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We express the nonlocal Bondi-Metzner-Sachs (BMS) charges of a free massless Klein-Gordon scalar
field in 2 + 1 in terms of the Green functions of the polyharmonic operators. Using the properties of these
Green functions, we are able to discuss the asymptotic behavior of the fields that ensures the existence of
the charges and prove that one obtains a realization of the 2 + 1 BMS algebra in canonical phase space. We
also discuss the transformations in configuration space and show that in this case the algebra closes only up
to skew-symmetric combinations of the equations of motion. The formulation of the charges in terms of
Green functions opens the way to the generalization of the formalism to other dimensions and systems.
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I. INTRODUCTION

The Bondi-Metzner-Sachs (BMS) group of symmetry
transformations [1,2] has experienced a surge of interest
during the last decade. It has been used, for instance, to
deduce Weinberg’s soft graviton theorems [3] as Ward
identities of BMS supertranslations [4-7]. A pedagogical
overview of the role of BMS symmetries in several problems
in field theory and gravitation is presented in [8]. The BMS
algebra in the case of the 2 4 1 space-time has been studied
in [9,10], and some applications can be found in [11-15].

The existence of the Noether charges that canonically
generate these transformations implies an asymptotic behav-
ior at spatial infinity for the scalar field. The asymptotic
behavior of the scalar fields and the relation to soft theorems
have been studied in [16], and the BMS asymptotic
symmetries at spatial infinity using the Hamiltonian formal-
ism has been considered in [17-19].
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Following the ideas in [20], an explicit nonlocal reali-
zation of supertranslations for scalar free fields in 2 + 1
Minkowski space-time was developed in [21]. In that paper
the canonical momenta operators in Fourier space,

d’k

dk = ————,
2(27)’w

pr= /di%a(/}’)kﬂa(%),

were extended to an infinite number of operators,

- -

P, = / dFa@®w,®aF), ez, ()

-

using functions w,(k) generalizing the momentum space
coordinates (w, ki, k,), namely

i\
ey = B 5
1)
with the standard Poincaré operators obtained for £ = 0
and from real combinations of the £ = £1 cases. The
functions w, are the eigenfunctions with eigenvalue +2 of
the operator

v2

massless

= 0*d + 2w0,,. (4)
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The rationale for this is the key observation in [20], which
was in fact done for the (3 + 1)-dimensional case, that
if one considers the mass-shell hyperboloid manifold
of a massive particle, @ — |k|> = m?, and its associated
Laplace-Beltrami operator, which for dimension 2 + 1 is
given by

V2 = % <(12 —1)02 +2z0. + Zz;_ldg), (5)
with the hyperboloid parametrized by z € [l,+o),
0 € [0,2x), then the functions k* are eigenfunctions of
this operator, with eigenvalue 2/m? in the case of 2 + 1
space-time dimension. By computing all the eigenfunctions
corresponding to this eigenvalue one can obtain the
generalized momenta which finally yield the supertransla-
tions in the massive case. The operator in (4) can be
obtained by an appropriate m — 0 limit of the above
Laplace-Beltrami operator. It should also be remarked that
V2 sless 18 actually one of the two Casimirs of SO(2, 1),
namely —J? + K% + K3, with J the generator of rotations
and K|, K, those of the boosts.

The operators P, together with the Lorentz transforma-
tions, form a representation of BMS;. By inverting the
Fourier modes in terms of the field ¢ and its canonical
momentum 7,

a(k) = /dzxe_ikx(a)gl)(t, X) + in(t,X)), (6)

-

with a(k) given by the complex conjugate, one can obtain
an expression of P, in phase space, from which functional
variations can be computed.

For a massless field [22], the above procedure yields a
supertranslation transformation, as derived in [21], given by

5,(1.%) = / Y [f 4%~ HPL.5) + g0 5)a(6.5)].
7)

5,m(1.5) = / Pyl (E — 7)P1.5) + G - Da(r.5)).
(®)

where integration is all over two-dimensional space. The
functions appearing in the above expressions are given by

fo(X) =2 / dkww, (k) sin(k - %), (9)
94 (%) _2/(1/}%0 (k) cos(k - ), (10)

- -

o (%) = —z/dimzwf(k) cos(R-5), (1)

with w, given by (3) and the measure in momenta space
as in (1). One can check that w_, = w} and thus one can
work with Z > 0 and take the complex conjugate when

negative indexes are needed. Furthermore, since Cl)f(—]_é) =
(—l)fa)f(l—é), one can see from (9)—(11) that

re’.
(12)

f2r(X) =0, g 1(X) =0,  hypy(¥) =0,

Notice that, in general, the transformations (7), (8) are
nonlocal unless the functions f,, g,, h, are proportional to
a delta function or a finite number of its derivatives. As we
will see, this happens only for £ = 0,41, which corre-
sponds to ordinary space-time translations.

Using standard equal-time Poisson brackets and the
properties f/(—X) = =f¢(X), g¢(=X) = g,(X), hs(X) =
V2g,(X), it can be seen that the field transformations
(7), (8) are generated by the supertranslation charges

o= [ dzxdzy( (= Pl D). 5)

| - -
+§gf<x_y)ﬂ(tvx)ﬂ(t7y)

L E -0 y)). (13)

Once the asymptotic behavior of ¢(z,X), z(,X) at spatial
infinity is given, see Appendix A, and using standard equal-
time Poisson brackets, it can be shown (see Appendix B)
that these charges have zero Poisson bracket with the
Hamiltonian of the massless scalar field

H(t) = / dx an(t, %) +%(€¢(z, z))2>, (14)

and are thus conserved. The proof relies solely on the
symmetry properties of the functions f, and g, and on
the relation between g, and h,. The main goal of the
paper is to show that the functions (9), (10) and (11) can
be cast in terms of higher level objects, which turn out
to be Green functions, and to use their properties to
discuss some aspects of the transformations. The algebra
of the transformations in terms only of ¢(z,X) closes
only up to an antisymmetric combination of the equa-
tions of motion.

The rest of the paper is organized as follows. Section II
presents the expression of the supercharges in terms of
Green functions of appropriate operators. Using these, the
existence of the charges is discussed. Section III computes
the Poisson brackets of the obtained charges, while Sec. IV
considers the BMS transformations in configuration space.
Finally, in Sec. V we summarize our results and suggest
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that the formalism presented in this paper can be gener-
alized to other dimensions and systems. Detailed calcu-
lations of all the results have been moved to the
Appendices.

II. NONLOCAL TRANSFORMATION OF
THE FIELDS IN TERMS OF
POLYHARMONIC FUNCTIONS

Using the explicit expression for @w,, one can write g, as

g,(X) = (271T)2/dzka)‘f(k1 +ik2) cos(k-¥).  (15)

For # odd, the integrand is antisymmetric in k and the
integral cancels out. For # even and non-negative, one can
write

o 1 _ . 2
QQf(X) = W/ d2ka) 2f(k1 + lk2)2f COS(k . )C),

1
(27)?

= (0,, +i0,,)* (-1)" /afzka}‘zf cos(k - X).
(16)
Now, defining a distribution G,(X) such that

I
(27)?

one gets the equation for a polyharmonic Green function,

G, (F) = (=1)¢ / Pl cos(k-F), (17)

1
(2m)?

(V2)G,(F) = / Lk cos(k-F) = 6(F),  £20.

(18)

One has that Gy(X) = 6(X) and, for # > 1, the Green
function is [26,27]

G/(X.5) = G,(X =)
X =P
(£ =112

(log |X = y| = Hey),  (19)

¢ Lland Hy = 0. It follows from (18) that

where H, = ) i ;

V26, (X =5) = Go (X =), £>1.  (20)

As shown in Appendix E, these functions also satisfy the
convolution property

/ BxGy(5 = $)G(Z=3) = Gron(3—3).  (21)

The expressions for f, and &, can then be directly
obtained as a function of g, by observing that f,,.| =
—(0,, +i0,,)g2¢ and hyy = V?g,,, for £ € N and they are
zero otherwise. Thus, these functions can be written in
terms of the polyharmonic Green function G,(X) as

920 (%) = (9, +10,,)* G4(3), (22)
farp1 (%) = =(0y, +i0,)* G, (3), (23)

hap(X) = (0, = i0,,)(9y, +i0,,)* 1 Gp(X),  (24)

for £>0. For £ =0 one has gy(X) =68(X), f1(X)=
—(0,, +1i0,,)8(X) and ho(X) = V?§(X), which yield the
standard space-time translations for the fields.

In terms of the G, the supertranslation charges (13) for
¢ > 0 take the forms

00 = [ ey (;m B)r(1.5) + 1 9909

—

S, y)) (0, +i0,)*G,(E—F).  (29)

O (1) = / e dy(a, + o )x(tD)(1. )

= /dzx A2y (1, X)n (1, )
x (3, + i0,) LG - 7). (27)

_ / e dy(9, + id,)p(t. B)n(t.5)

X (0y, 4+ i0,,)* G, (X - V). (28)

Using that w} = w_, one has that for £ <0 the only
difference is the appearance of 0, —id,, instead of
0y, +id,,, and thus

Q_(1) = 05,(1), O_ry(t) = 05,1 (1). (29)

The supertranslation transformations in terms of the G,
are given by

G20 (1,%) = {9(1.X), Q2r (1)},

- / @y 2(6.5)(0s, + 0,4 Go(7~F).  (30)
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Sre19(t, %) = {P(1,X), Qop 11 (1)},
_ / Q2 p(1.2)(0,, +i0, T G,(Z - %),

—— [ @30, + 0,16, -)
(31)
where we have used the Poisson bracket {¢(,%),z(t,y)} =
5(x-y).

In particular, using that Go(X — y¥) = (X — ¥), one can
see that Qy(r) = H(?) is the generator of time translations

and that

0, (n=20 290 _ [ cnir 290,00.5)
(32)

0.(1) = M __ / a2 (1, 70, $(1.5).
(33)

generate the spatial translations.

We discuss next the asymptotic behavior of the fields that
guarantees the existence of the supertranslation charges and
of the symplectic form.

Let us first consider the kinetic term in the action, which
eventually leads to a well-defined Poisson bracket,

/ d2x (2, %) 7 (1, %). (34)
If we assume asymptotic expansions

¢1 2

¢(t’)_é) | | | |2 +. (35)
(%) = 254 2y (36)
X[ [x]

where the ¢, ¢, 7,7, ..., are functions depending on
time and the angular variable, then

/degb(t,)?)n(t,)?) - /d9/rdr<gzl7'r2%+ 0(r—4))

(37)

which makes the term well defined. It follows also from
these conditions that the field configuration has then a finite
energy, and in fact the conditions cannot be relaxed, by
instance by assuming ¢ ~ log r or 7= ~ 1/r, if one wants to
have a finite energy. Notice that under these conditions no
logarithmic divergence appears in (37), in contrast with the
case in 3 + 1 space-time discussed in [18].

The leading order behavior of G;(X—y) for large
r=|x-y|is
Gy(r) ~r*“Vlogr. (38)
As shown in Appendix A, the derivatives of order 2¢ which
appear in (25) and (28) behave as

: 1
(O + 10, Ge(r) ~

V1. (39)

Taking this into account and comparing (14) with (25)
and (28), it follows that the supertranslation charges exist
for field configurations behaving as in (35), (36).

In order to have the BMS algebra we will need, besides
the generators of supertranslations, those of the Lorentz
symmetries, given by

M2 (1) = - / @ (1, 3) (10, (1. ) — 320, (2. ).

(40)

MO(t) = — / dx(1n(1,%)0, (1. %) + x;H(1,X)),  (41)

for i = 1, 2, and with

1

H(1.3) =3 (@2(0.3) + (Vo(r.5)?)  (42)

the energy density of the scalar field.

III. THE BMS ALGEBRA IN PHASE SPACE
The abstract BMS algebra in 2 + 1 is given by

[Lum] = (I’l - m>Pm+n7 (43)

[P, Py] =0, (44)

with n € {-1,0,1} and m,m' € Z, and with the L,
satisfying [L,,L,,]=(n—n')L,, and yielding the 2 + 1
Lorentz algebra. The algebra can be extended to n,n’ € Z
by introducing the superrotations L,, |n| > 1 [28,29].

We will show that the above supertranslation charges
(25), (26), (29) provide a realization of this algebra in terms
of the standard equal-time Poisson brackets and with the
following combinations of Lorentz generators:

Lo(t) = 5, M™(0) (45)
Li(t) = =M\ (1) = iM% (1), (46)
Loy(0) = MO (1) = iM2() = =(Ly ()", (47)
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The proof relies on the general symmetry properties of the
Green functions G, and their derivatives, as well as on a
key identity that is proved in Appendix D. The brackets
between the supertranslation charges are discussed in
Appendix B and here we will discuss only those involving
the Lorentz generators.

Let us consider first the Poisson bracket {L(¢), Q,,(1)},
for £ > 0. With the notation ¢(x) = ¢(¢,X) and so on, and
defining

1

H(x.y) = 5 (#(0)2(y) + Vh(x) - Vo(y).  (48)

one has

(Lal0): 020} = =3, [ @305 2{n(2) x,0,,9()
— x20, B0 K. )} 0, + i0,)
X Gf(i; - Z)

This bracket is computed in Appendix C, and the result is
[see Eq. (C3)]

{Lo(1), Qar(1)} = =26054(1), £20. (49)

Using similar steps to those in Appendix C, one can also
obtain

{Lo(1), Qars1 (1)} = =(20 + 1) Qo1 (1), £20. (50)

The above computations are only valid for £ > 0. ForZ < 0
one can take the complex conjugate of (49) and (50), and
use (29) and also Lj(t) = —L(t). In this way one obtains,
for £ > 0,

{Lo(1), Qar(t)} = 260 54 (1) = =(=26)Q5¢(1),  (51)
{Lo(1), O—aes) (1)} = (2€ + 1)Q_ 241 (1),

=—(=22+1)0_r(1).  (52)
Relations (49)—(52) give the complete set of BMS algebra
relations involving the rotation generator L.

Let us proceed now with the brackets involving the boost
generators. Consider first

(Ly(1), 0o (1)) = / &2 x yd {1 (x) (3, + id,, ) (x)
+ (xl + ixz)H<x)7H<Yv Z)}
X (0y1 + iayz)”Gbp(i - Z)

As shown in Appendix C, this can be seen to be [see
Eq. (C9)]

{L1(2), Q2 ()} = (1 = 26) Q241 (1), (53)

which is the correct action of L; on a supertranslation
of order 27, £ > 0, and can be extended to the trivial
(Poincaré) case £ = 0.

L . . =)
Using similar computations, together with G, =V~ G,
one can show that, for Z > 0,

(Li(0): Qarr(0) = =2¢ [ @ xyH(x.y)
X (0y, +10,,) 2 Gpiy (X =5). (54)
Changing now ¢ — ¢ — 1 one has

{Li(2), Qapi (1)} = (55)

-2(¢-1) / d? xd? yH(x,y)(0,, + ide)szf()? -9)

=2 =102 (1) = (1= (2= 1)Qu(1), £>1,

(56)
which is the correct relation, and which again can be
extended to the Poincaré £ = 1 case.

In order to get all the relations of the BMS algebra,

an extra pair of brackets must be computed. The final
results are

{L1(1), Qar ()} = (26 + 1) 0 g1 (1),
= (1=(=20))Q_2p:1(1), (57)

{L1(1), O 2oy (1)} = (26 +2) 0y (1),

= (1= (=20 +1)))Q-(1).  (58)
In these cases the computations involve slightly different
manipulations but always using (D3).

The brackets involving L_; can be computed from (53),
(56), (57) and (58) by complex conjugation and using
Ly(t) = —L* (1), and one gets

{Lo1(1). Qap(1)} = (=1 +26)Q_ 211 (1).
= (=1=(=26))Q-r11) (1), (59

{L_1(1), Qar (1)} = =(22 + 1) Qi (1),
= (=1=22)) 021 (1), (60)

{L_1(8), Qa1 (1)} = =(2€ + 2) Qe (1),
= (-1-(20+1))Qx(1), (61)

{L_1(1), 0001 (1)} =260 o041 (1),
=(=1=(=2¢-1))Qsp41)(1). (62)

025010-5
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This completes the proof that the charges defined by (25),
(26), and (29) provide, together with the Lorentz gener-
ators, a realization of the 2 + 1 BMS algebra.

IV. THE BMS ALGEBRA IN
CONFIGURATION SPACE

In the previous section we have shown that the BMS
algebra is obtained in phase space using the expression of
the supertranslation and Lorentz charges in terms of the
fields ¢, =. We will discuss now the transformations in
configuration space, using ¢ and ¢ as independent fields.
The result is that one obtains a BMS algebra of trans-
formations modulo trivial symmetry transformations, given
by skew-symmetric combinations of the equations of
motion of ¢.

In order to show this, let us consider the specific case
of the Lorentz transformation 6% associated to L, and the
transformation d,, given by the supertranslation charge
Q,y, € > 0. In configuration space we must substitute ¢
for 7, and the transformations are

S(x) = 1(0,, +i0,)p(x) + (11 +ix)d(x).  (63)
5orh(x) = / yb(3) @y, + 0, 4G, (G-F).  (64)

Since these are functional variations, the transformation of
¢ is obtained by derivation, and one gets

SBp(x) = (0, + i0,,)p(x) + 1(0,, + 0y, )p(x)

+ (x1 + ix2)h(x), (65)
5rrib(x) = / yi() (s, + 0y, )4 Go(~F).  (66)

Now we can compute the compositions of transforma-
tions

5208 P(x) = 1(0y, + 10, )5rpp(x) + (x1 + ix3) 50 (),
— / Py ()@, +i0,, )G - )
(o in) / Pyib(y) (0, + 0y, )
X Gy(% - ). (67)
and
588y, (x)
- / Py&PP(y)(0s, +i0,)7 Go(3 - ).
- / Py(3,, + 0, )p(y)(0, +i0,)¥G(E~5)
i / Py(0,, +10,) () (s, + 0y, G (F ~ )

4 [ @0+ )B0)0, + 0, G- 5). (69
The first term in (68),
[ @30, +0,)00)(0,, + 0,6, (7 -5)
= [ @300, + 0,16 -3), (69)

is just —8,,,1¢(x) and, assembling the remaining terms,
the commutator of the two transformations turns out to be

[5?’52A¢(x) = =0 1p(x) — /dz)’((xl - 1)

+i(x0 = 32)) () (9, +10,,)* G (3 = ).
(70)

Now we add and subtract 6245 and obtain

[5119’ Solp(x) = —=62p110p(x) — /dzy((xl —y1) +i(x = m))ﬁiﬁb(}’)(% + iaxz)szf()—g - )

- / Py ((x1 = y1) + ix2 = y2))B0) = Vp(3)) @y, + 10,7 Go(E - )

= —8pr1(x) — /dzy((xl —y1) +i(xa = y2)p(y)(9y, + i0y,)* (0,

- iaxz)Gf(z_ ;)

— 2/d2y¢(y)(0xl +i0,))* G (x - ) - /dZny(x,y)(rﬁ(y) —Vig(y)), (71)

where we have integrated twice by parts the term §2¢ and defined

Fp(x,y) = ((x1 = y1) +i(xa — y2))(0y, +i0,,)* G(X = F). (72)

025010-6
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The third term in (71) is 28,,,¢(x), while the second
term, following the same steps that led to (C4), becomes
2(¢ = 1)654,1¢(x). Putting everything together one has

[5?5525’](15(?5) = (20 = 1)63011(x)

- / RyF 4 (x.y)(d0) - V(). (73)

Taking into account that, for any transformations generated
by charges A, B, one has that [6,, 53]¢p = —6(4 5y, the first
term in (73) is the one expected from the BMS algebra and,
because F,(x,y) = —F;(y,x), the extra term is a skew-
symmetric linear combination of the equations of motion,

57 aivah(x) = / @y F (. 3)($0) - V(). (74)

which is a trivial symmetry transformation of any system.
Notice that, for £ = 0, F,(x,y) = 0 and, as it must be, the
extra term is not present for the standard commutator of a
time translation and a Lorentz boost.

Similar results are obtained for the other commutators of
transformations, and hence the algebra closes on shell in a
consistent way.

V. DISCUSSION AND OUTLOOK

We have obtained an explicit expression for the BMS
supertranslation charges of free massless scalar real scalar
field in 2 + 1 space-time, in terms of the Green functions of
the polyharmonic operator.

We work first in phase space, and discuss the asymptotic
behavior of the fields that ensures the existence of the
charges, as well as that of the symplectic form associated to
the Poisson brackets.

The conservation of the charges only depends on general
symmetry properties of the involved functions, but the
commutative character of the algebra satisfied by these
charges relies on a convolution property of the Green
functions. Finally, the algebra relations with the Lorentz
generators is obtained by using more specific properties of
the polyharmonic Green functions.

We also discuss the closure of the transformations in
configuration space, and it turns out that the correct algebra
is obtained modulo transformations given by skew-
symmetric combinations of the equations of motion, which
are trivial symmetry transformations of any system.

The form of the supertranslation charges presented in
this paper, in terms of Green functions of an appropriate
operator, opens the way to the generalization to other cases
and/or dimensions. For instance, one could consider the
extension of the results to the 3 4 1 space-time dimension
case, or to the case of the generators of superrotations
which were also constructed in [21].

Another subject worth of study is whether the super-
translation transformations of the field ¢ can be interpreted
as a base transformation of the coordinates in Minkowski
space, or if additional coordinates, each associated to a
supertranslation, must be introduced.

Asymptotic symmetries for massless scalar fields
have recently received some attention in the literature
[16,18,30,31], with approaches and techniques different
from ours.

Our discussion of the asymptotic behavior of the fields in
order to guarantee the existence of the conserved charges
and the symplectic form follows that of [18]. In that work,
the formulation of the theory in terms of a dual 2-form field
allows the introduction of an infinite number of symmetries
that can be interpreted as large gauge transformations for
extra surface degrees of freedom at spatial infinity. These,
however, cannot be realized in terms of the original scalar
field. Asymptotic BMS symmetries for massless particles
of any spin are discussed in [30] (see also [31]).

In a different approach, the existence of asymptotic
symmetries for scalars fields is also treated in [16], and they
are cast in the framework of Ward identities and the
associated factorization soft theorems for interacting the-
ories. The charges thus obtained are written in terms of the
asymptotic fields, and have a linear and a quadratic part.
They are discussed for both massless and massive fields.
Asymptotic BMS symmetries for massless particles of any
spin are discussed in [30] (see also [31]).

When trying to connect our results to those of the above
papers, one encounters the difficulty that the transforma-
tions and charges presented in this paper are defined in the
bulk, not just on the appropriate manifold at infinity. Even
if the transformation for ¢ (7, X) is asymptotically approxi-
mated for the corresponding limit of ¢, X, the fact remains
that it is still given by an integral in the bulk.

As discussed above, one also has the problem that our
nonlocal transformations cannot be easily interpreted as given
by vector fields on the standard Minkowski manifold. In
contrast, the presentation of BMS symmetries as asymptotic
symmetries in asymptotically flat space-times can be formu-
lated in terms of vector fields defined on the celestial sphere.
Further work will be necessary to elucidate these relations.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF
THE POLYHARMONIC GREEN FUNCTIONS

The polyharmonic Green function G, has the form

Go(x) = AL ¥ log %] + BY 72,

(A1)

where the constants A;()) and B(fo) can be read from (19).
Successive applications of d,, + id,, yield expressions of
the same form, with decreasing powers of |X|, until one
reaches

(0y, +10,,)7'G(X)
= (x; + ix,)"! (Aﬁf‘” log [%] + Bﬁf‘”). (A2)

From this point the derivatives cease to content the log term
and one can see that the derivative of order 27 is of the form

(0, +0,,)%Gy(X) = C?D(x) + ixy)* (A3)

|)-C"2f+2 ’

with a constant C?/), This is a rational function of x;, x,
with asymptotic behavior

V> 1

(Gx] + iaxz)szf()?) NW Z fOI' |)_C>| — 00,

(A4)

which is independent of # > 1. This allows us to study the
conditions that must be imposed on the fields so that the
supertranslation charges are finite. A general supertrans-
lation charge Q,, £ > 1, has integrals of the form

QAw—/ﬁm@ﬂmMWim%+w@%@@—w
(A3)

where F and G are either 7 or first order derivatives of ¢.
Performing a change of variables X = y + 7 and using the
asymptotic behavior (A4), the existence of the charge
reduces to the existence of the integral

1
2"

/ RriyF( + )G () (A6)

Let us assume now that the fields F and G behave, for a
large argument, as

G
F)_”—F?N_.i_,a, y)~ =7, A7
G+7) vt O~ D

with ', G depending on the angular variable and time. This
leads to the study of the integral

_ 1
dzﬂFG/rdr d ST SIS o
/ TR

where d’Q is the angular measure. Performing a change to
polar coordinates in R2 for the drdy measure, one finally

gets
d¢PQFG d !
FG | p Ppa—Jrﬁ,

with d*Q including the additional integration over the
angular coordinate of the polar change of variables. For this
integral to converge it is necessary that

(A8)

(A9)

a+p>2. (A10)
Considering the forms of F and G for the different
supertranslation charges, one concludes that the asymptotic
behavior of the fields which guarantees the existence of all
the O, is the one given in (35) and (36).

APPENDIX B: BRACKETS BETWEEN THE
SUPERTRANSLATION CHARGES

Consider two arbitrary supertranslation charges Q,(¢)
and Q,,(1). Using standard Poisson brackets, one gets

{0s(1). 0,(1)} = (B1)
[ @2, = f (5 - D)2
—fe(X =) fu(Z—X)p(y)n(2)
+ fe(X = 3)gn (¥ = D)7 (x)7(2)
+ fe(X =) hu(X=2)p(y)9(2)
= 9¢(X = V) n(Z = X)n(y)n(2)
+ 9¢(X = Y) (X = 2D)(y)(2)
—hy(X =) fu(X=2)p()$(2)
= hp(X = ¥)gn(X = 2)p(y)7(2)). (B2)
Let us consider first the case m = 0, that is Q¢ (1) = H(t),
fgr which fo(x—y) =0, go(X—y) =5(x—y) and hy(x—y) =
Vié(f —). Integration by parts yields
O,(t) ={Q,(1). H(t)} = (B3)

:/ﬁa@ﬂn@—wmnﬂw+6ﬁwz—ﬂﬂwﬂm

+ Vige(F = 9)a(0)(x) = he(F = H)p(y)a(x)).  (B4)
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The first two terms are zero, each by itself, due to the skew symmetry of f, and its even-order derivatives, while the two last

terms cancel each other after using ﬁz(x)gf(a_c’ —3¥)=hy(x-y) and the symmetry of h,. This shows that the
supertranslation charges are conserved by virtue of the symmetry properties of f,, g, and h,, and the relation between
gy and h,, without using the explicit form of these functions in terms of the polyharmonic Green functions.
For general # and m one must consider the different cases separately.
(1) ¢ and m odd. In this case g, = h, = g,, = h,, = 0 and, after renaming the variables of integration in the first nonzero
contribution,

{Qr(1). 0u(0)} = / xd®ydz(f (2= X)f (X = F) = fo(X = 3)f (@ = 5))p ()7 (2). (BS)

(2) ¢ even and m odd. Now f, =0 and g,, = h,, = 0, and the result can be written as

{0,(1), Qu(1)} = - / Pxd?yd?2g,(X = §) [, (2 = ¥)z(y)n(2) - / Pxd?yd?zh, (3 = §) f (X = 2)()¢(2). (B6)
(3) ¢ and m even. We have f, = f,, = 0 and (B2) boils down to

{00(1). 0n(1)} = / Pxd?yd®z (g, (X = 2)hn(X = ) = he(X = §) g0 (¥ = 2))p(y)7(2). (B7)

The elementary symmetry properties used up to now are not enough to show that the above expressions are actually zero.
In order to do so, one must use the fact that the functions f,, g, and A, can be written in terms of Green functions that obey
the convolution property (21).

Let us prove, for instance, that the first term in (B6) is zero. Changing £ — 2¢ and m — 2m + 1 one has, assuming [/ > 0,
m > 0,

- / Pxdyd22g, (% — 5)fnF - Da(y)a(z) —
- / dedzdeZ(axl + iaxz)ZZGf()? - 5;)(0)(1 + iax2)2m+lGn1(£ - Z)”(.V)”(Z)

= [ x5 = )G (7 = D)0, +10,)5(0)(@., + 0, a(c)

(21) - - . : m
2= [ 3265 =210, +10,)5(0)(0,, + 0, a(2)

== [ @320, + 10, Gp (5= D)8 = O

due to the skew symmetry of
(a}'l + ia)72)2f+2m+1Gf+m (y - Z)’

and the second term of (B6) can also be shown to be zero using the same manipulations. Notice that the same reasoning can be
used for ¢ and/or m negative, since this amounts to change some 9, + id,, to d,, — id,, and the result, which only depends on
the number of derivatives, is the same.

Using the same techniques and the convolution property, the two terms which appear in (B5) or (B7) can be shown to be
the same and hence that the corresponding brackets are zero. This completes the proof that the supertranslation charges
yield a commutative algebra under the Poisson brackets.

APPENDIX C: DETAILED COMPUTATION OF SOME POISSON BRACKETS

Consider first

(Lo(0): 0210} = =5, [ Ex@yP2{a(x) (310, (x) = 20, $(0). H(3: )0, + 10, GG = ).
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Using that even-order derivatives of an even-symmetric function are even, and the equal-time Poisson brackets
{¢p(x),7(y)} = 8(xX — ), the above expression equals

(Lo(1). 02 (1)} = — - / Pdydz((x,0,, p(x) — 320, H()T(2) - T, (=5(F - 7))

2i
+7(x)a(2) (0, — x = 20,,)8(X = §))(9,, +0,,)* G(5 - 2).
1 . - -
— =5 [ PaEH ) (w010, = 2:0,)0, +10,)GelF - ) (1)
where several integrations by parts, assuming the appropriate asymptotic behavior for the fields, have been performed, and

the relation ﬁxG,;()_c' -y) = —ﬁyGf(J_c’ —¥) has been used. Next, we use the commutator [x,0,, — x,0,,, (d,, + i0,)"] =
in(d,, +id,,)",n=0,1,... to write (C1) as

(Lo(1). Oar (1)} = — / P (x, ) (0, + 04,7 (5105, — %20y, ) + 2005, + 0, V)G (R - ).

i
One has that

o —X122 T X224
D=

(xlaxz _XZGXI)GK(;_ Z) = G/f(|)_é_ ’)—C*_ z|

()

is an odd function under X <> 7, and hence its derivatives of even order are also odd. The product with H(x, z) 1s also odd
and the term vanishes under integration in x and z. Thus one is left only with the term from the commutator and

{Lo(1), Qar(1)} = —2¢ / Pxd’2H(x, 2)(0y, +i0,,) G (X = 7) = =20Q0(1). £ 20. (C3)
Let us compute now the Poisson bracket of the boost generator L;(¢) with an even-order supertranslation charge,

{L1(1). Qo (1)} = / dxd®yd* 2 {1 (x)(9y, + i0y,)p(x) + (x1 + ix2)H(x). H(y. 2) } (0, + iy,)* G, (¥ - 7).

After computing the Poisson brackets and using integration by parts and the symmetry of G, and its derivatives, the terms
containing ¢ can be written as

2t/d2xd2z7-[(x, 2)(0,, +i0,,)G /(X - 2),

which is zero due to the skew symmetry of (d,, + id,,)G,(X — Z) under X <> Z. Performing the same manipulations, the
remaining terms can be written as

(L0020} = [ Paca((o, + i) a()Fp(2) 0y, + 0, - 9,6, (=9
+ (1 + 0)V(x)2(2) (0y, +i0,)% - V.G (% - 7)),
The §¢(z) in the first term can be integrated by parts, yielding one term, while the integration by parts of ﬁqﬁ (x) yields two.

After a change of variables and using (0, + id,,)* VG (R-3) = (0, +1i0,,)* V2G,(% — %), the two terms that are
similar can be combined, and the result is

{Li(2), Q2 (1)} = /d2Xd2Z<((x1 —21) +i(x2 = 22))7(x)p(2)(0y, + i0,,)* - 6;2ch(55 -2)

- ¢(x)”(z)(ax1 + iéxz)%)(axl + iax2>Gf()_E - Z))
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The second term is just —Q,,(7) and the integrand in the first one can be rewritten, using that [x; + ix,,d, + id,,] =0

and V3 = (0,, + id,,)(d,, — id,,), as

{L1(1), Qar (1)} = = Qo (1) + / xd?z(m(x)(2) (0x, + i0x, ) [(x1 = 21) + i(x2 = 22)](0y, — i0y,) G (¥ = Z)). (C4)

Since we are considering £ > 1 (the case £ = 0 correspond to the standard Poincaré algebra) and 2¢ 4+ 1 > 2(¢ — 1), we
can use relation (D3) to rewrite (C4) as

{L1(2), Qar(1)} = =Qar1 (1) +2(£ - 1)/dzxd22ﬂ(X)¢(Z)(0x. +1i0,,) MG (3 - 7)

— Qa1 206~ 1) / Pz (x)7(2) 0y, + i0,)* 1 Go(¥ - 7)

= =0sr:1(1) =2(€ = 1)Q2r14 (1)
= (1 =26)Qr41(1). (CS)

APPENDIX D: SOME IDENTITIES SATISFIED BY THE POLYHARMONIC GREEN FUNCTIONS
Assuming ¢ > 1 and using H,_; = Hy_» + 1/(£ — 1) one can show from (19) that

1 ) G (i_3 X — §[2¢-2) '
207-1) ((xr =y1) = i(x2 = ¥2))Gpy (X = ¥) — = 1)!}222f“n((x1 —y1) —i(xs =),

(0y, —i0x,)Ge(X —¥) =

which is a recurrence relation valid for £ > 1. Multiplying by (x; — y;) + i(x, — y,) one gets

! N £

(01 =30) i =32)) (0 = 10)Ge(F=9) = 35 [F = TG (F=9) = ey (P

which, except for polynomial terms, has the functional dependence of G,. Indeed, using again the relation between H,_,
and H,_,, one obtains

Y= 2(£-1)
(01 =30+ 52 = 32)(0 = 10,)G(F =) = 2€ = 1)6F=5) + e (02)

Although (D2) has been obtained under the assumption that £ > 1 it can be checked by direct computation that it is also

valid for 7 = 1.
In the computations in Sec. III the left-hand side of this identity appears with derivatives d,, + id,, acting on it. Since the

second term in (D2) is a polynomial of order 2(# — 1) in the components of X, it turns out that, for # > 1 and n > 2(¢ — 1),

(04, +i0,,)"((x1 = 1) +i(x2 = ¥2))(0x, = i0,,)Gp(X = §) = 2(£ = 1)(9y, + i0,,)"Gp(X = ). (D3)
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APPENDIX E: CONVOLUTION PROPERTY OF THE POLYHARMONIC GREEN FUNCTIONS

One has

e / P3Gy (5 - )Gy (G = F) = / BTG5 — X)),

_ / PV VG5 - 3)G(Z - ).

_ / XV G5 — V"G (Z ),

_ / 2x8(5 — 7)6(Z - %) = 8(5 - 2). (E1)

Under standard regularity conditions, the homogeneous polyharmonic problem has only the trivial solution [32], and the

above computation proves (21).
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