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We study the renormalization of the non-Hermitian PT -symmetric scalar field theory with the
interaction ϕ2ðiϕÞε using the Wilsonian approach and without any expansion in ε. Specifically, we solve
the Wetterich equation in the local potential approximation, both in the ultraviolet regime and with the loop
expansion. We calculate the scale-dependent effective potential and its infrared limit. The theory is found to
be renormalizable at the one-loop level only for integer values of ε, a result which is not yet established
within the ε-expansion. Particular attention is therefore paid to the two interesting cases ε ¼ 1; 2, and the
one-loop beta functions for the coupling associated with the interaction iϕ3 and −ϕ4 are computed. It is
found that the −ϕ4 theory has asymptotic freedom in four-dimensional spacetime. Some general properties
for the Euclidean partition function and n-point functions are also derived.
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I. INTRODUCTION

A real energy spectrum does not necessarily require the
Hamiltonian to be Hermitian. Indeed, it was found by
Bender and Boettcher [1] that there are a large variety of
Hamiltonians with PT symmetry that can assure a real
energy spectrum. Since then, quantum mechanics extended
outside the Hermitian regime [2] has become an active
subject [3–5]. In particular, non-Hermitian PT -symmetric
Hamiltonians have found novel applications in condensed
matter physics. See Refs. [6–8] for reviews. In recent years,
PT -symmetric Hamiltonians have also witnessed increas-
ing interest in high-energy physics. The consideration of
non-Hermitian Hamiltonians may provide new mecha-
nisms for neutrino masses and oscillations [9–11], dark
matter [12], Higgs decay [13], and the confinement/
deconfinement phase transition in QCD [14]. The gener-
alization of spontaneous symmetry breaking and the
Goldstone theorem to non-Hermitian field theories has
been carried out in Refs. [15–22]. Non-Hermitian Yukawa
interactions with interesting phenomenological applica-
tions have been considered in Refs. [23–26]. Studies of
the second quantization and inner product in Fock space are
given for a PT -symmetric scalar model in Ref. [27] and for

a PT -symmetric fermionic model in Ref. [28]. For some
other studies, see, e.g., Refs. [29–41].
Non-Hermitian PT -symmeric theories are mostly well

understood in quantum mechanics, especially for the well-
studied model

H ¼ p2 þ 1

2
μ2x2 þ 1

2
x2ðixÞε: ð1Þ

For ε ≥ 0 the energy spectrum of the Hamiltonian was
found to be real numerically [1]. For the massless case
spectral reality was proved for ε > 0 by Dorey et al. using
the methods of integrable systems [42]. The particular
massless ε ¼ 2 case can be mapped to a Hermitian
Hamiltonian with the same spectrum [43,44]. These results
are based on the Schrödinger equation directly.
For higher spacetime-dimensional quantum field theo-

ries, the Schrödinger equation is of functional type and very
little information can be extracted from it. Therefore,
alternative methods must be sought. A particularly useful
tool is the path-integral formulation of quantum theories.
Some earlier studies on PT -symmetric theories using the
path integral are found in Refs. [45,46]. Recently, in
Ref. [47] based on the Euclidean path integral, a new
perspective that relates a non-Hermitian PT -symmetric
theory to a Hermitian theory via analytic continuation is
given. In this way, conclusions for non-Hermitian theories
could be drawn from the corresponding Hermitian theories.
The relation proposed in Ref. [47] assures that the
Hamiltonian of form in Eq. (1) for ε ¼ 2 has a real
spectrum even for spacetime dimension greater than one.
Compared with quantum-mechanical models, a new

feature of (continuum) quantum field theory models is
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the presence of divergences due to the infinite number of
degrees of freedom. Therefore, when extending non-
Hermitian PT -symmetric quantum-mechanical models to
field theory, one has to check that the theory is renorma-
lizable, which is the topic of the present article. The theory
we consider is the analog of Eq. (1), i.e., a scalar field
theory with the bare potential at some cutoff scale Λ,

UΛðϕÞ ¼
1

2
μ2ϕ2 þ 1

2
m2ϕ2ðiϕ=ϕ0Þε; ð2Þ

where ϕ0 is some scale, ε ≥ 0, and μ2 > 0. Recently, there
have been attempts to renormalize this theory [36,45,48].
These attempts are based on an expansion in ε [49,50].
Although very interesting, these works have independently
come to a puzzling conclusion that, at least within the
ε-expansion, the theory seems to be trivial (at low orders in
the expansion) for spacetime dimension d ¼ 2 [36] and
d ≥ 2 [48]. Alternatively, these findings may indicate that
the ε-expansion may not be valid for a systematic study of
the renormalization of the theory. The present work aims to
study the renormalization without an expansion in ε.
We base our study on theWilsonian framework, which in

principle allows a nonperturbative description of quantum
fluctuations, via exact renormalization group (ERG) equa-
tions. The first ERG equation was derived by Wegner and
Houghton [51]. Although very intuitive, this construction
allows the evolution of the nonderivative part of the
Wilsonian effective action only. An alternative ERG
equation was proposed by Polchinski [52] who introduced
a smooth cutoff function for Fourier modes, and therefore
the derivation of flows for the whole running Wilsonian
action is allowed. Wetterich proposed a third approach [53],
which elegantly combines the concept of a smooth cutoff
and the one-particle irreducible (1PI) technique, through
the “average effective action.” We will focus here on this
third version of ERG equations. These equations always
require some approximation to be solved, and in this article
we focus on either the ultraviolet (UV) regime or the one-
loop regime under the local potential approximation.
The outline of the paper is as follows. In the next section,

we describe some generic properties of the Euclidean path
integral for this model and construct the 1PI effective
action. We also summarize the main features of the
Wetterich average effective action. In Sec. III, we study
the UV regime of the ERG equation, which can be mapped
to a diffusion equation, and thus provides an intuitive
understanding of how quantum fluctuations build up along
the Wilsonian flow toward the infrared (IR). We show that
the solution is analytical in the field for integer values of ε
only, which indicates potential consistency problems for
noninteger ε. We then focus on ε ¼ 1 and discuss the beta
function for the corresponding cubic coupling which, as
expected, has the opposite sign compared to the Hermitian
cubic interaction. Section IV focuses on the one-loop
Wilsonian flow which, by construction, recovers the

one-loop 1PI effective potential in the deep IR limit.
The latter potential contains new interactions for noninteger
ε, with diverging coefficients, which is not consistent
with renormalizability. Only for integer ε can one absorb
divergences in a redefinition of bare parameters, and we
give the explicit one-loop renormalization for ε ¼ 1.
Section V is devoted to the special case ε ¼ 2 in which
a deformation of the integration contour is necessary to
define a convergent path integral. We explain that the PT
symmetry is respected if the deformed contour is invariant
under the PT -reflection. The construction of the 1PI
effective action is however not modified and the results
derived for a generic ε can then be used for ε ¼ 2. We
confirm that the interaction −ϕ4 is asymptotically free,
unlike in the usual þϕ4 theory. We conclude in Sec. VI.

II. PROPERTIES OF THE QUANTUM THEORY

A. Path integral convergence

We consider the Euclidean partition function

Z ¼
Z

D½ϕ� exp
�
−
Z

ddx

�
1

2
∂μϕ∂

μϕþUΛðϕÞ
��

; ð3Þ

where UΛðϕÞ is given in Eq. (2). In the Hermitian case the
scalar ϕ is supposed to be real. But in the non-Hermitian
theory (3) the path integral is convergent (with a UV cutoff)
only for ε restricted to specific intervals.1 To see this,
consider a real ϕ and write the self-interaction term as

m2
jϕj2þε

ϕε
0

ðcosðπε=2þ θεÞ þ i sinðπε=2þ θεÞÞ; ð4Þ

where θ ¼ 0 if ϕ ≥ 0 and θ ¼ π if ϕ < 0. To make sure the
real part is not negative for jϕj → ∞, we need to require

− 1þ 4N ≤ ε ≤ 1þ 4N

and
1

3
ð−1þ 4N0Þ ≤ ε ≤

1

3
ð1þ 4N0Þ; ð5Þ

where N and N0 are integers. If we impose ε to be positive,
the allowed values/intervals are ε ∈ ½0; 1=3�; ε ¼ 1;
ε ∈ ½11=3; 13=3�; etc. For real ϕ, the Lagrangian is invari-
ant under the combined PT operation where

1In [36,45,48] the path integral is defined through a formal
expansion in the parameter ε. Although formally each term in the
ε expansion is calculated in terms of a convergent path integral,
the properties and convergence of the series in ε are unknown.
Truncating to low order in ε is in general an uncontrolled
approximation.
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P ∶ ϕðt; x⃗Þ → − ϕðt;−x⃗Þ;
T ∶ ϕðt; x⃗Þ → ϕð−t; x⃗Þ and i → −i: ð6Þ

For ε that does not fall into the regions given in Eq. (5),
e.g., ε ¼ 2, ϕ necessarily takes values in the complex
domain C to ensure the path integral to be convergent. In
such a case, one may obtain the theory by analytically
continuing ε from the regions given in Eq. (5) to the
interested value. If one studies the theory directly with the
path integral, one in principle should apply the Picard-
Lefschetz theory [54–58] for the path integral with first
complexifying the field configurations fϕðxÞg → fΦðxÞg
(where Φ takes values in C) and then finding a middle-
dimensional contour CPT in the path integral, with the
requirements that the PT symmetry is still respected and
the path integral is convergent. Therefore, one ends up with

Z ¼
Z
CPT

D½Φ� exp
�
−
1

2

Z
ddx½∂μΦ∂

μΦþ μ2Φ2

þm2Φ2ðiΦ=ϕ0Þε�
�
: ð7Þ

Since ΦðxÞ takes in general complex values now, the
Lagrangian in (7) is not PT -symmetric anymore because
under T , one has to take in addition the complex conjugate
of Φ. However, one may implement the PT symmetry for
the path integral as a whole. Performing the PT operation
for the path integral, one obtains

Z̃ ¼
Z
C̃PT

D½Φ̃� exp
�
−
1

2

Z
ddx½∂μΦ̃∂

μΦ̃þ μ2Φ̃2

þm2Φ̃2ð−iΦ̃=ϕ0Þε�
�
; ð8Þ

where Φ̃ ¼ −Φ� and C̃PT ¼ fΦ̃ðxÞ∶ − Φ̃�ðxÞ ∈ CPT g. For
ε ¼ 2N, the path integral is invariant under PT if

C̃PT ¼ CPT : ð9Þ

For the zero-dimensional case, such a contour satisfy the
so-called left-right symmetry in the complex plane. For
other values of ε, a more delicate analysis of the contour is
required. Note that doing the above procedure one is not
adding more degrees of freedom to the theory because the
middle-dimensional contour CPT has the same “dimen-
sion” as that of the original real configuration space.2

In this article, we study the functional renormalization of
the theory (3). We are in particular interested in the region
ε ∈ ½0; 2�. We carry out the analysis first for ε ∈ ½0; 1=3�
and ε ¼ 1 in which ϕ is kept real and then analytically

continue the results to other values out of these regions. As
we shall see below, one-loop divergences can be absorbed
by counterterms for integer values of ε only.

B. One-particle-irreducible effective action

We assume here either ε ∈ ½0; 1=3� or ε ¼ 1, in which
case the path integration is done over real ϕ configurations.
Given a (real) source J, we define the Euclidean partition
function in such a way that the source term is invariant
under PT symmetry

Z½J� ¼
Z

D½ϕ� exp
�
−
1

2

Z
ddx½∂μϕ∂μϕþ μ2ϕ2

þm2ϕ2ðiϕ=ϕ0Þε� − i
Z

ddxJϕ

�
: ð10Þ

The one-point function is defined from the connected
generating functional W½J� ¼ − lnZ½J� as

φ≡ hϕi ¼ δW
iδJ

¼ −
1

Z
δZ
iδJ

; ð11Þ

where

h� � �i≡ 1

Z

Z
D½ϕ�ð� � �Þ exp

�
−
1

2

Z
ddx½∂μϕ∂μϕþ μ2ϕ2

þm2ϕ2ðiϕ=ϕ0Þε� − i
Z

ddxJϕ

�
: ð12Þ

Taking the complex conjugate of Z½J�, one obtains

ðZ½J�Þ� ¼
Z

D½ϕ� exp
�
−
1

2

Z
ddx½∂μϕ∂μϕþ μ2ϕ2

þm2ϕ2ð−iϕ=ϕ0Þε� þ i
Z

ddxJϕ

�
; ð13Þ

and the change of variable, ϕ → −ϕ leads to

ðZ½J�Þ� ¼ Z½J�: ð14Þ

Similarly, we have

ðφ½J�Þ� ¼ −φ½J�; ð15Þ

such that the one-point function φ½J� is purely imaginary, as
long as the source J is real. Actually, one can extend this
argument to arbitrary n-point functions. It can be seen that
any 2N-point correlation function (with N being a non-
negative integer) is real and any 2N þ 1-point correlation
function is imaginary.

2Rigorously speaking, the dimension of the contour CPT is
infinity.
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We also have the usual relation

δ2W
iδJðxÞiδJðyÞ ¼ φðxÞφðyÞ − hϕðxÞϕðyÞi; ð16Þ

which expresses the second functional derivative of W in
terms of the variance of quantum fluctuations. One then
inverts the relation φ½J� → J½φ� in order to define the
Legendre transform

Γ½φ� ¼ W½J½φ�� − i
Z

d4xφJ½φ�; ð17Þ

which represents the 1PI effective action, with functional
derivatives

δΓ½φ�
δφðxÞ ¼ −iJðxÞ;

δ2Γ½φ�
δφðxÞδφðyÞ ¼ −

�
δ2W

iδJðxÞiδJðyÞ
�−1

: ð18Þ

From the above equations we finally obtain

δ2Γ½φ�
δφðxÞδφðyÞ ¼ ðhϕðxÞϕðyÞi − φðxÞφðyÞÞ−1: ð19Þ

In summary, we find that the PT -symmetric theory (10)
has real Z½J� as well as real 1PI effective action Γ½φ�.
However, although ϕ is real, its one-point function φ is
purely imaginary. Note that the physically relevant cou-
pling constants are obtained from the derivatives δnΓ=δφn

at φ ¼ 0, and do not depend on φ being purely imaginary.

C. Exact Wilsonian renormalization

The Wilsonian evolution of the Wetterich running action
defined at some scale k is derived in the framework of
the 1PI quantization, where a cutoff function is added to
the bare action, in order to “freeze” infrared modes with
momentum jpj≲ k in the path integration [53]. This is
achieved through the term

1

2

Z
ddp
ð2πÞd ϕ̃ðpÞRkðpÞϕ̃ð−pÞ; ð20Þ

where ϕ̃ðpÞ is the Fourier transform of the field ϕðxÞ. The
function RkðpÞ is not unique, but it vanishes for k → 0,
such that this limit reproduces the usual 1PI quantization.
In the usual Hermitian context, the corresponding 1PI
“average effective action” Γk satisfies the exact functional
renormalization equation

∂kΓk ¼
1

2

Z
ddp
ð2πÞd ∂kRkðpÞ

�
δ2Γk

δφ̃ðpÞδφ̃ð−pÞ þ RkðpÞ
�−1

;

ð21Þ

where φ̃ is the Fourier transform of the one-point function.
We also note that, by construction, the IR limit k → 0 of Γk
reproduces the one-particle irreducible (1PI) effective
action [59], which is independent of the blocking procedure
in Fourier space.
In our situation, assuming either ε ∈ ½0; 1=3� or ε ¼ 1,

the change J → iJ doesn’t modify the derivation of the
equation (21), which therefore remains the same, but where
φðxÞ is purely imaginary, such that φ̃ð−pÞ ¼ −φ̃�ðpÞ.
We choose the Litim cutoff function [60], and work in

the local potential approximation, where the evolution of
derivative terms are neglected and the running effective
action takes the form

Γk½φ�≡
Z

ddx

�
1

2
∂μφ∂

μφþ UkðφÞ
�
: ð22Þ

The resulting exact renormalization equation (ERG) is

∂kUkðφÞ ¼
αdkdþ1

k2 þ U00
kðφÞ

; ð23Þ

where

αd ≡ ℏΩd

dð2πÞd ; ð24Þ

and Ωd ≡ 2πd=2=Γ½d=2� is the solid angle in dimension d.
In Eq. (23), Uk is the running potential for 0 ≤ k ≤ Λ and a
prime denotes a derivative with respect to φ. This equation
ignores the renormalization of the derivative terms in the
running action, but it provides a resummation of all
quantum fluctuations in this approximation. This equation
is a challenge to solve in the generic case but one can make
the most of this resummation in some specific regimes, as
we show in the next sections.
For integer ε, one can read the beta-functions of a theory

from Eq. (23). Assume a running interaction of the form
λkφ

n=n! where n ≥ 3 is an integer, then

λk ¼
∂
n

∂φn ðUkðφÞÞφ¼0: ð25Þ

The mass dimension of λk is ½λ� ¼ d − nðd=2 − 1Þ, and one
defines the dimensionless coupling by rescaling λk with the
appropriate power of k

λ̃k ≡ k−½λ�λk: ð26Þ

The corresponding beta-function is then
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β≡ k∂kλ̃k ¼ −½λ�λ̃k þ k−½λ�
∂
n

∂φn ðk∂kUkðφÞÞφ¼0; ð27Þ

where ∂kUkðφÞ is obtained from Eq. (23). The first term on
the right-hand side (rhs) of Eq. (27) corresponds to the
trivial scaling law for λk, and the second term corresponds
to the anomalous dimension, arising from quantum
fluctuations.

III. ULTRAVIOLET REGIME

In this section, we focus on the UV behavior of the
running potential. In the UV regime where Λ2 ≥ k2 ≫
jU00

kðϕ0Þj ∼ μ2 þm2, the ERG equation can then be
written as

∂kUkðφÞ ¼ αdkd−1
X∞
n¼0

ð−1Þnk−2nðU00
kðφÞÞn: ð28Þ

A. Diffusion

If we introduce the notation

ÛkðφÞ≡UkðφÞ −
αd
d
kd; ð29Þ

and keep the dominant term n ¼ 1 on the rhs of Eq. (28),
we obtain the diffusion equation3

∂τÛτðφÞ ¼ ∂
2
φÛτðφÞ; ð30Þ

where τ is defined as

dτ
dk

¼ −αdkd−3: ð31Þ

In the present Wilsonian picture, the system gets dressed by
quantum corrections as k decreases from Λ, or with the
above parametrization, as τ increases from 0. Specifically,

τ ¼
(
α2 lnðΛkÞ; d ¼ 2;
αd
d−2 ðΛd−2 − kd−2Þ; d ≥ 3:

ð32Þ

A solution that is analytical at τ ¼ 0 can be written formally
as

ÛτðφÞ ¼ expðτ∂2φÞÛτ¼0ðφÞ; ð33Þ

such that

ÛkðφÞ ¼ μ2τ þ 1

2
μ2φ2 þ 1

2
m2φ2ðiφ=ϕ0Þε

X∞
n¼0

1

n!
fnτn

φ2n ;

ð34Þ

where f0 ¼ 1 and for n ≥ 1

fn ¼
Yn−1
p¼0

ðεþ 2 − 2pÞðεþ 1 − 2pÞ: ð35Þ

Hence for any noninteger ε, the sum (34) is infinite and is
not analytical at φ ¼ 0. However, for any integer ε the sum
(34) is finite and analytical at φ ¼ 0. Also, one can check
that the quadratic potential for ε ¼ 0 does not get quantum
corrections:

ÛkðφÞ ¼ μ2τ þ 1

2
μ2φ2 þ 1

2
m2φ2

�
1þ 2τ

φ2

�

¼ 1

2
ðμ2 þm2Þφ2 þ φ-independent terms; ð36Þ

which is expected.

B. Beta-function for the interaction iϕ3

For ε ¼ 1, the cubic coupling is defined as

iλk ≡
�
∂
3UkðφÞ
∂φ3

�
φ¼0

; ð37Þ

and has the bare value λΛ ¼ 3m2=ϕ0. The dimensionless
coupling is λ̃k ¼ kd=2−3λk with the corresponding beta-
function

β≡ k∂kλ̃k ¼ ðd=2 − 3Þλ̃k − ikd=2−3
∂
3

∂φ3
ðk∂kUkðφÞÞφ¼0:

ð38Þ

From the result (34) for ε ¼ 1, the UV running potential is

ÛkðφÞ ¼
1

2
μ2φ2 þ 1

2
m2φ2ðiφ=ϕ0Þ þ τðμ2 þ 3m2ðiφ=ϕ0ÞÞ;

where we note that the third derivative with respect to φ
does not depend on k, such that naively the beta-function
vanishes. This is due to the truncation in Eq. (28), and we
need to reintroduce the resummation before calculating
the beta-function. In terms of the original potential UkðφÞ,
we obtain3A related approach for d ¼ 1 was studied in [61].
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∂kUkðφÞ ¼ αdkd−1 þ
dτ
dk

ðμ2 þ 3m2ðiφ=ϕ0ÞÞ
¼ αdkd−1 − αdkd−3ðμ2 þ 3m2ðiφ=ϕ0ÞÞ

≃
αdkdþ1

k2 þ μ2 þ 3m2ðiφ=ϕ0Þ
; ð39Þ

which reproduces the one-loop evolution equation (details
are given in the next section). As a consequence, the UV
beta function coincides with the one-loop beta-function
provided one performs the above resummation. It is
interesting to note that the UV regime contains the same
information as the one-loop result, which shows the
equivalence between the small-coupling regime and the
UV regime, where quantum fluctuations are perturbative.
From Eq. (39), one then obtains

−i
�
∂
3½k∂kUkðφÞ�

∂φ3

�
ϕ¼0

¼ 162αd
m6

ϕ3
0

kdþ2

ðk2 þ μ2Þ4 : ð40Þ

Substituting the above into Eq. (38), one finally arrives at
the beta-function in the UV regime,

βðUVÞ ¼ ðd=2 − 3Þλ̃k þ
6αdðλ̃ΛÞ3
ð1þ ðμ̃Þ2Þ4 ; ð41Þ

where μ̃ ¼ μ=k. It is interesting to look at the specific case
d ¼ 6, where one can replace the bare coupling by the
dressed coupling on the rhs of Eq. (41), since the difference
is of order ℏ2. The beta function in the UV regime μ̃ ≪ 1 is
then

βðUVÞ ≃ 6α6λ
3
k ¼

ℏλ3k
64π3

for d ¼ 6; ð42Þ

and is positive, unlike the corresponding beta-function for
the real cubic interaction.

C. Corrections to the diffusion equation

Coming back to Eq. (28), we can write

∂τÛτðφÞ ¼
X∞
n¼0

ð−1Þnk−2nðÛ00
τ ðφÞÞnþ1: ð43Þ

Through the relation given in Eq. (32), one can perform a
systematic perturbative expansion of the solution in powers
of Λ−2. For example, for d ¼ 4, we have

τ ¼ α4
2
ðΛ2 − k2Þ; ð44Þ

such that the first-order correction to the diffusion equation
reads, in the UV regime τ ≪ Λ2,

∂τÛτðφÞ ¼ Û00
τ ðφÞ −

1

Λ2
ðÛ00

τ ðφÞÞ2 þOð1=Λ4Þ: ð45Þ

The solution can then be expanded as

ÛτðφÞ ¼ Ûð0Þ
τ ðφÞ þ 1

Λ2
Ûð1Þ

τ ðφÞ þOð1=Λ4Þ; ð46Þ

where Ûð0Þ
τ satisfies the diffusion equation, and Ûð1Þ

τ

satisfies

∂τÛ
ð1Þ
τ ðφÞ ¼ ∂

2
φÛ

ð1Þ
τ ðφÞ − ð∂2φÛð0Þ

τ ðφÞÞ2: ð47Þ

We are interested in a particular solution only, which
satisfies the appropriate boundary conditions, because
the homogeneous equation is the diffusion equation, with
a solution proportional to Ûð0Þ

τ ðφÞ. The latter equation can
in principle be solved, but in what follows we turn to the
one-loop approximation, without assuming k to be large.

IV. ONE-LOOP APPROXIMATION

In this section, we truncate the ERG equation (23) to
one loop.

A. Coupling constant

If we introduce the notation ξ≡ φ=ϕ0, the bare potential
can be written

UΛðξÞ ¼
1

2
μ2ϕ2

0ξ
2 þ 1

2
m2ϕ2

0ξ
2ðiξÞε; ð48Þ

and because the ERG equation (23) is not linear, it induces
a phase change in the running potential, unlike what
happens in the UV regime. The running potential can be
parametrized as

UkðξÞ ¼
1

2
m2ϕ2

0VkðξÞ; ð49Þ

such that in terms of VtðξÞ the ERG equation (23) reads

∂tVtðξÞ ¼
gtdþ1

t2 þ ∂
2
ξVtðξÞ

; ð50Þ

where

g≡ αdmd−2

2d=2−1ϕ2
0

and t ¼
ffiffiffi
2

p
k

m
: ð51Þ

One can see that the dimensionless parameter g plays the
role of a coupling constant, and the evolution in t of the
running potential is proportional to g. As a consequence, if
g ≪ 1, the ERG equation can be expanded in this coupling
constant
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∂tVtðξÞ ¼
gtdþ1

t2 þ ∂
2
ξVTðξÞ

þOðg2Þ; ð52Þ

where T ¼ ffiffiffi
2

p
Λ=m and

∂
2
ξVTðξÞ ¼ 2μ2=m2 þ ð2þ εÞð1þ εÞðiξÞε: ð53Þ

The evolution equation for the one-loop running potential
Vð1Þ
t ðξÞ is finally

∂tV
ð1Þ
t ðξÞ ¼ gtdþ1

t2 þ ∂
2
ξVTðξÞ

: ð54Þ

This equation can be solved for arbitrary d. But below we
will focus on the cases with d ¼ 4 and d ¼ 2. The
calculation can of course be easily generalized to other
cases with different values of d, e.g., d ¼ 3.

B. One-loop effective potential (d = 4)

The integration of Eq. (54) is straightforward, and for
d ¼ 4 it leads to

Vð1Þ
t ðξÞ ¼ VTðξÞ þ g

Z
t

T

u5du
u2 þ ∂

2
ξVTðξÞ

¼ VTðξÞ þ
g
2
ðT2 − t2Þ∂2ξVTðξÞ

−
g
2
ð∂2ξVTðξÞÞ2 ln

�
T2 þ ∂

2
ξVTðξÞ

t2 þ ∂
2
ξVTðξÞ

�
; ð55Þ

where a field-independent term is disregarded. In terms of
the original variables, we obtain then

Uð1Þ
k ðφÞ ¼ 1

2
μ2φ2 þ 1

2
m2φ2ðiφ=ϕ0Þε þ

ℏ
64π2

ðΛ2 − k2Þ
× ½μ2 þm2ð2þ εÞð1þ εÞðiφ=ϕ0Þε=2�

−
ℏ

64π2
½μ2 þm2ð2þ εÞð1þ εÞðiφ=ϕ0Þε=2�2

× ln

�
2Λ2 þ 2μ2 þm2ð2þ εÞð1þ εÞðiφ=ϕ0Þε
2k2 þ 2μ2 þm2ð2þ εÞð1þ εÞðiφ=ϕ0Þε

�
:

ð56Þ

Finally, the one-loop Wilsonian effective potential is
obtained in the limit k → 0. If we ignore terms vanishing
in the limit m=Λ → 0, it reads

Uð1Þ
eff ðφÞ ¼

1

2
μ2φ2 þ 1

2
m2φ2ðiφ=ϕ0Þε þ

ℏ
64π2

Λ2

× ½μ2 þm2ð2þ εÞð1þ εÞðiφ=ϕ0Þε=2�

−
ℏ

64π2
½μ2 þm2ð2þ εÞð1þ εÞðiφ=ϕ0Þε=2�2

×

�
ln

�
Λ2

m2

�
− ln

�
μ2

m2
þ 1

2
ð2þ εÞð1þ εÞ

× ðiφ=ϕ0Þε
��

; ð57Þ

and is identical to the one-loop 1PI effective potential.
We can note an important property: for a generic non-

integer ε, one-loop corrections generate the new inter-
actions ðiφ=ϕ0Þε and ðiφ=ϕ0Þ2ε, with quadratic and
logarithmic divergent coefficients respectively. Hence
one cannot define counterterms without changing the
dynamics of the problem; the theory is not renormalizable
for a generic non-integer ε.
One-loop renormalizability can be achieved for ε ¼ 1

though, where

Uð1Þ
eff ðφÞ ¼

1

2
μ2φ2 þ 1

2
m2φ2ðiφ=ϕ0Þ

þ ℏ
64π2

Λ2½μ2 þ 3m2iφ=ϕ0�

−
ℏ

64π2
ðμ2 þ 3m2iφ=ϕ0Þ2

×

�
ln

�
Λ2

m2

�
− ln

�
μ2

m2
þ 3iφ=ϕ0

��
; ð58Þ

and contains tadpole terms (linear in φ) which can be
eliminated with counterterms with no modification of the
dynamics. The φ-independent divergent terms have no
physical effect and can be discarded also. The logarithmi-
cally divergent quadratic term can be absorbed in a
redefinition of μ2 through the renormalized mass squared

μ2R ¼ μ2 þ 9ℏm4

32π2ϕ2
0

ln

�
Λ2

m2

�
; ð59Þ

and the remaining terms are finite. The renormalized one-
loop effective potential is then

Uð1Þ
R ðφÞ ¼ 1

2
μ2Rφ

2 þ 1

2
m2φ2ðiφ=ϕ0Þ

þ ℏ
64π2

ðμ2R þ 3m2iφ=ϕ0Þ2 lnðμ2R=m2 þ 3iφ=ϕ0Þ:
ð60Þ

Note that one cannot consistently set μ2 ¼ 0, since mass
term corrections are generated for ε ¼ 1, with divergences
that have to be absorbed in the bare mass term.
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C. One-loop effective potential (d = 2)

For d ¼ 2 the integration of Eq. (54) leads to, up to a
φ-independent term,

Vð1Þ
t ðξÞ ¼ VTðξÞ þ

g
2
∂
2
ξVTðξÞ ln

�
T2 þ ∂

2
ξVTðξÞ

t2 þ ∂
2
ξVTðξÞ

�
; ð61Þ

which gives

Uð1Þ
k ðφÞ ¼ 1

2
μ2φ2 þ 1

2
m2φ2ðiφ=ϕ0Þε

þ ℏ
8π

½μ2 þm2ð2þ εÞð1þ εÞðiφ=ϕ0Þε=2�

× ln

�
2Λ2 þ 2μ2 þm2ð2þ εÞð1þ εÞðiφ=ϕ0Þε
2k2 þ 2μ2 þm2ð2þ εÞð1þ εÞðiφ=ϕ0Þε

�
:

ð62Þ

Taking k → 0 and ignoring terms vanishing in the limit
Λ → ∞ leads to

Uð1Þ
eff ðφÞ ¼

1

2
μ2φ2 þ 1

2
m2φ2ðiφ=ϕ0Þε

þ ℏ
8π

ðμ2 þm2ð2þ εÞð1þ εÞðiφ=ϕ0Þε=2Þ

×

�
ln

�
Λ2

m2

�
− ln

�
μ2

m2
þ 1

2
ð2þ εÞð1þ εÞ

× ðiφ=ϕ0Þε
��

: ð63Þ

As in the situation where d ¼ 4, this one-loop potential is
renormalizable for ε ¼ 1 only, since only a tadpole appears
to be divergent, which can be removed with a counterterm.
The divergent φ-independent term is not physical and can
be discarded. The resulting renormalized effective potential
has new interactions, which are however all finite

Uð1Þ
R ðφÞ¼ 1

2
μ2φ2þ1

2
m2φ2ðiφ=ϕ0Þ−

ℏ
8π

ðμ2þ3m2ðiφ=ϕ0ÞÞ

×ln

�
μ2

m2
þ3ðiφ=ϕ0Þ

�
: ð64Þ

V. ANALYTICAL CONTINUATION FOR ε = 2

In this section, we extend the analysis to ε ¼ 2. In this
case, the integral (3) is not convergent for real ϕ and
therefore one needs to consider a contour different from the
space of real configurations as discussed in Eq. (7). In order
for the path integral to respect the PT symmetry, it is
sufficient to enforce the condition (9) on the contour CPT .
Note that although seemly the potential is unbounded from
below for ε ¼ 2, the theory in the PT -symmetric frame-
work actually has a stable ground state at least for d ¼ 1.

The conjectural relation proposed in Ref. [47] indicates that
this is also the case in higher-dimensional spacetime.

A. One-particle-irreducible effective action

Introducing a source term, we have

Z½J� ¼
Z
CPT

D½Φ� exp
�
−
1

2

Z
ddx½∂μΦ∂

μΦþ μ2Φ2

− ðm2=ϕ2
0ÞΦ4� − i

Z
ddxJΦ

�
; ð65Þ

where we again assume that J is real. Taking the complex
conjugate of the above equation, one obtains

ðZ½J�Þ� ¼
Z
C�PT

D½Φ�� exp
�
−
1

2

Z
ddx½∂μΦ�

∂
μΦ� þ μ2Φ�2

− ðm2=ϕ2
0ÞΦ�4� þ i

Z
ddxJΦ�

�
; ð66Þ

where C�PT is obtained from CPT by taking complex
conjugate of all its elements. The change of functional
variableΦ� → −Φ�, together with the condition (9), finally
lead to

ðZ½J�Þ� ¼ Z½J�: ð67Þ

Of course, the reality of the partition function is a
consequence of its PT -invariance. Similarly, for the
one-point function

φ½J�≡ hΦi≡ 1

Z½J�
Z
CPT

D½Φ�Φ exp

�
−
1

2

Z
ddx½∂μΦ∂

μΦ

þ μ2Φ2 − ðm2=ϕ2
0ÞΦ4� − i

Z
ddxJΦ

�
;

ð68Þ

we have ðφ½J�Þ� ¼ −φ½J� so that the one-point function is
purely imaginary. Again, one can extend this argument to
arbitrary n-point functions to show that any 2N-point
correlation function is real and any 2N þ 1-point correla-
tion function is imaginary. The 1PI effective action,

Γ½φ� ¼ − lnZ½J½φ�� − i
Z

ddxφJ½φ�; ð69Þ

is thus real. Using the above 1PI effective action, one can
still carry out a derivation of the exact functional renorm-
alization equation, ending up with the same Eq. (21).

B. One-loop effective potential (d = 4)

Given the above properties, the one-loop expression (57)
can be used for ε ¼ 2 to give
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Uð1Þ
eff ðφÞ ¼

1

2
μ2φ2 −

λ

24
φ4 −

ℏ
64π2

Λ2ðμ2 − λφ2=2Þ

−
ℏ

64π2
ðμ2 − λφ2=2Þ2

×

�
ln

�
Λ2

m2

�
− ln

�
μ2 − λφ2=2

m2

��
; ð70Þ

where λ≡ 12m2=ϕ2
0. The logarithmic and quadratic diver-

gences can be absorbed by the introduction of the renor-
malized parameters

μ2R ¼ μ2 −
ℏλΛ2

64π2
þ ℏλμ2

16π2
ln
�
Λ
m

�
ð71aÞ

λR ¼ λþ 3ℏλ2

16π2
ln

�
Λ
m

�
; ð71bÞ

and the renormalized one-loop effective potential is, after
ignoring theOðℏ2Þ and divergent but φ-independent terms,

Uð1Þ
R ðφÞ ¼ 1

2
μ2Rφ

2 −
λR
24

φ4 þ ℏ
64π2

ðμ2R − λRφ
2=2Þ2

× ln

�
μ2R − λRφ

2=2
m2

�
: ð72Þ

Note that, since φ is purely imaginary, the argument of the
logarithm is always positive for μ2R > 0, and the effective
potential (72) is always real. The possibility to define
quantum corrections for the potential−ϕ4 is consistent with
the conjecture that the effective theory does have a ground
state at φ ¼ 0.
Also, quartic and logarithmic corrections come with the

opposite sign compared to the usual þϕ4 theory. As a
consequence, the interaction is asymptotically free; for a
fixed renormalized coupling λR, the bare coupling can be
written as

λ ¼ λR −
3ℏλ2

16π2
ln

�
Λ
m

�

¼ λR −
3ℏλ2R
16π2

ln

�
Λ
m

�
þOðℏ2Þ

¼ λR
1þ 3ℏλR

16π2
lnðΛmÞ

þOðℏ2Þ; ð73Þ

which, based on this one-loop result, leads to asymptotic
freedom. Alternatively, the one-loop beta-function of the
model is negative

βð1Þ ≡ Λ∂Λλ ¼ −
3ℏλ2

16π2
< 0; ð74Þ

and should be considered with the boundary condition
λðmÞ ¼ λR.

C. One-loop effective potential (d = 2)

Substituting ε ¼ 2 into Eq. (63), we obtain

Uð1Þ
eff ðφÞ ¼

1

2
μ2φ2 −

λ

24
φ4 þ ℏ

8π
ðμ2 − λφ2=2Þ

×

�
ln

�
Λ2

m2

�
− ln

�
μ2 − λφ2=2

m2

��
; ð75Þ

where still λ ¼ 12m2=ϕ2
0. The logarithmically divergent

quadratic term can be absorbed in a redefinition of μ2

through the renormalized mass squared

μ2R ¼ μ2 þ ℏλ
8π

ln

�
Λ2

m2

�
; ð76Þ

and the remaining terms are either finite or φ-independent.
Ignoring theOðℏ2Þ and divergent but φ-independent terms,
the renormalized effective potential reads

Uð1Þ
R ðφÞ ¼ 1

2
μ2Rφ

2 −
λ

24
φ4 −

ℏ
8π

ðμ2R − λφ2=2Þ

× ln

�
μ2R − λφ2=2

m2

�
: ð77Þ

VI. CONCLUSION

PT -symmetric theories may open a new window to
phenomenological model building for new physics.
However, compared to quantum mechanics, quantum field
theory is much more complicated since in the latter there
are an infinite number of degrees of freedom. One
particular issue that is absent from quantum-mechanical
models but appears in quantum field theory is renormal-
ization. Therefore, when extending PT -symmetric
quantum-mechanical models to quantum field theory,
renormalizability has to be taken into account. In this
paper, we have studied the renormalization of a PT -
symmetric scalar field theory with the bare potential given
by Eq. (2). This theory is a direct generalization of the
well-studied quantum-mechanical models given by the
Hamiltonian (1).
In contrast to Refs. [36,45,48] where the renormalization

of the theory (2) is studied with the ε-expansion, our study
is based on the Wilsonian approach and more specifically,
the Wetterich equation for the running effective action. In
this approach, the renormalization of the theory (2) can be
studied without doing the ε-expansion. We first carry out
our analysis for regions of ε, e.g., ε ∈ ½0; 1=3� or ε ¼ 1, in
which the scalar field can be kept real in the Euclidean path
integral. We have solved the Wetterich equation in the local
potential approximation either in the UV regime or at the
one-loop order. We obtained the scale-dependent one-loop
effective potentials for arbitrary ε, Eq. (56) (d ¼ 4) and (62)
(d ¼ 2), and their IR limits, Eqs. (57) and (63). We found

WILSONIAN APPROACH TO THE INTERACTION … PHYS. REV. D 107, 025007 (2023)

025007-9



that for a generic noninteger ε, one-loop corrections
generate new interactions with divergent coefficients that
cannot be absorbed by the bare parameters. Therefore at the
one-loop level, the theory is renormalizable only for integer
values of ε. The aforementioned general formulas are then
applied particularly for ε ¼ 1. Although for ε ¼ 2, a
deformation for the integration contour of the Euclidean
path integral is necessary to ensure the convergence of the
latter, we argue that the general formulas can still be applied
for ε ¼ 2. One-loop beta functions for the coupling
associated with the interaction iϕ3 and −ϕ4 are then
computed. It is confirmed that the −ϕ4 theory has

asymptotic freedom in four-dimensional spacetime. We
have also shown that a consequence of PT symmetry is
that all the odd-point correlation functions are imaginary
and all the even-point correlation functions, including the
partition function itself, are real.

ACKNOWLEDGMENTS

This work is supported by the UK Engineering and
Physical Sciences Research Council (Grant No. EP/
V002821/1), and the Science and Technology Facilities
Council (Grant No. STFC-ST/T000759/1).

[1] C. M. Bender and S. Boettcher, Real Spectra in
nonHermitian Hamiltonians Having PT Symmetry, Phys.
Rev. Lett. 80, 5243 (1998).

[2] C. M. Bender, D. C. Brody, and H. F. Jones, Complex
Extension of Quantum Mechanics, Phys. Rev. Lett. 89,
270401 (2002); 92, 119902(E) (2004).

[3] C.M. Bender,Making sense of non-Hermitian Hamiltonians,
Rep. Prog. Phys. 70, 947 (2007).

[4] D. Christodoulides, J. Yang et al., Parity-Time Symmetry
and its Applications (Springer, Singapore, 2018), Vol. 280.

[5] C. M. Bender, P. E. Dorey, C. Dunning, A. Fring, D. W.
Hook, H. F. Jones, S. Kuzhel, G. Lévai, and R. Tateo, PT
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