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We examine the virtual transition of an atom-mirror system with the simultaneous emission of two scalar
photons, where the atom and the mirror admit a relative acceleration between them. For the single photon
emission, the literature [A. A. Svidzinsky et al., Phys. Rev. Lett. 121, 071301 (2018)] dictates that the
transition probabilities of two individual systems, such as an atom accelerating with respect to the mirror
and its reverse, turn out to be equivalent under the exchange of the frequencies of atom and the field.
Addressing the observational merit of such excitation process, a detectable probability (P ∼ 10−2) is also
reported in the above literature. In the present manuscript our finding dictates that the simultaneous
emission of dual photon instead of one, destroys the equivalence between the transition probabilities as
reported in the above literature.
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I. INTRODUCTION

For the past several years we have seen a rich amalga-
mation of several individual disciplines of physics, which
led us to many interesting phenomena. The classic example
is none other than the combination of general relativity
[1,2] and thermodynamics in the context of black holes and
cosmological spacetime [3–13]. Furthermore in recent
times the blending of quantum optics and the acceleration
radiation in flat/curved spacetime became somewhat popu-
lar and considered to be an alternative mechanism in
explaining the Unruh-Fulling (UF) effect [14–22]. In the
context of black hole spacetime this approach predicts the
presence of an entropy which has different origin than that
of the Bekenstein-Hawking entropy, named as horizon
brightened acceleration radiation (HBAR) entropy [15].
More along this line is the use of cavity quantum electro-
dynamics in the study of acceleration radiation which
shows that the transition probability of an accelerated atom
can be increased to many orders in magnitude than we
usually obtain in the standard Unruh radiation [14]. Since
the proposition of the UF effect, it has proven its promi-
nence in case of the Hawking radiation in black hole
spacetime [3,4], particle emission by cosmological
horizon [23], Schwinger mechanism [24], quantum entan-
glement [25], etc. The idea of the UF effect dictates that in

Minkowski spacetime a uniformly accelerating observer
perceives the vacuum state of a field as a thermal bath in
equilibrium with temperature T ¼ ℏa

2πkBc
. Here kB, c, ℏ

denote the Boltzmann constant, speed of light in vacuum
and the reduced Planck’s constant respectively, and a
symbolizes the acceleration of the observer [26,27]. The
observational aspects of UF effect are widely explored by
modeling a uniformly accelerated two level atomic detec-
tor, known as Unruh-DeWitt detector (UD) [28–30]. The
construction of UD detector states that, in flat spacetime, a
pointlike uniformly accelerated detector records particle
excitation due to the interaction with a scalar field, located
in its Minkowski vacuum. It captures the main essence of
the UF effect in terms of the transition rate/power spectrum
of the UD detector. For a brief review of the UF effect and
modeling of UD detector, we refer our readers to [29,31].
At this stage we resume the discussion related to the
alternative approaches in the studies of acceleration radi-
ation/UF effect. It is well known that in the quantum theory
of fields, the virtual processes due to the vacuum fluctua-
tions have disclosed many new quantum phenomena such
as the Lamb shift in the hydrogen atom which led to the
construction of quantum electrodynamics, Raman scatter-
ing in the field of spectroscopy etc. In terms of the atom-
field interaction it dictates that a two level atom makes a
transition to its excited state while a virtual photon is
simultaneously emitted. Subsequently the atom promptly
comes back to its ground state by absorbing the photon. It
was proposed in [14] that the UF effect can also be
perceived by interrupting a virtual process, where the
emitted virtual photon turns into the real observable
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photon. Due to the accelerated motion of the atom, it gets
away from its original point of virtual emission which
yields a nonzero probability for the atom not absorbing
the emitted virtual photon. This transforms a virtual photon
into a real one in the final state of the system [14,15].
It is worth to be mentioned that the atom acquires
acceleration by extracting energy from some external
force agency which drives the center of mass motion of
the atom [14–16]. This explains the notion of accelerated
radiation/UF effect via this alternative approach. This
mechanism has unveiled many interesting findings which
can be found in the following references [15,16,21,22].
Using this alternative mechanism, the authors of [16], have
considered a system which contains an atom and a mirror
with a relative acceleration between them. They have
examined two possible setup such as the atom is uniformly
accelerating with respect to a fixed mirror and the reverse.
Subsequently, the transition probabilities for both the
systems are obtained due to the virtual processes. It was
shown that the transition probabilities are different from
each other, however, both the probabilities are related under
the exchange of atom and field frequencies. The authors
have defined this connection as the “application of equiv-
alence principle in QED”. Moreover a spatial oscillatory
behavior of the transition probabilities has been reported in
[16] due to the interference of the “incident” and
“reflected” photons. Note that this oscillatory feature
cannot be removed by integrating out the probabilities
over all values of field frequency. In relation to the above
equivalence, we mention that a violation of this equivalence
relation has recently been reported in the background of a
generalized uncertainty principle framework [32]. For
experimental verification of such excitations, the authors
of [16] have proposed a setup where an ensemble of N
polar molecules is coupled with a superconducting trans-
mission line microwave cavity terminated by a SQUID
(semiconducting quantum interference device) [33–35].
This setup mimics an accelerating mirror and two level
atomic system [16]. It was shown that for all N ∼ 104–106

polar molecules and the acceleration (a) of the mirror
larger than the c times the field frequency (cν), the
transition probability lies within the detectable range
(i.e., Pexc ∼ 10−2). The observational merit of this model
gives us a strong motivation to extend the model to the
simultaneous emission of two scalar photons instead one.
In recent times the authors of [36] have proposed a toy

model of UD detector simultaneously interacting with
multiple scalar fields. This work has revealed some
interesting features in terms of the transition probability
of the detector which cannot be achieved in case of an atom
and single field interaction. Following [36], we consider the
interaction Lagrangian as ∼ σðτÞϕ1½xðτÞ�ϕ2½xðτÞ� for the
simultaneous emission of two photons. Here ϕ1½xðτÞ�;
ϕ2½xðτÞ� depict two scalar photon fields and σðτÞ represents
the operators in detector sector. τ denotes the proper time of

the atomic detector. At this stage we briefly mention the
origin of such interaction Lagrangian [36]. The standard
interaction term of a UD detector and single scalar field is
of the form, Lint ∼ σðτÞϕ½xðτÞ�. When the field makes a
transition from its vacuum to 1-particle state and the
detector moves to its energy eigenstate jEif from jEii, a
nonzero transition amplitude can be achieved within the
first order in perturbation theory. The transition amplitude
for such system becomes as follows [29,31],

AðEfjEiÞ ∼ hEfjσðτÞjEiih1pjϕ½xðτÞ�j0i. ð1Þ

Following the single field interaction one can intuitively
write the interaction Lagrangian for the dual photons
emission as,

Lint ¼ gσðτÞðϕ1½xðτÞ� þ ϕ2½xðtÞ�Þ. ð2Þ

Note unlike single field case, now we have several choices
of final states due to the emission of two fields. Below we
briefly discuss such two possible cases. For detailed
discussion we refer our readers to Sec. VI of [36].
Case 1: One of the possible final state can be written as,

jinitiali ¼ jEii ⊗ j01i ⊗ j02i;
jfinali ¼ jEfi ⊗ ðj1p1

i ⊗ j02i þ j01i ⊗ j1p2
iÞ: ð3Þ

Here j01;2i and j1p1;2
i depict the vacuum and 1-particle state

for each field. In this scenario the detector is interacting
with two scalar fields where at a particular instant a single
field interacts with the detector and creates 1-particle state,
while another is lying in its vacuum. Therefore in this case
the transition amplitude varies as the summation of the
two transitions i.e., ∼ ðA1 þ A2Þ, where A1, A2 denote the
amplitudes as similar to Eq. (1). This case has its own
merits and may reveal interesting features [36].
Case 2: In this case both the fields make simultaneous

transition to their respective 1-particle states due to the
interaction with the detector at the same point in spacetime.
This leads to the following final state of the system:

jfinali ¼ jEfi ⊗ j1p1
i ⊗ j1p2

i; ð4Þ

when the initial state is same as written in Eq. (3). For the
interaction Lagrangian in Eq. (2), initial and final states
as in Eqs. (3) and (4) respectively, a nonzero transition
amplitude can be achieved, if one considers the higher
order term in perturbation theory i.e., ∼ hfinaljL2

intjinitiali.
The term L2

int, will bring in the following combination
of fields,

∼ ϕ2
1 þ ϕ2

2 þ 2ϕ1ϕ2: ð5Þ

Note that the interaction like ∼ ϕ2
1 and ∼ ϕ2

2 contribute to
the transition amplitude when the fields make a transition
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from the vacuum to their 2-particle state. In the present
work we restrict our analysis within the transition of the
fields to 1-particle states as energetically 1-particle state is
most favored [36]. Therefore in the present context, only
the third term of Eq. (5) contribute to the transition
amplitude. This analysis implies that in working with
the Lagrangian ∼ ϕ1½xðτÞ�ϕ2½xðτÞ� is not an arbitrary
choice, rather it originates from a fundamental interaction
such as Eq. (2). The emergence of various final states and
interaction Lagrangian are solely due to the dual field
interaction and cannot be achieved in single field setup.
Therefore these features render the distinctive characters of
single and dual field emission processes.
With respect to the previous literature, it is seen that apart

from the field theoretic interests, multiple fields analyses
have earned loads of attentions in the sector of beyond the
standard model of particle physics, cosmology, dark matter
physics, etc. It is well known that in search for the
signatures of extra dimensions in the collider experiments
(such that Large Hadron Collider), the Kaluza-Klein (KK)
modes of bulk graviton and bulk standard model are the
potential candidates [37,38]. These KK modes are origi-
nated due to the compactification of the spatial extra
dimensions and interpreted as the multiple fields in
4-dimensional effective theory [39]. Furthermore, in [40],
a large number of elementary particle species have been
considered in resolving the hierarchy problem of the two
fundamental length scales such as electroweak and Planck
scale. Later, it was shown that an appropriate abundance of
dark matter can also be achieved while considering a large
number of copies of the standard model in [41,42]. In
cosmology, the multiple field inflationary models are
considered to explore the inflationary dynamics, infla-
tionary trajectories and particle production [43–45].
Two-field inflationary scenario have been studied in the
context of swampland de Sitter conjecture [46], reheating in
cosmology [47], dark energy, [48] etc. These promising
features of multiple field theories instigate us to explore the
implications of multifield interaction with two level atomic
detector in the present manuscript. Thus we propose a
system which contains a two-level atom and a mirror with
an existent relative acceleration between them. The system
becomes excited due to the virtual processes in the vacuum
states of the photon fields. However, due to the relative
acceleration of the atom and mirror the two real scalar
photons are simultaneously emitted and detected at the
same time. Concurrently, The atom makes a transition to its
higher excited state. We make an attempt to map our system
within the experimental setup as described in [16] as
following. Within a cavity setup an atom makes a transition
to its higher excited state while simultaneously two photons
are emitted with two different single frequency modes due
to the interaction of the atom and dual photon. Thus in
contrast to the single field emission process, one obtains
two quanta of detectable photons carrying two different

frequencies within a cavity. We examine the transition
probabilities of such systems under the conditions where
the atom (mirror) is accelerating with respect to fixed
mirror (atom). We enlist our findings as below,

(i) The so called “equivalence principle in QED”
[32,49–54] is no more holding in case of the dual
field emission process. This solely happens due to
the emergence of a cross term in the transition
amplitude for the emission of dual photon modes.

(ii) We achieve a correction term as a function of
ða; ν;ωÞ, over the single field emission case, where,
ω represents the angular frequency of the atom. This
correction term plays an important role as we
observer that for an accelerating mirror (fixed atom)
system the transition probability becomes a non-
trivial function of ða; νÞ even under the condition
a ≫ cν. This is in contrast with the outcome in [16].
Undoubtedly, this outcome promotes more inves-
tigations concerning with the atomic detector and
multiple fields interaction and also signifies the
observational prominence of the present setup.

We organize our manuscript as follows. In Secs. II and III, we
briefly describe the two systems and obtain the corresponding
transition probabilities. In Sec. IV, we study the relation
between the excitation probabilities of these two systems and
subsequently discuss the phenomenological aspects of our
model in Sec. V We discuss our result in Sec. VI.

II. A UNIFORMLY ACCELERATING ATOM
AND A FIXED MIRROR

We consider a system which contains a uniformly
accelerated two level atom with respect to a fixed mirror.
The atom follows a trajectory as below,

tðτÞ ¼ c
a
sinh

�
aτ
c

�
zðτÞ ¼ c2

a
cosh

�
aτ
c

�
; ð6Þ

where ða; τÞ symbolize the uniform acceleration of the
atom along the z-direction and the proper time of the atom,
respectively. The atom is interacting with two scalar
photons at the same time and possesses a transition angular
frequency ω. We restrict the wave vectors of the two
photons (k1, k2) to be parallel to the z-axis and the
frequencies of the same are denote by ν1 and ν2. In the
initial state of the system the atom lies in its ground state
while the fields are located in their respective Minkowski
vacuum. Thus the initial state can be written as:
jinitiali ¼ jgi ⊗ j01i ⊗ j02i, where jgi is the ground state
of the atom and the j01;2i stand for the vacuum states of two
scalar photons. Following the discussion in [36], it can be
perceived that the simultaneous emission of two photons
leads to a final state of the system as below,

jfinali ¼ jei ⊗ j1ν1i ⊗ j1ν2i: ð7Þ
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Here jei represents the excited state of the atom. Allowing
up to the first order in perturbation theory, a nonzero
transition amplitude can be obtained only for the choice of
interaction Hamiltonian as following,

ĤIðτÞ ¼ ℏG½b̂ν1ϕν1 þ H:c:�½b̂ν2ϕν2 þ H:c:�½σ̂e−iωτ þ H:c:�
ð8Þ

Here G denotes the atom-fields coupling constant,
ϕν1;2ðxðτÞÞ are the mode solutions of two scalar photon
fields and (σ̂; σ̂†) stand for the lowering and raising operators
of the atom. b̂ν1;2 denote the annihilation operators corre-
sponding to the two scalar photons. We assume that the
mirror is fixed at z0ð< c2

a Þ along the z-axis which yields the
following boundary condition for the mode solutions,

ϕν1;2 jz¼z0 ¼ 0: ð9Þ

Equation (9) dictates that the normal modes of the photon
fields ought to be the superposition of the incident and the
reflected waves which in turn produces standing waves
as below,

ϕν1;2 ¼ e−iν1;2t−ik1;2ðz−z0Þ − e−iν1;2tþik1;2ðz−z0Þ: ð10Þ

We take the duration of atom-fields interaction to be infinite
and thus the transition amplitude for this excitation can be
written as,

Ajii→jfi ¼ −
i
ℏ

Z þ∞

−∞
dτh1ν1 ; 1ν2 ; ejĤIðτÞj0ν1 ; 0ν2 ; gi

¼ −iG
Z þ∞

−∞
dτ eiðν1þν2Þteiωτðeik1ðz−z0Þ − c:c:Þ

× ðeik2ðz−z0Þ − c:c:Þ ð11Þ

We replace k1;2 ¼ ν1;2
c in the above equation and consider

that the emitted scalar photons have identical frequencies
i.e., ν1 ¼ ν2 ¼ ν ⇒ k1 ¼ k2 ¼ ν

c. Therefore the transition
amplitude in Eq. (11) takes the following form,

Ajii→jfi ¼ −iG
Z

∞

−∞
dτ e2iνteiωτðe2iν

c ðz−z0Þ þ c:c: − 2Þ: ð12Þ

This yields the transition probability of the system as below,

Pexc¼G2

����
Z

dτe2iνtðτÞeiωτðe2iν
c ðzðτÞ−z0Þ þc:c:−2Þ

����
2

: ð13Þ

At this stage we use the trajectory for the accelerated atom
as in Eq. (6) in Eq. (13) and obtain the excitation probability
as follows,

Pexc ¼ G2

����
Z þ∞

−∞
dτðe2iνc

a e
aτ
c −2ikz0 þ e−

2iνc
a e−

aτ
c þ2ikz0

− 2e
2iνc
a sinhðaτc ÞÞeiωτ

����
2

ð14Þ

Now we evaluate the three integrals in Eq. (14) separately
where the first integral is given by,

I1 ¼
Z þ∞

−∞
dτ e

2iνc
a e

aτ
c −2ikz0eiωτ: ð15Þ

Changing the variable such that x ¼ 2νc
a e

aτ
c , Eq. (15) reads,

I1 ¼
c
a

�
a
2νc

�iωc
a
Z

∞

0

dx eixx
iωc
a −1e−2ikz0

¼ c
a

�
a
2νc

�iωc
a

e−2ikz0e−
πcω
2a Γ

�
iωc
a

�
: ð16Þ

Following the similar change of variables the second integral
in Eq. (14) yields,

I2 ¼
c
a

�
a
2νc

�
−iωc

a
Z

∞

0

dx0 e−ix0x0−iωc
a −1e2ikz0

¼ c
a

�
a
2νc

�
−iωc

a

e2ikz0e−
πcω
2a Γ

�
−
iωc
a

�
: ð17Þ

The third integral, which solely appears due to the dual field
interaction in Eq. (14) is given by,

I3 ¼ −2
Z þ∞

−∞
dτ e

2iνc
a sinhðaτc Þeiωτ: ð18Þ

Under the coordinate transformation x̃ ¼ e
aτ
c , I3 becomes,

I3 ¼ −
2c
a

Z
∞

0

dx̃ x̃
iωc
a −1e

iνc
a ðx̃−1

x̃Þ: ð19Þ

Performing the above integration the final form of I3 is
obtained as follows [55,56],

I3 ¼ −
4c
a
e−

πωc
2a Kiωc

a

�
2νc
a

�
; ð20Þ

where Kiωc
a
ð2νca Þ is the modified Bessel function. Combining

the Eqs. (16) and (17), we obtain

I1 þ I2 ¼
c
a
e−

πωc
2a

��
a
2νc

�iωc
a

e−2ikz0Γ
�
iωc
a

�
þ c:c:

�
: ð21Þ

For a complex parameter z and its complex conjugate z�, one
obtains, zþ z� ¼ 2RðzÞ. One can also write the complex

DAS, SEN, and GANGOPADHYAY PHYS. REV. D 107, 025009 (2023)

025009-4



number z as, z ¼ jzj½cosðargðzÞÞ þ i sinðargðzÞÞ�. Using
these relations, we recast the sum in Eq. (21) as,

I1 þ I2 ¼
2c
a
e−

πcω
2a R

��
a
2νc

�iωc
a

e−2ikz0Γ
�
iωc
a

��

¼ 2c
a
e−

πcω
2a R

��
cos

�
2νz0
c

−
ωc
a

ln

�
a
2νc

��

− i sin

�
2νz0
c

−
ωc
a

ln

�
a
2νc

����
R

�
Γ
�
iωc
a

��

þ iℑ

�
Γ
�
iωc
a

����

¼ 2ce−
πcω
2a

a

�
cos

�
2νz0
c

−
ωc
a

ln

�
a
2νc

��
R

�
Γ
�
iωc
a

��

þ sin

�
2νz0
c

−
ωc
a

ln

�
a
2νc

��
ℑ

�
Γ
�
iωc
a

���
: ð22Þ

In the above equation we substitute the following relations,

R

�
Γ
�
iωc
a

��
¼

����Γ
�
iωc
a

����� cos
�
arg

�
Γ
�
iωc
a

���
ð23Þ

ℑ

�
Γ
�
iωc
a

��
¼

����Γ
�
iωc
a

����� sin
�
arg

�
Γ
�
iωc
a

���
: ð24Þ

and obtain the final form of (I1 þ I2) as,

I1 þ I2 ¼
2c
a
e−

πcω
2a

����Γ
�
iωc
a

����� cosðθÞ; ð25Þ

where,

θ ¼ 2νz0
c

−
ωc
a

ln

�
a
2νc

�
− arg

�
Γ
�
iωc
a

��
: ð26Þ

We obtain the transition probability while summing up the
Eqs. (20) and (25) as below,

Pexc ¼
4G2c2

a2
e−

πωc
a

����Γ
�
iωc
a

�����
2

cos2ðθÞ
����

×

�
1 − 2 secðθÞ

����Γ
�
iωc
a

�����
−1
Kiωc

a

�
2νc
a

������
2

¼ 8πG2c
aω

cos2ðθÞ
e
2πωc
a − 1

�
1 −

4 secðθÞ
jΓðiωca Þj

Kiωc
a

�
2νc
a

�

þ 4ωcsec2ðθÞ
aπ

����Kiωc
a

�
2νc
a

�����
2

sinh

�
πωc
a

��
ð27Þ

Here, Kiωc
a
ð2νca Þ is a real number provided ν, c, a, and ω are

real. Note that the excitation probability in Eq. (27) depends
on the parameters, G, a, ν, ω, and z0. We explore the relevant
phenomenology of this result in the Sec. V.

III. A UNIFORMLY ACCELERATING MIRROR
AND A FIXED ATOM

A uniformly accelerating mirror with respect to a fixed
atom is considered in this section. As similar to the Sec. II,
photons are simultaneously produced from their respective
vacua due to the accelerated motion of the mirror and
subsequently detected by the atom at the same time in
Minkowski spacetime. With the simultaneous detection
of the two field quanta, the atom gets excited and jumps to
its higher energy state. The atom is fixed at z ¼ z0 < c2

a in
Minkowski spacetime. At this stage we take a widely used
coordinate transformation such as,

t ¼ c
a
e

az̃
c2 sinh

�
at̃
c

�
; z ¼ c2

a
e

az̃
c2 cosh

�
at̃
c

�
: ð28Þ

Here ðt̃; z̃Þ denote the spacetime coordinates for the moving
mirror, (t, z) are the Minkowski coordinates and a is a
constant parameter. When the mirror is following the
trajectory such as z̃ ¼ 0, it represents a uniformly accel-
erated mirror in the Minkowski spacetime with an accel-
eration a. This picture can be mapped to the Rindler space
[defined in terms of coordinates ðt̃; z̃Þ], where one can
realize this incident such as the mirror is at rest and atom is
accelerating. Consequently, the vacuum state of the fields
become Rindler vacuum which one defines with respect to
the static mirror in Rindler space. On the other hand now
the accelerated atom in Rindler space perceives particle
production from the Rindler vaccum of the fields. Note that
in Rindler space the Rindler vacuum does not perceive any
horizon as it is defined with respect to the static mirror.
Whereas the accelerated atom in Rindler space perceives
Rindler like horizon. Using Eq. (28), the Minkowski line
element (ds2 ¼ c2dt2 − dz2) can be recast in the form of
the Rindler metric, which reads,

ds2 ¼ e
2az̃
c2 ðc2dt̃2 − dz̃2Þ: ð29Þ

As the Rindler metric in Eq. (29) is conformally flat to
the Minkowski line element, the positive frequency mode
solutions of the scalar photons remain same as that of the
standard mode solutions in Minkowski spacetime.
Therefore in Rindler space the normal modes of the scalar
photons can be expressed as standing waves, given by the
following relation,

ϕν1;2ðt̃; z̃Þ ¼ e−iν1;2 t̃þik1;2 z̃ − e−iν1;2 t̃−ik1;2 z̃; ð30Þ

where ν1 and ν2 are the angular frequencies of photons 1
and 2 in the Rindler space [16]. The normal modes in
Eq. (30) depict the positive frequency mode solutions with
respect to the Rindler time (t̃), which signifies that the
vacuum states corresponding to these modes belong to the
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Rindler vacuum in Rindler space. From Eq. (28), we write
the coordinates (t̃, z̃) in terms of the (t, z) as below,

t̃ ¼ c
2a

ln

�
zþ ct
z − ct

�
; z̃ ¼ c2

2a
ln

�
a2

c4
ðz2 − c2t2Þ

�
: ð31Þ

Using Eq. (31) in Eq. (30), we achieve,

ϕν1;2ðt; zÞ ¼ eþ
iν1;2c

a ln ½ a
c2
ðz−ctÞ�Θ½z − ct�

− e−
iν1;2c

a ln ½ a
c2
ðzþctÞ�Θ½zþ ct�; ð32Þ

where Θ denotes the Heaviside theta function. In line with
the treatment as carried out in [16], we consider that the
mode solutions as written in Eq. (32), in terms of
Minkowski coordinates, initially contain no particles.
This implies that these modes are in the Rindler vacuum
of the corresponding fields which are defined with respect
to the static mirror in Rindler space. Such a Rindler vacuum
can be prepared outside a massive star just before it starts to
collapse [16]. We carry our subsequent analysis in Rindler
space and obtain the transition probability while using the
trajectory of the atom as written in Eq. (31). However, this
analysis could have been done with a more physically
realistic initial state in which the field modes are assumed to
be in the Minkowski vacuum before they reflect off the
mirror. A way to do this would be to follow the formalism
in [31,57] which we shall not carry out in this paper. The
mode solutions in Eq. (32) portray that the right moving
field modes can access only the region such that z > cjtj,
which is known as right Rindler wedge (RRW). On the
other hand left moving modes can only access the
region −z > cjtj, called the left Rindler wedge (LRW).
Individually the mode solution in RRW and LRW is not
complete in whole Minkowski spacetime. However their
combination as appears in Eq. (32) is complete in all
Minkowski spacetime and can be analytically continued to
the future (t > jzj=c) and past (−t > jzj=c) regions.
Now we write the excitation probability of the system

due to the simultaneous emission of two photons and the
transition of atom to its higher excited state as below,

P0
exc ¼ G2

����
Z þ∞

−∞
dt eiωtϕ�

ν1ðt; zÞϕ�
ν2ðt; zÞ

����
2

: ð33Þ

For simplicity we consider the two photons have equal
angular frequency ν. We substitute the position of the atom
z ¼ z0 in the above equation, which yields,

P0
exc ¼ G2

����
Z

∞

−∞
dt eiωt

�
e−

iνc
a ln ½ a

c2
ðz0−ctÞ�Θ½z0 − ct�

− e
iνc
a ln ½ a

c2
ðz0þctÞ�Θ½z0 þ ct�

�
2
����
2

: ð34Þ

Note that Θ½z0 − ct�2 has nonzero value only in the
region −∞ < t < z0

c while Θ½z0 þ ct�2 has nonzero value

in the region − z0
c < t < ∞. For the cross-term,

Θ½z0 − ct�Θ½z0 þ ct�, one obtains a nonzero value in the
regime − z0

c < t < z0
c . Using these conditions, we write the

probability in Eq. (34) as,

P0
exc ¼ G2

����
Z z0

c

−∞
dt eiωte−

2iνc
a ln ½ a

c2
ðz0−ctÞ�

þ
Z

∞

−z0
c

dt eiωte
2iνc
a ln ½ a

c2
ðz0þctÞ�

− 2

Z z0
c

−z0
c

dt eiωte
iνc
a ln½z0þct

z0−ct
�
����
2

: ð35Þ

For the first integral in the Eq. (35), we change the variable
t → −t and obtain,

P0
exc ¼ G2

����
Z

∞

−z0
c

dt e−iωte−
2iνc
a ln ½ a

c2
ðz0þctÞ�

þ
Z

∞

−z0
c

dt eiωte
2iνc
a ln ½ a

c2
ðz0þctÞ�

− 2

Z z0
c

−z0
c

dt eiωte
iνc
a ln½z0þct

z0−ct
�
����
2

: ð36Þ

Further we take x ¼ ωðtþ z0
c Þ in the above equation, which

leads us to the following form of P0
exc.

P0
exc ¼ G2

���� 1ω
Z

∞

0

dx e−iðx−
ωz0
c Þx−2iνc

a e−
2iνc
a ln½ acω�

þ 1

ω

Z
∞

0

dx eiðx−
ωz0
c Þx

2iνc
a e

2iνc
a ln½ acω�

−
2e−

iωz0
c

ωð2ωz0c Þiνca
Z 2ωz0

c

0

dx eixx
iνc
a

�
1 −

cx
2ωz0

�
−iνc

a

����
2

: ð37Þ

We denote the first two integrals in the above Eq. (37) as
I01 and I02 and obtain the following relation

I01 þ I02 ¼ −
2νc
aω

�
a
ωc

�
−2iνc

c

e
iωz0
c e−

πνc
a Γ

�
−
2iνc
a

�

−
2νc
aω

�
a
ωc

�2iνc
c

e−
iωz0
c e−

πνc
a Γ

�
2iνc
a

�

¼ −
4νc
aω

e−
πνc
a

����Γ
�
−
2iνc
a

����� cos ðθ0Þ; ð38Þ

where,

θ0 ¼ ωz0
c

−
2νc
a

ln

�
a
ωc

�
þ arg

�
Γ
�
−
2iνc
a

��

¼ ωz0
c

−
2νc
a

ln

�
a
ωc

�
− arg

�
Γ
�
2iνc
a

��
: ð39Þ
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In the last line of Eq. (39), we use arg ½Γ½iα�� ¼
− arg ½Γ½−iα�� (∀ α ∈ R). The third integral in Eq. (36)
is given by,

I03 ¼ −
2e−

iωz0
c

ωð2ωz0c Þiνca
Z 2ωz0

c

0

dx eixx
iνc
a

�
1 −

cx
2ωz0

�
−iνc

a

: ð40Þ

The form of the integral in Eq. (40) takes the following
form

I03 ¼ −
2e−

iωz0
c

ωð2ωz0c Þiνca
Z 2ωz0

c

0

dx eixx
iνc
a

�
1 −

cx
2ωz0

�
−iνc

a

¼ −
4πνz0

a sinh½πνca � e
−iωz0

c

�
2F3

�
a1; a2;

1

2
; 1;

3

2
;−

ω2z20
c2

�

þ iωz0
c

�
1þ iνc

a

�
2F3

�
a2; a3;

3

2
;
3

2
; 2;−

ω2z20
c2

��
;

ð41Þ
where a1 ¼ 1

2
þ iνc

2a , a2 ¼ 1þ iνc
2a , a3 ¼ 3

2
þ iνc

2a , and 2F3

denotes the generalized hypergeometric function. In the
above equation we write,

Bf ¼ 2F3

�
a1; a2;

1

2
; 1;

3

2
;−

ω2z20
c2

�

þ iωz0
c

�
1þ iνc

a

�
2F3

�
a2; a3;

3

2
;
3

2
; 2;−

ω2z20
c2

�
;

ð42Þ
where Bf can be expressed as,

Bf ¼ jBfjeiζ; ð43Þ
where ζ ¼ arg½Bf�. Adding Eqs. (41) and (38) we obtain,

I01 þ I02 þ I03

¼ −
4νc
aω

e−
πνc
a

����Γ
�
−
2iνc
a

����� cosðθ0Þ − 4πνz0
a sinh½πνca � e

−iωz0
c Bf

¼ −
4νc
aω

ffiffiffiffiffiffi
πa
νc

r
cosðθ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
4πνc
a − 1

p
�
1þ 2χωz0

c

Bf secðθ0Þe−
iωz0
c

1 − e−
2πνc
a

�
;

ð44Þ

where χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πνc
a sinh½2πνca �

q
. Using Eq. (44) in Eq. (37), we

can rewrite the exact analytical form of the transition
probability as follows,

P0
exc ¼

16πG2νc
aω2

cos2ðθ0Þ
e
4πνc
a − 1

�
1þ 4jBfjχωz0

c
secðθ0Þ
1 − e−

2πνc
a

× cos

�
ζ −

ωz0
c

�
þ 4jBfj2χ2ω2z20

c2
sec2ðθ0Þ

ð1 − e−
2πνc
a Þ2

�
:

ð45Þ

In order to examine the equivalence we further simplify the
above equation and consider the leading order behavior of
the same. However in Sec. V we show that the exact
[Eq. (45)] and leading order [Eq. (47)] analysis yield same
order of estimation for the transition probability. Following
the experimental proposition as considered in [16,35],
one may take ω to be ∼1 gHz. The fixed position of the
atom (z0) can assumed to be a small parameter such as
Oð0.01Þ m. This leads us to write, 2ωz0

c < 1, where
c ¼ 3 × 108 m=s. In Eq. (40), the upper limit on x dictates
that x < 2ωz0

c , which implies cx
2ωz0

< 1. This allows us to write

the Taylor expansion in the term ð1 − cx
2ωz0

Þ−iνc
a and as well as

the expansion of eix up to the linear order in x. This yields,

I03 ≅ −
2e−

iωz0
c

ωð2ωz0c Þiνca
Z 2ωz0

c

0

dx x
iνc
a

�
1þ ixþ iνc2x

2aωz0

�

≅ −
4z0
c

e−
iωz0
c

�
1

1þ iνc
a

þ 2iωz0
c

1þ νc2
2aωz0

2þ iνc
a

�
: ð46Þ

Combining the Eqs. (38) and (46), we get the excitation
probability as follows,

P0
exc ≅

16πG2νc
aω2

cos2ðθ0Þ
e
4πνc
a − 1

��
1þ aωz0

νc2
e
πνc
a secðθ0Þ

ð1þ ν2c2

a2 Þ

×
ðcosðωz0c Þ − νc

a sinðωz0c ÞÞ
jΓ½− 2iνc

a �j
�

2

þ
�
aωz0
νc2

e
πνc
a secðθ0Þ

ð1þ ν2c2

a2 Þ
ðνca cosðωz0c Þ þ sinðωz0c ÞÞ

jΓ½− 2iνc
a �j

�
2
�
:

ð47Þ
The final forms of the excitation probabilities corresponding
to the two cases is summarized in Eqs. (27) and (47).

IV. NONEQUIVALENCE IN DUAL
PHOTON SCENARIO

In this section we examine the equivalence between the
two systems which are discussed in Secs. II and III, in the
context of the dual photon emission. In our case excitation of
the ground state atom (equivalent to ℏω) is accompanied by
the simultaneous emission of two photons with frequency ν
(equivalent to a total 2ℏν amount of energy). Therefore,
following [16], we interchange the atomic frequency (ω)
with twice the frequency of the emitted photons ð2νÞ for our
setup. We interchange ν ¼ ω

2
in Eqs. (27) and (47) respec-

tively and obtain the two probabilities as below,

Pexc ¼
8πG2c
aω

cos2ðθ̄Þ
e
2πωc
a − 1

�
1 −

4 secðθ̄Þ
jΓðiωca Þj

Kiωc
a

�
ωc
a

�

þ 4ωcsec2ðθ̄Þ
aπ

����Kiωc
a

�
ωc
a

�����
2

sinh

�
πωc
a

��
ð48Þ
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and

P0
exc ≅

8πG2c
aω

cos2ðθ00Þ
e
2πωc
a − 1

��
1þ 2az0

c2
e
πωc
2a secðθ00Þ
ð1þ ω2c2

4a2 Þ

×
ðcosðωz0c Þ − ωc

2a sinðωz0c ÞÞ
jΓ½− iωc

a �j
�

2

þ
�
2az0
c2

e
πωc
2a secðθ0Þ
ð1þ ω2c2

4a2 Þ
ðωc
2a cosðωz0c Þ þ sinðωz0c ÞÞ

jΓ½− iωc
a �j

�
2
�
:

ð49Þ

Here,

θ̄ ¼ ωz0
c

−
ωc
a

ln

�
a
ωc

�
− arg

�
Γ
�
iωc
a

��
ð50Þ

and

θ00 ¼ ωz0
c

−
ωc
a

ln

�
a
ωc

�
− arg

�
Γ
�
iωc
a

��
: ð51Þ

Comparing Eq. (49) with Eq. (48), we observe that the
excitation probabilities, although has a same Planckian pre-
factor, the terms in the parenthesis do not quite match.
This indicates that the probabilities are not related to each
other under such exchanges and therefore may imply a
violation of the equivalence relation. This is in line with the
observation made in [16] where a subtle symmetry between
the excitation of a stationary atom due to an accelerating
mirror in Minkowski spacetime with the excitation of an
accelerating atom in Minkowski spacetime relative to a
stationary mirror was shown. This symmetry was regarded
as a manifestation of the equivalence principle. Although,
there is a lot of debate about the status of the equivalence
principle applying to nongravitational processes in a gravi-
tational field [51,54], however, the observation made in [16]
indeed shows a nice symmetry between the two setups in the
one photon case which is found to be broken in our case.
Also from the exact result, i.e., Eq. (45) one can obtain the
same insight leading to the violation of equivalence relation.
In the upcoming section we study the observational promi-
nence of the dual photon emission scenario.

V. PHENOMENOLOGICAL ASPECTS
OF THE MODEL

In this section we study the behavior of the system while
the atom is excited to its higher energy state along with the
simultaneous emission of two photons. Therefore in Fig. 1,
we plot the transition probability as depicted in Eq. (27)
with respect to the angular frequency of the detector (ω).
We fix the parameters such as, ν ∼ 104 Hz, z0 ¼ 0.01 m.
We also take the effective coupling strength between
the N ð∼104–108Þ polar molecules and the photons as,

geff ¼ g
ffiffiffiffi
N

p
∼ 107 Hz. The acceleration of the atom is fixed

to be ∼1015 m=s2, which can be achieved by using the
superconducting circuits [58]. Figure 1 depict the standard
Planckian distribution and also shows an oscillatory behav-
ior as similar to the single photon emission case.
Now we explore the other system which is the mirror

accelerating with respect to a fixed atom. Largely, we fix
the values for the parameters as considered in [16], so
that the observational prominence of our model may also
be verified with respect to the similar experimental setup
as proposed in [16]. This leads us to fix ω ∼ 109 Hz,
z0 ¼ 0.01 m, geff ¼ g

ffiffiffiffi
N

p
∼ 107 Hz and acceleration of the

mirror to be ∼1015 m=s2 in Eq. (45) and obtain the
behavior of the transition probability with the variation
of the field frequency (ν) in Fig. 2. This plot suggests that in
case of the dual photon emission process, the transition
probability becomes Oð10−4Þ which is similar to the
outcome of single field emission. We comment that in
case of the dual photon emission the excitation proba-
bility can be enhanced to the detectable probability [i.e.,
P ∼Oð10−2Þ] [16] by taking into account the proba-
bilities for 100 such cavity modes. We can also observe
similar behavior of the approximate form of the excitation

FIG. 1. Plot of Pexc vs ω. Atom is accelerating with respect to
the fixed mirror and two photons are simultaneously emitted.

FIG. 2. Plot of P0
exc vs ν. Mirror is accelerating with respect to a

fixed atom and two photons are simultaneously emitted.
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probability in Eq. (47) if we use the same parameters as in
Fig. 2. Now we analyze Eq. (49) under the condition
cν
a ≪ 1. We keep fix rest of the parameters ðω; z0; geff ; aÞ
same as taken in the Fig. 2. This yields,

P0
excjνc≪a ≅

4G2cos2ðθ0Þ
ω2

�
1þ 2aωz0

νc2
secðθ0Þ
jΓ½− 2iνc

a �j

þ
�
aωz0
νc2

secðθ0Þ
jΓ½− 2iνc

a �j
�

2

×



1þ 2πνc

a

�
1þ 1

π

�
sin

�
ωz0
c

�

þ sin2
�
ωz0
c

���
: ð52Þ

We further plotted Eq. (52) with respect to ν and obtained
the Fig. 3.

VI. DISCUSSION

Transforming a virtual photon to a real detectable photon
has become a remarkable tool in studying the acceleration
radiation and its several consequences in the flat/curved
spacetime. Besides its theoretical aspects, this mechanism
is also promising from the observational perspective. In the
present manuscript we consider an atom-mirror system
where the atom and the mirror possess relative acceleration
between them. Two configurations are possible such as the
atom is accelerating with respect to a fixed mirror and vice
versa. We further consider that due to the virtual processes,
which take place in the vacuum states of the two scalar
photons, the atom makes a transition to its higher excited
state along with the simultaneous emission of the two
virtual photons. Applying the mechanism of transforming
the virtual photons to real one, we evaluate the transition

probabilities corresponding to the above configurations.
Our results turn out to be distinct in nature than that of the
single field emission case. We obtain that the dual field
emission process breaks the “equivalence principle in
QED.” An interference term emerges in the transition
probability due to the emission of the two photon quanta,
which in turn breaks the equivalence between the two
setup. Undoubtedly, this demands more such investigations
to perceive the notion, applications and the limitations of
such equivalence principle. As similar to the single field
emission process, our results suggest that both the tran-
sition probabilities as in Eqs. (27) and (47) exhibit spatial
oscillatory behavior. An additional interference term
excluding the standard Planckian factor is solely respon-
sible for this oscillatory behavior in the excitation proba-
bility. For our case too, a similar experimental proposition
as mentioned in [16] can be constructed as following. One
may consider thatNð∼104–108Þ number of polar molecules
are collectively forming an ensemble where each molecule
is simultaneously interacting with the two photons within a
cavity setup. We refer our readers to [16,33–35] for a
thorough understanding of the experimental setup which
demonstrate the motion of accelerated mirror and capture
its several consequences. Note that for mathematical
simplicity we translate the moving mirror and static atom
case in Minkowski spacetime to Rindler spacetime, where
the mirror becomes static and the atom accelerates. This
permits us to define a Rindler vacuum state with respect to
the static mirror in Rindler spacetime. In this context, we
point out that it is a very difficult or somewhat impossible
task to construct a Rindler vacuum state in the laboratory.
For this reason, the experimental implementation of this
setup (which is briefly mentioned earlier) is constructed in
the Minkowski spacetime where the mirror accelerates and
the atom is static [16,33–35].
We observe that for an accelerating mirror system,

under the condition a ≫ cν, the transition probability of
the system continues to be the function of ða; c; νÞ. This
implies that the parameter space in the dual photon
emission process is larger than that of the single field
emission case, even under the above condition. Therefore
we gain the freedom to study the transition probability with
respect to the field frequency, acceleration of the mirror etc.
Further, we obtain a detectable transition probability by
conveniently choosing the range of field frequency and the
acceleration of the mirror with respect to the fixed atom. It
will be interesting to extended the present work with the
emission of more than two rather larger number of photons.
We are planning to report this elsewhere.

FIG. 3. Plot of P0
exc vs ν. for νc

a ≪ 1.

VIRTUAL TRANSITIONS IN AN ATOM-MIRROR SYSTEM IN … PHYS. REV. D 107, 025009 (2023)

025009-9



[1] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math.
Kl. 844 (1915).

[2] A. Einstein, Ann. Phys. (Berlin) 354, 769 (1916).
[3] S. W. Hawking, Nature (London) 248, 30 (1974).
[4] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[5] S. W. Hawking, Phys. Rev. D 13, 191 (1976).
[6] J. D. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972).
[7] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[8] D. N. Page, Phys. Rev. D 13, 198 (1976).
[9] D. N. Page, Phys. Rev. D 14, 3260 (1976).

[10] D. N. Page, Phys. Rev. D 16, 2402 (1977).
[11] S. A. Fulling, Phys. Rev. D 7, 2850 (1973).
[12] P. Davies, J. Phys. A 8, 609 (1975).
[13] B. S. DeWitt, General Relativity: An Einstein Centenary

Survey, edited by S. W. Hawking and W. Israel (Cambridge
University Press, Cambridge, England, 1979).

[14] M. O. Scully, V. V. Kocharovsky, A. Belyanin, E. Fry, and F.
Capasso, Phys. Rev. Lett. 91, 243004 (2003).

[15] M. O. Scully, S. A. Fulling, D. M. Lee, D. N. Page, W. P.
Schleich, and A. A. Svidzinsky, Proc. Natl. Acad. Sci.
U.S.A. 115, 8131 (2018).

[16] A. A. Svidzinsky, S. J. Ben-Benjamin, S. A. Fulling, and
D. N. Page, Phys. Rev. Lett. 121, 071301 (2018).

[17] H. E. Camblong, A. Chakraborty, and C. R. Ordóñez,
Phys. Rev. D 102, 085010 (2020).

[18] A. Azizi, H. E. Camblong, A. Chakraborty, C. R. Ordóñez,
and M. O. Scully, Phys. Rev. D 104, 065006 (2021).

[19] A. Azizi, H. E. Camblong, A. Chakraborty, C. R. Ordóñez,
and M. O. Scully, Phys. Rev. D 104, 084086 (2021).

[20] A. Azizi, H. E. Camblong, A. Chakraborty, C. R. Ordóñez,
and M. O. Scully, Phys. Rev. D 104, 084085 (2021).

[21] S. Sen, R. Mandal, and S. Gangopadhyay, Phys. Rev. D 105,
085007 (2022).

[22] S. Sen, R. Mandal, and S. Gangopadhyay, Phys. Rev. D 106,
025004 (2022).

[23] G.W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752
(1977).

[24] J. Schwinger, Phys. Rev. 82, 664 (1951).
[25] M. A. Nielsen and I. A. Chuang, Quantum Computation

and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, Cambridge, England, 2011).

[26] W. G. Unruh, Phys. Rev. D 14, 870 (1976).
[27] W. G. Unruh, Phys. Rev. D 15, 365 (1977).
[28] W. G. Unruh and R. M.Wald, Phys. Rev. D 29, 1047 (1984).
[29] L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, Rev.

Mod. Phys. 80, 787 (2008).
[30] Aindriú Conroy, Phys. Rev. D 105, 123513 (2022).
[31] N. D. Birrell and P. C. W. Davies, Quantum Fields in

Curved Space (Cambridge University Press, Cambridge,
England, 1982).

[32] R. Chatterjee, S. Gangopadhyay, and A. S. Majumdar,
Phys. Rev. D 104, 124001 (2021).

[33] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen,
J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature
(London) 479, 376 (2011).

[34] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori,
Phys. Rev. Lett. 103, 147003 (2009).

[35] M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P.
Zoller, Phys. Scr. 2009, 014001 (2009).

[36] C. Chowdhury, A. Das, and B. R. Majhi, Eur. Phys. J. Plus
134, 65 (2019).

[37] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, Phys. Rev.
Lett. 84, 2080 (2000).

[38] S. Chang, J. Hisano, H. Nakano, N. Okada, and M.
Yamaguchi, Phys. Rev. D 62, 084025 (2000).

[39] K. R. Dienes, New Directions for New Dimensions: An
Introduction to Kaluza-Klein Theory, Large Extra Dimen-
sions, and the Brane World, TASI Lectures, (2002).

[40] G. Dvali, Fortschr. Phys. 58, 528 (2010).
[41] G. Dvali and M. Redi, Phys. Rev. D 80, 055001 (2009).
[42] G. Dvali, I. Sawicki, and A. Vikman, J. Cosmol. Astropart.

Phys. 08 (2009) 009.
[43] D. Wands, Lect. Notes Phys. 738, 275 (2008).
[44] J. O. Gong, Int. J. Mod. Phys. D 26, 1740003 (2017).
[45] L. Alvarez-Gaume, C. Gomez, and R. Jimenez, J. Cosmol.

Astropart. Phys. 03 (2012) 017.
[46] S. Noori Gashti, J. Hologr. Appl. Phys. 2, 13 (2022).
[47] J. Martin and L. Pinol, J. Cosmol. Astropart. Phys. 12

(2021) 022.
[48] Y. Akrami, M. Sasaki, A. R. Solomon, and V. Vardanyan,

Phys. Lett. B 819, 136427 (2021).
[49] T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König,

and U. Leonhardt, Science 319, 1367 (2008).
[50] F. Rohrlich, Ann. Phys. (N.Y.) 22, 169 (1963).
[51] M. Pauri and M. Vallisneri, Found. Phys. 29, 1499 (1999).
[52] D. Singleton and S. Wilburn, Phys. Rev. Lett. 107, 081102

(2011).
[53] D. Singleton and S. Wilburn, Int. J. Mod. Phys. D 25,

1644009 (2016).
[54] S. A. Fulling and J. H. Wilson, Phys. Scr. 94, 014004

(2019).
[55] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series

and Products (Academic Press, Amsterdam, 2007), 7th ed.
[56] F. Hammad, A. Landry, and D. Dijamco, Phys. Rev. D 103,

085010 (2021).
[57] D. Su, C. T. M. Ho, R. B. Mann, and T. C. Ralph, New J.

Phys. 19, 063017 (2017).
[58] N. Friis, A. R. Lee, K. Truong, C. Sabin, E. Solano, G.

Johansson, and I. Fuentes, Phys. Rev. Lett. 110, 113602
(2013).

DAS, SEN, and GANGOPADHYAY PHYS. REV. D 107, 025009 (2023)

025009-10

https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1007/BF02757029
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.13.198
https://doi.org/10.1103/PhysRevD.14.3260
https://doi.org/10.1103/PhysRevD.16.2402
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1103/PhysRevLett.91.243004
https://doi.org/10.1073/pnas.1807703115
https://doi.org/10.1073/pnas.1807703115
https://doi.org/10.1103/PhysRevLett.121.071301
https://doi.org/10.1103/PhysRevD.102.085010
https://doi.org/10.1103/PhysRevD.104.065006
https://doi.org/10.1103/PhysRevD.104.084086
https://doi.org/10.1103/PhysRevD.104.084085
https://doi.org/10.1103/PhysRevD.105.085007
https://doi.org/10.1103/PhysRevD.105.085007
https://doi.org/10.1103/PhysRevD.106.025004
https://doi.org/10.1103/PhysRevD.106.025004
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.15.365
https://doi.org/10.1103/PhysRevD.29.1047
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1103/PhysRevD.105.123513
https://doi.org/10.1103/PhysRevD.104.124001
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561
https://doi.org/10.1103/PhysRevLett.103.147003
https://doi.org/10.1088/0031-8949/2009/T137/014001
https://doi.org/10.1140/epjp/i2019-12400-2
https://doi.org/10.1140/epjp/i2019-12400-2
https://doi.org/10.1103/PhysRevLett.84.2080
https://doi.org/10.1103/PhysRevLett.84.2080
https://doi.org/10.1103/PhysRevD.62.084025
https://doi.org/10.1002/prop.201000009
https://doi.org/10.1103/PhysRevD.80.055001
https://doi.org/10.1088/1475-7516/2009/08/009
https://doi.org/10.1088/1475-7516/2009/08/009
https://doi.org/10.1007/978-3-540-74353-8
https://doi.org/10.1142/S021827181740003X
https://doi.org/10.1088/1475-7516/2012/03/017
https://doi.org/10.1088/1475-7516/2012/03/017
https://doi.org/10.22128/JHAP.2021.452.1002
https://doi.org/10.1088/1475-7516/2021/12/022
https://doi.org/10.1088/1475-7516/2021/12/022
https://doi.org/10.1016/j.physletb.2021.136427
https://doi.org/10.1126/science.1153625
https://doi.org/10.1016/0003-4916(63)90051-4
https://doi.org/10.1023/A:1018821619763
https://doi.org/10.1103/PhysRevLett.107.081102
https://doi.org/10.1103/PhysRevLett.107.081102
https://doi.org/10.1142/S0218271816440090
https://doi.org/10.1142/S0218271816440090
https://doi.org/10.1088/1402-4896/aaecaa
https://doi.org/10.1088/1402-4896/aaecaa
https://doi.org/10.1103/PhysRevD.103.085010
https://doi.org/10.1103/PhysRevD.103.085010
https://doi.org/10.1088/1367-2630/aa71d1
https://doi.org/10.1088/1367-2630/aa71d1
https://doi.org/10.1103/PhysRevLett.110.113602
https://doi.org/10.1103/PhysRevLett.110.113602

