× ½Bk1e
−σ2ðk1−k0Þ2eiðk0−k1Þx0

þ Ck1e
−σ2ðk1þk0Þ2eiðk0þk1Þx0 �: ð3:26Þ

Recall that we have fixed k0 > 0 so that the wave packet
moves to the right, towards the kink. In the reflectionless
case this implied that k1 > 0. Now we see that there are two
Gaussian factors, the first is supported at k1 ∼ k0 but the
second is instead supported at k1 ∼ −k0. Thus, while
the initial motion of the meson is always to the right, in
the reflective case this corresponds to two distinct regions
in the one-meson Fock space.
As a result, we will need to consider the expansion of k1

about both k0 and also −k0, which leads to the correspond-
ing expansion for the frequencies

ωk1 ¼ ωk0 þ ð�k1 − k0Þ
k0
ωk0

: ð3:27Þ

Inserting these two expansions into Eq. (3.26), we obtain

_Ak2k3ðtÞ ¼ −i2σ
ffiffiffi
π

p ffiffiffi
λ

p
eiðωk2

þωk3
−ωk0

Þt

8ωk2ωk3ðωk2 þ ωk3Þ
Z

dk1
2π

V−k1k2k3

× ½Bk1e
−σ2ðk1−k0Þ2e

iðk0−k1Þðx0þ k0
ωk0

tÞ

þ Ck1e
−σ2ðk1þk0Þ2e

iðk1þk0Þðx0þ k0
ωk0

tÞ�

¼ −i
ffiffiffi
λ

p
eiðωk2

þωk3
−ωk0

Þt

8ωk2ωk3ðωk2 þ ωk3Þ

× Exp

�
−
ðx0 þ k0

ωk0
tÞ2

4σ2

�
Ṽ−k0k2k3 ; ð3:28Þ

where we have defined the shorthand

Ṽ−k0k2k3 ¼ Bk0V−k0k2k3 þ C�k0Vk0k2k3 : ð3:29Þ

3. Remarks

As a result of the Gaussian factor, this time derivative of
the amplitude is only appreciable when the exponent

xt ¼ x0 þ
k0
ωk0

t ð3:30Þ

is small, which occurs at time

t ∼ t1 ¼ −
ωk0

k0
x0; ð3:31Þ

when the meson strikes the kink.
In particular, since t ≥ 0, we see that this requires k0 and

x0 to have opposite signs, which of course is necessary for
the meson to move towards the kink. As Að0Þ ¼ 0, we learn
that the amplitude AðtÞ vanishes at t ≪ t1, before the
collision.
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D. Amplitude in the asymptotic future

1. The large time limit

We are interested in the large time limit, when the meson
has already scattered with the kink. At large times t we may
integrate Eq. (3.28) to obtain

lim
t→∞

Ak2k3ðtÞ ¼ −i
ffiffiffi
λ

p
Ṽ−k0k2k3

8ωk2ωk3ðωk2 þ ωk3Þ

×
Z

∞

−∞
dtExp

�
−
ðx0 þ k0

ωk0
tÞ2

4σ2

�
eiðωk2

þωk3
−ωk0

Þt

¼ −i
ffiffiffi
λ

p
Ṽ−k0k2k3

4ωk2ωk3ðωk2 þ ωk3Þ
σ
ffiffiffi
π

p ωk0

k0

× Exp

�
−σ2

ω2
k0

k20
ðωk2 þ ωk3 − ωk0Þ2

− iðωk2 þ ωk3 − ωk0Þ
ωk0

k0
x0

�
: ð3:32Þ

Therefore,

lim
t→∞

j0hk2k3jΦðtÞi0j2
j0h0j0i0j2

¼ πλσ2jṼ−k0k2k3 j2
16ω2

k2
ω2
k3
ðωk2 þ ωk3Þ2

�
ωk0

k0

�
2

× Exp

�
−2σ2

ω2
k0

k20
ðωk2 þ ωk3 − ωk0Þ2

�
: ð3:33Þ

Let us define the on-shell initial momentum kI by

kI ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk2 þ ωk3Þ2 −m2

q
ð3:34Þ

so that ωkI ¼ ωk2 þ ωk3 . The Gaussian factor in Eq. (3.33)
has support at ωk0 ∼ ωkI . Therefore, as k0 and kI are both
defined to be positive, in the region in k2 − k3-space with
the largest contribution to the probability, k0 ∼ kI . We thus
expand

k0 ¼ kI þ ðk0 − kIÞ ð3:35Þ

and keep only the leading nonvanishing term in each
expression. This yields

lim
t→∞

j0hk2k3jΦðtÞi0j2
j0h0j0i0j2

¼ πλσ2jṼ−kIk2k3 j2
16ω2

k2
ω2
k3
k2I

Exp

�
−2σ2

ω2
kI

k2I
ðωkI − ωk0Þ2

�
: ð3:36Þ

Using the same expansion as in Eq. (3.27) this simplifies
further to

lim
t→∞

j0hk2k3jΦðtÞi0j2
j0h0j0i0j2

¼πλσ2jṼ−kIk2k3 j2
16ω2

k2
ω2
k3
k2I

e−2σ
2ðkI−k0Þ2 : ð3:37Þ

2. A faster derivation

A faster approach, which however sheds no light on the
evolution at intermediate times, is to directly take the
t → ∞ limit of Eq. (3.14). Using the identity

lim
t→∞

sin ðωk2
þωk3

−ωk1
2

tÞ
ðωk2 þ ωk3 − ωk1Þ=2
¼ 2πδðωk2 þ ωk3 − ωk1Þ
¼ ωkI

kI
ð2πδðk1 − kIÞ þ 2πδðk1 þ kIÞÞ; ð3:38Þ

the amplitude can be simplified to

lim
t→∞

0hk2k3jΦðtÞi0
0h0j0i0

¼−
i
ffiffiffi
λ

p

8ωk2ωk3kI
e−iωkI

tðαkIV−kIk2k3 þα−kIVkIk2k3Þ: ð3:39Þ

As kI and k0 are both large and positive, the Gaussians in
Eq. (3.25) with ðkI þ k0Þ are exponentially suppressed,
leaving only the BkI term in αkI and the C�kI term in α−kI .
Altogether we find

lim
t→∞

0hk2k3jΦðtÞi0
0h0j0i0

¼ −
iσ

ffiffiffiffiffi
πλ

p

4ωk2ωk3kI
e−iωkI

te−σ
2ðk0−kIÞ2 Ṽ−kIk2k3

ð3:40Þ

in agreement with the longer derivation above.

E. The probability

The probability P that jΦðtÞi0, the state at time t, is in a
given subspace of the Hilbert space is given by

P ¼ 0hΦðtÞjPjΦðtÞi0
0hΦðtÞjΦðtÞi0

; ð3:41Þ

where P is a projector onto that subspace.
We are interested in the probabilityPtot that the final state

has two mesons, corresponding to the projector

Ptotjk2k3i0 ¼ jk2k3i0; k2; k3 ∈ R: ð3:42Þ

We are also interested in the corresponding probability
density Pdiffðk2; k3Þ that the final mesons have momenta k2
and k3. This is related to the total probability by
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Ptot ¼
1

2

Z
dk2dk3Pdiffðk2; k3Þ; ð3:43Þ

where the factor of 1=2 results from the fact that jk2k3i and
jk3k2i represent the same state. Pdiff is defined by a formula
similar to (3.41) in which the operator Pdiff annihilates all
states with k not equal to k2 and k3. It is not a projector, as it
has an infinite eigenvalue. These two equations are easily
solved, yielding the operators

Pdiffðk2; k3Þ ¼
ωk2ωk3

π20h0j0i0
jk2k3i00hk2k3j;

Ptot ¼
1

h0j0i0

Z
dk2dk3

ωk2ωk3

2π20
jk2k3i00hk2k3j:

ð3:44Þ

Consider a general reflective kink with αk1 of the form of
Eq. (3.25):

0hΦðtÞjΦðtÞi0 ¼ 0hΦjΦi0 ¼
Z

dk1
2π

αk1α
�
k1

0h0j0i0
2ωk1

¼
ffiffiffiffiffiffi
2π

p
σ 0h0j0i0

2ωk0

; ð3:45Þ

where we used ωk1 ∼ ωk0 .

The probability density at a large time t is

Pdiffðk2; k3Þ ¼ lim
t→∞

0hΦðtÞjPdiffðk2; k3ÞjΦðtÞi0
0hΦðtÞjΦðtÞi0

¼ lim
t→∞

ffiffiffi
2

p
ωk0ωk2ωk3

π5=2σ

j0hk2k3jΦðtÞi0j2
j0h0j0i0j2

¼ λσωk0 jṼ−kIk2k3 j2
8
ffiffiffi
2

p
π3=2ωk2ωk3k

2
I

e−2σ
2ðkI−k0Þ2 : ð3:46Þ

Note that, by definition, the continuum modes have k real
and so this equation only holds when ωk2 ;ωk3 ≥ m.
Integrating this yields the total probability of meson
multiplication at a large time t

Ptot ¼
1

2

Z
dk2dk3Pdiffðk2; k3Þ

¼ λσωk0

16
ffiffiffi
2

p
π3=2

Z
dk2dk3

jṼ−kIk2k3 j2
ωk2ωk3k

2
I
e−2σ

2ðkI−k0Þ2 : ð3:47Þ

As σ ≫ 1=m we may approximate the Gaussian to be a
Dirac delta function, yielding

Pdiffðk2; k3Þ ¼
λωkI jṼ−kIk2k3 j2
16πωk2ωk3k

2
I
δðkI − k0Þ

Ptot ¼
λωk0

32πk20

Z
dk2dk3

jṼ−kIk2k3 j2
ωk2ωk3

δðkI − k0Þ

¼ λ

32πk0

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk0

−mÞ2−m2
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk0

−mÞ2−m2
p dk2

jṼ−k0;k2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk0

−ωk2
Þ2−m2

p j2 þ jṼ−k0;k2;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk0

−ωk2
Þ2−m2

p j2

ωk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk0 − ωk2Þ2 −m2

q ; ð3:48Þ

where we used

∂kI
∂k3

¼ ωk0k3
k0ωk3

¼
ωk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk0 − ωk2Þ2 −m2

q
k0ðωk0 − ωk2Þ

: ð3:49Þ

IV. EXAMPLES: THE SINE-GORDON SOLITON AND ϕ4 KINK

A. The Sine-Gordon soliton

In the sine-Gordon theory, defined by

Vð
ffiffiffi
λ

p
ϕðxÞÞ ¼ m2ð1 − cosð

ffiffiffi
λ

p
ϕðxÞÞÞ; ð4:1Þ

the symbol Vk1k2k3 is given in Ref. [14]

Vk1k2k3 ¼
πi

ffiffiffi
λ

p

4
signðk1k2k3Þsech

�
πðk1þk2þk3Þ

2m

�
×
ðωk1 þωk2 þωk3Þðωk1 þωk2 −ωk3Þðωk1 þωk3 −ωk2Þðωk2 þωk3 −ωk1Þ

ωk1ωk2ωk3

:

ð4:2Þ
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As a result

V�kIk2k3 ¼ 0; ð4:3Þ

because it is proportional to ωk2 þ ωk3 − ωkI ¼ 0. This in
turn implies that

Ṽ−kIk2k3 ¼ 0; ð4:4Þ

as it is a linear combination (3.29) of V�kIk2k3 .
Equation (3.46) then implies that the differential probability
vanishes for all k2 and k3.
This is to be expected; the integrability of the sine-

Gordon model implies that the number of mesons is
conserved and so meson multiplication does not appear
in the S-matrix.

B. The ϕ4 kink

1. Review

Wewill need an expression for Ṽ−k1k2k3 in the case of the
ϕ4 double-well model, with potential

Vð
ffiffiffi
λ

p
ϕðxÞÞ ¼ λϕ2ðxÞ

4
ð
ffiffiffi
λ

p
ϕðxÞ −

ffiffiffi
2

p
mÞ2: ð4:5Þ

This requires a knowledge of Bk, Ck and Vk1k2k3 . The first
two are easily read off of the normal modes

gkðxÞ ¼
e−ikx

ωk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ β2

p ½k2 − 2β2 þ 3β2sech2ðβxÞ

− 3iβk tanhðβxÞ�; β ¼ m
2
: ð4:6Þ

At x ≪ −1=β this becomes a plane wave with phase

Bk ¼
k2 − 2β2 þ 3iβk

ωk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ β2

p ; Ck ¼ 0: ð4:7Þ

As the ϕ4 kink is reflectionless, the product BkCk van-
ishes [25].
Using Eq. (3.29) and jBkj ¼ 1, the reflectionless con-

dition thus leads to the simplification

jṼ−k0k2k3 j ¼ jV−k0k2k3 j: ð4:8Þ

We then need only calculate Vk1k2k3 . In Ref. [26] this is
calculated in terms of a sum of integrals over x; however,
those integrals are not evaluated because that paper was
concerned with infrared divergences which required a
delicate treatment of the integrand. We will see a similar
infrared divergence here, arising from the fact that the
3-point interaction responsible for meson multiplication
has a nonzero constant norm even far from the kink. Meson

multiplication far from the kink is suppressed only because
the corresponding matrix element oscillates quickly, lead-
ing to destructive interference when the initial momentum
is integrated over even a very small interval.
Let us begin by reviewing the expression for Vk1k2k3 in

Ref. [26]. First, the third derivative of the potential is

Vð3Þð
ffiffiffi
λ

p
fðxÞÞ ¼ 6

ffiffiffi
2

p
β tanhðβxÞ: ð4:9Þ

Note that it is of order Oð ffiffiffi
λ

p Þ, and so that will be the order
of our amplitude. Also notice that it tends to a nonzero
constant at large x and −x.
We will perform the x-integrals using the identities

Z
dxe−ikxsech2nðβxÞ

¼
8<
:

2πδðkÞ if n ¼ 0

π
ð2n−1Þ!k

hQ
n−1
j¼0

�
k2

β2
þ ð2jÞ2

	i
csch

�
πk
2β

�
if n > 0Z

dxe−ikxsech2nðβxÞ tanhðβxÞ

¼ −i
π

ð2nÞ!β
�Yn−1
j¼0

�
k2

β2
þ ð2jÞ2

��
csch

�
πk
2β

�
: ð4:10Þ

Note that in the n ¼ 0 cases of the two integrals, the
integrand does not become small at large jxj. These
formulas correspond to a kind of principal value prescrip-
tion for evaluating the integrals. We have checked that this
principal value prescription is indeed the right one, as it
yields the same answer as would be achieved by integrating
over a small region in k1 with a smooth weight function.
Such a coherent integral was indeed present in our master
formula (3.14) for the amplitude; it is the integral over the
momentum in the initial wave packet. The fact that the k
integral should be performed before the x integral was
explained in Footnote 5.
Vk1k2k3 consists of a sum of terms which are each

integrals over x of sech2IðβxÞ tanhJðβxÞ where I ∈
f0; 1; 2; 3g and J ∈ f0; 1g. The case I ¼ J ¼ 0 yields a
δðkÞ, where we have defined

k ¼ k1 þ k2 þ k3: ð4:11Þ

As ωkI ¼ ωk2 þ ωk3 , k is not zero and so this term vanishes.
We will keep it, as our expression for Vk1k2k3 may be useful
for future problems; however, we will separate it as it will
not contribute to meson multiplication at tree level. Thus
we decompose
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Vk1k2k3 ¼ V00
k1k2k3

þ V̂k1k2k3 ;

V00
k1k2k3

¼ −
9
ffiffiffi
2

p
iβ2k1k2k3ð6β2 þ k21 þ k22 þ k23Þ2πδðkÞ

ωk1ωk2ωk3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k23

p ;

ð4:12Þ

where V00 contains all of the δðkÞ terms and only V̂ will be
relevant below.
Let us define the symbols u by

V̂k1k2k3 ¼
6
ffiffiffi
2

p
πβcschðπk

2βÞ
ωk1ωk2ωk3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k23

p
×
X1
J¼0

X3
I¼1−J

uIJk1k2k3 ; ð4:13Þ

where the sum does not include I ¼ J ¼ 0, as that term is
in V00.
Each uIJ is defined to be the term in Vk1k2k3 with an x

integral of eixksech2IðβxÞ tanhJðβxÞ. Let us define the
symbol Φ to summarize the coefficients

uIJk1k2k3 ¼
sinhðπk

2βÞ
π

ΦIJ
k1k2k3

Z
dxe−ixksech2IðβxÞtanhJðβxÞ:

ð4:14Þ

Reference [26] provided the components of Φ

Φ10
k1k2k3

¼3iβ½16β4S11þβ2ð−5S212 −18S13ÞþS13S
1
2�

Φ20
k1k2k3

¼9iβ3½−7β2S11þS212 þ3S13�; Φ30
k1k2k3

¼27iβ5S11

Φ01
k1k2k3

¼−8β6þβ4ð18S12þ4S21Þþβ2ð−2S22−9S13S
1
1ÞþS23

Φ11
k1k2k3

¼3β2½12β4þβ2ð−15S12−4S21ÞþðS22þ3S13S
1
1Þ�

Φ21
k1k2k3

¼9β4½−6β2þð3S12þS21Þ�; Φ31
k1k2k3

¼27β6 ð4:15Þ

in terms of symmetric combinations of the k’s

Sn1 ¼ kn1þkn2þkn3; Sn2 ¼ðk1k2Þnþðk1k3Þnþðk2k3Þn;
Sn3 ¼ðk1k2k3Þn

Smn
2 ¼ km1 k

n
2þkm1 k

n
3þkm2 k

n
3þkn1k

m
2 þkn1k

m
3 þkn2k

m
3 : ð4:16Þ

2. The calculation

We may now perform the x integrals using Eq. (4.10):

uI0k1k2k3 ¼ ΦI0
k1k2k3

1

ð2I − 1Þ!k
�YI−1
j¼0

�
k2

β2
þ ð2jÞ2

��

uI1k1k2k3 ¼ ΦI1
k1k2k3

−i
ð2IÞ!β

�YI−1
j¼0

�
k2

β2
þ ð2jÞ2

��
: ð4:17Þ

In particular, we find

u10k1k2k3 ¼ 3ik

�
16β3S11þβð−5S212 −18S13Þþ

1

β
S13S

1
2

�

u20k1k2k3 ¼
3ik
2

�
k2

β2
þ4

�
½−7β3S11þβS212 þ3βS13�

u30k1k2k3 ¼
9ik
40

�
k4

β4
þ20

k2

β2
þ64

�
½β3S11�

u01k1k2k3 ¼ i

�
8β5þβ3ð−18S12−4S21Þþβ1ð2S22þ9S13S

1
1Þ−

S23
β

�

u11k1k2k3 ¼
3ik2

2

�
−12β3þβð15S12þ4S21Þþ

1

β
ð−S22−3S13S

1
1Þ
�

u21k1k2k3 ¼
3ik2

8

�
k2

β2
þ4

�
½6β3þβð−3S12−S21Þ�

u31k1k2k3 ¼−
3ik2

80

�
k4

β4
þ20

k2

β2
þ64

�
β3: ð4:18Þ

Reassembling these components, we finally arrive at

V̂k1k2k3 ¼
6
ffiffiffi
2

p
πcschðπðk1þk2þk3Þ

2β Þ
ωk1ωk2ωk3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k23

p
×

�
8iβ6 þ 5iβ4ðk21 þ k22 þ k23Þ

þ 2iβ2ðk21k22 þ k21k
2
3 þ k22k

2
3Þ

þ i

�
3

16
ð−k61 − k62 − k63 þ k41k

2
2 þ k41k

2
3 þ k42k

2
3

þk42k
2
1 þ k43k

2
1 þ k43k

2
2Þ þ

1

8
k21k

2
2k

2
3

�

: ð4:19Þ

Recall that the meson multiplication probability density
(3.46) and total probability (3.48) only require the
special case k1 ¼ −kI. In this case the coefficients sim-
plify to
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V−kIk2k3 ¼ −
48

ffiffiffi
2

p
πiωk2ωk3ωkIcschðπðk2þk3−kIÞ

m Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k22 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k23 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2I þm2

p : ð4:20Þ

For completeness we provide Ṽ:

Ṽ−kIk2k3 ¼ BkIV−kIk2k3 þ C−kIVkIk2k3 ¼
k2I − 2β2 þ 3iβkI
ωkI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2I þ β2

p V−kIk2k3

¼ 48
ffiffiffi
2

p
πωk2ωk3ðið3m2 − 2ω2

kI
Þ þ 3mkIÞcschðπðk2þk3−kIÞ

m Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k22 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k23 þm2

p
ð4k2I þm2Þ ; ð4:21Þ

where we used Eqs. (4.7) and (3.34). However, as a result of
(3.29), at tree level we only need the absolute value jṼj
which is equal to jV̂j for a reflectionless kink and to jVj
at k1 ∼ −kI.
Substituting Eq. (4.21) into Eq. (3.46), we find the

probability density and total probability for meson multi-
plication. Our main result is the following analytic expres-
sion for the probability density:

Pdiffðk2; k3Þ ¼
288

ffiffiffiffiffiffi
2π

p
λσωk0ωk2ωk3ω

2
kI
csch2ðπðk2þk3−kIÞ

m Þ
k2I ð4k22 þm2Þð4k23 þm2Þð4k2I þm2Þ

× e−2σ
2ðkI−k0Þ2 : ð4:22Þ

In the limit σ → ∞ of a monochromatic initial meson this
yields

Pdiffðk2; k3Þ ¼
λωkI jṼ−kIk2k3 j2
16πωk2ωk3k

2
I
δðkI − k0Þ

¼ 288πλωk2ωk3ω
3
kI
csch2ðπðk2þk3−kIÞ

m Þ
k2I ð4k22 þm2Þð4k23 þm2Þð4k2I þm2Þ
× δðkI − k0Þ: ð4:23Þ

As expected, it is order OðλÞ. The Dirac δ function imposes
exact energy conservation. On the other hand, momentum
conservation among mesons is imposed by the csch. This is
not a δ function, and so the momentum can be transferred
between themesons and the kink.Note that the condition that
k2 and k3 be real implies that this equation is only valid when

m ≤ ωk2 ; ωk3 ≤ ωk0 −m: ð4:24Þ
Integrating over k3, one arrives at the probability density

Pdiffðk2Þ ¼
Z

dk3Pdiffðk2; k3Þ

¼ 288πλωk2ω
2
k0
ðωk0 − ωk2Þ2

k0ð4k22 þm2Þð4ðωk0 − ωk2Þ2 − 3m2Þð4k20 þm2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk0 − ωk2Þ2 −m2

q

×

"
csch2

 
πðk2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk0 − ωk2Þ2 −m2

q
− k0Þ

m

!
þcsch2

 
πðk2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk0 − ωk2Þ2 −m2

q
− k0Þ

m

!#
: ð4:25Þ

The last term in the denominator leads to a pole at the
threshold k3 ¼ 0, corresponding to the fact that the Jaco-
bian factor dk3=dk2 diverges. At finite σ this pole is
smeared out. The two csch terms correspond to the k3
traveling in the direction of the original meson or bouncing
back, and their arguments are the momentum transfer
between the mesons and the kink.

In the ultrarelativistic limit k0 ≫ m, Eq. (4.23) becomes

Pdiffðk2; k3Þ ¼
9πλcsch2ð πm

2k2k3kI
ðk2I − k2k3ÞÞ

2k2k3kI
δðkI − k0Þ

¼ 18λk2k3k0
πm2ðk20 − k2k3Þ2

δðk2 þ k3 − k0Þ: ð4:26Þ
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This is supported when k2, k3 and kI are all of order k0, and
so it is proportional to 1=k0. To obtain the total probability,
one integrates over the k2 − k3 plane, or more precisely the
line k2 þ k3 ¼ k0 with k2, k3 > 0. The length of this line is
of order Oðk0Þ, and so the total probability asymptotes to a
constant at large k0. Letting k2 ¼ k0x we find that in the
ultrarelativistic limit

Ptot ¼
9λ

πm2

Z
1

0

dx
xð1 − xÞ

ð1 − xþ x2Þ2 ¼
λ

m2

�
6

π
−

2ffiffiffi
3

p
�

∼ 0.755
λ

m2
: ð4:27Þ

V. NUMERICAL RESULTS FOR THE ϕ4 KINK

In this section we will numerically evaluate some of the
probabilities just calculated for the ϕ4 double-well model.
At order OðλÞ the probability density Pdiff and the total

probability Ptot are proportional to λ, so in the plots we will
divide them by λ. We use the parameters m ¼ 1, σ ¼ 20.
We have numerically checked that as long as the value of σ
satisfies 1=m ≪ σ, the value of σ will not affect the
numerical results.
We begin in Fig. 1 by plotting the probability density

Pdiffðk2Þ ¼
R
dk3Pdiffðk2; k3Þ, where Pdiffðk2; k3Þ is taken

from Eq. (4.22), that one of the two final mesons will have
momentum k2. The shoulder on the right of each curve is
not a numerical artifact. It results from the fact that, with
fixed k0, the Jacobian factor in the k3 integral diverges at
threshold for the production of the corresponding meson.
This would lead to a pole in the limit σ → ∞, but here this
pole is smeared by the momentum width of the initial wave
packet.
Next, in Fig. 2, we plot the total probability for meson

multiplication, as a function of the initial meson momen-
tum k0. Note that, at high k0, the probability asymptotes to
the value found in Eq. (4.27). Finally in Fig. 3 we plot the probability, Pn, that

precisely n of the final mesons have k < 0, so that they
travel backwards from the kink. This plot shows that, at
order OðλÞ, even reflectionless kinks lead to some reflec-
tion. However, as might be expected, this is very rare when
the momentum k0 of the initial meson is much greater than
the meson mass m.

VI. INITIAL AND FINAL STATES

In this section we will try to understand the choice of
initial and final states.

A. Corrections to the amplitude

The amplitude that we calculated (3.40) is of order
Oð ffiffiffi

λ
p Þ. It results from the product of an initial wave

function, a term in H0
3 and a final wave function which are,

respectively, Oðλ0Þ, Oð ffiffiffi
λ

p Þ and Oðλ0Þ. However contribu-
tions at the same order arrive from corrections to the initial

FIG. 1. The probability density, Pdiffðk2Þ, that one of the final
mesons has momentum k2, plotted for various values of k0. The
factor of λ has been divided out.

FIG. 2. The total meson multiplication probability Ptot as a
function of k0, rescaled by 1=λ. The dashed line is the asymptotic
value derived in Eq. (4.27).

FIG. 3. The probability Pn that n of the momenta of the
outgoing mesons are negative. These are all rescaled by 1=λ
and also by other factors, given in the legend, to make them
visible in the plot. The dashed line is again the asymptotic value
in Eq. (4.27).
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or final state of order Oð ffiffiffi
λ

p Þ, so long as one uses the free
Hamiltonian H0

2, which is order Oðλ0Þ.
The free Hamiltonian conserves the meson quantum

numbers, and so these contributions arise from quantum
corrections to the initial state containing 2-mesons and
corrections to the final state containing 1-meson. The
calculations in the previous sections correspond to simply
setting such corrections to zero. While such an initial
condition is allowed, and such a definition of a two-meson
state can be forced, both are unnatural as they are not
eigenstates of the interacting Hamiltonians relevant to any
regime in this problem. In fact, ifOð ffiffiffi

λ
p Þ corrections are not

included in the initial state, then they will be dynamically
generated, oscillating as the wave packet propagates.
However, this oscillation at subleading order does not
affect the conclusion that the wave packet does not
accelerate far from the kink, nor does it affect the leading
order probability of meson multiplication.
In this section we will make another, better motivated,

choice of quantum corrections to the initial and final states,
and show that it does not affect our amplitude at the order
calculated.

B. Constructing the initial state

The initial state is a one-meson wave packet which
approaches the kink from the left. To the left of the kink,
the classical kink solution fðxÞ approaches a minimum
fL ¼ fð−∞Þ of the potential Vð ffiffiffi

λ
p

fðxÞÞ.

1. Outline of the construction

At times t < 0, the meson has always been in the left
vacuum, and has never been close to the kink. Therefore,
we want to construct an initial state, at time t ¼ 0, such that
the meson wave packet is a nearly monochromatic super-
position of eigenstates not of the full kink Hamiltonian H0,
but rather of the left vacuum Hamiltonian HL

HL ¼ D†
LHDL; DL ¼ Exp

�
−i
Z

dxfLπðxÞ
�
: ð6:1Þ

The left vacuum evolution operator e−iHLt acts on our
meson wave packet constructed from HL eigenstates by
rigidly translating it, with no acceleration or deformation
apart from the usual smearing. As the two HamiltoniansHL
and H0 act identically on mesons far to the left of the kink,
the true evolution operator e−iH

0t also acts on the meson
wave packet by rigid translation, without acceleration or
deformation, before it approaches the kink. Thus this
construction will define a suitable one-meson, one-kink
asymptotic state to set up our scattering problem. As this
wave packet is not an eigenstate of the kink Hamiltonian,
evolving it forward in time, it will evolve nontrivially once
the meson wave packet reaches the kink.

To construct this state is easy. In Ref. [27] one-meson
Hamiltonian eigenstates were constructed for a sector
described by an arbitrary classical solution fðxÞ. While
in most applications, fðxÞ is taken to be in the kink sector,
the derivation in fact works for any static, classical solution
fðxÞ in any sector. In particular it applies equally well to the
left vacuum solution fðxÞ ¼ fL or to the right vacuum
solution fðxÞ ¼ fR. One may follow all of the arguments of
Ref. [27] simply replacing fðxÞ by fL to obtain one-meson
states in the left vacuum, in the left vacuum frame. The
active transformation DfD

†
L adds a kink at the origin,

leading to a one-meson one-kink state, while staying in the
left vacuum frame. One then performs the passive trans-
formation DLDf

† which leaves the state unchanged but
changes the frame of the Hilbert space from the left vacuum
frame to the kink frame. Putting these two transformations
together we find that, with no transformation at all, one may
directly interpret the so-constructed one-meson states in
the left vacuum frame as one-meson, one-kink states in the
kink frame. Of course the former were eigenstates of the
left vacuum frame evolution operator HL while the latter
are not eigenstates of the kink frame evolution operator H0,
which is the reason that we get any dynamics at all.
The HL eigenstates that we have constructed are quite

different from H0 eigenstates. However, they can be
assembled into localized wave packets at x ≪ 0, and, so
long as they remain localized at x ≪ 0, they will behave as
free particles because the left vacuumandkinkHamiltonians
will act on them identically. Indeed, at x ≪ 0, the difference
between the kink Hamiltonian H0 and the left vacuum
Hamiltonian is exponentially suppressed in mjxj.
Such wave packets have three properties which make

them suitable as initial conditions. First, they have been
defined using the HamiltonianHL with no kink, as expected
for a meson wave packet that has not yet interacted with the
kink. Second, as we will show below, under evolution using
the kink Hamiltonian H0 they propagate via rigid trans-
lations, with constant velocity and no deformation, before
they arrive at the kink. Finally, at leading order they are our
oldwave packets (3.3) fromSec. III. Recall that the oldwave
packet (3.3) only evolved under e−iH

0t via rigid translations
at leading order, whereas at orderOð ffiffiffi

λ
p Þ it was deformed as

it evolved.

2. Explicit construction

Let us look at the leading order corrections explicitly.
Any state jψi may be expanded as

jψi ¼
X
mn

ϕm
0

XZ dnk
ð2πÞn γ

mn
ψ ðk1 � � � knÞjk1 � � � kni0 ð6:2Þ

for some coefficient functions γψ . Then the leading order
term in the one-kink, one-meson state jKi, used throughout
this paper, was
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γ01K ðk1Þ ¼ 2πδðk1 −KÞ: ð6:3Þ

In a general sector, there are a number of next order
corrections. However, in a vacuum sector, the normal

modes reduce to plane waves. For simplicity, let us consider
a reflectionless kink so that these plane waves can be
identified with the continuum normal modes on the far left
gkðxÞ ¼ Bke−ikx, where Bk is a phase [25]. Then all of the
corrections in Ref. [27] vanish except for two:

γ02K ðk1; k2Þ ¼
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞBk1Bk2B−k1−k22πδðk1 þ k2 −KÞ
4ωKðωK − ωk1 − ωk2Þ

;

γ04K ðk1 � � � k4Þ ¼ −
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞBk1Bk2Bk32πδðk1 þ k2 þ k3Þ
6
P

3
j¼1 ωkj

2πδðk4 −KÞ: ð6:4Þ

These contributions to the one-meson state both arise from the three-meson vertex. The first arises when the vertex converts
one meson into two, the second when it creates three mesons while leaving the already existing meson alone.
In summary, we propose that the bare jk1i0 be replaced by

jk1iL ¼ jk1i0 þ
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞ
4ωk1

Z
dk2
2π

Bk1−k2Bk2B−k1 jk2; k1 − k2i0
ωk1 − ωk2 − ωk1−k2

−
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞ
6

Z
dk2
2π

Z
dk3
2π

Bk2Bk3B−k2−k3 jk1; k2; k3;−k2 − k3i0
ωk2 þ ωk3 þ ωk2þk3

ð6:5Þ

in the construction of the initial state (3.3). These are the
order Oð ffiffiffi

λ
p Þ corrections, which are the only ones relevant

to the Oð ffiffiffi
λ

p Þ amplitude treated in this article. At higher
orders, the corrections are again derived as in Ref. [27],
with fðxÞ replaced by fL.

C. Early time evolution of the initial state

We have proposed the initial state

jΦiL ¼
Z

dk1
2π

αk1 jk1iL: ð6:6Þ

Our claim is that at times well before the collision, this new
initial state, unlike (3.3), evolves under the full kink
Hamiltonian by a simple displacement at a constant velocity,
and so it is suitable for a conventional scattering interpre-
tation of our process. Let us now show that this is the case.
For brevity, we will ignore the four-meson part of the

state, since it can be treated identically to the two-meson
part by including, in HI, the term in H3 with three B‡

operators. Now we want to find the order Oð ffiffiffi
λ

p Þ contri-
butions to e−iH

0tjΦiL. Most of these were already found and
reported in Eq. (3.11). The only new terms arise from the
free evolution of the two-meson correction to the state:

e−iHfreetðjΦiL − jΦi0Þ ¼ e−iHfreet

Z
d2k
ð2πÞ2 αk1

ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞ
4ωk1

Bk1−k2Bk2B−k1 jk2; k1 − k2i0
ωk1 − ωk2 − ωk1−k2

¼
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞ
4

Z
d2k
ð2πÞ2

αk1
ωk1

e−itðωk2
þωk1−k2 ÞBk1−k2Bk2B−k1 jk2; k1 − k2i0

ωk1 − ωk2 − ωk1−k2
: ð6:7Þ

This term may be rewritten as

jΦðtÞiL ¼ e−iH
0tjΦiL ⊃ e−iHfreetðjΦiL − jΦi0Þ

¼
Z

dk1
2π

e−iωk1
tαk1ðjk1iL − jk1i0Þ

þ
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞ
4

Z
d2k
ð2πÞ2

αk1
ωk1

ðe−itðωk2
þωk1−k2 Þ − e−iωk1

tÞBk1−k2Bk2B−k1 jk2; k1 − k2i0
ωk1 − ωk2 − ωk1−k2

: ð6:8Þ
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The first term on the right-hand side corresponds to rigid
motion without deformation, what about the second? To
obtain the total evolution jΦðtÞiL, one needs to add the
contributions in Eq. (3.11). Adding the correction on the
second line of (6.8) to (3.11), one finds that (3.11) is
modified via the replacement

Vk1k2k3 →Vk1k2k3−Vð3Þð
ffiffiffi
λ

p
fLÞBk1Bk2Bk32πδðk1þk2þk3Þ:

ð6:9Þ

This replacement in the 3-meson interaction Vk1k2k3 exactly
removes the contribution to the evolution from the only
interaction in the left vacuum that is present at this order:
the momentum-conserving three-meson vertex.
Now recall that we have argued in Sec. III B that, except

for the δð−k1 þ k2 þ k3Þ term in V−k1k2k3 , the amplitude
does not evolve before the meson reaches the kink. Now, as
promised, we have tied up this loose end: the apparent
evolution in (3.11) at k1 ¼ k2 þ k3 is canceled by the
evolution (6.7) of the higher order correction (6.5) to the
initial condition (6.6). Only the first line in (6.8) is not
canceled by (3.11). As a result, when folded into a wave
function that has support at x ≪ 0, the corrected state jk1i
evolves as e−iωk1

tjk1i under the full kink Hamiltonian
evolution operator e−iH

0t, as claimed.
This is in accord with the physical picture proposed

above. Indeed, at x0 ≪ 0, the one-meson to two-meson
process can only occur at k1 þ k2 þ k3 ¼ 0 because the
kink is too far to exchange momentum with the mesons.
Thus the meson system itself conserves momentum at these
early times.
What have we gained? We see that our initial wave

packet jΦiL has a well-defined and constant momentum in
the asymptotic past, and its profile including its leading
quantum correction remains unchanged before the meson
wave packet arrives at the kink. The simple phase rota-
tion (6.8) at each k1 corresponds, via the same standard
arguments used in Sec. III B, into the rigid motion of a
wave packet with momentum centered at k0, up to the usual
spreading effects. In particular, although the presence
of the kink affects the meson self-interactions even at
an infinite distance, these interactions are translation-
invariant. Indeed, they are those of the vacuum sectors.
Therefore there is no long distance acceleration, which
would have implied that the usual scattering matrix is ill-
defined [28,29]. In such a case, the kink would have been
able to affect the meson at a distance, leading to a memory
effect [30] and in particular long-distance information in
the states [31,32].

D. Final state corrections

We have argued that the one-meson states jk1i0 that we
used to construct our initial wave packet in Eq. (3.3) are
not ideal choices, because a quantum correction of order

Oð ffiffiffi
λ

p Þ will be generated well before reaching the kink.
We found a prescription for a quantum correction to the
initial state which makes it travel unperturbed until it
reaches the kink. We called the quantum corrected initial
state jk1iL.
The probability is determined by the initial conditions,

the Hamiltonian and the projector onto the final states that
would trigger the detector. We have considered quantum
corrections to the first two. In this section we will consider
quantum corrections to the projector. In Sec. III we
considered the uncorrected projector (3.44). More gener-
ally, if jαi is an orthonormal basis of a subspace of the
Hilbert space, then the projector

P ¼
Z

dαjαihαj ð6:10Þ

yields, when sandwiched between the a state and itself, the
probability that the state is in the subspace spanned by the
states jαi.
Here α is an abstract index on the basis jαi of final

states that trigger the detector. What properties need these
states satisfy? In principle, any choice corresponds to some
detector and so leads to a well-defined probability.
However, we will define meson multiplication by imposing
three conditions on these final states jαi. First, at leading
order they should consist of two mesons jk2k3i0. Second, in
the far past and future, the action of the projector should be
independent of time. In the far past and future, the state is
described by a wave packet that is localized far to the left or
the right of the kink. Therefore the projector should be
constructed from states which are time-independent on the
two sides of the kink. In other words, these states should be
2-meson states of the Hamiltonian for the vacuum sector on
each respective side of the kink. These Hamiltonians are
HL, defined in Eq. (6.1), and HR, defined identically but
with fL replaced by fR.
But how can a state jαi be constructed of eigenstates for

two distinct, noncommuting, Hamiltonians HL and HR?
One can construct the projector from a basis of localized
wave packet states which, on the left and right of the kink,
are superpositions of eigenstates jk1k2iL and jk1k2iR of the
left and right vacuum Hamiltonians, respectively.
Finally, we demand that the probability of observing a

two-meson final state at the beginning of the experiment
must be equal to 0. Thus, we need to choose quantum
corrections so that the projector annihilates our initial state.
This does not entirely fix the projector, nor the states jαi.

However, since we are only searching for the Oð ffiffiffi
λ

p Þ piece
of jαi, and we are interested in the Oð ffiffiffi

λ
p Þ piece of the

matrix element hαje−iH0tjk1iL, we need only consider the
inner product with the Oðλ0Þ part of jk1iL, which is jk1i0.
In general one needs to be careful about contributions
from zero modes in such arguments, but in a companion
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paper [23] we find an exact formula for such inner products
and show that corrections to such naive calculations are
nonzero but are suppressed by a power of Oð ffiffiffi

λ
p Þ, although

they mix sectors whose meson number differs by one. Thus
these corrections do not affect the amplitude at Oð ffiffiffi

λ
p Þ.

For wave packets localized at x ≪ 0, in Eq. (6.5) we
have required that the leading corrections to jk1iL have a
certain form. Let us define another set of states, jk1iR,
which have similar corrections but this time corresponding
to the vacuum on the right, where fR ¼ fð∞Þ:

jk1iR ¼ jk1i0 þ
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fRÞ
4ωk1

Z
dk2
2π

Dk1−k2Dk2D−k1 jk2; k1 − k2i0
ωk1 − ωk2 − ωk1−k2

−
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞ
6

Z
dk2
2π

Z
dk3
2π

Dk2Dk3D−k2−k3 jk1; k2; k3;−k2 − k3i0
ωk2 þ ωk3 þ ωk2þk3

: ð6:11Þ

Here Dk are phases such that, at x ≫ 0, gkðxÞ ¼ Dke−ikx.
The inner product of the corrections jk1iL − jk1i0 and jk1iR − jk1i0, relevant far to the left and right of the kink, with

respect to jk2k3i0 are

0hk2k3jðjk1iL − jk1i0Þ
0h0j0i0

¼
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞBk2Bk3B−k2−k32πδðk2 þ k3 − k1Þ
8ωk2ωk3ωk1ðωk1 − ωk2 − ωk3Þ

0hk2k3jðjk1iR − jk1i0Þ
0h0j0i0

¼
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fRÞDk2Dk3D−k2−k32πδðk2 þ k3 − k1Þ
8ωk2ωk3ωk1ðωk1 − ωk2 − ωk3Þ

: ð6:12Þ

To cancel them, one requires that the corrections to jk2k3i0 include

jk2k3iL ¼ jk2k3i0 þ
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞB−k2B−k3Bk2þk3

4ωk2ωk3ðωk2 þ ωk3 − ωk2þk3Þ
jk2 þ k3i0;

jk2k3iR ¼ jk2k3i0 þ
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fRÞD−k2D−k3Dk2þk3

4ωk2ωk3ðωk2 þ ωk3 − ωk2þk3Þ
jk2 þ k3i0; ð6:13Þ

where we have used the properties B�
k ¼ B−k and

D�
k ¼ D−k. Corrections to other terms in the n-meson

Fock space are allowed, but this is the only correction
that has nonvanishing inner product with jk1i0 at this order,
and so the only term which can contribute to the final state
correction.
Note that the projector P is not constructed by summing

over all jk2k3iLLhk2k3j and jk2k3iRRhk2k3j. Rather, it is
constructed from a basis of localized wave packets
which, when localized at x ≪ 0, are constructed from
jk2k3iL and when localized at x ≫ 0, are constructed from
jk2k3iR. There is no need to include states with meson
wave packets localized near the kink, as these will never
appear in the asymptotic past or future. In practice, inner
products of these 2-meson states with localized states
may, with exponentially suppressed imprecision, be
obtained by simply inserting the formula (6.13) for
jk2k3iL or jk2k3iR depending on where the states are
localized.

E. Correction to the amplitude

In Sec. III we computed the amplitude

0hk2k3je−iH
0tjk1i0: ð6:14Þ

We are now interested in the corrections appearing in

Lhk2k3je−iHfreetjk1iL
0h0j0i0

and Rhk2k3je−iHfreetjk1iR
0h0j0i0

: ð6:15Þ

The initial and final state corrections to the probability at time t
are calculated frommatrix elements ofwave packets localized
near the position x0 þ k0t=ωk0 . As a result, only the first term
in (6.15) is relevant at early times t ≪ −x0ωk0=k0, and only
the second at late times t ≫ −x0ωk0=k0.
Assembling the results above, the corresponding initial

and final state corrections to the first expression in
Eq. (6.15) are, respectively,
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ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞBk2Bk3B−k2−k3
4ωk2ωk3ðωk2 þ ωk3 − ωk2þk3Þ 0hk2 þ k3je−iHfreetjk1i0 ¼

ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞeð−iωk2þk3
tÞBk2Bk3B−k12πδðk2 þ k3 − k1Þ

8ωk2ωk3ωk2þk3ðωk2 þ ωk3 − ωk2þk3Þ

0hk2k3jeð−iHfreetÞ
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞBk2Bk3B−k2−k3
4ωk1

Z
dk0

2π

jk0; k1 − k0i0
ωk1 − ωk0 − ωk1−k0

¼ −
ffiffiffi
λ

p
Vð3Þð ffiffiffi

λ
p

fLÞeð−iωk2þk3
tÞBk2Bk3B−k12πδðk2 þ k3 − k1Þ

8ωk2ωk3ωk2þk3ðωk2 þ ωk3 − ωk2þk3Þ
: ð6:16Þ

One may observe that these two corrections cancel pre-
cisely, and so the meson multiplication probability before
the collision is unaffected by initial and final state correc-
tions. In other words, the probability is still zero. The
calculation proceeds similarly for the second term in (6.15),
using the matrix elements valid on the right side of the
kink, and so the meson multiplication probability after the
collision is also unaffected by initial and final state
corrections. Roughly speaking, we have shown that
(6.15) and (6.14) are equal, at order Oð ffiffiffi

λ
p Þ. We conclude

that the adiabatic approximation (3.3) yields the correct
meson multiplication amplitude at leading order.
This result was obvious from the beginning. Far from the

kink, the mesons conserve momentum and energy among
themselves and so meson splitting is kinematically for-
bidden. Initial and final state corrections, on the other hand,
result from meson splitting and fusion respectively far
before or after interacting with the kink.

VII. REMARKS

Expanding the potential of the ϕ4 double-well model
about one of its minima, one finds a cubic interaction. This
interaction, in principle, allows a meson to split into two
mesons. However, this process is forbidden in the vacuum
because it is not possible to simultaneously conserve
energy and momentum.
On the other hand, in the presence of a kink the situation

changes. At leading order in perturbation theory, the
mesons still cannot transfer energy to the kink. However
the momentum can be transferred if the meson splits
sufficiently close to a kink. This transfer appears in the

probability density (4.23) as a csch2 term which enforces
approximate momentum conservation among the mesons.
The momentum transfer at a distance nonetheless com-

plicates our calculations, as the meson splitting can occur at
any position and all of these positions need to be integrated
over, naively leading to these divergences. We have found
three ways of treating these divergences. First, the coherent
integral over the momentum of the initial meson wave
packet causes the rapidly oscillating amplitude at large jxj
to be suppressed. Next, adding an exponential damping
term to the amplitude and then taking the limit as the
damping vanishes also removes the divergence. Finally, the
principal value prescription for the x integral of tanh, used
above, renders it finite. We have checked that all three
methods of removing the divergence yield the same results.
Only the first is justified, as it results from the intrinsic
spread of the wave packet and not an ad hoc modification.
However the later two methods are much more easily
implemented in our calculations.
There are only two inelastic processes that may occur in

the scattering of a kink with a single meson at order OðλÞ.
One is meson splitting, treated here. The second is the
(de)excitation of a shape mode while the meson is trans-
mitted or reflected. We intend to turn to this process in the
near future.
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