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We investigate spectral functions of matter-gauge theories that are asymptotically free in the ultraviolet
and display a Banks-Zaks conformal fixed point in the infrared. Using perturbation theory, Callan-
Symanzik resummations, and UV-IR connecting renormalization group trajectories, we analytically
determine the gluon, quark, and ghost propagators in the entire complex momentum plane. At weak
coupling, we find that a Källén-Lehmann spectral representation of propagators is achieved for all fields,
and determine suitable ranges for gauge-fixing parameters. At strong coupling, a proliferation of complex
conjugated branch cuts renders a causal representation impossible. We also derive relations for scaling
exponents that determine the presence or absence of propagator nonanalyticities. Further results include
spectral functions for all fields up to five loop order, bounds on the conformal window, and an algorithm to
find running gauge coupling analytically at higher loops. Implications of our findings and extensions to
other theories are discussed.
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I. INTRODUCTION

Connected two-point correlation functions are key
objects in quantum field theory. They describe the propa-
gation of particles and encode important physical informa-
tion such as the particle masses, bound states, or decay
widths. Gaining access to field propagators for timelike and
spacelike momenta is crucial for the understanding of
spectra and the unitarity in any given quantum field theory.
The latter is often accessed via the Källén-Lehmann (KL)
spectral representation [1,2]. For stable physical particles,
the KL representation is a positive-definite and normal-
izable function, which can be understood as a probability
density for the transition to an excited state with a given
energy. It then becomes an important task to clarify how
viable spectral functions arise within renormalizable quan-
tum field theories.
On a different tack, it is widely appreciated that ultra-

violet (UV) fixed points such as in asymptotic freedom
[3,4] or asymptotic safety [5–7] are mandatory for particle
theories to stay well defined and predictive up to highest
energies. UV-complete theories then arise from small
perturbations in the vicinity of UV fixed points. The latter
trigger the renormalization group (RG) flow of couplings
which, in principle, encode all physical information. In four
dimensions, all known UV-complete theories involve

non-Abelian gauge fields [8,9], and, possibly, gravity
[10]. Hence, we are facing the intriguing conundrum that
spectral information related to the causality and unitarity of
theories is encoded in the correlation functions of primarily
gauge-variant quantities, e.g., [11].
An interesting step forward has been achieved recently in

the context of quantum gravity [12], where an interacting
UV fixed point has been found in Lorentzian signature.
Small perturbations trigger an RG flow which connects the
high energy fixed point with classical general relativity in
the infrared (IR), thereby providing the graviton propagator
at all scales. Curiously, the graviton is found to admit a
causal KL representation, opening a door to address aspects
of causality and unitarity of quantized gravity in a field-
theoretical setting.
In this work, motivated by these findings, we revisit

spectral functions of gauge theories with matter from first
principles, without gravity. We concentrate on theories
which asymptote into conformal fixed points in the UVand
the IR. The role models for this are SUðNÞ gauge theories
coupled to Nf fermions in the fundamental representation.
For small Nf, the theory is asymptotically free and
confining, such as in QCD, while for large Nf, asymptotic
freedom is lost and viable UV-completions have not been
found. For intermediate Nf, however, the theory remains
asymptotically free and develops the interacting Banks-
Zaks (BZ) fixed point in the IR [13–15], whose running
coupling is illustrated in Fig. 1. For our purposes, the latter
offers several benefits and features:

(i) The theory is a perturbatively renormalizable and
unitary quantum field theory, courtesy of asymptotic
freedom, while the intricacies of confinement and
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chiral symmetry breaking are avoided, courtesy of
the BZ fixed point.

(ii) The fundamental fields, gluons and quarks, remain
good degrees of freedom to parametrize the physics
both in the UV and the IR.

(iii) The theory can be brought under rigorous perturba-
tive control at all scales.

Our setup is conceptually similar to the scenario for gravity
[12] where the metric field is taken as the primary carrier of
the gravitational force at all scales, except that interactions
are parametrically small throughout. We expect that struc-
tural insights achieved here may also be of relevance in
gravity.
In this spirit, we investigate gluon, quark, and ghost

propagators and their spectral functions at weak coupling,
both analytically and numerically. To achieve accurate
results, we additionally exploit findings from perturbation
theory up to five loop for the running gauge coupling,
and up to four loop to account for self-energy corrections
[16–20]. Another key step is the Callan-Symanzik resum-
mation of self-energy logarithms, which provides analytical
access to the entire complex plane of propagators. In
places, we employ the large-N Veneziano limit, which
gives rise to a controlled expansion in the small conformal
parameter ϵ ≪ 1. At stronger coupling the BZ fixed point
disappears, and we investigate how the loss of conformality
correlates with the loss of a KL spectral representation. We
also derive general conditions, solely expressed in terms of
universal scaling exponents, which determine the presence
or absence of propagator nonanalyticities.
This paper is structured as follows. In Sec. II, we

introduce the BZ fixed point and the explicit analytic
coupling solution at two-loop order. We use the Callan-
Symanzik equation to resum the two-loop results and
obtain full analytical access to the complex momentum
plane of the field propagators. In Sec. III, we derive the

corresponding spectral functions, discuss the conditions for
their existence, and discuss their properties and dependence
on the gauge parameter. In Sec. IV, we extend our analysis
to higher-loop order and investigate the size of the
conformal BZ window from the perspective of existing
spectral representations of the field propagators. We fur-
thermore compare the perturbative results to ones obtained
with the functional renormalization group. In Sec. V, we
study general perturbative and resummed β-functions and
derive conditions for the absence of nonanalyticities. We
conclude in Sec. VI.

II. BANKS-ZAKS PHASE AND PROPAGATOR

In this section, we first recap the known properties of the
BZ fixed point and the analytic solution of the two-loop
β-function in terms of the W-Lambert function. We then
proceed to use the Callan-Symanzik equation for the
resummation of large logarithms and study all field
propagators analytically in the entire complex plane.

A. Setup

We are interested in four-dimensional Yang-Mills theo-
ries with gauge group SUðNcÞ coupled to Nf massless
Dirac fermions ψ in the fundamental representation.
Modulo gauge-fixing and ghost terms, the perturbatively
renormalizable Lagrangian is given by

L ¼ −
1

2
TrðFμνFμνÞ þ Trðψ̄i=DψÞ; ð1Þ

where Fμν is the field strength of the gauge bosons, and the
trace runs over the color and flavor indices. The theory has
a global UðNfÞ flavor symmetry and is otherwise charac-
terized by the gauge and matter field multiplicities, and by
the gauge coupling g, which we scale with a perturbative
loop factor

a ¼ g2=ð16π2Þ: ð2Þ

The dependence of the gauge coupling on the energy scale
μ is expressed via the β-function βðaÞ≡ μ2daðμ2Þ=dμ2. In
perturbation theory, it is given by

βðaÞ ¼
X
n¼1

βnanþ1; ð3Þ

with loop coefficients βn known up to five-loop order in the
MS scheme [18].
Free or interacting renormalization group fixed points

with βða�Þ ¼ 0 are of particular interest [21], the reason
being that scale-invariance for any relativistic and unitary
four-dimensional theory that remains perturbative in the
UVor IR asymptotes into a conformal field theory [22–24].
The theory (1) always displays a free Gaussian fixed point
a� ¼ 0. For sufficiently few matter fields, the one-loop

FIG. 1. RG trajectory of a weakly coupled matter-gauge theory
with coupling aðμÞ, interpolating between an asymptotically free
fixed point in the UVand an interacting conformal fixed point a�
in the IR with cross-over scale Λc.
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coefficient β1 is negative leading to asymptotic freedom
such as in QCD [3,4]. Conversely, adding too many matter
fields implies that asymptotic freedom is lost and the theory
becomes IR free such as in QED.
The competition of gauge and matter field fluctuations

may also lead to interacting quantum fixed points ða� > 0Þ.
At weak coupling, interacting fixed points are either of the
Banks-Zaks (BZ) or the gauge-Yukawa (GY) type [6,9].
BZ fixed points [13–15] are always IR in any quantum field
theory [6], while fixed points involving Yukawa inter-
actions may be either IR or UV [6,9], see [5,6,25–30]. It is
also well established that conformal windows with BZ
or GY fixed points exist at strong coupling, see e.g.,
[7,31–49]. For a recent conjecture of a BZ phase with
spontaneously broken scale symmetry, see [50].
Much less is known about the fixed points outside the BZ

or GY conformal windows. In pure Yang-Mills theory, it
has been suggested that its IR limit relates to a non-
perturbative fixed point, e.g., [51–53]. In a different vein, it
has also been speculated that a new strongly interacting UV
fixed points may arise in the many fermion limit [54–56],
though the viability for this has been called into question as
of late [49,57–62].
In this work, we focus on settings with a BZ fixed point

and exploit results from perturbation theory up to five loops
and suitable resummations thereof.

B. Banks-Zaks

Our starting point is a regime with a BZ fixed point
[13–15], which, furthermore, is under strict perturbative
control. If so, the running gauge coupling remains small
along the entire renormalization group (RG) trajectory
interpolating between asymptotic freedom in the UV and
a perturbatively controlled BZ fixed point in the IR. Most
notably perturbative methods are sufficient to analyze the
properties of the theory.
In this spirit, we notice that the β-function (3) features a

nontrivial BZ fixed point, which takes the form

a� ¼ −
β1
β2

þOðβ21Þ ð4Þ

to the leading orders in perturbation theory. The one- and
two-loop coefficients are given by

β1 ¼ −
2Nc

3
ε;

β2 ¼
25N2

c − 11

2
þ 3 − 13N2

c

3
ε: ð5Þ

Here, we introduced the Veneziano parameter ε

ε ¼ 11

2
−
Nf

Nc
; ð6Þ

to replace the free parameters ðNc; NfÞ by ðNc; εÞ. The
parameter (6) may take values between ½−∞; 11

2
�. For ε > 0,

the theory is asymptotically free, corresponding to
Nf < 11

2
Nc. Further, the one loop gauge coefficient is

parametrically small provided that

0 < ε ≪ 1: ð7Þ

Consequently, interacting fixed points in the regime (7) are
under strict perturbative control [15,30].
The fixed point (4) stems from a cancellation between

the one-loop term and the remainder of the β-function,
starting with the two-loop coefficient. Such a cancellation
leads to a reliable fixed point within perturbation theory if
β1=β2 in (4) is parametrically small. This is precisely the
case when ε ≪ 1, and provided that the two-loop term β2
remains of order unity and positive. The latter holds true in
general: for any 4d quantum gauge theory coupled to
matter with a parametrically small one loop coefficient β1,
the two-loop coefficient β2 is of order unity, and strictly
positive [6]. Hence, BZ fixed points are invariably IR and
never UV.
A regime with arbitrarily small ε can always be achieved

in the large-N Veneziano limit where Nc; Nf → ∞ with
Nf=Nc fixed, and where the parameter (6) becomes
continuous, also reducing the number of free parameters
to one. In this work, we follow two strategies to determine
fixed points: First, we use the perturbative loop expansion
to determine fixed points from order to order. This provides
the fixed point as a rational function of ε, and will mostly be
used when Nc, Nf are finite. Alternatively, we may
determine the fixed point as a strict power series in ε.
The latter mixes contributions from different loop orders
owing to the fact that loop coefficients βi=ðNcÞi contain
terms of different order in ε, see Eq. (5). In the Veneziano
limit, this is sometimes referred to as the conformal
expansion.
Beginning with the loop expansion and neglecting three-

and higher-loop corrections, we can find an analytical
solution for the running coupling to study its properties in
the complex plane. At two-loop order, the value for the BZ
fixed point reads

a� ¼
4ε

Ncð75 − 26εÞ − 6
Nc

�
11
2
− ε

� : ð8Þ

Further, its universal scaling exponent

θ ¼ ∂βa
∂a

����
a¼a�

; ð9Þ

is given by
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θ ¼ 8

3

ε2

ð75 − 26εÞ − 6
N2

c

�
11
2
− ε

� ; ð10Þ

at two-loop accuracy. The corresponding RG trajectory for
the running gauge coupling that connects the asymptoti-
cally free UV fixed point with the BZ fixed point in the
IR, as shown in Fig. 1, can be found analytically (see
Appendix A). It reads [63,64]

aðμ2Þ ¼ a�
1þW0ðzÞ

; ð11Þ

in terms of the principal branch of theW-Lambert function,
with

zðμ2Þ ¼ ω0eω0

�
μ2

μ20

�
θ

; ω0 ¼
a� − a0

a0
; ð12Þ

and initial condition aðμ20Þ ¼ a0. As such, the expressions
(8) and (10) to (12) are the two-loop results for the BZ fixed
point and the running coupling for all scales.
The gauge coupling interpolates between asymptotic

freedom in the UV and the Banks-Zaks fixed point in the
IR. The transition between the two scaling regimes is
characterized by an RG invariant cross-over scale Λc,
indicated in Fig. 1. It can be written as

Λc ¼ μ · exp

�
1

β1δαðμÞ
�
; ð13Þ

where 0 < δαðμÞ ≪ α� denotes the initial deviation of the
gauge coupling from its free UV fixed point at the high
scale μ, while β1 < 0 denotes the one-loop gauge coef-
ficient, see (5). It is readily confirmed that dΛc=d ln μ ¼ 0.
Notice that the expression (13) is parametrically the same
as for any asymptotically free gauge theory and coincides
with the definition for ΛQCD in perturbative QCD, as it
must, because the UV initial condition δα does not know
that the theory achieves an interacting fixed point rather
than confinement in the IR.
Alternatively, we can perform a conformal expansion

organized in powers of the Veneziano parameter ε. We
expand the BZ fixed point and its critical exponent up to the
appropriate power of ε. From two-loop perturbation theory,
we can obtain leading order expressions in ε for the BZ
fixed point

Nca� ¼
4

75
εþO

�
ε2;

1

N2
c

�
; ð14Þ

as well as its eigenvalue

θ ¼ 8

225
ε2 þO

�
ε3;

1

Nc

�
: ð15Þ

Higher-order expressions for the fixed point and the scaling
exponent up to five loop order in the Veneziano limit are
given in Appendix B. Inserted into (11) leads to the running
coupling at leading order in the Veneziano expansion.
For small ε ≪ 1, the difference between loop expansion

and the Veneziano expansion is parametrically small. For
larger values of ε, there is a quantitative difference between
the loop expansion and the Veneziano expansion due to the
fact that loop coefficients may contain different orders in ε.
In this work, we display results in both expansions. In the
conformal expansion, we restrict ourselves to small ε and
work exclusively in the Nc → ∞ limit. In the loop
expansion, we also explore larger values of ε as well as
small values of Nc.

C. Gauge coupling in the complex plane

We now discuss the properties of the running coupling in
the complex μ2=μ20 plane. While a is uniquely defined for
μ2=μ20 > 0, uniqueness is lost in the complex plane pro-
vided there are branch cuts. There are two sources of
branching points:

(i) the branching point at μ2=μ20 ¼ 0 originating from
the power law in the definition of z in (12),

(ii) further branching points originating through the
W-Lambert function.

The branching point of the first type (i) is always present
and continues along μ2=μ20 < 0 until−∞. This branch cut is
important for the physics as its discontinuity later results in
the spectral functions of the fields.
In contrast to that, the branching points of the second

type (ii) may be absent or present including in larger
numbers, depending on the values for ε and Nc. As we will
see, these types of branching points spoil the existence of a
standard KL spectral representation.
The principal branch of the W-Lambert function W0ðzÞ

has its branch cut starting at z ¼ −1=e and is chosen to
continue along the negative z axis toward z ¼ −∞. Thus, to
obtain the branch cut of W0ðzÞ we must have

zðμ2Þ < −
1

e
: ð16Þ

In order for this equation to have a solution, the phase of
μ2=μ20 must be given by

φðμ2=μ20Þ ¼ −
π

θ
ð2nþ 1Þ; ð17Þ

with n an integer and θ the eigenvalue of the BZ fixed point
given in (10) and (15). Using the principal branch, only
those solutions in (17) exist which contain a phase φ with
−π < φ ≤ π. This leads us to the requirement

−
1

jθj < 2nþ 1 ≤
1

jθj ; ð18Þ
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which means the number of branching points originating
from theW-Lambert function is given by twice the amount
of odd numbers less than jθj. For the total number of branch
cuts, this means

#bp ¼ 1þ 2

�jθj þ 1

2

�
: ð19Þ

The existence of nonanalyticities for jθj > 1 was first
noticed in [11]. In Fig. 2, we show the resulting number
of branching points as a function of ε using the two-loop
expression of the BZ eigenvalue (10). We observe a single
branch cut at μ2=μ20 ¼ 0 at weak and moderate coupling
(0 < ε < εbranch cut), with

εbranch cut ¼
	
2.2723 for Nc ¼ 3;

2.32850 for 1=Nc ¼ 0:
ð20Þ

At stronger coupling (εbranch cut < ε < εmax), and beyond
the threshold εbranch cut, their number rapidly proliferates
into many more branching points with increasing ε. Their
number diverges just when the fixed point ceases to exist
ðε ¼ εmaxÞ, with

εmax ¼
	
2.8158 for Nc ¼ 3;

2.8846 for 1=Nc ¼ 0;
ð21Þ

at two-loop accuracy.
The presence of branch cuts signifies that the analytic

continuation of the running gauge coupling into the
complex plane is not unique, simply because the location
of branch cuts is ambiguous. In fact, even the number of
branching points may become ambiguous due to e.g., the
properties of the W-Lambert function. In Fig. 3, we
illustrate this ambiguity at two-loop, using ε ¼ 2.7. In
the standard prescription in the left panel of Fig. 3, we
follow (11) and observe in total five branching points, four
of which are obtained from the W-Lambert function. The
plot in the right panel of Fig. 3 instead assumes the running
coupling to be given by

aðμ2Þ ¼ a�
1þWiðzÞ

; ð22Þ

with

FIG. 2. Shown are the number of branching points in the
complexified μ2-plane of the running gauge coupling at two loop,
as a function of the Veneziano parameter ε. A single branch cut at
weak coupling (0 < ε < εbranch cut) proliferates rapidly into many
more at stronger coupling (εbranch cut < ε < εmax) before the fixed
point disappears ðε ¼ εmaxÞ.

FIG. 3. Magnitude jaj and phase φa of the gauge coupling a in the complex plane of the RG scale μ2 at two-loop order. We use
ε ¼ 2.7, μ20 ¼ 1, and Nc → ∞. In the left panel, we use the principal branch (11), and in the right panel, the modified prescription from
(22). Due to the properties of the W-Lambert function two branch points have disappeared in this modified version of the running
coupling. Branch cuts originating from the W-Lambert function (power law of μ2) are drawn as black solid (dashed) lines.
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i ¼

8>>>>>><
>>>>>>:

−2 < −3 π
θ

−1 < −1 π
θ

0 for φðμ2=μ20Þ < 1 π
θ

1 < 3 π
θ

2 > 3 π
θ

: ð23Þ

Since onlyW0ðzÞ has a branching point at z ¼ −1=e and all
other branches at z ¼ 0, two branching points have moved
due to this prescription to the origin and their branch cuts
go along the negative axis toward −∞. Thus, the presence
of additional branch cuts turns out to make the running
coupling in the complex plane ambiguous.

D. Callan-Symanzik resummation

At this point, we want to compute the propagator for all
momenta using perturbative methods. We consider all
species of particles included in the theory, i.e., gluons,
quarks, and ghosts. Starting from corresponding two-point
functions, we follow, e.g., [16] and define

Dab
μνðpÞ≡ i

Z
ddxeipxhTAa

μðxÞAb
νð0Þi;

ΔabðpÞ≡ i
Z

ddxeipxhTcaðxÞc̄bð0Þi;

SijðpÞ≡ i
Z

ddxeipxhTψ iðxÞψ̄ jð0Þi: ð24Þ

The tensor structures of the propagators follow from
general arguments such as Ward identities with only the
self-energies being undetermined,

Dab
μνðpÞ ¼

δab

−p2


�
−gμν þ

pμpν

p2

�
1

1þΠAðp2;μ2Þ− ξ
pμpν

p2

�
;

ΔabðpÞ ¼ δab

−p2

1

1þΠcðp2;μ2Þ ;

SijðpÞ ¼
δij

−p2

=p
1þΠψ ðp2;μ2Þ : ð25Þ

Perturbative results for the self-energies Πϕ for all the
propagators ϕ ∈ fA; c;ψg have been obtained in [16,65].
These contain logarithmic contributions of the form
logð−p2=μ2Þ which diverge in the UV as well as in the
IR. These large logarithms lead to a breakdown of the
perturbative expansion and it is required to resum them in
order to obtain the correct large and small momentum
behavior.
A practical tool to resum logarithmic contributions lies in

the perturbative renormalization group for n-point func-
tions. It stems from the property of a bare n-point function
being independent of the renormalization scale μ2. We
apply it here to the scalar parts of the propagators defined
with

Gϕðp2; μ2Þ ¼ 1

−p2

1

1þ Πϕðp2; μ2Þ : ð26Þ

For the bare propagators Gϕ;b, the independence of μ2

implies

μ2
d
dμ2

Gϕ;b ¼ μ2
d
dμ2

ðZϕGϕÞ ¼ 0: ð27Þ

Here, we denote the renormalized propagator as Gϕ and Zϕ

is the renormalization constant of the field ϕ. The pertur-
bative propagator depends on the renormalization scale
only through the running coupling and the logarithmic
terms that we want to resum. Therefore, we obtain the
Callan-Symanzik (CS) equation�

μ2
∂

∂μ2
þ βðaÞ ∂

∂a
− γϕ

�
Gϕ ¼ 0; ð28Þ

with the anomalous dimension defined by

γϕ ¼ −
1

Zϕ

dZϕ

d log μ2
: ð29Þ

Solving (28) results in the general form of the propagator
up to an integration constant. This integration constant can
be obtained from the perturbative result at the point where
the logarithmic corrections vanish, i.e., at −p2 ¼ μ2.
To solve (28) we first note that

Gϕða; p2; μ2Þ ¼ fϕða; p2=μ2Þ
p2

; ð30Þ

with some function fϕ that only depends on the ratio
p2=μ2. This allows us to trade μ2-derivatives for
p2-derivatives,�
−p2

∂

∂p2
þ βðaÞ ∂

∂a
− γϕ − 1

�
Gϕða; p2; μ2Þ ¼ 0: ð31Þ

This differential equation can be solved by the method of
characteristics. To that end, we introduce a new momentum
dependent running coupling āð−p2ÞZ

ā

a

da0

βða0Þ ¼
Z

−p2

μ2

dp̄2

p̄2
: ð32Þ

The two-loop solution for ā is given by the solution for a
upon the replacement of μ2 by −p2 and μ20 by μ2,.

āð−p2Þ ¼ a�
1þW0ðz̄Þ

; ð33Þ

with

z̄ ¼
�
a�
a
− 1

�
ea�=a−1

�
−p2

μ2

�
θ

: ð34Þ
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This allows the elimination of the variable p2 in favor of ā.
The CS equation for Gϕðā; a; μ2Þ then takes the form of an
ordinary first-order differential equation�

βðaÞ ∂

∂a
− γϕ − 1

�
Gϕ ¼ 0: ð35Þ

Its solution Gϕðā; a; μ2Þ is given by

Gϕ ¼ Ĉϕðā; μ2Þ
−p2

exp
�
−
Z

ā

a

da0

βða0Þ γϕða
0Þ
�
; ð36Þ

with Ĉϕðā; μ2Þ an integration constant independent of a. At
two loop accuracy, and writing γϕðaÞ ¼ γð1Þϕ aþOða2Þ, the
integral in (36) is given by

Z
ā

a

da0

βða0Þ γϕða
0Þ ¼ γð1Þϕ

β1
log

ā
a
þ γϕða�Þ

θ
log

ā − a�
a − a�

: ð37Þ

The only remaining task is the determination of the
integration constant Ĉϕðā; μ2Þ. This can be obtained by
comparing to the perturbative two-loop result at p2 ¼ −μ2,
leading to

Ĉϕðā; μ2Þ ¼ −
N ϕ

1þ Πð1Þ
ϕ āþ Πð2Þ

ϕ ā2
; ð38Þ

where the coefficients ΠðiÞ
ϕ arise from a series expansion of

the self-energies at p2 ¼ −μ2, namely

Πϕðp2 ¼ −μ2Þ ¼ Πð1Þ
ϕ aþ Πð2Þ

ϕ a2 þ…: ð39Þ

We have included an overall normalization factor N ϕ,
which originates from the freedom to rescale wave-function

renormalization Zϕ in (27). The coefficients ΠðiÞ
ϕ have been

computed in [16,65] up to four-loop order. The final result
for the CS resummed two-loop propagator is

Gϕ ¼ 1

p2

N ϕ

1þ Πð1Þ
ϕ āþ Πð2Þ

ϕ ā2

�
a
ā

�
γð1Þϕ =β1

�
a − a�
ā − a�

�
γϕða�Þ=θ

:

ð40Þ
From this expression, we find the UV behavior at the
Gaussian fixed point and the IR behavior at the BZ fixed
point. Close to the Gaussian fixed point, the term

ða=āÞγð1Þϕ =β1 in (40) dominates, while in the IR, the last
term in (40) corresponding to the BZ fixed point produces
an IR behavior characterized by the anomalous dimension
evaluated at the fixed point and its critical exponent. Using
the asymptotics of the running coupling in (A8), the
explicit large and small momentum asymptotics of the
propagator are

Gϕ ¼

8>><
>>:

NUV
ϕ

p2

h
log

�
− p2

μ2

�i
γð1Þϕ =β1 for jp2j → ∞;

NIR
ϕ

p2

�
− p2

μ2

�
−γϕða�Þ for jp2j → 0:

ð41Þ

The large momentum asymptote is well known and relates
to the Oehme-Zimmermann superconvergence relation
[66–68]. Note that the critical exponent in (40) cancels
against the critical exponent from the power law of the
running coupling in the IR such that the leading power in
the IR limit of (41) is independent of the critical exponent.
The normalization factors NIR

ϕ and NUV
ϕ in (41) read

NIR
ϕ ¼ N ϕ

eð1−a�=aÞγϕða�Þ=θ

1þ Πð1Þ
ϕ a� þ Πð2Þ

ϕ a2�

�
a
a�

�
γð1Þϕ =β1þγϕða�Þ=θ

;

NUV
ϕ ¼ N ϕð−β1aÞγ

ð1Þ
ϕ =β1

�
a� − a
a�

�
γϕða�Þ=θ

; ð42Þ

and we choose the normalization factor N ϕ such that
NUV

ϕ ¼ 1. This choice will later ensure that the spectral
function is properly normalized.
The CS-resummed gluon propagatorGAðp2Þ at two-loop

is shown in Fig. 4 in the Veneziano limit (ε ¼ 1
2
, ξ ¼ 1). We

observe that the propagator quickly approaches its asymp-
totic limits given by (41), with a smooth crossover regime
in between.1

FIG. 4. The resummed gluon propagator (40) and its UV/IR
asymptotics (41) are shown as a function of ð−p2Þθ in the
Veneziano limit (ε ¼ 1

2
, ξ ¼ 1).1

1Here and below, we display propagators and spectral func-
tions as functions of ðp2Þθ, which arises naturally in the argument
of the W-Lambert function, (33) and (34). This choice naturally
accounts for the parametrically slow running of the gauge
coupling. The range shown in Fig. 4 corresponds to scales
between p2 ¼ Oð10−300Þ and p2 ¼ Oð10300Þ. For smaller ε, the
range quickly becomes larger.
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E. Propagators in the complex plane

Next, we need to understand the analytical properties of
propagators in the plane of complexified momenta p2. In
particular, we need to understand whether the propagator
admits branch cuts or poles. There are three possible origins
for the latter. These are

(i) branch cuts from the running coupling ā,
(ii) branch cuts from the explicit power laws in (40),
(iii) poles from the self-energy term in (40).

Next, we discuss the different cases one by one.
Case (i). Branch cuts originating from the running

coupling ā have been discussed in Sec. II C. To apply these
findings to the propagator, we replace μ2 → −p2 and μ20 →
μ2 as well as a → ā and a → a0. Then, the running coupling
leads to two kinds of branch cuts in the propagator:
(a) The branch cut at p2=μ2 < 0 originating from the

power law in the definition of z̄.
(b) Branch cuts for p2=μ2 such that z̄ < −1=e, which

originate from the branch cuts of W0ðz̄Þ.
As discussed in Sec. II C, the branch cut (a) is important for
the physics. In turn, branch cuts of the type (b) are
“dangerous” in that they spoil the existence of a standard
KL spectral representation.
Case (ii). The explicit power laws in (40) lead to branch

cuts when

a
ā
< 0; or

a − a�
ā − a�

< 0: ð43Þ

Since a > 0, the former is reached only if ā < 0, i.e.,
W0ðz̄Þ < −1. There are no values z̄ where this equation is
fulfilled if the principal branch of the W-Lambert function
is used. Instead, the W-Lambert function only takes these
values in the branch W−1ðz̄Þ for −1=e < z̄ < 0. Hence, if
we stick to the definition (11) in the complex plane, this
does not play a role.
The second condition in (43) can only be fulfilled if

ā > a�; i:e: − 1 < W0ðz̄Þ < 0: ð44Þ
These values are reached in the principal branch if

−
1

e
< z̄ < 0: ð45Þ

Note that the phase for z̄ where these branch cuts are
reached is the same as for the branch cuts originating from
the W-Lambert function, only the required absolute value
of z̄ is different, see (16). Thus, the branch cuts originating
from the explicit power laws in (40) extend the branch cuts
originating from theW-Lambert function. Combining these
two sources of the branch cuts, we obtain branch cuts
starting at p2 ¼ 0 and reaching up to p2 ¼ ∞, with the
complex phase of these cuts given by (17).
As discussed in Sec. II C this means that for small values

for ε only the standard branch cut at p2 > 0 remains. On the

other hand, for larger values of ε we have inevitably
additional branch cuts in the complex plane, leading to a
propagator which is only analytic in separated and dis-
connected regions of the complex plane.
Case (iii). A last source of nonanalyticities are potential

poles from self-energy corrections. Poles arisewhenever the
denominator of (38) vanishes in the complex plane. If they
exist, and depending on their location in the complex plane,
they correspond to either stable or unstable physical (bound)
states, or to stable or unstable (unphysical) tachyonic states.
For sufficiently small ε → 0, we can strictly rule out the

existence of self-energy poles based on the following
observation: A zero in the self-energies can only arise if
the coupling in the complex plane becomes of order unity.
On the real axis, the coupling is bounded by the BZ fixed
point a�, which becomes infinitesimally small in this limit.
Hence, in the complex plane, the coupling can only become
of order unity if the denominator in (33) becomes suffi-
ciently small, which only happens at the branching point of
the coupling. However, since this branching point is only
reached for sufficiently large ε (e.g., Fig. 2), we conclude
that there are no poles from the self-energies for ε → 0. For
larger ε, the reasoning does not apply and we investigate the
poles from (38) numerically below, and separately for
gluons, fermions, and ghosts.
Our findings are illustrated in Fig. 5 where we show the

gluon propagator in the complex plane for different values
of ε. Depending on the value of ε we observe one or several
branch cuts. Additional branch cuts beyond the standard
one come in pairs symmetric about the real axis. The
power-law branch cuts (dashed) and the W-Lamber branch
cuts (solid) align and are connected at the branching point
where the coupling, and therefore the propagator, diverges.
It follows from our previous discussion of branch cuts of
running couplings in the complexified μ2 plane that branch
cuts of propagators in the complexified p2 plane also imply
ambiguities. Similarly, choosing the branch cuts appropri-
ately may lead to the disappearance of some of them.

III. SPECTRAL FUNCTIONS

In this section, we investigate the availability of Källén-
Lehmann (KL) spectral representations for gauge field,
quark, and ghost propagators. The KL representation [1,2]
is defined via

Gϕðp2Þ ¼
Z

∞

0

dλ2

π

ρϕðλ2Þ
p2 − λ2

; ð46Þ

with

ρϕðλ2Þ ¼ −lim
η→0

ImGϕðλ2 þ iηÞ: ð47Þ

In our conventions, the timelike momenta of the propagator
with the usual branch cut are on the positive real half axis
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and the spacelike momenta of the propagator are on the
negative real half axis. On the latter, we find the standard
Euclidean propagator, which is real. The propagator fulfills
the relation Gϕðz�Þ ¼ GϕðzÞ�.
In unitary theories with physical particles as asymptotic

states, spectral functions are positive. In contrast, for fields
that are not asymptotic states even the existence of a KL
representation is not guaranteed and if the spectral function
exists then it may be gauge-dependent, e.g., [12,69–73].
An example for a gauge-invariant and positive-definite
spectral function is the Higgs-Higgs bound state spectral
function [74]. In situations with complex conjugated
poles or branch cuts in the complex plane of the propagator,
the KL spectral representation needs to be generalized,
e.g., [75–78]. Recently, a lot of progress has been achieved
in the direct nonperturbative computation of spectral func-
tion, see [12,79–83]. For a recent discussion of unitarity and
causality criteria for propagators, see, e.g., [84].

A. Existence

In our setting, the existence of a KL representation cannot
be taken for granted, given that neither gluons nor quarks or
ghosts qualify as physical asymptotic states. Still, we are

interested in conditions under which their propagators can,
nevertheless, be represented by aKL spectral function. A first
such condition is that propagators only have a single branch
cut on the positive real axis, and are analytic otherwise. At
two-loop, we know that this holds for ε < εbranch cut, see (20).
For ε > εbranch cut this is spoiled by the existence of additional
branch cuts arising from the running coupling (19). The
standard KL representation is violated, and a spectral repre-
sentationwould need to bemodified, see for example [82] for
a respective generalization.
For the single branch cut, we need to check that the

spectral integral is convergent. For this we integrate the
propagator divided by p2 − λ2 along the keyhole integra-
tion contour shown in Fig. 6. Assuming p2 to have a
nontrivial imaginary part or being negative, the propagator
is analytic in the entire area enclosed by the integration
contour except at a pole at λ2 ¼ p2.2 Using Cauchy’s
residue theorem, we find

FIG. 5. Magnitude jGAj and phase φGA
of the gluon propagator in the complex plane at two-loop order. We use Nc → ∞, ξ ¼ 1, as

well as ε ¼ 0.5 (top left), ε ¼ 2.5 (top right), and ε ¼ 2.7 (bottom). Branch cuts originating from power laws (theW-Lambert function)
are illustrated with dashed (solid) black lines. There is only one branch cut for ε ¼ 0.5 while the other plots show additional branch cuts
related to the properties of the running coupling and the W-Lambert function.

2For p2 > 0 we can add a small imaginary part, i.e., p2 →
p2 þ iδ such that the pole is within the integration contour.
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Z
Γ
dλ2

Gϕðλ2Þ
p2 − λ2

¼ −2πiGϕðp2Þ: ð48Þ

with Γ ¼ γR∘γ−η∘γr∘γη. Due to the asymptotic behavior of
the propagator in the UV, the integrand vanishes fast enough
on the outer contour integration γR and the integral over this
part vanishes. For the integration along γ−η and γη, we have

Z
γη∘γ−η

dλ2
Gϕðλ2Þ
p2 − λ2

¼ 2i
Z

∞

0

dλ2
ImGϕðλ2 þ iηÞ

p2 − λ2
ð49Þ

in the limit η → 0, since GϕðzÞ� ¼ Gϕðz�Þ. Lastly, we
consider the small contour γr. Using the asymptotic proper-
ties of the propagator in the IR, see (41), we derive

Z
γr

dλ2
Gϕðλ2Þ
p2 − λ2

¼ i
Ωϕ

p2
; ð50Þ

with

Ωϕ ¼ NIR
ϕ

1 − e−2πiγϕða�Þ

1þ γϕða�Þ
lim
λ2→0

�
1

λ2

�
γϕða�Þ

: ð51Þ

From this expression, we see that the integral on γr only
vanishes if either

γϕða�Þ ≤ 0; or γϕða�Þ ∈ N: ð52Þ

Putting these results into (48) gives

Gϕðp2Þ ¼ −lim
η→0

Z
∞

0

dλ2

π

ImGϕðλ2 þ iηÞ
p2 − λ2

−
1

2π

Ωϕ

p2
: ð53Þ

We observe that a KL spectral representation for the
propagator is only fulfilled if Ωϕ ¼ 0, which corresponds
to the requirement that the spectral integral is convergent in
the IR. For an asymptotically safe theory, a similar condition
would appear for the contour γR corresponding to a con-
vergent spectral integral in the UV. With Ωϕ ¼ 0, the
spectral density is given in (47). The case Ωϕ ≠ 0 would
require a generalization of the KL spectral representation,
which we do not consider here.
Remarkably, the different types of KL spectral functions

that emerge from the conditions in (52) have very different
properties. For γϕða�Þ ¼ 0, spectral functions have a
single-particle delta peak at vanishing spectral values,
which for γϕða�Þ ¼ n with n ∈ Nþ becomes the nth
derivative of a delta function at vanishing frequencies.
For −1 < γϕða�Þ < 0 on the other hand, the spectral
functions still diverge for λ → 0 but with vanishing
integration measure such that this pole does not contribute
to the KL spectral representation. For γϕða�Þ ≤ −1, the
spectral functions become constant or vanish as λ → 0.
We conclude that the existence of KL spectral repre-

sentations centrally depends on the anomalous dimensions
of fields at the BZ fixed point, see (52). To leading order in
ε and in the Veneziano limit, they are given by

γAða�Þ ¼ −
2ε

25
−
2ε

75
ξþOðε2Þ;

γψða�Þ ¼ −
2ε

75
ξþOðε2Þ;

γcða�Þ ¼
ε

25
−

ε

75
ξþOðε2Þ: ð54Þ

Higher-order contributions in ε also involve higher orders
in ξ, which may become relevant quantitatively for large
gauge-fixing parameters. Here, we consider small ξ where
these effects play no role.
Focusing on the first conditions in (52), γϕða�Þ ≤ 0, the

ranges of ξ that lead to well-defined spectral function are

Gluons : ξ ≥ −3þOðεÞ;
Quarks : ξ ≥ 0þOðεÞ;
Ghosts : ξ ≥ 3þOðεÞ: ð55Þ

For these choices of gauge parameters (except for the
boundary value), the spectral function consists only of a
multiparticle continuum and not a single-particle delta-
peak. Only at the boundary value, the spectral function
contains a delta peak at vanishing frequencies correspond-
ing to a massless particle.
The second condition in (52), γϕða�Þ ∈ N, singles out n

fine-tuned gauge parameters for which the spectral function
exists. For γϕða�Þ ¼ n, the spectral function contains a
delta function with n derivatives at vanishing frequencies.
In the remainder of the paper, we focus on the first

FIG. 6. The contour integration of the propagator in the
complex plane.
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condition in (52) since it allows for a range of the gauge-
fixing parameter.
The conditions for existence (55) depend mildly on ε and

the order of the loop expansion. We do not display
expressions at higher loop order as these are rather lengthy.
However, we note that the bounds (55) only receive minor
corrections even at large ε.3

In summary, we find that sufficiently large gauge-fixing
parameters excluding Landau gauge are a necessity for the
existence of spectral functions for all fields, (55). On the
other hand, smaller gauge-fixing parameters including
the Landau gauge can be chosen as long as we demand
the existence of spectral functions only for the gluons
and quarks. These conditions must additionally be met with
the single branch-cut constraint. The latter imposes a
condition on the Veneziano parameter constant being
limited to small or moderate ε < εbranch cut. Importantly,
the latter bound is independent of the gauge parameter,
while the other constraints discussed here are gauge
dependent.

B. Normalization

We now compute the sum rules for the spectral functions
under consideration from the known UV asymptotic
behavior of the propagators (41). Evaluating the KL
representation (46) for p2 → ∞ we obtain

lim
p2→∞

Gϕðp2Þ ¼ 1

p2

Z
∞

0

dλ2

π
ρϕðλ2Þ: ð56Þ

With (41), the sum rule for the spectral function reads

Z
∞

0

dλ2

π
ρϕðλ2Þ ¼ lim

λ2→∞
ðlog λ2Þγð1Þϕ =β1 : ð57Þ

Here we have used that the UV asymptotic behavior of the
propagator is normalized with NUV;ϕ ¼ 1, see the discus-
sion below (41). From this expression, we see that the
spectral function only has a proper normalization if the one-
loop coefficient of the anomalous dimension vanishes,

γð1Þϕ ¼ 0. For gluons, ghosts, and quarks, they are given by

γð1ÞA

β1
¼ 3ξþ 9

4ε
− 1;

γð1Þψ

β1
¼ 3

4ε

�
1 −

1

N2
c

�
ξ;

γð1Þc

β1
¼ 3

8ε
ðξ − 3Þ; ð58Þ

For each type of particle, there is one critical value ξcrit

where a normalization of its spectral function can be
achieved. This value is different for all species,

ξcritA ¼ −3þ 4

3
ε;

ξcritψ ¼ 0;

ξcritc ¼ 3: ð59Þ

These values are exact to all orders in ε and 1=Nc since they
only depend on the one-loop coefficient of the field
anomalous dimension. For other values of the gauge-fixing
parameter, the norm of the spectral function either vanishes
or diverges,

Z
∞

0

dλ2

π
ρϕðλ2Þ ¼

8>><
>>:

0 ξ < ξcritϕ ;

1 if ξ ¼ ξcritϕ ;

∞ ξ > ξcritϕ :

ð60Þ

If the spectral function exists and has a vanishing norm, it
must contain positive and negative parts.
We remark that ξcritϕ coincides with the gauge parameter

choice for which the anomalous dimension vanishes to
linear order in ε. This is not a coincidence and originates
from the fact that the two-loop coefficient of the anomalous
dimension is only relevant at the next-to-leading order in
the Veneziano expansion. Hence, the zeroth-order coeffi-
cients of (59) and (55) in the Veneziano expansion must
agree. This has consequences for the term ðða − a�Þ=ðā −
a�ÞÞγϕða�Þ=θ in the CS resummed propagator, see (40). In the
Veneziano expansion, the eigenvalue of the BZ fixed point
θ is quadratic in ε while the fixed-point anomalous
dimension γϕða�Þ is linear in ε for general gauge para-
meters ξ. Thus, in general the exponent γϕða�Þ=θ diverges
for ε → 0. The only exception is given by (55) up to sub-
leading terms in ε, which ensures that γϕða�Þ ¼ Oðε2Þ. This
explains why the spectral function is normalizable for ξcritϕ .

C. Gluons

We first discuss the gluon spectral function at the leading
order in the Veneziano expansion and at the two-loop order
in the loop expansion. For the Veneziano expansion, (11) is
used together with (14) and (15). Furthermore, the gluon
anomalous dimension and self-energy are expanded to the
leading order in ε. In contrast, for the loop expansion, (11)
is used together with (8) and (10) and all quantities include
all two-loop contributions.
The gluon propagator and its spectral function depend on

the gauge parameter ξ and they show qualitative differences
depending on the chosen gauge. As discussed in the
previous section, the gluon spectral function only exists
for γAða�Þ ≤ 0 or γAða�Þ ∈ N. At leading order in the

3For example, at ε ¼ 1 and Nc ¼ 3, the bounds become
ξ ≥ −2.7 for the gluon, ξ ≥ −0.08 for the quark, and ξ ≥ 3.1
for the ghosts.
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Veneziano parameter, we have γAða�Þ ≤ 0 for ξ ≥ −3. For
ξ ¼ −3, the anomalous dimension vanishes at the BZ
fixed point and the spectral function contains a δ-peak
in the IR. This δ-peak is not present for other choices of the
gauge parameter. However, peaks related to derivatives
of δ-distributions can be found by tuning ξ such that
γAða�Þ ∈ N.
In the left panel of Fig. 7, we show λ2ρAðλ2Þ in the

leading order Veneziano expansion at ε ¼ 1=10 for ξ ¼ −3
as well as ξ ¼ ξcritA ¼ −3þ 4

3
ε.4 For ξ ¼ −3, the spectral

function contains a δ-peak at vanishing spectral values
λ2 ¼ 0, while the continuum part is negative. Since
ξ ¼ −3 < ξcritA , the spectral function must have a vanishing
norm, see (59) and (60), and therefore it must contain
positive as well as negative contributions. In this case, the
negative continuum part cancels the positive contribution
from the δ-peak. For ξ ¼ ξcritA , the spectral function is very
different as it is positive but does not contain a δ-peak in the
IR. Since −1 < γAða�Þ < 0, the spectral function ρAðλ2Þ
vanishes as λ2 → 0 in Fig. 7.
In the right panel of Fig. 7, we show the gluon spectral

function at two-loop order. We use the values Nc ¼ 3 and
Nf ¼ 16, which corresponds to ε ¼ 1=6. The gauge
parameter is chosen at its critical value ξ ¼ ξcritA ¼ −3þ
4
3
ε where the spectral function is normalized, as well as

slightly above and below. For ξ ¼ ξcritA , the gluon spectral
function is positive definite and normalizable. While the
latter is guaranteed by the gauge choice, the former is
nontrivial. Even for very small changes below this critical
gauge parameter, ξ < ξcritA , the integral over the spectral

function vanishes and the spectral function must contain
positive and negative parts. For ξ > ξcritA , the integral over
the spectral function diverges which can be seen from the
slower fall-off in the UV. Also in the loop expansion, we
can tune the gauge parameter such that the spectral function
has a δ-peak at vanishing frequencies. This happens
however not at ξ ¼ −3 as in the Veneziano expansion
due to the subleading contributions that are taken into
account in the loop expansion.
Next, we comment on the existence of poles from self-

energy corrections. With increasing εwe find no poles from
self-energies for any Nc at least up until εbranch cut where
additional branch cuts arise.5

We briefly discuss the comparison to the gluon spectral
function in the confining QCD region. There the spectral
function is analytically continued from the spacelike
momenta of the gluon propagator which has been obtained
by functional or Lattice methods in Landau gauge ξ ¼ 0,
see, e.g., [69,75,85–87]. Then, the gluon spectral function
typically has a vanishing norm: it is negative in the IR and
UV, with a positive spectral density around the confinement
scale. In this respect, it is similar to the red dash-dotted curve
in the right panel of Fig. 7, where the gauge parameter is
chosen below its critical value ξ < ξcritA ¼ −3þ 4

3
ε. In

comparison to the Landau gauge, we have ξcritA < 0 for
matter content of the BZ window but 0 < ξcritA for standard
QCD and this is the main contributor to the similarities
between the spectral functions.

D. Quarks and ghosts

We now discuss the spectral functions of the quark and
ghost fields. Also, these spectral functions are gauge-
dependent and in (55) and (59) we show the values of

FIG. 7. Gluon spectral function in the leading order Veneziano expansion (left) and in the loop expansion at two-loop order (right). In
the left panel, we are using ε ¼ 1

10
and Nc → ∞, while in the right panel we are using Nc ¼ 3 and Nf ¼ 16 ðε ¼ 1

6
Þ. We display the

spectral functions as a function of ðλ2Þθ.1

4We display λ2ρϕðλ2Þ instead of ρϕðλ2Þ, since ρϕðλ2Þ contains a
prefactor 1=λ2 which leads to very large numerical values of
≈105000 for ðλ2Þθ ≪ 1 and very small values of ≈10−1500 for
ðλ2Þθ ≫ 1. This is avoided by multiplication with λ2. Since we
display λ2ρϕðλ2Þ, technically speaking we have λ2δðλ2Þ → 0.
Nevertheless, for illustrative purposes we show the δ-function as
a divergence at λ2 ¼ 0.

5The query for poles becomes ambiguous as soon as additional
branch cuts are present, the reason being that cuts can always be
chosen in such a way that poles are moved to a different sheet in
the complex plane, the sole exception being poles on the real axis.

KLUTH, LITIM, and REICHERT PHYS. REV. D 107, 025011 (2023)

025011-12



the gauge parameter for which these spectral functions exist
or are normalizable. These values for the gauge parameter
are different for the three species under consideration.
For the quark spectral function to exist in the Veneziano

expansion, we require ξ ≥ 0 or ξ tuned such that
γψða�Þ ∈ N. At this order, the gauge for which the quark
anomalous dimension at the fixed point vanishes and for
which the spectral function is normalizable coincide and is
given by the Landau gauge, ξ ¼ 0. Thus, we can obtain a
well-defined normalizable quark spectral function featuring
a δ-peak in the IR. Inserting leading order expressions in
the Veneziano limit, we obtain for the quark propagator in
Landau gauge,

Gψ ¼ 1

p2

N ψ

1þ Πð1Þ
ψ āþOðε2Þ

: ð61Þ

The exponents present in the CS resummed propagator (40)
become trivial in this gauge. Furthermore, the two-loop
self-energy only gives subleading corrections which should
be neglected at leading order in the Veneziano expansion.

Lastly, we observe that Πð1Þ
ψ ∝ ξ. Hence, in the Landau

gauge, the one-loop self-energy becomes trivial and we are
left with a free propagator for the quark field. In conse-
quence, the spectral function ρψ ðλ2Þ only contains a δ-peak
at λ2 ¼ 0 and vanishes everywhere else. This is displayed in
the left panel of Fig. 8. It is remarkable that the quark
propagator appears to be free within an interacting theory.
We emphasize that this is only present in the leading-order
Veneziano expansion and higher orders in ε will inevitably
introduce a multiparticle continuum.
For the ghost spectral function in the Veneziano expan-

sion, the existence condition (55) requires ξ ≥ 3, unless we
tune the anomalous dimension such that γcða�Þ ∈ N. As for
the quarks, at leading order in the Veneziano expansion,
this coincides with the critical value ξcritc for which the ghost
spectral function is normalizable. Thus, this value of the

gauge parameter gives rise to a normalizable ghost spectral
function featuring a δ-peak in the IR. In contrast to the
quarks, the spectral function is nontrivial in this gauge. This

is due to the fact that Πð1Þ
c ¼ −Nc þOð1=NcÞ for ξ ¼ 3.

Hence, the propagator and the ghost spectral function pick
up a nontrivial contribution from the one-loop self-energy
in the CS resummed propagator. The resulting spectral
function in the left panel of Fig. 8 shows a δ-peak in the IR
and gives a negative continuum part thereafter. Thus, even
though the gauge parameter is chosen such that the spectral
function is normalizable, it does not imply that the spectral
function is positive as we observe that the continuum part is
strictly negative.
In the right panel of Fig. 8, we show the quark spectral

function at two-loop order. We use the values Nc ¼ 3 and
Nf ¼ 16, which corresponds to ε ¼ 1=6. The gauge
parameter is chosen at its critical value ξ ¼ ξcritψ ¼ 0 where
the spectral function is normalized, as well as slightly
above and below. The spectral functions are very similar to
the gluon case in the loop expansion, c.f., the right panel of
Fig. 7. For ξ ¼ ξcritψ , the quark spectral function is positive
definite and normalizable. For gauge parameters just below
the critical value, ξ < ξcritψ , the integral over the spectral
function vanishes and the spectral function contains pos-
itive and negative parts. For gauge parameters above the
critical value ξ > ξcritψ , the integral over the spectral function
diverges. A remarkable difference to the gluon case is that
the quark spectral function approaches zero much slower in
the IR. The reason is that the quark anomalous dimension
evaluated at the BZ fixed point is tiny. In the Veneziano
expansion, it would be actually vanishing for ξ ¼ ξcritψ and
in the loop expansion, it is only modified by subleading
corrections. We do not display the ghost spectral functions
in the loop expansion since they are very similar to the
quark spectral function.
Once more we have looked for poles from self-energies.

As for the gluons, we find that there are none in the quark

FIG. 8. Spectral function of the quark and ghost in the Veneziano expansion (left) and the spectral function of the quark in the loop
expansion (right). In the left panel, we use ε ¼ 1

10
and Nc → ∞, while in the right panel we useNc ¼ 3 andNf ¼ 16 ðε ¼ 1

6
Þ. We display

the spectral functions as a function of ðλ2Þθ.1
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propagator. However, we observe a tachyonic pole in the
ghost propagator as soon as ε > 2.19 at Nc ¼ 3 and for
ε > 2.25 in the Veneziano limit.
As a final remark, we comment on how results for gauge-

variant propagators and spectral functions can be used to
extract gauge-invariant, physical information. In [88–90],
and in the context of the Gribov-Zwanziger action, gauge-
invariant gluon and quark fields have been constructed out
of gauge-variant ones by providing them with a nonlocal
dressing. The thereby constructed propagators have been
found to be gauge invariant, and, curiously, identical to the
standard quark and gluon propagators in the Landau gauge.
At weak coupling, we expect that the findings of [88–90]
apply equally in our setting. Then, the green curve
displayed in the right panel of Fig. 8 precisely corresponds
to the quark spectral function in the Landau gauge. It is
positive and normalizable, and equal to the spectral
function of a nonlocal and gauge-invariant quark field.
Notice though that while the gluon spectral function in the
Landau gauge is positive, unlike the quark one, it is not
normalizable. As an aside, we also observe that non-
normalizable spectral functions genuinely arise for fields
which asymptote to strictly positive anomalous dimensions
in the UV, see Sec. III B.

IV. HIGHER LOOPS

Thus far we have studied the propagators and spectral
functions in the two-loop limit where we have full
analytic control. In this section, we address the effects
of higher-loop orders. We show how explicit analytical
solutions for the running coupling can be found in the
Veneziano expansion, and also report results from numeri-
cal and implicit solutions.
Further, β-function and field anomalous dimensions are

known up to five-loop order [18,20] while the finite parts of
the propagators have been computed up to four-loop order
[65]. These contributions become important for finite
values of the Veneziano parameter ε, and when exploring
the size of the conformal window. Therefore, we derive
expressions for propagators and spectral functions to higher
orders and study the convergence at finite ε.

A. Running coupling from higher loops

Here, we show that explicit analytic solutions for the
running gauge coupling can be found at any order in the
Veneziano expansion, generalising the two-loop result (11).
We explain the underlying systematics and illustrate the
construction in the Veneziano limit.
We begin by noting that the left- and right-hand sides

of (3) start out at order ε and ε3, respectively, indicating that
the RG running is at least as slow as ε2. We can make (3)
more amenable to a systematic solution as a power series in
ε by performing a change of variables from aðμ2Þ to a
rescaled version âðzÞ, with

aðμ2Þ ¼ ε

Nc
âðzÞ; ð62Þ

and z ¼ zðμ2Þ as given in (12). The prefactor accounts for
the fact that a ∼ ε at a fixed point, while the substitution
μ2 → zðμ2Þ accounts for the parametrically slow running
≲θðεÞ. In combination, the original μ2da=dμ2 beta function
(3) turns into

z
dâðzÞ
dz

¼
X∞
n¼1

β̂nânþ1; ð63Þ

where the rescaled loop coefficients

β̂n ¼
βn
Nn

c

εn

θðεÞ ð64Þ

now involve the universal scaling exponent θðεÞ as defined
in (9), and whose ε-expansion is given in (B3) and (B4). In
the Veneziano limit, any Nc-dependence drops out and the
rescaled loop coefficients β̂n are polynomials in ε,

β̂nðεÞ ¼
X
m

β̂n;mε
m; ð65Þ

and whose leading order terms scale as β̂1; β̂2 ∼Oð1Þ and
β̂n≥3 ∼Oðεn−2Þ with ε.
The virtue of the rescaled β-function (63) is that its left-

and right-hand sides both start out at order unity. Hence,
expanding the running gauge coupling as a series in the
Veneziano parameter,

âðzÞ ¼
X∞
n¼1

ânðzÞεn−1; ð66Þ

leads to a hierarchy of differential equations for the
coefficient functions ân which can be solved recursively.
Using t ¼ ln z we find

∂tâ1 ¼ β̂1;0â21 þ β̂2;0â31;

∂tân≥2 ¼ ð2β̂1;0â1 þ 3β̂2;0â21Þân þ In½fâi<ng�; ð67Þ

where the inhomogeneous terms In are independent of ân
and only depend on the functions âi<nðzÞ. The leading
order differential equation for â1 is equivalent to the two-
loop β-function and integrated in terms of the W-Lambert
function

â1ðzÞ ¼
4

75

1

1þW0ðzÞ
: ð68Þ

All higher order corrections ân can be found by solving
first-order linear differential equations whose inhomo-
geneous term depends on the lower order solutions âi<n,
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see (67). For example, I2 ¼ β̂1;1â21 þ β̂2;1â31 þ β̂3;1â41, and
similarly to higher order. Using (67) with (68), the next-to-
leading order correction is found to be

â2ðzÞ ¼
2192

421875

1þ 975
274

W0ðzÞ½CþW0ðzÞ�
½1þW0ðzÞ�3

; ð69Þ

where C is an integration constant determined by the initial
condition aðμ20Þ ¼ a0. At z ¼ 0, we observe that the
solutions (68) and (69) match the exact fixed-point coef-
ficients at the corresponding order in ε, see (B2). We also
have computed the next-to-next-to-leading order correction
analytically, though the result is not given explicitly as it is
rather lengthy without offering additional insights.
We emphasize that the explicit solution for the running

gauge coupling can naturally be extended beyond the
Veneziano limit. The key is to stick to ε as the central
expansion parameter but to retain the parametric depend-
ence on Nc. In the above, this turns the polynomials β̂nðεÞ
and the scaling exponent θðεÞ in (64), and the coefficients
β̂n;m in (65) into Nc-dependent quantities, which then feed
into the solutions ân, but without structurally changing the
hierarchy (67). Thus, the solutions at finite Nc smoothly
approach the solution in the Veneziano limit for sufficiently
small ε, as they must.

B. Gauge coupling in the complex plane

In the analytic W-Lambert solution at two-loop order,
we observed branching points in the complex plane for
ε > εbranch cut ¼ 2.3285 at Nc → ∞, see Fig. 2. We will
now extend this result to higher-loop orders. We can do this
either analytically in the Veneziano expansion, or numeri-
cally in the loop expansion. We choose the latter since we
expect εbranch cut to remain at rather large values at higher
orders. The existence of additional branch cuts in the
former is solely tied to the argument of the W-Lambert
function and the dependence of z on μ2. This suggests a
generalization of (19) to higher loop orders by replacing the
two-loop eigenvalue with the appropriate eigenvalue at
higher loops.
We check the existence of branch points with numerical

integration curves in the complex plane of aðμÞ. We choose
a closed half-circle integration contour with the straight line
slightly above the real axis and the half-circle closing in the
upper half. In the case of a branch cut, this closed
integration contour returns a nonvanishing imaginary part
and in the case of a pole in the complex plane, the
integrated solution gives the residuum of the complex
pole. We evaluate this complex integral as a function of the
Veneziano parameter ε for each loop order. The value
εbranch cut is defined as the lowest ε at which branch cuts or
complex conjugated poles appear in the complex plane.
We show the results of our numerical investigation in

Table I for Nc → ∞ and Nc ¼ 3 together with values of the

Veneziano parameter εmax where the BZ fixed point
vanishes. From two- to three-loop order, both εmax and
εbranch cut increase, while from three- to four-loop order,
both values barely change at all. The reason is that the four-
loop coefficient of the β function is strongly suppressed in
this regime of Nf and Nc. A remarkable difference at four-
loop order is that for Nc ¼ 3 the BZ fixed point disappears
with a fixed-point merger, instead of a divergence of the
fixed-point value. The suggested generalization of (19) to
higher loops by adapting the eigenvalue is in good agree-
ment with Table I provided we use the full eigenvalue and
do not expand in ε or Nc.
The inclusion of the five-loop order has the biggest

impact on εmax and εbranch cut. The BZ fixed point vanishes
already at very small values of ε via a fixed-point merger.
The existence of branch cuts in the complex plane does not
provide a stronger bound on ε. At five-loop order, we also
include the Padé approximants ½n;m� defined by

β½n;m� ¼ a2
P

n
i¼0 γia

i

1þP
m
i¼1 δia

i ; ð70Þ

where the coefficients γi and δi are determined such that the
perturbative expansion agrees with the original β-function
up to order anþmþ1. In Table I, we show our results for the
five-loop Padé approximants [1, 3], [2, 2], and [3, 1]. In all
cases, the fixed point vanishes before additional branch-
cuts show up in the complex plane of the coupling. The
average value εmax of the five-loop Padé approximants is
larger than that of the standard five-loop β-function, which
might hint that the standard five-loop gives a too small
value for εmax. Our results are well compatible with the

TABLE I. Values of ε where branch cuts occur (εbranch cut) and
where the BZ fixed point disappears (εmax) at different loop
orders for Nc → ∞ (top) and for Nc ¼ 3 (bottom). The values of
εmax marked with an asterisk occur due to a FP merger.

Veneziano limit εbranch cut εmax

2-loop 2.3285 2.8846
3-loop 2.7240 3.5889
4-loop 2.7265 3.4601
5-loop � � � 1.1774�
5-loop Padé [1,3] � � � 2.0646
5-loop Padé [2,2] � � � 1.4609�
5-loop Padé [3,1] � � � 0.7203�

Nc ¼ 3 εbranch cut εmax

2-loop 2.2723 2.8158
3-loop 2.6798 3.5520
4-loop 2.6817 3.0538�
5-loop � � � 1.2019�
5-loop Padé [1,3] � � � 2.2183
5-loop Padé [2,2] � � � 1.6993�
5-loop Padé [3,1] � � � 0.7304�
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Padé estimations from [47] where it was estimated that
εmax > 1.3 for Nc → ∞ and εmax > 1.5 for Nc ¼ 3.

C. Callan-Symanzik with higher loops

The resummation of the propagator via the CS
equation at n-loop order is performed in full analogy to
Sec. II D. The first hurdle is to solve the integral in (36), for
which we use the partial fraction decomposition of the
integrand,6

γϕðaÞ
βðaÞ ¼ γð1Þϕ

β1a
þ
X
i

γϕðai;�Þ
θi

1

a − ai;�
: ð71Þ

In this expression, the sum goes over all nontrivial
fixed points ai;� of the β-function and θi denotes their
eigenvalues

θi ¼
∂βa
∂a

����
a¼ai;�

: ð72Þ

The general result of the integration boils down to

Z
ā

a

da0

βða0Þ γϕða
0Þ ¼ γð1Þϕ

β1
log

�
ā
a

�

þ
X
i

γϕðai;�Þ
θi

log

�
ā − ai;�
a − ai;�

�
: ð73Þ

The asymptotic UV behavior at the Gaussian fixed point
and the IR behavior at the BZ fixed point are extracted as
follows. Close to the Gaussian fixed point, the first term in
(73) dominates and reproduces the known UV behavior of
the propagator. Close to any of the nontrivial fixed points,
the term in the product of (73) corresponding to the
fixed point dominates. In particular, in the IR close to
the BZ fixed point we obtain the correct IR behavior
including corrections to the two-loop behavior found
previously.
The integration constant is again obtained via compari-

son to the perturbative propagator. Our final result for the
CS resummed propagator is

Gϕ¼
1

p2

N ϕ

1þP∞
n¼1Π

ðnÞ
ϕ ān

�
a
ā

�γ
ð1Þ
ϕ
β1
Y
i

�
ā−ai;�
a−ai;�

�γϕðai;�Þ
θi : ð74Þ

The large and small momentum asymptotics of the propa-
gator agree structurally with (41), amended by improved
values for the fixed point, eigenvalue, anomalous dimen-
sions, and self-energies. The normalization factor N ϕ is
again chosen such that NUV;ϕ ¼ 1, see (41).

D. Existence of spectral functions

The existence of the spectral function is related to the
value of γϕða�Þ, see (52) in Sec. III A. We display the
values of ξ for which the spectral function stops to exist,
corresponding to γϕða�Þ ¼ 0. These values are written in
the Veneziano expansion with subleading Nc corrections,
ξno-specϕ ¼ ξno-specϕ;0 þ ξno-specϕ;1 =N2

c þ � � �, and for the leading
contribution we find

ξno-specA;0 ðεÞ ≈ −3þ 0.267εþ 0.241ε2 − 0.0436ε3;

ξno-specψ ;0 ðεÞ ≈ 0.0145ε2 − 0.00518ε3;

ξno-specc;0 ðεÞ ≈ 3 − 0.0267ε − 0.168ε2 þ 0.0540ε3: ð75Þ

This expression includes contributions up to ε3 or equiv-
alently up to five-loop order. For ξ < ξno-specϕ , the spectral
function of the fieldϕ does suffer from a divergence in the IR
and does not exist, with the exception of certain fine-tuned
values where γϕða�Þ ∈ N, see (52). We compare (75) to ξcritϕ

where the spectral function is normalizable as given in (59).
For gluons and ghosts, we observe that ξno-specϕ < ξcritϕ and
thus a normalizable spectral function exists for these species
in the Veneziano limit. This is not the case for the quarks
since for ε → 0, we have ξno-specψ > ξcritψ . A normalizable
spectral function for the quarks field, therefore, does not
exist in the Veneziano limit as it requires infinite Nc.
For a better understanding of the behavior of the quark

spectral function, we consider finite Nc corrections. The
next-to-leading order contributions are given by

ξno-specA;1 ðεÞ ≈ 0.117εþ 0.262ε2 − 0.137ε3;

ξno-specψ ;1 ðεÞ ≈ −0.04εþ 0.0201ε2 þ 0.00999ε3;

ξno-specc;1 ðεÞ ≈ −0.0117ε − 0.232ε2 − 0.0117ε3: ð76Þ

Most importantly, the quark term ξno-specψ ;1 has a negative
linear ε contribution at 1=N2

c, while it starts with a positive
ε2 contribution in ξno-specψ ;0 . Hence, for finite Nc, it might be
possible to tune ε such that ξno-specψ < ξcritψ and a normal-
izable quark spectral function exists. However, for a proper
analysis we should take into account that field multiplicities
are integers. The smallest possible Veneziano parameter
εmin for each Nc is given by

εmin ¼
(

1
Nc

if Nc ¼ even;

1
2Nc

if Nc ¼ odd:
ð77Þ

Using this in (75) and (76) for the quark, we find

ξno-specψ ðεminÞ ≈
8<
:

0.0145
N2

c
− 0.0452

N3
c

if Nc ¼ even;

0.00363
N2

c
− 0.0206

N3
c

if Nc ¼ odd:
ð78Þ6Note that this result in general only holds if the anomalous

dimension and the β-function are used at the same loop order.
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The leading contribution to ξno-specψ ;εmin is always positive and
thus we still find ξno-specψ > ξcritψ ;εmin

, meaning that a normal-
izable quark spectral function is not well-defined. For small
Nc, ξ

no-spec
ψ ;εmin becomes negative but that is outside of the

validity of the expansion.
As a further check,we performed a scan for integerNc up to

including Nc ¼ 15 and all integer Nf such that ε > 0. There
are only two combinations which lead to a negative quark
anomalous dimension consistently at different loop orders.
These are ðNc; NfÞ ¼ ð3; 16Þ and ðNc; NfÞ ¼ ð5; 27Þ.
At five-loop order, the quark anomalous dimension is also
negative for ðNc; NfÞ ¼ ð2; 10Þ, however, it is positive at
four-loop order.We conclude that all other integer choices and
in particular the Veneziano limit lead to a positive quark
anomalous dimension. As such, a normalizable quark spectral
function is absent for these settings. Instead, the quark spectral
function may only be defined for gauge parameters not equal
to the critical value ξcritψ . The spectral function then has either a
diverging or a vanishing norm.

E. Convergence

Next, we assess the radius of convergence of the loop
expansion in terms of the Veneziano parameter ε.
Remarkably, the convergence depends strongly on the field
species. A central quantity that enters the computation of
the spectral function is the field anomalous dimension
evaluated at the BZ fixed point, γϕða�Þ. We evaluate γϕða�Þ
for each field at each loop order and determine the maximal
ε for which the change due to the next loop order remains
below 10%. The results are shown in Table II for Nc ¼ 3
and Nc → ∞, and we discuss our findings for the different
particle types one by one.
A relatively stable picture is obtained for gluons. Allowing

a change of 10%, we are able to consider Veneziano
parameters of the order of ε ≈ 1 suggesting a radius of
convergence roughly in line with the expected size of the
conformal BZ window Table I. This result is qualitatively
independent of sending Nc → ∞ or Nc being finite.
For quarks, this observation is rather different. Going

from two-loop to three-loop, the 10% change of the
anomalous dimension is ill defined for Nc → ∞ since
the three-loop result does not match the two-loop anoma-
lous dimension at ξ ¼ ξcritψ for ε → 0. This is because

γψða�Þjξ¼ξcritψ
¼ Oðε3Þ þO

�
1

Nc

�
: ð79Þ

The universal ε3 contribution is only found from the three-
loop perturbation theory onwards and has not converged
yet at two-loop.7 Since the ε2 contribution vanishes, the
two-loop result of the loop expansion does not contain the

correct leading-order contribution of the Veneziano expan-
sion. This has already been discovered in Sec. III D where
we noted that the Veneziano expansion of the quark
propagator at two-loop does not give rise to any nontrivial
corrections and we are left with a one particle pole.
At finite Nc, the quark anomalous dimension at the BZ

fixed point carries a universal and nonvanishing ε2 piece.
Thus, the leading order of the Veneziano expansion is
contained in the two-loop result for finite Nc and we obtain
a well-defined εconv2‐loop for quarks, see Table II. For Nc ¼ 3,
the numerical value for εconv2‐loop is rather small and not
reachable if Nf is an integer.
Higher loop corrections enhance the observed conver-

gence for the quarks at Nc → ∞ as well as finite Nc.
Including up to five-loop corrections, the anomalous
dimension does not become as stable as for the gluons,
however. Asking for a 10% change of the anomalous
dimension, we find εconv4−loop ≈ 0.3.
A possible explanation for the reduced convergence of

the quark anomalous dimension at the BZ fixed point might
be related to the nonexistence of a normalizable quark
spectral function in the Veneziano limit. For its existence
we require γψ ða�Þ < 0. While this is true at two-loop
for Nc → ∞, it can only be achieved at higher loop orders
if ε ≪ 1=Nc and Nf not an integer except for a few cases
given at the end of Sec. IV D. Thus, the two-loop
approximation shows a qualitative difference compared
to higher loop orders possibly leading to the observed
convergence properties.
Finally, the convergence of the ghosts lies somewhat in

between the quarks and ghosts. Even though the two-loop
approximation converges substantially worse than higher-
order results, it still gives a good convergence up until
ε ≈ 0.01. Including higher-order corrections, the conver-
gence becomes similar to the observed convergence of the
gluons. As for the quarks, we can interpret the bad
convergence of the two-loop approximation by the fact
that the ghost spectral function in the Veneziano expansion
at two-loop does not include all nontrivial contributions

TABLE II. Values for ε at which the next loop order leads to a
change of the anomalous dimension by more than 10% at
ξ ¼ ξcritϕ . The top table shows the results for Nc ¼ 3 and the
bottom table for the Veneziano limit Nc → ∞.

εconvjNc¼3 Gluons Quarks Ghosts

2-loop 0.20 6.7 × 10−3 1.0 × 10−2

3-loop 1.5 0.12 1.73
4-loop 0.95 0.19 0.65

εconvj1=Nc¼0 Gluons Quarks Ghosts

2-loop 0.22 – 1.1 × 10−2

3-loop 1.6 8.2 × 10−2 0.81
4-loop 1.0 0.30 0.83

7For ξ ¼ ξcritψ , the ε3 is already obtained at three-loop since the
one-loop coefficient of the anomalous dimension vanishes.
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which are present at higher loop orders. In Sec. III D we
have seen that the only nontrivial correction comes from the
self-energy, while other corrections, in particular correc-
tions due to γcða�Þ ≠ 0 at ξ ¼ ξcritc at higher loop orders are
absent. Starting from three-loop onwards, these corrections
are taken into account.
In summary, we have established that the convergence of

field anomalous dimensions at the BZ fixed point and of
spectral functions with the conformal parameter ε depend
strongly on the type of field. A reliable estimate for the
radius of convergence or the nonperturbative size of the BZ
conformal window cannot be obtained in this manner. To
put this outcome into perspective, we compare results with
a similar type of analysis that has been performed recently
in 4d supersymmetric gauge-matter theories with an inter-
acting conformal fixed point [7]. In supersymmetry, the
chiral superfield anomalous dimensions are known exactly,
and the quality of perturbative approximations can be
checked. Good convergence is observed at weak coupling
while at strong coupling, convergence depends more
substantially on the type of matter field. In particular,
examples are found where three loop is a good approxi-
mation for some superfield anomalous dimensions but not
for others, and many cases exist where three loops fail
miserably in estimating the nonperturbative radius of
convergence [7]. We conclude that the disparities in the
convergence for different fields observed in this study
appear to be a genuine feature of 4d QFTs with conformal
fixed points [6,9], supersymmetric or otherwise, rather than
a specific feature of this theory.

F. Spectral functions at higher loops

The spectral functions of the fields are obtained from
(74) via numerical integration of the gauge coupling in the
complex plane. From our analysis in Sec. IV B, we know
that there are no additional branch cuts and poles in the
complex plane for small ε and therefore we know that this
numerical integration is justified. We compute the spectral
functions of the gluon, quark, and ghost at two-, three-,

four-, and five-loop order and consider finite Nc as well as
Nc → ∞. The five-loop order only includes the five-loop
contribution in the beta function and anomalous dimen-
sions, while the five-loop self-energy corrections are
missing. We expect that these are subleading since also
the lower-order finite parts only play a subleading role.
In Fig. 9, we show the gluon spectral functions as a

function of ðλ2Þθ2−loop . The left panel displays the loop
expansion in the Nc → ∞ limit and we have chosen ε ¼ 1
around the convergence value εconv, see Table II, which is
well within the conformal BZ window, see Table I. In the
right panel of Fig. 9, we show the loop expansion atNc ¼ 3
and Nf ¼ 16 corresponding to ε ¼ 1=6. The gauge param-
eter is always chosen on the critical value according to (59)
leading to normalizable spectral functions. The gluon
spectral function is positive definite and converges well.
Only the leading-order is significantly different from the
higher orders at small spectral values.
In Fig. 10, we show the loop expansion of the quark

spectral functions in the Nc → ∞ limit at ε ¼ 1=10 and at
Nc ¼ 3 and Nf ¼ 16. We have chosen a smaller ε in the
Nc → ∞ limit compared to the gluon due to the slower
convergence of the quark spectral function. We observe that
the leading-order behavior differs qualitatively from higher
orders, in particular for Nc → ∞. There, the higher-order
quark spectral functions do not exist due to the wrong sign
of the fixed-point anomalous dimension, see (52). In
consequence, the spectral functions shown in the left panel
of Fig. 10 have been obtained from the discontinuity of the
propagator via (47) but integrating over them with (46)
does not give back the propagator. This strong difference
between the leading and higher orders is explained by the
fact that the quark spectral function does not obtain any
nontrivial corrections at the leading order in the Veneziano
expansion.
In Fig. 11, we show the loop expansion of the ghost

spectral functions forNc → ∞ at ε ¼ 1 in the left panel and
at Nc ¼ 3 and Nf ¼ 16 in the right panel. The ghost
spectral function shares a similar property in that it also is

FIG. 9. Gluon spectral functions in the loop expansion at ξ ¼ ξcritA for Nc → ∞ with ε ¼ 1 (left) and at Nc ¼ 3 with Nf ¼ 16
(ε ¼ 1=6) (right). The asterisk at the highest expansion order indicates that the highest order contribution the finite parts is missing.
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not positive definite beyond two-loop. However, the ghost
anomalous dimension stays negative at loop orders higher
than two, only the two-loop result becomes positive. Thus,
we find the opposite of the quark case and in the left panel
of Fig. 11 the ghost spectral function is well-defined
for all but the two-loop result. Furthermore, this means
that we obtain a normalizable, but not positive de-
finite ghost spectral function for ε ¼ 1. The sign change
in the ghost spectral function can be avoided by using a
smaller ε.
We furthermore checked the existence of poles from

the self-energies. We restricted our search to values of
ε < εbranch cut given in Table I, for reasons detailed in
footnote 5. In this regime, we find that the quark and
gluon propagators never have a pole from the self-energies
at any loop order and at any Nc. For the ghost propagator,
we already observed a tachyonic pole from self-energies at
two-loop for ε > 2.2, see Sec. III D. At three- and four-loop
order, instead, we find a pair of complex conjugated poles.
These poles show up for ε > 2.66 (three-loop, Nc ¼ 3),
ε > 2.71 (three-loop, Nc ¼ ∞), ε > 2.62 (four-loop,

Nc ¼ 3), and ε > 2.68 (four-loop, Nc ¼ ∞), see Table III.
Overall, and for any Nc and loop order, we find

1 −
εpoles

εbranch cut
≲Oð10−2Þ; ð80Þ

stating that poles in the ghost sector only arise very close to
the boundary εbranch cut where additional branch cuts arise.
At this point perturbation theory has become unreliable,
and the conformal window ceases to exist.
In summary, up to including four-loop orders, we have

established that neither the gluon nor the quark self-energy
corrections lead to bound state (or tachyonic) poles in their
propagators. Our result is valid for any ε < εbranch cut
(Table I) covering the entire BZ conformal window.
Further, poles in the self-energies of the ghost propagator
(Table III), only arise at strong coupling and very close to
the onset of branch cuts (Table I) where perturbation theory
becomes unreliable. We therefore conclude that the theory
does not offer hints for bound states for any UV-free
trajectory connecting with the BZ fixed point in the IR.

FIG. 10. Quark spectral functions in the loop expansion at ξ ¼ ξcritψ for Nc → ∞ with ε ¼ 1=10 (left) and at Nc ¼ 3 with Nf ¼ 16
(ε ¼ 1=6) (right). The asterisk at the highest expansion order indicates that the highest order contribution the finite parts is missing. The
red color that the spectral function is not integrable in the IR.

FIG. 11. Ghost spectral functions in the loop expansion at ξ ¼ ξcritc for Nc → ∞ with ε ¼ 1 (left) and in the loop expansion at Nc ¼ 3
and Nf ¼ 16 (ε ¼ 1=6) (right). The asterisk at the highest expansion order indicates that the highest order contribution the finite parts is
missing. The red color that the spectral function is not integrable in the IR.
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G. Functional renormalization group

We use the functional renormalization group (fRG) as a
nonperturbative method to compare to the perturbative
analysis. The main goal is to understand how the CS
resummation that was necessary for perturbation theory to
get rid of large logarithms is reflected in another method.
Therefore we only compute here the flow of the gluon two-
point function in a simple approximation.
The fRG is based on a flow equation for the scale-

dependent effective action Γk, the Wetterich equation
[91–93]

∂tΓk ¼
1

2
TrGk∂tRk: ð81Þ

The flow equation interpolates between the classical
action S at the initial scale kin and the full quantum
effective action Γ in the limit k → 0. The RG time t is
defined as t ¼ ln k=kin. The regulator Rk implements the
Wilsonian integration-out of momentum shells and Gk is

the full field dependent propagator, Gk ¼ ðΓð2Þ
k þ RkÞ−1,

where ΓðnÞ
k ¼ δnΓk=δϕn.

The fRG equation is a one-loop equation but takes into
account higher-loop orders via resummation. For example,
at the initial scale kin the two-point function Γð2Þ

k , which
enters on the right-hand side of (81), is given by the
classical two-point function Sð2Þ. However, already after
one RG step at kin − δk, the two-point function is modified
and includes the quantum corrections from the integrated
out RG step. This emphasizes that the propagator at
vanishing RG scale Gk¼0 is already the resummed object
that we want to compare to and it does not contain large
logarithms.
The flow equation for the gluon two-point function is

obtained from (81) via two field derivatives. Since
Euclidean signature is used in the flow equation, we only
compute and compare the gluon propagator for space-like
momenta at k ¼ 0. The flow of the gluon two-point
function depends on all propagators Gϕ, the three- and

four-point vertices, Γð3Þ
k and Γð4Þ

k , as well as on the regulator
function Rk. To simplify our computation as much as
possible, we approximate the vertices with the classical

vertices, ΓðnÞ ¼ SðnÞ, and use the perturbative two-loop
trajectory (11) as an input. Furthermore, we choose the
regulator proportional to the two-point function

RkðpÞ ¼ Γð2Þ
k ðpÞrkðxÞ; with x ¼ p2

k2
; ð82Þ

and use a Litim-type cutoff [94,95] for the shape function

rkðxÞ ¼ ð1=x − 1ÞΘð1 − xÞ: ð83Þ

With this setup, we can evaluate the diagrams numerically
for all spacelike momenta. We parametrize the transversal
part of the gluon two-point function with

ΓðAAÞ
T;k ¼ ZA;kðpÞp2; ð84Þ

where ZA;kðpÞ is the momentum dependent gluon wave-
function renormalization, whose flow follows straightfor-
wardly

∂tZA;kðpÞ ¼
∂tΓ

ðAAÞ
T;k

p2
; ð85Þ

where the right-hand side is given by one-loop diagrams.
We integrate (85) on the perturbative two-loop trajectory
from (11) to k ¼ 0 where ZAðpÞ ¼ ZA;k¼0ðpÞ is the full
wave-function renormalization and the full propagator
function is given by GA ¼ 1=ðZAðpÞp2Þ, which we can
compare to the CS resummed propagator given in (40). The
overall normalization of the wave function renormalization
is arbitrary and we choose the same normalization as in the
perturbative computation, see (42).
The resulting gluon propagator is displayed in Fig. 12

and compared to the perturbative resummation at one-loop,

i.e., setting Πð2Þ
A ¼ 0 and γAða�Þ ¼ γð1ÞA a� in (40). The

approaches agree remarkably well and we only find small
differences due to the different regularization schemes. It
has to be remarked that the UVand IR asymptotic behavior
has to be identical as it is fully determined by the universal
one-loop anomalous dimension and β-function in the UV,
and by the fixed-point anomalous dimension in the IR,
see (41). Only the normalizations NIR and NUV are
nonuniversal and depend on the unphysical choice aðμÞ,
see (42). In Fig. 12, we have chosen aðμÞ ≈ 0.138a� in the
perturbative computation such that the UV and IR normal-
izations match. Consequently, only in the region around
p ≈ 1 do we encounter differences due to the regularization
scheme. Most notably the fRG computation displays a
bump in the propagator while the CS resummation is a
monotonic interpolation between the IR and UV asymp-
totes. In the fRG, the individual contributions from the
quark and the gauge loops are monotonic in their momen-
tum dependence but the overlay creates the bump at the

TABLE III. As soon as ε ≥ εpoles, the ghost propagator devel-
ops poles through self-energy corrections. At two-loop, the pole
is tachyonic, while at three- and four-loop order, we find a pair of
complex conjugated poles. Self-energy corrections do not induce
poles in the quark and gluon propagator.

εpoles Nc ¼ 3 Nc ¼ ∞

2-loop 2.19 2.25
3-loop 2.66 2.71
4-loop 2.62 2.68
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transition scale. In the CS, a nontrivial structure can arise
from the self-energy-contribution or additional terms com-
ing from the integral of the anomalous dimension (73) at
higher loop orders. While these nontrivial structures are
present at higher loop orders, the resulting modifications
around p ≈ 1 are very small and would not be visible in
Fig. 12. In particular, we do find a visible bump using CS at
higher loop orders in contrast to the fRG result.

V. EXTENSIONS

We have seen that the running of couplings in the plane
of complexified RG momentum μ2 offers important
insights into the existence of a spectral representation for
field propagators because branch cuts of the former trans-
late directly into branch cuts of the latter. In previous
sections, we have exploited this link to find branch cut
conditions (Table I) both analytically (at two-loop) and
numerically (for higher loops), and to link these to the size
of universal scaling exponents (19).
In this section, we extend the scope and derive criteria for

branch cuts in more general theories, expressed again in
terms of universal scaling exponents. This will be done for
general perturbative n-loop β-functions as well as for
suitably resummed expressions, and their solutions.

A. Branch cut conditions from higher loops

We consider a general quantum field theory with a single
coupling of canonical mass dimension da whose perturba-
tive n-loop β-function is given by

μ2
da
dμ2

≡ βðaÞ ¼ daaþ β1a2 þ � � � þ βnanþ1: ð86Þ

If da can be taken as a small parameter (such as ϵ ¼ 4 − d
in the conventional ϵ-expansion [96]), the flow (86) can be
integrated analytically, and order by order in da, using
the method described in Sec. IVA. Here, we solve this

differential equation implicitly using the partial fraction
decomposition for the inverse of the β-function,

1

βðaÞ ¼
1

daa
þ
X
i

1=θi
a − ai;�

: ð87Þ

Once more, ai;� denote all nontrivial zeros of the
β-function, i.e., all nontrivial fixed points, and θi the
corresponding eigenvalues (9). For (87), we assumed that
there are no degenerate fixed points. The differential
equation can now be integrated,

1

da
log

a
a0

þ
X
i

1

θi
log

a − ai;�
a0 − ai;�

¼ log
μ2

μ20
: ð88Þ

Using the eigenvalue sum ruleX
i

1=θi ¼ −1=da; ð89Þ

which holds true at any finite loop order (see Appendix C),
the result simplifies into

X
i

1

θi
log

1 − ai;�=a
1 − ai;�=a0

¼ log
μ2

μ20
: ð90Þ

For dimensionless couplings da ¼ 0, the sum rule (89)
reads instead

X
i

1=θi ¼ β2=β21; ð91Þ

and (90) has an additional term 1=β1ð1=a0 − 1=aÞ on the
left-hand side to account for the logarithmic running at the
Gaussian fixed point.
Next, we apply the implicit function theorem to (90).

Assuming a function F depending on two variables,
Fða; μ2Þ, it states that for any point ðâ; μ̂2Þ where
Fða; μ2Þjâ;μ̂2 is analytic with

Fðâ; μ̂2Þ ¼ 0; and
∂F
∂a

����
â;μ̂2

≠ 0; ð92Þ

there is an analytic function aðμ2Þ in the neighbourhood of
ðâ; μ̂2Þ fulfilling Fða; μ2Þ ¼ 0. Thus, everywhere where the
given requirements of the implicit function theorem are
fulfilled, we can solve for an analytic function aðμ2Þ.
Possible singularities and branching points can only occur
at points where one of the requirements in (92) is violated.
However, we emphasize that there are not necessarily
nonanalyticities if (92) is violated. We can only exclude
nonanalyticities if (92) is fulfilled, and find candidate
nonanalyticities if it is violated.

FIG. 12. Gluon propagator computed from the fRG in com-
parison with the perturbative result for ε ¼ 5

2
, Nc ¼ 100, and

ξ ¼ 1.
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In our case, the function Fða; μ2Þ is given by

Fða; μ2Þ ¼ log
μ2

μ20
−
X
i

1

θi
log

1 − ai;�
a

1 − ai;�
a0

: ð93Þ

As expected, Fða; μ2Þ is not analytic at a ¼ 0. The two-
loop running coupling can be applied locally around a ¼ 0
at general loop orders. Using the properties of the two-loop
running coupling, we conclude that the nonanalyticity at
a ¼ 0 corresponds to a branching point. This is in agree-
ment with common expectations of a vanishing radius of
convergence of the perturbative series and also the occur-
rence of a branch cut in the propagator for timelike
momenta.
The point a ¼ 0 is not the only nonanalyticity appearing

in the running coupling. There are additional points due to

∂F
∂a

¼ 1

βðaÞ ¼ 0: ð94Þ

This can only be fulfilled if a → ∞ since we are assuming
βðaÞ to be a polynomial, see (86). To see where a → ∞ can
be fulfilled, we solve Fða; μ2Þ ¼ 0 for μ2 in the limit of
a → ∞. This leads to the equation

Y
i

�
1 −

ai;�
a0

�
−1=θi ¼ μ2

μ20
: ð95Þ

Each complex μ2 that solves this equation is a candidate for
a branch cut or singularity. The determination of which
kind of singularities can be found at these points is more
difficult than at a ¼ 0. This is because all higher-order
derivatives of F by a vanish at a → ∞, thus, the Jacobian
vanishes to all orders. In the two-loop case, the points with
a → ∞ corresponds to WðzÞ ¼ −1, where the W-Lambert
function has a branching point. This behavior might
generalize to higher orders and the points fulfilling (95)
might lead to additional branching points in the com-
plex plane.
We now translate the condition (95), into a strict relation

for the eigenvalues. In a first step, we assume that all the
fixed points are real and we write the factors ð1 −
ai;�=a0Þ−1=θi as rie−iφðai;�Þ=θi where φðai;�Þ is the complex
phase of the factor ð1 − ai;�=a0Þ and ri is the absolute value
of the total factor. If ai;� < a0 then the factor is positive and
complex phase is zero, φðai;�Þ ¼ 0, while if ai;� > a0 then
the factor is negative and φðai;�Þ ¼ π. Note, that we are
using the principal branch of the roots. Furthermore, the
factors μ0 and e1=ðβ1a0Þ are real and positive. Thus we end
up with the equation

μ2 ¼ C exp

�
−iπ

Xai;�>a0
i

1

θi

�
; ð96Þ

where the sum runs only over the eigenvalues belonging to
fixed points with ai;� > a0. The complex phase of μ2 is
between −π and π, and therefore the equation has no
solutions in the principal branch if

���� Xai;�>a0

i

1

θi

���� > 1: ð97Þ

In this case, we have no branching points in the complex
plane. Conversely, branching points might appear if the
sum over the inverse eigenvalues is smaller than unity. For
beta functions at two- and three-loop order, this relation
was observed in [11].
Let us now extend this argument to also include fixed

points in the complex plane. Since the β-function is real,
complex fixed points and their eigenvalues always appear
as complex conjugate pairs. In (95), they show up as

�
1 −

a�;cc
a0

�
−1=θcc

�
1 −

ða�;ccÞ†
a0

�−1=θ†cc

¼ r2cc exp

�
i
φða�;ccÞ
θ†cc

− i
φða�;ccÞ
θcc

�

¼ r2cc exp

�
2φða�;ccÞImðθccÞ

jθccj2
�
; ð98Þ

which establishes that their combined complex phase is
vanishing and thus they do not contribute to the complex
phase on the right-hand side of (96). In summary, (97) also
holds in the presence of complex conjugated fixed points
and the sum only runs over the eigenvalues θi belonging to
real fixed points with ai;� > a0.
We emphasize that a solution to (95) only give candi-

dates for branch cuts and it is not clear if these candidates
are realized in the explicit solution of the β-function
equation. Intuitively, one can imagine that the branch point
is located in a different branch of the solution.
We evaluated (97) for the gauge β-function in the BZ

phase and computed the critical Veneziano parameter for
which branch cuts appear in the complex plane at each loop
order. The values for εbranch cut agree exactly with the ones
found numerically in Table I. We also numerically explored
β-functions with arbitrary coefficients and observed that the
branch point candidates that we obtain from (95) indeed
always give rise to a branch cut. While it seems intriguing
that a violation of (97) always gives rise to a branch cut in
the complex plane, this stems from a numerical search and
should not be taken as a general statement.
In summary, we conclude that if (97) is fulfilled then there

are no additional nonanalyticities in the complex plane.
Conversely, if (97) is violated, we cannot make a definite
statement but our numerical analysis suggests that additional
nonanalyticities are very likely. We also emphasize that (97)
is independent of the mass dimension of the coupling a.
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B. Veneziano limit and fixed point merger

In the Veneziano limit, and for small ε ≪ 1, it is worth
pointing out that the condition (97) is always fulfilled and
the BZ fixed point is guaranteed to be free from additional
nonanalyticities in the complex plane. This can be appre-
ciated as follows. For small ε ≪ 1, the leading eigenvalue
reads θBZ ¼ 8

225
ε2 þOðε3Þ. We choose 0 < a0 < a�;BZ to

ensure that the coupling runs from close to the free fixed
point into the BZ fixed point. In consequence, θBZ provides
a parametrically large contribution ∼1=ε2 to the sum
in (97). This contribution could be tamed by another
eigenvalue of the order 1=ε2. Within perturbation theory,
this would require the existence of a second fixed point,
parametrically close to the BZ fixed point. In particular, this
necessitates that the two-loop coefficient β2 becomes
parametrically small with the Veneziano parameter.
However, this is impossible: the two-loop coefficient β2
is of order unity and positive, for any 4d quantum gauge
theory coupled to any type of matter as long as the one-loop
coefficient β1 is parametrically small or vanishing [6]. We
conclude that the BZ fixed point is guaranteed to be free
from additional nonanalyticities in the complex plane in the
Veneziano limit, and for small ε.
For large ε, on the other hand, the propagators contain

branch cuts as shown in Table I. An exception arises at five-
loop order, where the BZ fixed point disappears into the
complex plane at moderately small ε due to a fixed point
merger before the branch cut bound appears at the previous
loop order. With this motivation in mind, let us briefly
discuss how (97) behaves in the vicinity of a general fixed-
point merger. In fact, (97) is not required to be continuous
function of ε close to a merger. Consider two fixed points a1
and a2 merging at the point am. For any such system, the
β-function can be expanded around the fixed point merger
a ¼ am,

βðaÞ ¼ δ2 þ δc0ða − amÞ þ c1ða − amÞ2
þ c2ða − amÞ3 þ…; ð99Þ

where δ is a small parameter. It describes how two fixed
points a1 and a2 merge in dependence of an external
parameter and become complex afterwards. The coefficients
δ and ci are functions of this external parameter. At the
fixed point merger, we must have δ ¼ 0 and we can
expand this problem in powers of δ, in particular
a1;2 ¼ am � bδþOðδ2Þ, and b of order unity. Note that
all the terms in the first line of (99) are of order δ2, while the
term in the second line is subleading of order δ3. Computing
the eigenvalues of the fixed point a1;2 as an expansion in δ
gives

1

θ1
þ 1

θ2
¼ −

c2
c21

þOðδÞ: ð100Þ

In general, c1 and c2 are not going to vanish at the fixed point
merger. Thus, the inverse eigenvalues do not cancel each
other in (97) and give a finite contribution. However, after
the fixed point merger, they do not contribute to (97) any
more, see the discussion around (98), and (97) has a
discontinuity. Remarkably, it is the first subleading contri-
bution parametrized by the coefficient c2 that is responsible
for the discontinuity since the leading contributions cancel.
We can apply this to the fixed point merger of the BZ

fixed point at the five-loop order of perturbation theory.
There we have the situation that we have exactly two
positive fixed points that merge at ε ¼ 1.2019 at Nc ¼ 3,
see Table I. After the fixed point merger, there is not a
single critical exponent contributing to (97), and nonethe-
less no proliferation of branch cuts before the merger. In
fact we can numerically compute

P
i 1=θi ≈ 12.5 just

before the fixed point merger. This agrees with the analytic
considerations of (100) when we expand the five-loop
β-function around a fixed point merger. This discontinuity
prevents the existence of a branch cut regime before the BZ
fixed point disappears. In comparison in four-loop case at
Nc ¼ 3, the BZ fixed point also vanishes with a fixed point
merger at εmax ¼ 3.0538 but in contrast shows a prolifer-
ation of branch cuts already at εbranch cut ¼ 2.6817, see
Table I. Matching the four-loop case to the merger template
in (100), we obtain

P
i 1=θi ≈ 0.46 right at the merger and

hence the discontinuity is small enough in order to allow for
the existence of a branch cut regime before the merger.

C. Branch cut conditions from resummations

We consider a general quantum field theory with a single
coupling of vanishing canonical mass dimension whose
½n; k� Padé-resummed (nþ k)-loop β-function is given by

μ2
da
dμ2

≡ βðaÞ ¼ a2
γ1 þ γ2aþ � � � þ γnan−1

1þ δ1aþ � � � þ δkak
: ð101Þ

The coefficients γi and δi are uniquely linked to the original
β-function coefficients.8 If k ≤ nþ 1, the partial fraction
decomposition for 1=β takes the form

1

βðaÞ ¼
1

γ1a2
−
γ2 − γ1δ1

γ21a
þ
X
i

1=θi
a − ai;�

: ð102Þ

Using the sum rule

X
i

1

θi
¼ −

γ1δ1 − γ2
γ21

; ð103Þ

which is valid for k ≤ n, this equation is readily integrated,
and we write the result as Fða; μ2Þ ¼ 0 with

8A canonical mass dimension da ≠ 0 will alter some inter-
mediate expressions, such as (102) to (104), without affecting the
final results and conclusions.
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Fða;μ2Þ¼ log
μ2

μ20
−
1

γ1

�
1

a0
−
1

a

�
−
X
i

1

θi
log

1−a�i
a

1−a�i
a0

: ð104Þ

Applying the implicit function theorem to F indicates
that a first nonanalyticity arises at a ¼ 0, as expected,
corresponding to a branch cut on the negative half axis.
To find further nonanalyticities, we have to solve
∂aF ¼ 1=βðaÞ ¼ 0, which identifies two potential sources
for nonanalyticities:

(i) The limit a → ∞ is a solution. In consequence,
(104) falls back onto the nonresummed setting (95),
and we find that the condition (97) entails the same
nonanalyticities as in ordinary perturbation theory.

(ii) New types of solutions are given by the roots of the
denominator, 1þP

δiai ¼ 0.
A notable difference between these is that case (i) leads to
one condition for the absence of nonanalyticities in terms of
the critical exponents, while case (ii) leads to n conditions
where n is the number of roots of the Padé denominator.
To simplify the analysis of (ii), we assume that the

denominator only has real roots which we denote by ãj, i.e.,
1þP

δiðãjÞi ¼ 0. This leads for each root ãj to

e
1
γ1
ð 1
a0
− 1
ãj
ÞY

i

0
B@1 − a�i

a0

1 − a�i
ãj

1
CA

−1=θi

¼ μ2

μ20
: ð105Þ

The real parts as well as the combined contributions from
the complex conjugated fixed points can be absorbed by an
appropriate choice of μ20. Compared to (95), there is a new

contribution if 1 − a�i
ãj
< 0. Since ãj can be negative, this

implies that now also negative fixed points can contribute.
Eventually, we find for each root ãj a condition to avoid
additional nonanalyticities

���� X
a�i >a0

i

1

θi
−

Xa�i≷ãj
i

1

θi

���� > 1; if ãj ≷ 0: ð106Þ

Notably, in the case where ãj < 0 also negative fixed points
with a�i < ãj contribute. This condition has to be fulfilled
for each root ãj as well as (97) to guarantee the absence of
additional nonanalyticities. Conversely, there are not nec-
essarily additional analyticities if one of these conditions is
violated, we only find a candidate for a nonanalyticity.
Indeed, we did some numerical studies with arbitrary
β-function coefficients and found cases where one con-
dition was violated but no additional nonanalyticities
showed up in the complex plane.
In summary, we found conditions for the absence of

additional nonanalyticities in the complex plane of the
coupling for perturbative β-functions (97) as well as
resummed β-functions (97) and (106). If one condition is
violated, we can find a candidate for a nonanalyticity with

(95) for perturbative β-functions and with (95) and (105) in
the case of resummed β-functions. If the nonanalyticity is
realized has to be checked on a case by case basis.Within the
numerical search of perturbative β-functions, we found that
all candidates were indeed realized by the solution. We
remind the reader, that the nonanalyticities in the complex
plane of the coupling which propagate to the field propa-
gators via the CS resummation, see Sec. II D, and the
absence of nonanalyticities in the field propagators is a
necessary but not sufficient criterion for the existence of a
KL spectral representation, see Sec. III A.

VI. DISCUSSION AND CONCLUSIONS

We have put forward a comprehensive study of unitary
and asymptotically free quantum gauge theories with
Banks-Zaks fixed points in the IR. By construction, these
theories are conformal both in the asymptotic UV and the
asymptotic IR, connected by a perturbatively controlled
separatrix inbetween (Fig. 1). As such, weakly interacting
quarks and gluons remain good degrees of freedom to
describe the system at all scales. A central question is
whether the field propagators allow for a Källén-Lehmann
spectral representation. To that end, we performed a detailed
investigation of the propagators in the complex momentum
plane, both analytically and numerically, using results from
perturbation theory for the running gauge coupling (up to
five loop) and self-energy corrections (up to four loop).
Performing a Callan-Symanzik resummation of large log-
arithms from self-energy corrections also proved important.
At weak coupling, and in the Veneziano limit, the

smallness of the conformal expansion parameter ε ensures
strict perturbative control. In this regime, we find that the
running of the gauge coupling along the entire UV-IR
connecting separatrix can be determined analytically as a
systematic power series in ε. Propagators in the complex
plane are dominated by the running gauge coupling, while
the finite self-energy corrections turn out to be parametri-
cally subleading after the large logarithms have been
resummed. Most notably, this does not introduce new poles
or cuts in the complex plane as long as interactions remain
weak. If, additionally, field anomalous dimensions in the
deep IR are either negative or integers, the availability of a
Källén-Lehmann spectral representation is guaranteed.
On the other hand, the complex structure of propagators

changes significantly as soon as interactions become
strong. This qualitative change shows up through new
branch cuts and poles (Fig. 5) once interactions exceed a
characteristic strength ðε ≥ εbranch cutÞ. Invariably, a stan-
dard Källén-Lehmann spectral representation is lost even
before the fixed point disappears. These new effects
originate from the running coupling, whose nonanalytic-
ities in the complex plane transfer directly to the field
propagators. In addition, new poles arise in ghost propa-
gators from self-energy corrections at strong coupling
ε ≥ εpoles (see Table III) where perturbation theory becomes
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unreliable. Despite of their different origins, we notice that
εbranch cut and εpoles only deviate at the percent level or
below, (80). We take the interaction-induced proliferation
of cuts and poles (Fig. 2) and the qualitative change in the
propagators to indicate that the BZ conformal window is
smaller than expected from beta functions (Table I).
Further, and even though all theories are characterized
by the scale Λc, (13), the spectral representation of
propagators does not offer indication for bound states with
masses ∝ Λc. This result holds true for any setting with
ε < εpoles, and covers all theories whose RG flow termi-
nates at the BZ fixed point in the IR.
Even thoughweakly coupled quarks and gluons are ideally

suited to describe the system at all scales, it is important to
remember that their propagators are not gauge invariant
variables. Interestingly, however, the complex structure of
poles and cuts induced by the running coupling is insensitive
to gauge dependences. Still, field anomalous dimensions
which control the scaling of propagators in the deep IR, are
manifestly gauge dependent and influence the existence,
normalizability, and positive definiteness of spectral func-
tions. This is illustrated in Figs. 7–11, where we have
computed quark, gluon, and ghost spectral functions for a
range of loop orders,Veneziano parameters, and gauge-fixing
parameters. As a consistency check, we have also used the
fRG to compute the mid-momentum regime of propagators
and found that results (Fig. 12) compare very well with those
from the Callan-Symanzik flow (Fig. 4), as they must. We
further noticed that the apparent convergence of the loop
expansion is different for different fields (Table II), in
qualitative agreement with findings elsewhere [7]. Most
importantly, we find a wide range of parameters where all
field propagators simultaneously have a well-defined KL
spectral representation. This key result indicates that spectral
representations—ordinarily adopted for the study of scalar
theories or for correlation functions of gauge-invariant
quantities—may very well be of use for the study of gauge
theories with matter and ghosts.
While our results have been achieved specifically for

SUðNcÞ gauge theories with Nf Dirac fermions in the
fundamental representation, they equally hold true for any
other 4d gauge-matter theory with a weakly interacting
Banks-Zaks fixed point. The reason for this is that the
running of the gauge coupling is invariably dictated by the
W-Lambert function to any loop order, see (62), (68) and
(69), leading to identical complex structures for propaga-
tors. This is particularly true in the Veneziano limit where
large-N equivalences among SU, SO, and Sp gauge
theories coupled to matter also ensure identical field
anomalous dimensions in the deep IR [30,97]. We therefore
conclude that any 4d QFTwith a weakly interacting Banks-
Zaks fixed point universally admits a KL spectral repre-
sentation for their propagators.
Since the loss of a KL spectral representation and the

emergence of complex conjugated propagator poles and

branch cuts are intimately linked to the running coupling in
the complex plane, we have extended investigations toward
theories with more general beta functions. As a first step,
we looked into the complex structures of theories with
finite order perturbative (86) or resummed β-functions
(101) and identified conditions for the absence of non-
analyticities in terms of universal scaling exponents char-
acterizing the fixed points of the theory, see (97) and (106).
We also studied fingerprints for fixed-point mergers (100)
which should prove useful for investigating endpoints of
conformal windows [27,49,98].
It will be interesting to expand our investigations toward

theories with several running couplings such as 4d gauge-
Yukawa theories [5,28,30], and more strongly coupled
theories including Einstein Hilbert [12] or higher curvature
gravities. On a different tack, it will also be important to
extend our studies toward gauge-invariant objects such as
bound state correlation functions and scattering amplitudes,
or with the help of dressing functions [88–90]. The
resummed field propagators presented here are basic
building blocks for this, and it will be intriguing to observe
how gauge dependences ultimately cancel out. We hope to
come back to these topics in the future.
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APPENDIX A: RUNNING GAUGE COUPLING

At two-loop, the β-function for the running gauge
coupling (3) can be solved explicitly. Starting from

μ2
da
dμ2

¼ β1a2 þ β2a3; ðA1Þ

we first display the implicit solution of (A1) which is
obtained by integrating the differential equation,

1

θ
log

�
a� − a
a� − a0

a0
a

�
−

1

β1

�
1

a
−

1

a0

�
¼ log

�
μ2

μ20

�
; ðA2Þ

where a� ¼ −β1=β2 is the BZ fixed point and θ ¼ β21=β2
the corresponding eigenvalue. An explicit solution to this
equation can be found by usage of theW-Lambert function
WðzÞ, which is defined as the solution to the equation

WðzÞeWðzÞ ¼ z; ðA3Þ

To bring (A2) into this form, we exponentiate it and
introduce the new variables
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ω ¼ a� − a
a

; ω0 ¼
a� − a0

a0
: ðA4Þ

The solution can then be read-off,

a ¼ a�
1þWiðzÞ

; z ¼ ω0eω0

�
μ2

μ20

�
θ

; ðA5Þ

see also (11). Equation (A3) has a countable infinite number
of complex solutions leading to infinitely many branches
WiðzÞ. Using that the couplinga is real for all μ2=μ20 > 0 and
that a0 < a�, it follows that the principal branchW0ðzÞ is the
unique solution for 0 < z < ∞. This explicit solution can be
extended to three-loop order with the help of a Padé
approximant [64]. In this way, we can write

βðaÞ ¼ a2
β1β2 þ ðβ22 − β1β3Þa

β2 − β3a
þOða5Þ; ðA6Þ

which allows for an explicit solution of the type (A5) with
a� ¼ ðβ1β2Þ=ðβ1β3 − β22Þ and θ ¼ β21=β2.
At two-loop, the asymptotic properties of the gauge

coupling can be obtained directly from the asymptotic
behavior of the W-Lambert function,

W0ðzÞ ¼
(
log z − log log zþO

�
1
z

�
for z → ∞;

zþOðz2Þ for z → 0:
ðA7Þ

For the running coupling, this gives us the asymptotic
behavior

aðμ2Þ ¼
8<
:

− 1
β1 logðμ2=μ20Þ

for jμ2j → ∞

a� − a�ω0eω0

�
μ2

μ2
0

�
θ

for jμ2j → 0:
ðA8Þ

Both asymptotes can also be directly extracted from the
β-function by linearising and solving the β-function around
the given fixed point.
At higher loop orders, the algorithm of Sec. IVA can be

used to find explicit solutions for the running gauge
coupling in a systematic expansion in ε ≪ 1.

APPENDIX B: FIVE LOOP
FIXED POINT AND EXPONENT

In the Veneziano limit, the BZ fixed point expands as

Nca� ¼
X
n¼1

â�nεn; ðB1Þ

for small ε. Using the five-loop beta function [18,20], the
first four coefficients of the BZ fixed point are found to be

â�1 ¼
4

75
;

â�2 ¼
2192

421875
;

â�3 ¼
5844232

2373046875
þ 1408

421875
ζ3;

â�4 ¼
2226607268

2669677734375
þ 935296

791015625
ζ3 −

45056

31640625
ζ5:

ðB2Þ

Similarly, the universal scaling exponent expands as

θ ¼
X
n¼2

θ̂nε
n; ðB3Þ

and its first four coefficients are found to be

θ̂2 ¼
8

225
;

θ̂3 ¼
208

16875
;

θ̂4 ¼
2934256

2373046875
−

2816

1265625
ζ3;

θ̂5 ¼
4771112816

4449462890625
−

722432

474609375
ζ3 þ

180224

94921875
ζ5:

ðB4Þ

APPENDIX C: SUM RULES FOR
SCALING EXPONENTS

We are going to establish a series of sum rules
for universal critical exponents related to fixed points
of perturbative n-loop β-functions. We assume that the
β-function takes the shape

μ2
da
dμ2

≡ βðaÞ ¼ β1a2 þ β2a3 þ � � � þ βnanþ1: ðC1Þ

Besides the double-zero at a ¼ 0, the beta function has
n − 1 nontrivial zeros ai;� in the complexified a-plane, with
scaling exponents

θi ¼
∂βðaÞ
∂a

����
a¼a�i

: ðC2Þ

Of physical interest are the real zeros, and in particular the
one closest to the origin.
Sum rules for scaling exponents are found by starting

from the partial fraction decomposition for the inverse
β-function,

1

βðaÞ ¼
1

β1a2
−

β2
β21a

þ
X
i

1=θi
a − ai;�

; ðC3Þ
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which is then integrated in the complex plane along a circle
including all poles of (C3) with its radius going to infinity.
Since the finite order β-function is a polynomial of at least
quadratic order, its inverse goes to zero fast enough at
infinity such that its integral along the curve vanishes,

I
da

1

βðaÞ ¼ 0: ðC4Þ

On the other hand, for each term on the right-hand side
of (C3) we can use the residue theorem. This leads to our
first sum rule for critical exponents

X
i

1

θi
¼ β2

β21
: ðC5Þ

If the coupling a has a nontrivial mass dimension da and
the β-function is given by (86), then the corresponding sum
rule reads

X
i

1

θi
¼ −

1

da
; ðC6Þ

instead, see (89). Also for resummed β-functions of the
type (101), an analogous sum rule can be derived straight-
forwardly, see (103).
We can derive further identities by exploiting that

I
da

a
βðaÞ ¼ 0; ðC7Þ

provided the β-function is two-loop or higher. Multiplying
(C3) by a and using the residue theorem once more, we
obtain the sum rule

X
i

a�i
θi

¼ 1

β1
: ðC8Þ

It states that the sum of inverse scaling exponents, weighted
by the corresponding fixed point coupling, is given by the
inverse one-loop coefficient.
Generalizing to multiplications with higher powers of a

and assuming that the β-function is evaluated at high
enough loop orders, we also obtain the sum rules

X
i

ða�i Þm
θi

¼ 0: ðC9Þ

It states that the sum of inverse scaling exponents, weighted
by any integer power 1 < m < n of the corresponding fixed
point coupling, vanishes. These sum rules and variants have
been tested numerically, and are used throughout the
main text.

APPENDIX D: ANOMALOUS DIMENSIONS AND
SELF-ENERGIES

In this appendix, we summarize expressions for the
anomalous dimensions and the self-energies up to two-loop
order. Five loop results for the β-function and anomalous
dimensions, and four loop results in the self-energies can be
found in [18,20] and [16,65], respectively.
The one and two-loop coefficients of the field anomalous

dimensions

γϕðaÞ ¼ γð1Þϕ aþ γð2Þϕ a2 þ…

are given by

γð1ÞA ¼ −
Nc

2
ðξþ 3Þ þ 2Nc

3
ε;

γð2ÞA ¼ 44 − ð2ξ2 þ 11ξþ 95ÞN2
c

8
þ
�
7N2

c

2
− 1

�
ε; ðD1Þ

for the gluons, by

γð1Þψ ¼ ξð1 − N2
cÞ

2Nc
;

γð2Þψ ¼ 1 − N2
c

8N2
c

½3þ ξðξþ 8ÞN2
c� þ

1 − N2
c

2
ε; ðD2Þ

for the quarks, and by

γð1Þc ¼ 3 − ξ

4
Nc;

γð2Þc ¼ ξ − 5

16
N2

c þ
5N2

c

12
ε ðD3Þ

for the ghosts. Similarly, the one and two-loop self-energy
corrections

Πϕðp2 ¼ −μ2Þ ¼ Πð1Þ
ϕ aþ Πð2Þ

ϕ a2 þ…

read

Πð1Þ
A ¼ −

Nc

12
ð3ξ2 þ 6ξ − 41Þ − 10Nc

9
ε;

Πð2Þ
A ¼

�
3ζ3 þ

1311

32

�
N2

c þ 22ζ3 −
605

24
−
115

48
ξ2N2

c

−
N2

c

96
ξð192ζ3 þ 139Þ þ N2

c

16
ξ3ðξ − 1Þ

þ ε

�
55

12
− 4ζ3 −

287N2
c

24
þ 5N2

c

9
ξðξþ 1Þ

�
; ðD4Þ

for the gluons,
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Πð1Þ
ψ ¼ ξðN2

c − 1Þ
2Nc

;

Πð2Þ
ψ ¼ 9

16
ξ2ðN2

c − 1Þ þ 1

4
ξð13 − 6ζ3ÞðN2

c − 1Þ

þ N2
c − 1

32N2
c
ð5ðN2

c þ 1Þ − 48ζ3Þ þ
7

8
εðN2

c − 1Þ; ðD5Þ

for the quarks, and

Πð1Þ
c ¼ −Nc;

Πð2Þ
c ¼ 3N2

c

16
ξ2ðζ3 − 2Þ þ N2

c

64
ξð7 − 24ζ3Þ

þ N2
c

64
ð60ζ3 þ 113Þ − 95N2

c

48
ε; ðD6Þ

for the ghosts.

[1] G. Kallen, On the definition of the renormalization constants
in quantum electrodynamics, Helv. Phys. Acta 25, 417
(1952).

[2] H. Lehmann, On the properties of propagation functions
and renormalization contants of quantized fields, Nuovo
Cimento 11, 342 (1954).

[3] D. J. Gross and F. Wilczek, Ultraviolet Behavior of
Nonabelian Gauge Theories, Phys. Rev. Lett. 30, 1343
(1973).

[4] H. D. Politzer, Reliable Perturbative Results for Strong
Interactions?, Phys. Rev. Lett. 30, 1346 (1973).

[5] D. F. Litim and F. Sannino, Asymptotic safety guaranteed,
J. High Energy Phys. 12 (2014) 178.

[6] A. D. Bond and D. F. Litim, Theorems for asymptotic safety
of gauge theories, Eur. Phys. J. C 77, 429 (2017).

[7] A. D. Bond and D. F. Litim, Asymptotic safety guaranteed
for strongly coupled gauge theories, Phys. Rev. D 105,
105005 (2022).

[8] S. R. Coleman and D. J. Gross, Price of Asymptotic Free-
dom, Phys. Rev. Lett. 31, 851 (1973).

[9] A. D. Bond and D. F. Litim, Price of Asymptotic Safety,
Phys. Rev. Lett. 122, 211601 (2019).

[10] S. Weinberg, Ultraviolet divergences in quantum theories of
gravitation, in General Relativity: An Einstein Centenary
Survey, edited by S. W. Hawking and W. Israel (Cambridge
University Press, Cambridge, England, 1979), p. 790.

[11] E. Gardi and G. Grunberg, The conformal window in QCD
and supersymmetric QCD, J. High Energy Phys. 03 (1999)
024.

[12] J. Fehre, D. F. Litim, J. M. Pawlowski, and M. Reichert,
Lorentzian quantum gravity and the graviton spectral
function, arXiv:2111.13232.

[13] A. A. Belavin and A. A. Migdal, Calculation of anomalous
dimensions in non-abelian gauge field theories, Pis’ma Zh.
Eksp. Teor. Fiz. 19, 317 (1974), http://jetpletters.ru/ps/1774/
article_27000.shtml.

[14] W. E. Caswell, Asymptotic Behavior of Nonabelian Gauge
Theories to TwoLoopOrder, Phys. Rev. Lett. 33, 244 (1974).

[15] T. Banks and A. Zaks, On the phase structure of vector-like
gauge theories with massless fermions, Nucl. Phys. B196,
189 (1982).

[16] K. G. Chetyrkin and A. Retey, Three loop three linear
vertices and four loop similar to mom beta functions in
massless QCD, arXiv:hep-ph/0007088.

[17] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Five-Loop
Running of the QCD Coupling Constant, Phys. Rev. Lett.
118, 082002 (2017).

[18] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.
Vogt, The five-loop beta function of Yang-Mills theory with
fermions, J. High Energy Phys. 02 (2017) 090.

[19] T. Luthe, A. Maier, P. Marquard, and Y. Schroder, The five-
loop Beta function for a general gauge group and anomalous
dimensions beyond Feynman gauge, J. High Energy Phys.
10 (2017) 166.

[20] K. G. Chetyrkin, G. Falcioni, F. Herzog, and J. A. M.
Vermaseren, Five-loop renormalisation of QCD in covariant
gauges, J. High Energy Phys. 10 (2017) 179.

[21] J. Polchinski, Scale and conformal invariance in quantum
field theory, Nucl. Phys. B303, 226 (1988).

[22] Z. Komargodski and A. Schwimmer, On renormalization
group flows in four dimensions, J. High Energy Phys. 12
(2011) 099.

[23] Z. Komargodski, The constraints of conformal symmetry on
RG flows, J. High Energy Phys. 07 (2012) 069.

[24] M. A. Luty, J. Polchinski, and R. Rattazzi, The a-theorem
and the asymptotics of 4D quantum field theory, J. High
Energy Phys. 01 (2013) 152.

[25] D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of
asymptotically safe gauge-Yukawa theories, J. High Energy
Phys. 01 (2016) 081.

[26] A. D. Bond, G. Hiller, K. Kowalska, and D. F. Litim,
Directions for model building from asymptotic safety, J.
High Energy Phys. 08 (2017) 004.

[27] A. D. Bond, D. F. Litim, G. Medina Vazquez, and T.
Steudtner, UV conformal window for asymptotic safety,
Phys. Rev. D 97, 036019 (2018).

[28] A. D. Bond and D. F. Litim, More asymptotic safety
guaranteed, Phys. Rev. D 97, 085008 (2018).

[29] A. D. Bond and D. F. Litim, Asymptotic Safety Guaranteed
in Supersymmetry, Phys. Rev. Lett. 119, 211601 (2017).

[30] A. D. Bond, D. F. Litim, and T. Steudtner, Asymptotic
safety with Majorana fermions and new large N equiva-
lences, Phys. Rev. D 101, 045006 (2020).

[31] H. Gies and J. Jaeckel, Chiral phase structure of QCD with
many flavors, Eur. Phys. J. C 46, 433 (2006).

[32] D. D. Dietrich and F. Sannino, Conformal window of
SUðNÞ gauge theories with fermions in higher dimensional
representations, Phys. Rev. D 75, 085018 (2007).

KLUTH, LITIM, and REICHERT PHYS. REV. D 107, 025011 (2023)

025011-28

https://doi.org/10.1007/978-3-319-00627-7_90
https://doi.org/10.1007/978-3-319-00627-7_90
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1007/JHEP12(2014)178
https://doi.org/10.1140/epjc/s10052-017-4976-5
https://doi.org/10.1103/PhysRevD.105.105005
https://doi.org/10.1103/PhysRevD.105.105005
https://doi.org/10.1103/PhysRevLett.31.851
https://doi.org/10.1103/PhysRevLett.122.211601
https://doi.org/10.1088/1126-6708/1999/03/024
https://doi.org/10.1088/1126-6708/1999/03/024
https://arXiv.org/abs/2111.13232
http://jetpletters.ru/ps/1774/article_27000.shtml
http://jetpletters.ru/ps/1774/article_27000.shtml
http://jetpletters.ru/ps/1774/article_27000.shtml
http://jetpletters.ru/ps/1774/article_27000.shtml
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1016/0550-3213(82)90035-9
https://arXiv.org/abs/hep-ph/0007088
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1007/JHEP02(2017)090
https://doi.org/10.1007/JHEP10(2017)166
https://doi.org/10.1007/JHEP10(2017)166
https://doi.org/10.1007/JHEP10(2017)179
https://doi.org/10.1016/0550-3213(88)90179-4
https://doi.org/10.1007/JHEP12(2011)099
https://doi.org/10.1007/JHEP12(2011)099
https://doi.org/10.1007/JHEP07(2012)069
https://doi.org/10.1007/JHEP01(2013)152
https://doi.org/10.1007/JHEP01(2013)152
https://doi.org/10.1007/JHEP01(2016)081
https://doi.org/10.1007/JHEP01(2016)081
https://doi.org/10.1007/JHEP08(2017)004
https://doi.org/10.1007/JHEP08(2017)004
https://doi.org/10.1103/PhysRevD.97.036019
https://doi.org/10.1103/PhysRevD.97.085008
https://doi.org/10.1103/PhysRevLett.119.211601
https://doi.org/10.1103/PhysRevD.101.045006
https://doi.org/10.1140/epjc/s2006-02475-0
https://doi.org/10.1103/PhysRevD.75.085018


[33] M. Jarvinen and E. Kiritsis, Holographic models for
QCD in the Veneziano limit, J. High Energy Phys. 03
(2012) 002.

[34] Y. Kusafuka and H. Terao, Fixed point merger in the SU(N)
gauge beta functions, Phys. Rev. D 84, 125006 (2011).

[35] R. Alvares, N. Evans, and K.-Y. Kim, Holography of the
conformal window, Phys. Rev. D 86, 026008 (2012).

[36] T. DeGrand, Lattice tests of beyond standard model dy-
namics, Rev. Mod. Phys. 88, 015001 (2016).

[37] S. Gukov, RG flows and bifurcations, Nucl. Phys. B919,
583 (2017).

[38] D. Simmons-Duffin, The conformal bootstrap, in Theoreti-
cal Advanced Study Institute in Elementary Particle Phys-
ics: New Frontiers in Fields and Strings (2017), pp. 1–74,
10.1142/9789813149441_0001.

[39] D. Poland, S. Rychkov, and A. Vichi, The conformal
bootstrap: Theory, numerical techniques, and applications,
Rev. Mod. Phys. 91, 015002 (2019).

[40] T. A. Ryttov and R. Shrock, Infrared zero of β and value
of γm for an SU(3) Gauge theory at the five-loop level,
Phys. Rev. D 94, 105015 (2016).

[41] T. A. Ryttov and R. Shrock, Physics of the non-Abelian
Coulomb phase: Insights from Padé approximants,
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