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Operators with integer scaling dimensions in even-dimensional conformal field theories exhibit
well-known type-B Weyl anomalies. In general, these anomalies depend nontrivially on exactly marginal
couplings. We study the corresponding fully covariantized anomaly functional on conformal manifolds in
several examples. We show that a natural consequence of the Wess-Zumino consistency condition is
that the anomalies are covariantly constant with respect to the exactly marginal couplings. The argument
is general and applies even when the conformal symmetry is spontaneously broken on moduli spaces
of vacua.
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I. INTRODUCTION AND SUMMARY OF RESULTS

The study of Weyl anomalies under deformations is an
interesting subject in its own right. One can consider
deformations that preserve the conformal symmetry, or
break it explicitly or spontaneously. In principle, these
properties can be used to constrain nonperturbative quantum
field theory (QFT) dynamics. For a recent review see [1].
In this paper, we will focus exclusively on four-

dimensional conformal field theories (CFTs). The ques-
tion of whether conformal anomalies match in different
phases of a 4D CFTwas answered in the affirmative in [2]
for type-A anomalies, and put to great use in the proof of
the a-theorem [3]. In general, it is not possible to obtain
similar results for type-B Weyl anomalies.1

The nonperturbative properties of type-B Weyl anoma-
lies associated with Coulomb-branch operators (CBOs) on

the Higgs-branch vacuum moduli space of 4D N ¼ 2
superconformal field theories (SCFTs) were discussed in
[5,6]. These papers presented examples, where the CBO
type-B Weyl anomalies matched across the Higgs branch,
and other examples where the matching between the
conformally symmetric and spontaneously broken phase
does not occur. A complete understanding of the dynamics
responsible for these disparate behaviors is still missing,
but the existing results have led to a number of non-
perturbative conjectures, which were postulated in [6].
In the present work, we elaborate further on the properties

of the CBO type-B Weyl anomalies, and point out that
one of the crucial elements in the discussion of Refs [5,6]—
the fact that these anomalies are covariantly constant on
conformal manifolds—can be understood in many cases as
a natural consequence of the Wess-Zumino consistency
conditions of the corresponding anomaly functionals. This
alternative perspective is useful for reasons that we will
explain. The existence of covariantly constant type-B
anomalies in different phases of the theory has nontrivial
implications as explained in Ref. [6] and reviewed in [1].
The main elements of the argument are as follows. For an

operator O with scaling dimension Δ ¼ 2þ n ðn ∈ N0Þ,
the anomaly of interest can be identified (in all phases of the
CFT) as a specific contact term in the integrated three-point
function of the trace of the energy-momentum tensor
T ≡ Tμ

μ,

Z
d4yhTðyÞOΔðxÞOΔð0Þi ∝ □nδðxÞ: ð1:1Þ

In the unbroken conformal phase, the Ward identities of
diffeomorphism and Weyl transformations can be used to
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1The division between type-A and type-B conformal anomalies
was introduced in [4]. The specific anomalies we are considering
in this paper can be identified in the conformally invariant phase
by noting the presence of a logarithmic divergence in the
momentum-space two-point function of integer-dimension oper-
ators, which necessitates the introduction of a scale characteristic
of type B.
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relate the corresponding anomaly coefficient GðCFTÞ
Δ , to the

two-point function coefficient of the operator O. In
momentum space, the anomaly appears in the logarithmi-
cally divergent piece of the two-point function

hOΔðpÞOΔð−pÞi ¼ ð−1Þnþ1
π2GðCFTÞ

Δ
22nΓðnþ 1ÞΓðnþ D

2
Þ

× p2n log

�
p2

μ2

�
þ � � � : ð1:2Þ

In a phase with spontaneous breaking of the conformal
symmetry, the Ward identities do not provide a similar
relation between the corresponding type-B conformal
anomaly and some datum in the two-point function of
the operator O. In that case, the broken-phase anomaly,

GðbrokenÞ
Δ , must be extracted directly from the three-point

function (1.1). In momentum space this reads

lim
q→0

hTðqÞOΔðp1ÞOΔðp2Þi

¼ ð−1Þn π2GðbrokenÞ
Δ

22nΓðnþ 1ÞΓðnþ 2Þ ðp
2
1Þn þ � � � : ð1:3Þ

On the rhs of (1.2) and (1.3) a Dirac-delta imposing
momentum conservation is left implicit; in particular,
the q → 0 limit in (1.3) is equivalent to taking the
p2 → −p1 limit.
As an explicit example, let us consider the case of 4D

N ¼ 2 SCFTs with a nontrivial chiral ring of CBOs OI , an
antichiral ring of conjugate operators ŌJ, and a nonempty
conformal manifold M. The latter means that the N ¼ 2
SCFTs of interest possess exactly marginal operators.2 The
CBOs, which are charged by default under theUð1Þr part of
the full Uð1Þr × SUð2ÞR R symmetry of the theory, have
integer scaling dimensions, and the corresponding type-B
Weyl anomalies can be obtained as contact terms in the
Uð1Þr-preserving three-point functions hTðyÞOIðxÞŌJð0Þi.
In the conformally symmetric phase we will denote the

corresponding anomaly coefficients asGðCFTÞ
IJ̄ . On the Higgs

branch3 the SUð2ÞR part of the R symmetry is sponta-
neously broken along with conformal symmetry by the
nonvanishing vacuum expectation values of Higgs-branch
superconformal primary operators. We will denote the

corresponding anomaly coefficients in this phase GðHiggsÞ
IJ̄ .

In this context, we are mainly interested in the properties

of GðCFTÞ
IJ̄ and GðHiggsÞ

IJ̄ , but we will soon indicate which
arguments of the paper can be generalized beyond these
specific cases. Both quantities are, in general, complicated
functions of the exactly marginal couplings (see [5,6] and
references therein).
A crucial ingredient in the discussion of [5,6] was the

proposal that the anomaly coefficients GIJ̄ are covariantly
constant on the conformal manifold M in both phases
of the theory. Namely, both anomalies obey equations of

the form ∇GðCFTÞ
IJ̄ ¼ 0, ∇GðHiggsÞ

IJ̄ ¼ 0, where ∇ is a phase-
independent connection on the vector bundles of the
CBOs. It is straightforward to derive this condition in
the conformally symmetric phase as a consequence of
superconformal Ward identities. However, as pointed out
in [5], a similar argument in the Higgs phase needs to take
into account potential contributions from the dilatino.
In [5] it was anticipated that such contributions do not
affect the contact term that accounts for the anomaly, but it
is not straightforward to demonstrate this explicitly. As a
result, it would be very useful to have an independent

argument that ∇GðHiggsÞ
IJ̄ ¼ 0. Our main purpose in this

note is to find such an argument. As a bonus, the argument
we will present is very general and applies to any CFTwith
a conformal manifold that has operators with integer-
valued scaling dimension; it is not restricted to CBOs in
N ¼ 2 SCFTs or to Higgs-branch phases.
It is well known (see, e.g., [7]) that conformal anomalies

can be conveniently packaged into a local anomaly func-
tional that expresses the Weyl variation of the generating
functional of correlation functions W4

δσW ∝
Z

d4x
ffiffiffi
γ

p
δσA: ð1:4Þ

W is a nonlocal functional of the sources of the CFT, but
the Weyl anomaly A is a local term reflecting the above-
mentioned fact that in correlation functions it appears as a
contact term. The δσ variation in (1.4) denotes infinitesimal
local Weyl transformations with parameter δσðxÞ that
vanish at the boundary of spacetime [2], and γμν is the
background spacetime metric. The locality of δσðxÞ guar-
antees, among other things, that the Ward identities retain
the same form in all phases of the theory, irrespective of
whether or not conformal symmetry is spontaneously
broken (they are operatorial relations). This fact will be
crucial for our upcoming discussion of the structure of the
anomaly functional in different phases. In order to encode
the CBO type-B anomalies of interest in the anomaly
functional one needs to add to the action spacetime-
dependent sources for the operators OI; ŌJ

2These are necessarily supersymmetric descendants of scaling-
dimension-two CBOs.

3Four-dimensional N ¼ 2 SCFTs typically have both Higgs
and Coulomb branch moduli spaces of vacua. Here we consider
only the case of Higgs moduli spaces to make contact with the
discussion in Refs. [5,6]. 4See also Ref. [8].
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δS ¼
Z

d4x
ffiffiffi
γ

p ðλIðxÞOIðxÞ þ λ̄JðxÞŌJðxÞÞ: ð1:5Þ

The anomaly functional must satisfy certain conditions.
It must be invariant under diffeomorphisms or any other
unbroken symmetries of the theory. In addition, it must
obey the Wess-Zumino (WZ) consistency condition

δ½σ1δσ2�W ¼ 0; ð1:6Þ

which encodes the fact that the action of the Weyl group is
Abelian. Finally, terms in A that are Weyl variations of a
local functional express the addition of local counterterms
in W [9], which simply correspond to a change in the
regularization scheme. Such terms are considered trivial
and can be dropped from δσW. This reflects the fact that the
anomaly is a scheme-independent quantity.
As emphasized already in Ref. [10], on a conformal

manifold M one should also require that the anomaly
functional is suitably invariant under coupling-constant
redefinitions. This can be achieved by utilizing a connection
∇ on thebundle of operators. For exactlymarginal couplings,
the WZ consistency condition on the M-covariantized
version of the anomaly implies that the connection ∇ is
compatible with the Zamolodchikov metric [10]. In this
paper, we examine whether this argument can be extended
beyond the case of the exactly marginal operators.
Since the presence of a contact term like the one in (1.3),

in any phase of the theory, has been established independ-
ently by the analysis of Ward identities, in all phases the
anomaly functional includes a term of the form

δσW ∝
Z

d4x
ffiffiffi
γ

p
δσ½GIJ̄λ

I
□

nλ̄J þ…�; ð1:7Þ

where GIJ are the corresponding anomaly coefficients.
This term should be covariantized on the corresponding
vector bundle of operators over M. We perform this
covariantization for operators of scaling dimension
Δ ¼ 3, 4, 5 in Sec. II and show that the WZ consistency
condition (1.6) requires that the anomaly is covariantly
constant. In the case of scaling-dimension-four operators
the arguments of Refs. [8,10] are modified to capture the
properties of marginal, but not necessarily exactly mar-
ginal operators. Our analysis is completely general and
does not employ supersymmetry at any stage. We expect
that similar arguments can be applied to all higher values
of integer scaling dimension Δ, but the anomaly functional
becomes significantly more complicated with increasing
Δ. Indeed, already at Δ ¼ 5 we present WZ-consistent
anomaly functionals, which contain hundreds of terms in
the flat-space limit. We notice that in both the cases of
Δ ¼ 4, 5 anomalies, new terms in the anomaly functional
that involve the curvature of the corresponding operator

bundles are crucial in order to satisfy the WZ consistency
conditions.
The case of Δ ¼ 2 operators is special and requires a

separate discussion: the anomaly functional is automatically
WZ consistent and (1.6) does not lead to further restrictions.
To make a nontrivial statement, we need to use the N ¼ 2
supersymmetry to relate the Δ ¼ 2 anomaly to the anomaly
of the exactly marginal operators. An argument in favor
of this relation is sketched in Sec. III alongside an explicit
tree-level check for N ¼ 2 SCQCD in the conformal and
Higgs phases.

II. WZ CONSISTENCY CONDITIONS IN 4D CFTS

We follow closely the discussion and notation of
references [11,12].5 W ¼ logZ is the generating functional
of correlation functions. It is a functional of the spacetime-
dependent sources (couplings). In this section, we focus on
four spacetime dimensions and type-B conformal anoma-
lies of scalar operators. Such anomalies exist when the
operators have scaling dimensions Δ ¼ 2þ n with n ∈ N0.
We will denote the operators of interest as OI and their

corresponding sources as λI . Note that although we
ultimately have N ¼ 2 applications in mind, we will use
a real basis of operators and will not require supersymmetry
for any of the arguments presented in this section. When the
operators are exactly marginal they will be denoted as Φi

and their corresponding couplings as λi. Clearly, the index i
takes values up to the dimension of the conformal manifold
M. The more general indices I label conformal primary
operators in a subbundle of operators of fixed integer
dimension and the corresponding conformal anomalies will
be denoted GIJ. The background spacetime metric will be
denoted γμν with greek letters reserved for the spacetime
coordinate indices. Vector bundles over the conformal
manifold can be equipped with a connection. For a
discussion of this connection in the context of conformal
perturbation theory, see [14,15]. For a related discussion
in radial quantization see [16]. The components of the
connection on the subbundle of OI operators will be
denoted as ðAiÞIJ, whereas the connection on the tangent
space of Φi operators as Γk

ij. The corresponding covariant
derivative on the conformal manifold will be denoted as∇i.
In this section we follow the general strategy of [8,10],

where the basic ansatz for the Weyl variation of W was
covariantized not only in spacetime but also in the tangent
bundle of the conformal manifold TM. Accordingly, for
the type-B Weyl anomalies of exactly marginal operators
[8,10] proposed the anomaly functional6:

5An early application of the cohomological analysis to
conformal anomalies can be found in [13].

6For the case of a single coupling, this expression is related
to the Fradkin-Tseytlin-Paneitz-Riegert operator [17]. A six-
dimensional generalization of this operator was presented in [18].
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δσW ∝
Z

d4x
ffiffiffi
γ

p
δσGij

�
ð□λi þ Γi

kl∂
μλk∂μλ

lÞ

× ð□λj þ Γj
mn∂

νλm∂νλ
nÞ

− 2∂μλ
i

�
Rμν −

1

3
γμνR

�
∂νλ

j

�
; ð2:1Þ

with Rμν and R the spacetime Ricci tensor and scalar,
respectively. Clearly, this functional is sensitive only to the
symmetric part Γi

ðklÞ of the connection. The WZ-condition

identifies it to be the Levi-Civita connection on M, and
under the further assumption that the connection is torsion
free [14] one obtains that the anomaly is covariantly
constant on M,

∇iGjk ¼ 0: ð2:2Þ

This approach can be generalized to generic operatorsOI ,
where covariantization on the conformal manifold translates
into the invariance of δσW under a change of basis in the
vector space of OIs. We discover that imposing the WZ
consistency condition will typically lead to ∇iGIJ ¼ 0.
We emphasize that this result is independent of the phase

of the theory. The anomaly functional can be understood as
the local Weyl variation of the generating functionalW with
appropriate boundary conditions for the fields. The infini-
tesimal local Weyl parameters, δσðxÞ, by definition vanish
at the boundary of spacetime and parametrize transforma-
tions that are valid both in the conformally symmetric and
broken phases [2]. Moreover, the asymptotic behavior of
δσðxÞ also guarantees that any boundary terms that involve
δσðxÞ (obtained after integration by parts) can be safely
ignored in the upcoming discussion.
We will now summarize the key ingredients of the

calculation before specializing to type-B anomalies for
operators with Δ ¼ 3, 4, 5.7 The Δ ¼ 2 case cannot be
constrained with a simple analysis of the Wess-Zumino
consistency condition and will be treated separately in
Sec. III. The expressions δσW for cases with a single source
can be found in [12] and form the starting point of our
discussion. We study the WZ consistency conditions after
we covariantize the expressions in Ref. [12] with respect to
the conformal manifold. In the process we discover that a
fully covariant anomaly functional requires new terms that
have not appeared previously in the literature.

A. Covariantization on the conformal manifold

In what follows we will make an important distinction
between the exactly marginal couplings λi that parametrize
the conformal manifold and the remaining nonexactly

marginal sources λI . Geometrically, the couplings λi are,
in general, nonlinear coordinates on the curved conformal
manifold, which are allowed to also depend nontrivially
on the spacetime coordinates. Equivalently, we view the
spacetime derivatives ∂μλ

i as components on the tensor
product of the spacetime cotagent bundle and the conformal
manifold tangent bundle. The couplings λI are viewed,
instead, as sections of a vector bundle. They can depend
both on the spacetime and conformal manifold coordinates.
Accordingly, under a change of basis on the tangent

bundle of the conformal manifold

∂μλ
i ¼ ∂λi

∂λ0j0
∂μλ

0j0 : ð2:3Þ

On the other hand, under a change of basis on each fiber of
the λI vector bundle

λI ¼ ∂λI

∂λ0I0
λ0I0 ; ð2:4Þ

where the transformation matrix ∂λI

∂λ0I0
depends on the λiðxμÞ

only. As a result, we define covariant derivatives on
the conformal manifold in terms of the connection com-
ponents ðAiÞIJ as

∇iλ
I ¼ ∂iλ

I þ ðAiÞIJλJ: ð2:5Þ

The generalized covariant derivative is then naturally
given by8

∇̂μλ
I ≔∇μλ

i∇iλ
I þ∇μλ

Ijλi¼fixed ¼ ∂μλ
i∇iλ

I þ ∂μλ
Ijλi¼fixed;

ð2:6Þ

with ∇μ as the standard spacetime-covariant derivative.
Compared to the unhatted differential operators used

in [12], commutators of our hatted operators can lead to
curvature terms onM. The latter can be easily evaluated by
using the definition of the generalized covariant derivative
and the fact that ∂μðAiÞIJjλi¼fixed ¼ 0, i.e.,

ðFμνÞIJλJ ≔ ½∇̂μ; ∇̂ν�λI ¼ ∂μλ
i
∂νλ

jðFijÞIJλJ; ð2:7Þ

where ðFijÞIJ ¼ ∂iðAjÞIJ − ∂jðAiÞIJ þ ðAiÞIKðAjÞKJ − ðAjÞIK×
ðAiÞKJ .
Under the change of basis (2.3)–(2.4), the connection

transforms inhomogeneously as

ðAiÞIJ ¼
∂λ0i0

∂λi
∂λ0J0

∂λJ
∂λI

∂λ0I0
ðAi0 ÞI0J0 −

∂λ0i0

∂λi
∂λ0J0

∂λJ
∂
2λI

∂λ0i0∂λ0J0
ð2:8Þ

7Here the Δ ¼ 4 case refers exclusively to Weyl anomalies for
marginal operators that are not exactly marginal—they can be
marginally relevant or irrelevant.

8Here we are explicitly stressing that ∇μ and ∂μ have to be
understood at fixed λi, but later this will be left implicit.
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such that

∇iλ
I ¼ ∂λ0i0

∂λi
∂λI

∂λ0I0
∇i0λ

0I0 ; ð2:9Þ

which in turn implies

∇̂μλ
I ¼ ∂λI

∂λ0I0
∇̂μλ

0I0 : ð2:10Þ

Therefore, standard differential operators can be covarian-
tized on M by upgrading the usual spacetime-covariant
derivative ∇μ to ∇̂μ. For example, the M-covariant

Laplacian □̂, which reads

□̂λI ≔ ∇̂μ∇̂μλI;

¼ ∂
μλi∇ið∇̂μλ

IÞ þ∇μjλifixed∇̂μλ
I;

¼ ∂
μλið∂i∇̂μλ

I þ ðAiÞIJ∇̂μλ
JÞ þ ∂

μjλifixed∇̂μλ
I

− gμνΓρ
νμ∇̂ρλ

I; ð2:11Þ

transforms as

□̂λI ¼ ∂λI

∂λ0I0
□̂λ0I0 : ð2:12Þ

As a result, to get anomaly functionals invariant under a
change of basis in the space of Os, one can consider the
ones written in [12] and simply replace all spacetime
covariant derivatives with their hatted versions. However,
because of (2.7) this minimal prescription is, in general,
sensitive to ordering choices and does not guarantee WZ
consistency.
We conclude this section with some remarks on λi and by

explicitly stressing how our framework is compatible with
the one of [8,10]. As the exactly marginal coupling λi is not
a tensor (it is a coordinate on the conformal manifold), the
generating functional cannot display an explicit λi depend-
ence. Instead, the anomaly can depend on it only through its
infinitesimal variation, i.e.,

λiμ ≔ ∂μλ
i ¼ ∇μλ

i: ð2:13Þ

This object serves as a pullback from the conformal
manifold to spacetime, which could have been appreciated
already at the level of formula (2.6). It has good trans-
formation properties (2.3) and can then be acted upon by
the generalized covariant derivative:

∇̂μλ
i
ν ¼ ∇μλ

i
ν þ λjμΓi

jkλ
k
ν: ð2:14Þ

Thus, within our framework, (2.1) can be more succinctly
recast into the form

δσW ∝
Z

d4x
ffiffiffi
γ

p
δσGij

×

�
∇̂μλ

iμ∇̂νλ
jν− 2λiμ

�
Rμν −

1

3
γμνR

�
λjν

�

¼
Z

d4x
ffiffiffi
γ

p
δσ

�
∇̂μλ

iμ∇̂νλ
ν
i − 2λiμ

�
Rμν −

1

3
γμνR

�
λiν

�
:

ð2:15Þ

In the second line we have implicitly used the fact that Γi
jk

is given by the Christoffel symbol (so that ∇̂μGjk ¼ 0). The
fact that Γi

jk is symmetric yields many simplifications, e.g.,

∇̂½μλiν� ¼ 0; λi½μ∇iλ
j
ν� ¼ 0; ð2:16Þ

where the first equation guarantees that the Bianchi identity
∇½iðFjk�ÞIJ ¼ 0 gets pulled back onto ∇̂½μðFνρ�ÞIJ ¼ 0.

B. Weyl transformations

In four spacetime dimensions, an infinitesimal local
Weyl transformation acts on the spacetime metric γμν as

δσγμν ¼ 2δσγμν: ð2:17Þ
The Christoffel symbols, the Ricci tensor Rμν, and the Ricci
scalar R transform accordingly

δσΓ
ρ
μν ¼ γρσðγνσ∂μδσ þ γμσ∂νδσ − γμν∂σδσÞ;

δσRμν ¼ −2∇μ∇νδσ − γμν□δσ;

δσR ¼ −2δσR − 6□δσ: ð2:18Þ

For an operator of conformal scaling dimension Δ, one has
classically δσOI ¼ −ΔOIδσ. Thus,

δσλ
I ¼ ðΔ − 4ÞδσλI; δσλ

i ¼ 0: ð2:19Þ

Being a number, the anomaly has vanishing classical
dimension, so

δσGIJ ¼ 0; ð2:20Þ
while the uniform Weyl variation of ∇iλ

I leads to

δσðAiÞIJ ¼ 0: ð2:21Þ

One then finds that standard equations such as

δσ∂μλ
I ¼ ðΔ − 4Þ∂μλIδσ þ ðΔ − 4Þ∂μδσλI; ð2:22Þ

δσ□λI ¼ ðΔ − 6Þδσ□λI þ 2ðΔ − 3Þ∂μδσ∂μλI
þ ðΔ − 4ÞλI□δσ ð2:23Þ

can be straightforwardly extended to

COVARIANTLY CONSTANT ANOMALIES ON CONFORMAL … PHYS. REV. D 107, 025006 (2023)

025006-5



δσ∇̂μλ
I ¼ ðΔ − 4Þ∇̂μλ

Iδσ þ ðΔ − 4Þ∂μδσλI; ð2:24Þ

δσ□̂λI ¼ ðΔ − 6Þδσ□̂λI þ 2ðΔ − 3Þ∂μδσ∇̂μλI

þ ðΔ − 4ÞλI□δσ; ð2:25Þ

and accordingly for quantities with raised spacetime
indices. These expressions will be useful in the calculations
that we will be performing below.

C. Δ= 3 operators

We begin the construction of fully covariant and WZ-
consistent anomaly functionals with the case of Δ ¼ 3.
According to the discussion around Eq. (1.7), the ansatz for
this case should contain two derivatives. In order to address
the Weyl-cohomological problem, we will first characterize
terms in the anomaly functional that are cohomologically
trivial. We start with the following expression for the
generating functional of connected correlation functions

Wexact ¼
Z

d4x
ffiffiffi
γ

p ½GIJ∇̂μλI∇̂μλ
J þA1λ

I□̂λJGIJ

þA2GIJλ
IλJRþA3λ

I∇̂μλJ∇̂μGIJ þA4λ
IλJ□̂GIJ�:

ð2:26Þ

By computing its Weyl variation, and after integrating by
parts, we find that the most general exact (i.e., cohomo-
logically trivial) anomaly functional is

δσWexact ∝
Z

d4x
ffiffiffi
γ

p
δσ½2ð−1þ A1 þ 6A2ÞGIJ∇̂μλI∇̂μλ

J

þ 2ð−1þ A1 þ 6A2ÞλI□̂λJGIJ þ 2ð−1þ 2A1

þ 12A2 − A3 þ 2A4ÞλI∇̂μλJ∇̂μGIJ

þ ðA1 þ 6A2 − A3 þ 2A4ÞλIλJ□̂GIJ�: ð2:27Þ

From the above one can deduce the following:
(i) An anomalous Weyl generating functional contain-

ing δσGIJλ
IλJR cannot be cohomologically trivial.

(ii) The term λIλJ□̂GIJ is cohomologically equivalent
to λI∇̂μλJ∇̂μGIJ.

(iii) The term λI∇̂μλJ∇̂μGIJ is cohomologically equiv-
alent to GIJ∇̂μλI∇̂μλ

J þ λI□̂λJGIJ and by going to
momentum space, one sees that the latter does not
contribute to the anomaly.

Hence, modulo cohomologically trivial terms and up to
integration by parts, the most general Weyl anomalous
functional is given by

δσW ¼
Z

d4x
ffiffiffi
γ

p
δσGIJ½C1∇̂μλI∇̂μλ

J

þ C2λ
I
□̂λJ þ C3λ

IλJR�; ð2:28Þ

with C1 ≠ C2. Imposing the WZ consistency condition
leads to the following independent solutions for the
anomaly functional:

δσWð1Þ ¼
Z

d4x
ffiffiffi
γ

p
δσGIJ

�
∇̂μλI∇̂μλ

J þ 1

6
λIλJR

�
; ð2:29Þ

δσWð2Þ ¼
Z

d4x
ffiffiffi
γ

p
δσGIJ

�
λI□̂λJ −

1

6
λIλJR

�
: ð2:30Þ

For δσWð1Þ one needs to impose∇iGIJ ¼ 0, while δσWð2Þ is
automatically WZ consistent.9 It is interesting to observe
that (2.29) and (2.30) are equivalent upon integration by
parts when ∇iGIJ ¼ 0, leading to a self-consistent picture.

D. Δ= 4 operators

The classical Weyl variations (2.24) do not distinguish
between the exactly marginal couplings λi and the margin-
ally relevant or irrelevant λI. However, in our formalism
these two sets of couplings are treated differently—the λi are
nonlinear coordinates on the conformal manifold but the λI

are linear coordinates on a vector bundle. Accordingly, in the
conformal phase, we can interpret the anomalies Gij as a
Zamolodchikov metric on the conformal manifold, but the
anomalies GIJ do not have such an interpretation. This will
soon translate to a different type of anomaly functional for
the anomalies GIJ, which is sensitive to the curvature of the
corresponding operator bundles. Examples of theories with
nonexactly marginal Δ ¼ 4 operators, whose curvature is
nontrivial, are abundant in 4DN ¼ 2 SCFTs, see, e.g., [19].
It is sensible to start with an anomaly functional, which is

similar to (2.15) for the exactly marginal operators

δσW ∝
Z

d4x
ffiffiffi
γ

p
δσGIJ

�
□̂λI□̂λJ − 2∇̂μλ

I

×

�
Rμν −

1

3
γμνR

�
∇̂νλ

J

�
: ð2:31Þ

For exactly marginal operators ∇̂½μλiν� ¼ 0 from (2.16).

Instead, for nonexactly marginal Δ ¼ 4 operators
½∇̂μ; ∇̂ν�λI ¼ ðFμνÞIJλJ. As a result, we expect that terms
containing either ðFμνÞKJ or explicit ðFijÞKJ contributions
will mark a distinctive difference compared to the exactly
marginal case. Indeed, when checking the WZ-consistency
condition for (2.31), one finds that

9The WZ consistency condition imposes C3 ¼ 1
6
ðC1 − C2Þ so

the most general anomaly functional is given by δσW ¼
C1δσWð1Þ þ C2δσWð2Þ with C1 ≠ C2. Terms with C1 ¼ C2 can-
not capture the anomaly, see point iii. above.
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δσ½2δσ1�W ∝
Z

d4x
ffiffiffi
γ

p
δσ½1∂νδσ2�∇̂μλI½−4∇̂μGIJ∇̂νλ

J

þ 2∇̂νGIJ∇̂μλ
J − 4GIKλ

JðFμνÞKJ �: ð2:32Þ

The expression on the rhs does not vanish automatically
even after imposing ∇iGIJ ¼ 0: extra terms need to be
added to (2.31) to cancel the last term in (2.32). One can
exhaustively prove that terms constructed out of ðFμνÞIJ are
closed with respect to the Weyl-cohomology and cannot
achieve the desired goal. We are thus forced to use terms
where ðFijÞIJ appears explicitly and does not combine with

pullbacks to give ðFμνÞIJ ¼ ðFijÞIJλiμλjν. We notice, using

the first equation in (2.18), that δσð∇̂ρλ
i
νÞ ∼ ∂ρδσλ

i
ν, and as

a result

δσððFijÞJKλjρ∇̂μλ
i
νÞ ¼ ðFijÞJKλjρδσð∇̂μλ

i
νÞ ∼ ðFρνÞJK∂μδσ:

ð2:33Þ

We are thus led to consider terms with the schematic
structure: GIJðFijÞIKλjρλK∇̂μλ

i
ν∇̂σλ

J. By taking into account
all possible contractions for the spacetime indices, we
arrive at the generating functional

δσW ∝
Z

d4x
ffiffiffi
γ

p
δσGIJ

�
□̂λI□̂λJ − 2∇̂μλ

I

�
Rμν −

1

3
γμνR

�

× ∇̂νλ
J þ ðFijÞIKðE3gμσgνρ þ E2gμρgνσ

þ E1gμνgρσÞλjρ∇̂μλ
i
νλ

K∇̂σλ
J

�
; ð2:34Þ

where E1, E2, E3 are free constants. The WZ consistency
condition can be satisfied by setting ∇iGIJ ¼ 0 and
E1 þ E2 þ E3 ¼ −2. The fact that only the combination
E1 þ E2 þ E3 ¼ −2 survives the WZ condition suggests
a relation between the three terms in the second line
of (2.34). Indeed, the terms parametrized by E2 and E3 are
identical as a consequence of the identity ∇̂½μλiν� ¼ 0. This

leaves a single combination in (2.34)—the difference
between the terms parametrized by E1 and E2 being
closed, but not exact. The resultant anomaly functional
(2.34) is the WZ-consistent functional that captures the
type-B anomalies GIJ for non-exactly-marginal Δ ¼ 4

operators.
We can draw two lessons from this discussion. First, we

verify once again that the condition ∇iGIJ ¼ 0 is neces-
sary to obtain WZ consistency. Second, and on a more
technical level, we notice that in order to cancel Fμν terms
in the WZ consistency condition (2.32), one needs to add
to the generating functional terms where Fij factors come

contracted with (differentiated) pullbacks. The specific
terms added in (2.34) contributed to the WZ condition only
with Fμν combinations. It turns out that this is a special

feature of Δ ¼ 4 operators (for which both δσλ
I and δσ∇̂λI

vanish). In the next section, we will see that Fij terms
provide contributions to the WZ condition of Δ ¼ 5
anomalies that do not combine to produce Fμν. This
feature will add to the complexity of the Δ ¼ 5 anomaly
functionals.

E. Δ= 5 operators

The Osborn equation for type-B anomalies of irrelevant
operators in even spacetime dimensions is subtle. Its
intricacies were discussed in [12], the main lesson being
that in order to ensure the consistency of the anomalous
part, one has to introduce a beta function for the spacetime
metric. We will generalize the analysis of [12] to the case of
multiple irrelevant sources λI , starting with the most
general ansatz for the spacetime Weyl variation δσγμν that
is quadratic in the sources λI . One needs to first impose that
δ½σ2δσ1�γμν ¼ 0 and then remove the cohomologically trivial
terms from δσγμν.

10 The outcome of this analysis, at
quadratic order in the sources, is that the variation of the
metric δσγμν is essentially the covariantized version of the
one proposed by [12], i.e.,

δσγμν ¼ 2δσγμν þ αδσGIJðRμνλ
IλJ þ 2λI∇̂ðμ∇̂νÞλJ

− 3γμν∇̂ρλI∇̂ρλ
J þ γμνλ

I□̂λJÞ
þ βδσγμνðRλIλJ þ 6λI□̂λJ − 12∇̂ρλI∇̂ρλ

JÞ
þOðλ4Þ; ð2:35Þ

where α and β are free parameters. Here we have
neglected—already at Oðλ2Þ—terms that vanish when
∇iGIJ ¼ 0; one can prove that they sit in a cohomology
class different to that of the ones proportional to GIJ, hence
their presence would not modify (2.35). Moreover, such
terms will not play a role in the computations that we will
display below.
As a starting point for the analysis of the Δ ¼ 5 anomaly

functional, we consider the covariantized version of the
expression derived in [12], which to quadratic order in the
irrelevant sources reads11

10The latter are those solutions ðδσγμνÞtrivial to δ½σ2δσ1�γμν ¼ 0
that can be written as ðδσγμνÞtrivial ¼ δσγ̂μν − 2δσγ̂μν for a metric
γ̂μν. Therefore the redefined metric, γμν ↦ γμν − γ̂μν, continues to
transform classically.

11We thank M. Broccoli for pointing out a missing factor of 1
2

between the CμνρσCμνρσ and λ2 terms in [12]. This factor can also
be confirmed by an independent holographic computation [20].
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A ¼ cCμνρσCμνρσ þ c
2
αGIJ

�
□̂λI□̂2λJ −

13

8
RRμνRμνλ

IλJ þ 53

162
R3λIλJ þ 4

3
RμνRλσRμλνσλ

IλJ −
1

8
RRμνλσRμνλσλIλJ

þ 43

72
RμνλσRμναβRαβ

λσλIλJ −
35

72
R2λI□̂λJ þ 25

24
RμνλσRμνλσλI□̂λJ −

1

36
∇μR∇μRλIλJ þ

167

12
RμνRμν∇̂αλI∇̂αλ

J

−
101

24
R2∇̂αλI∇̂αλ

J −
79

24
RμνλσRμνλσ∇̂αλI∇̂αλ

J −
1

3
R□̂∇̂μλI∇̂μλ

J −
10

9
Rμν∇μ∇νRλIλJ þ

7

9
RμνRλI∇̂μ∇̂νλ

J

þ 1

36
□RλI□̂λJ −

16

9
R□̂λI□̂λJ þ∇μR∇̂μλ

I
□̂λJ þ 1

6
RλI□̂2λJ − 4Rμν∇̂μλ

I
□̂∇νλ

J −
37

18
Rμν∇μRλI∇̂νλ

J

− 22Rα
μRνα∇̂μλI∇̂νλJ þ 116

9
RμνR∇̂μλI∇̂νλJ − 13RαβRμανβ∇̂μλI∇̂νλJ −

5

18
∇μ∇νRλI∇̂μ∇̂νλ

J −
5

9
R∇̂μ∇̂νλ

I∇̂μ∇̂νλJ

− 5Rβγ∇γRαβλ
I∇̂αλJ −

8

3
Rγ
αRαβλI∇̂β∇̂γλ

J þ 10

3
Rβγ∇̂αλI∇̂γ∇̂β∇̂αλ

J þ 5

6
□RμνλI∇̂μ∇̂νλ

J þ 22

3
Rμν∇̂μ∇̂νλ

I□̂λJ

−
5

3
∇μRαβ∇μRαβλ

IλI
�
þOðλ4Þ; ð2:36Þ

where c is the central charge of the system. From this expression it is apparent that the α parameter entering (2.35) is the
normalization of hTOOi which, in the unbroken phase, can be related to the normalization of hOOi. However, there is no
information about β, since the part of δσγμν that it parametrizes does not contribute to δσðCμνρσCμνρσÞ.12 TheWZ consistency
condition for the anomaly (2.36) is satisfied up to terms that vanish when ∇iGIJ ¼ 0 and up to bundle-curvature terms
(F terms), since in their absence our expression then reverts to the one of [12].13 Our next goal will be to introduce new
terms AF to the anomaly (2.36) that remove the F terms in the WZ consistency condition.
For the purposes of this paper, it will be enough to determine the new terms that are needed to make AþAF WZ

consistent to leading order around flat spacetime, γμν ≃ δμν þ � � �. We will therefore ignore in A, AF terms quadratic
(or higher) in the spacetime curvature, like the Weyl-tensor squared. However, terms linear in the spacetime curvature must
be taken into account, as the flat spacetime limit of δσRμνρσ does not vanish, cf. (2.18). Accordingly, we will work with the
classical Weyl variation of the spacetime metric and up to quadratic order in the λs. In summary, wewant to identify the terms
AF

flat that can remove all F terms from the flat-spacetime limit of the WZ condition for Aflat, which reads

Aflat ∝ GIJ

�
□̂λI□̂2λJ −

1

3
R□̂∇̂μλI∇̂μλ

J þ 1

36
□RλI□̂λJ −

16

9
R□̂λI□̂λJ þ∇μR∇̂μλ

I
□̂λJ þ 1

6
RλI□̂2λJ − 4Rμν∇̂μλ

I
□̂∇̂νλ

J

−
5

18
∇μ∇νRλI∇̂μ∇̂νλ

J −
5

9
R∇̂μ∇̂νλ

I∇̂μ∇̂νλJ þ 10

3
Rβγ∇̂αλI∇̂γ∇̂β∇̂αλ

J þ 5

6
□RμνλI∇̂μ∇̂νλ

J þ 22

3
Rμν∇̂μ∇̂νλ

I
□̂λJ

�
:

ð2:37Þ

The F terms that enter the flat spacetime limit of the WZ consistency condition for Aflat are
14

Z
d4x

ffiffiffi
γ

p
δσ½1∇μδσ2�GIJ

�
−8FJ

νρLF
νρI
K λK∇̂μλ

L −
40

3
FρI
μKF

J
νρLλ

K∇̂νλJ −
20

3
λK□̂λL∇̂FρI

μK þ 4

3
∇̂νλ

L∇̂νλJ∇̂FρI
μL

þ 40

3
λK∇̂ν∇̂μλ

J∇̂FρI
νK þ 20

3
FνI
μKλ

KλL∇̂ρF
ρJ
νL þ 8λK∇̂νλJ□̂FI

μνK − 28FI
μνK∇̂λK□̂λJ þ 4

3
FI
μνKλ

K
□̂∇̂νλJ

þ 16∇̂λJ∇̂ρFI
μνL∇̂ρλL −

32

3
FI
νρK∇̂νλK∇̂ρ∇̂μλ

J −
8

3
FI
μρK∇̂νλK∇̂ρ∇̂νλ

J

�
: ð2:38Þ

12Note that when computing δσðCμνρσCμνρσÞ, all the ∇μ operators hitting δσγμν can be promoted to their hatted versions, i.e.,
∇μδσγνρ ¼ ∇̂μδσγνρ.

13By F terms we denote contributions that vanish when Fij ¼ 0, but do not vanish when ∇iGIJ ¼ 0.
14To simplify our expressions, we will denote FP

μνQ ≔ ðFμνÞPQ, FμνP
Q ≔ ðFμνÞPQ and FμP

νQ ≔ ðFμ
νÞPQ. Analogous definitions will apply

to Fij.
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One arrives at this expression by making use of the Bianchi identity for Fμν, and rearranging the order of the ∇̂ operators

into terms of the type ∇̂ðnþ2ÞGIJ.
15

To cancel the terms in (2.38), we start with the most general linear ansatz that is quadratic in the sources λ, that vanishes
when Fij ¼ 0, and that is at most linear in the spacetime curvature. Moreover, since (2.38) involves only Fμν ¼ λiμλ

j
νFij,

each Fij must come contracted with corresponding factors of λiμ. Without any additional algebraic simplifications, nor
through identifying redundancies due to Weyl-cohomologically trivial terms, we have determined using the xAct

Mathematica package [21] that such an ansatz comprises ∼1500 terms. These contribute to the WZ consistency condition
with two classes of terms: those that can be rewritten solely in terms of the combination Fμν ¼ λiμλ

j
νFij and those where

the curvature components Fij of the λ bundle necessarily appear explicitly. We require that the former cancel out the terms
in (2.38) and the latter cancel out by themselves. This yields a solution that fixes some of the coefficients of the linear ansatz
and leaves the remaining undetermined. By setting the undetermined coefficients to zero the resulting expression has the
following 126 terms16:

AF
flat ¼ GIJ

�
−
19

6
FI
νρLF

νρJ
K λK□̂λL þ 359

144
FI
ijKRλ

iμλJλK∇̂μ∇̂νλ
jν −

23

3
FνρI
K λK∇ρRμν∇̂μλJ −

35

9
FνI
μKλ

J∇ρR
ρ
ν∇̂μλK

þ 49

6
FI
νρLF

νρJ
K ∇̂μλ

L∇̂μλK þ 151

24
λiμλJλK∇̂μ∇̂ν∇̂ρλ

jρ∇̂νFI
ijK −

1

3
FI
ijKRλ

iμλK∇̂μλ
J∇̂νλ

jν þ FI
ijKRλ

iμλJ∇̂μλ
K∇̂νλ

jν

−
359

144
FI
ijKRλ

iμλJλK□̂λjμ þ 89

24
λK∇̂μλJ∇̂ν□̂FνI

μK þ 95

12
λJ∇̂μλK∇̂ν□̂FνI

μK þ 215

8
λiμλJλK∇̂μ∇̂ρFI

ijK∇̂ν∇̂ρλjν

þ 255

4
FI
ijKλ

JλK∇̂ν∇̂μ∇̂ρλ
jρ∇̂νλiμ þ 395

6
λJλK∇̂μFI

ijK∇̂ν∇̂ρλ
jρ∇̂νλiμ þ 2519

96
FI
ijKλ

K∇̂μλ
J∇̂ν∇̂ρλ

jρ∇̂νλiμ

þ 2509

96
FI
ijKλ

J∇̂μλ
K∇̂ν∇̂ρλ

jρ∇̂νλiμ −
1139

24
FI
ijKλ

JλK∇̂ν□̂λjμ∇̂νλiμ þ 2

3
FI
ijKλ

iμλJλK∇ρR
ρ
ν∇̂νλjμ

þ 35

8
FI
ijKλ

iμλK∇̂μ□̂λjν∇̂νλJ þ 475

8
λiμλK∇̂μ∇̂ρλ

jρ∇̂νFI
ijK∇̂νλJ þ 2519

96
FI
ijKλ

iμλK∇̂ν∇̂μ∇̂ρλ
jρ∇̂νλJ

−
105

8
λiμλK∇̂μFI

ijK∇̂ν∇̂ρλ
jρ∇̂νλJ −

2039

96
FI
ijKλ

iμλK∇̂ν□̂λjμ∇̂νλJ þ 55

12
FI
ijKλ

iμλJ∇̂μ□̂λjν∇̂νλK

þ 2509

96
FI
ijKλ

iμλJ∇̂ν∇̂μ∇̂ρλ
jρ∇̂νλK þ 9

4
λiμλJ∇̂μFI

ijK∇̂ν∇̂ρλ
jρ∇̂νλK −

2029

96
FI
ijKλ

iμλJ∇̂ν□̂λjμ∇̂νλK

þ 11FρJ
μLF

I
νρK∇̂μλK∇̂νλL − FρJ

μKF
I
νρL∇̂μλK∇̂νλL þ 473

8
λiμλJλK∇̂νFI

ijK∇̂ν∇̂μ∇̂ρλ
jρ −

2

3
FI
νρK∇̂μ∇̂ρλK∇̂ν∇̂μλJ

þ 40

3
FρJ
μKF

I
νρLλ

K∇̂ν∇̂μλL þ 241

24
λJλL∇̂μλ

iμ∇̂νFI
ijK∇̂ν∇̂ρλ

jρ −
89

2
λiμλJλK∇̂νFI

ijK∇̂ν
□̂λjμ

þ 623

24
λJλK∇̂ν∇̂ρλjμ∇̂νλiμ∇̂ρFI

ijK þ 73

8
λiμλK∇̂μ∇̂ρλjν∇̂νλJ∇̂ρFI

ijK þ 175

12
λiμλK∇̂ν∇̂ρλjμ∇̂νλJ∇̂ρFI

ijK

þ 22

3
λiμλJ∇̂μ∇̂ρλjν∇̂νλK∇̂ρFI

ijK þ 14

3
RνρλK∇̂μλJ∇̂ρFI

μνK þ 83

24
Rν
μλ

KλK∇̂μλJ∇̂ρF
ρI
νK þ 2FI

ijKλ
iμλK∇̂μ□̂λJ∇̂ρλ

jρ

þ 2FI
ijKλ

iμ∇̂μλ
K
□̂λJ∇̂ρλ

jρ −
85

6
λK∇̂μλ

J∇̂νFI
ijK∇̂νλiμ∇̂ρλ

jρ þ 2λJ∇̂μλ
K∇̂νFI

ijK∇̂νλiμ∇̂ρλ
jρ

þ 77

24
FI
ijKRμνλ

iμλK∇̂νλJ∇̂ρλ
jρ þ 26λiμλK∇̂ν∇̂μFI

ijK∇̂νλJ∇̂ρλ
jρ − 4FI

ijKRμνλ
iμλJ∇̂νλK∇̂ρλ

jρ

− 8FI
ijKλ

iμ∇̂μ∇̂νλ
J∇̂νλK∇̂ρλ

jρ −
247

12
λiμλJ∇̂ν∇̂μFI

ijK∇̂νλK∇̂ρλ
jρ −

295

12
λiμλJλK∇̂ν∇̂ρλjν∇̂ρ∇̂μFI

ijK

15For example, one can rewrite expressions of the type GKðI∇̂ðnÞðFμνÞKJÞ solely in terms of GKI∇̂ðmÞðFμνÞKJ with m ≤ n − 2, and terms

that vanish when ∇iGIJ ¼ 0. In particular, for n ¼ 0 we have that FμνðIJÞ ¼ 0 when ∇iGIJ ¼ 0, with FμνIJ ≔ GKIðFμνÞKJ .
16Our Mathematica notebook with the full solution can be made available upon request.
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þ 215

24
λiμλJλK∇̂νλ

jν∇̂ρ∇̂μ∇̂ρFI
ijK þ 523

24
λiμλJλK∇̂νFI

ijK∇̂ρ∇̂μ∇̂ρλjν þ 151

24
FI
ijKλ

iμλJλK∇̂ρ∇̂μ∇̂ρ∇̂νλ
jν

þ 215

24
λiμλJλK∇̂μ∇̂ρλjν∇̂ρ∇̂νFI

ijK −
337

24
λiμλJλK∇̂νλjμ∇̂ρ∇̂ν∇̂ρFI

ijK −
11

2
λiμλJλK∇̂μFI

ijK∇̂ρ∇̂ν∇̂ρλjν

−
151

24
FI
ijKλ

JλK∇̂μλ
iμ∇̂ρ∇̂ν∇̂ρλjν −

35

8
FI
ijKλ

iμλK∇̂μλ
J∇̂ρ∇̂ν∇̂ρλjν −

55

12
FI
ijKλ

iμλJ∇̂μλ
K∇̂ρ∇̂ν∇̂ρλjν

þ 215

24
λJλK∇̂ρ∇̂ν∇̂ρ∇̂μF

μνI
K −

151

24
FI
ijKλ

iμλJλK∇̂ρ∇̂ν∇̂ρ∇̂νλjμ −
215

24
λiμλJλK∇̂νFI

ijK∇̂ρ∇̂ν∇̂ρλjμ

þ 215

8
λiμλJλK∇̂μ∇̂νλ

jν
□̂FI

ijK −
47

2
λiμλK∇̂μλ

J∇̂νλ
jν
□̂FI

ijK þ 121

12
λiμλJ∇̂μλ

K∇̂νλjν□̂FI
ijK

−
215

8
λiμλJλK□̂λjμ□̂FI

ijK þ 1157

48
λiμλK∇̂νλ

J∇̂νλjμ□̂FI
ijK −

455

48
λiμλJ∇̂νλ

K∇̂νλjμ□̂FI
ijK

þ 35

8
FI
ijKλ

K∇̂μλJ∇̂νλ
iν□̂λjμ þ 55

12
FI
ijKλ

J∇̂μλK∇̂νλ
iν□̂λjμ −

3073

48
λiμλK∇̂νFI

ijK∇̂νλJ□̂λjμ

þ 431

16
λiμλJ∇̂νFI

ijK∇̂νλK□̂λjμ þ 215

8
FI
ijKλ

JλK∇̂μ∇̂νλiμ□̂λjν −
123

2
λJλK∇̂μFI

ijK∇̂νλiμ□̂λjν

−
3299

96
FI
ijKλ

K∇̂μλ
J∇̂νλiμ□̂λjν −

3349

96
FI
ijKλ

J∇̂μλ
K∇̂νλiμ□̂λjν þ 163

12
λiμλK∇̂μFI

ijK∇̂νλJ□̂λjν

þ 161

12
λiμλJ∇̂μFI

ijK∇̂νλK□̂λjν −
229

6
FI
ijKλ

JλK∇̂ν∇̂μλ
iμ
□̂λjν −

10

3
λJλK∇̂μλ

iμ∇̂νFI
ijK□̂λjν

−
161

24
λiμλK∇̂μλ

J∇̂νFI
ijK□̂λjν −

59

12
λiμλJ∇̂μλ

K∇̂νFI
ijK□̂λjν þ 65

24
λiμλJλK∇̂νλ

jν
□̂∇̂μFI

ijK

þ 307

12
FI
ijKλ

iμλJλK□̂∇̂μ∇̂νλ
jν þ 239

12
λiμλJλK∇̂νλjμ□̂∇̂νFI

ijK −
151

24
FI
ijKλ

JλK∇̂νλiμ□̂∇̂νλ
j
μ

þ 57

8
λiμλJλK∇̂μFI

ijK□̂∇̂νλ
jν þ 151

24
FI
ijKλ

JλK∇̂μλ
iμ
□̂∇̂νλ

jν þ 215

12
λJλK□̂∇̂ν∇̂μF

μνI
K

−
247

12
FI
ijKλ

iμλJλK□̂□ λjμ −
22

3
λiμλJλK∇̂νFI

ijK□̂∇̂νλjμ þ 6FI
μνK∇̂μλK□̂∇̂νλJ þ 35

4
FI
ijKλ

K∇̂μλJ∇̂ρ∇̂νλ
j
μ∇̂ρλiν

þ 55

6
FI
ijKλ

J∇̂μλK∇̂ρ∇̂νλ
j
μ∇̂ρλiν þ 215

24
λJλK∇̂ν∇̂ρFI

ijK∇̂νλiμ∇̂ρλjμ þ 19

24
FI
ijKRνρλ

iμλK∇̂νλJ∇̂ρλjμ

−
215

24
λiμλK∇̂ν∇̂ρFI

ijK∇̂νλJ∇̂ρλjμ þ 449

12
λiμλJ∇̂ν∇̂ρFI

ijK∇̂νλK∇̂ρλjμ −
471

8
λJλK∇̂νλiμ∇̂ρ∇̂νFI

ijK∇̂ρλjμ

−
875

48
λK∇̂μλ

J∇̂νλiμ∇̂ρFI
ijK∇̂ρλjν −

809

48
λJ∇̂μλ

K∇̂νλiμ∇̂ρFI
ijK∇̂ρλjν − 2FI

ijKRνρλ
iμλK∇̂μλ

J∇̂ρλjν

þ 215

24
λiμλJλK∇̂μ∇̂ρ∇̂νFI

ijK∇̂ρλjν þ 2FI
ijKRμρλ

iμλK∇̂νλ
J∇̂ρλjν þ 391

48
λiμλK∇̂μ∇̂ρFI

ijK∇̂νλ
J∇̂ρλjν

þ 137

16
λiμλI∇̂μ∇̂ρFJ

ijK∇̂νλ
K∇̂ρλjν þ 655

48
λK∇̂μλ

J∇̂νλ
iμ∇̂ρFI

ijK∇̂ρλjν −
65

48
λJ∇̂μλ

K∇̂νλ
iμ∇̂ρFI

ijK∇̂ρλjν

−
397

48
λiμλK∇̂νλ

J∇̂ρ∇̂μFI
ijK∇̂ρλjν −

377

48
λiμλJ∇̂νλ

K∇̂ρ∇̂μFI
ijK∇̂ρλjν þ 153

16
λiμλJλK∇̂ρ∇̂μ∇̂νFI

ijK∇̂ρλjν

−
17

3
λJλK∇̂μλ

iμ∇̂ρ∇̂νFI
ijK∇̂ρλjν −

29

24
λiμλK∇̂μλ

J∇̂ρ∇̂νFI
ijK∇̂ρλjν −

29

24
λiμλJ∇̂μλ

K∇̂ρ∇̂νFI
ijK∇̂ρλjν

−
311

16
λiμλJλK∇̂ρ∇̂ν∇̂μFI

ijK∇̂ρλjν −
215

24
λJλK∇̂νλiμ∇̂ρFI

ijK∇̂ρ∇̂νλ
j
μ þ 31

8
λiμλJλK∇̂μ∇̂ρFI

ijK∇̂ρ∇̂νλ
jν

þ 83

12
λiμλJλK∇̂ρ∇̂μFI

ijK∇̂ρ∇̂νλ
jν − 2FI

μρK∇̂μλK∇̂ρ
□̂λJ þ 151

24
FI
ijKλ

JλK∇̂ν∇̂ρλ
j
μ∇̂ρ∇̂νλiμ −

215

24
λiμλJλK∇̂ν∇̂ρFI

ijK∇̂ρ∇̂νλjμ
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þ 497

24
λiμλJλK∇̂ρ∇̂νFI

ijK∇̂ρ∇̂νλjμ þ 12FI
νρK∇̂μλK∇̂ρ∇̂ν∇̂μλ

J −
71

16
Rμσνρλ

K∇̂μλJ∇̂σFνρI
K

−
41

8
FI
ijKRμρσνλ

iμλK∇̂νλJ∇̂σλjρ −
22

3
FI
ijKRμρνσλ

iμλJ∇̂νλK∇̂σλjρ
�
: ð2:39Þ

In particular, one can prove using Mathematica that it is
impossible to cancel out the contributions in (2.38) using
new terms that contain exclusively the combination Fμν.
The flat-spacetime limit is sufficient for the purposes of

this paper. Nevertheless, it is interesting to ask how (2.39)
would be modified in the case of arbitrary spacetime
curvature. In such a case, one should also add to the ansatz
terms that are at least quadratic in the Riemann tensor
and linear in the vector-bundle curvature. Dimensional
analysis suggests that the only possibility is of the type
GRPFR

μνQRabcdRefghλ
PλQ; however, by taking into account

all possible spacetime contractions, all such terms vanish.
Consequently, our original ansatz should be sufficient
towards determining the anomaly functional for any
curved (spacetime and vector-bundle) background. This
is a well-defined but computationally challenging prob-
lem, to which we hope to return in the future.

F. Δ= 2 operators

We have left the case of Δ ¼ 2 operators for last as it is
trivial. The anomaly is encoded in

δσW ∝
Z

d4x
ffiffiffi
γ

p
δσGIJλ

IλJ: ð2:40Þ

The above automatically satisfies the WZ consistency
condition and does not involve the connection A. Hence,
one cannot infer anything about ∇iGIJ from this expres-
sion. In the next section, we will return to the case of Δ ¼ 2

type-B conformal anomalies in the context of 4D N ¼ 2
SCFTs, where supersymmetry will allow us to say more.

III. Δ= 2 CBOS IN 4D N = 2 SCFTs

In this section we will focus on CBOs OI (and their
complex conjugates ŌI) with scaling dimension Δ ¼ 2 in
4D N ¼ 2 SCFTs. We will argue using Poincaré super-
symmetry that the Δ ¼ 2 type-B Weyl anomalies are the
same as the type-B Weyl anomalies of the exactly marginal
Δ ¼ 4 operators. This is obvious in the conformally
symmetric phase (see, e.g., [5]), but requires a less
straightforward argument in phases with spontaneously
broken conformal symmetry. We will outline the argument
in Sec. III A and provide tree-level supporting evidence for
its validity in Sec. III B. Once the relation with the exactly
marginal Weyl anomalies is established, the result ∇G ¼ 0
for Δ ¼ 2 anomalies follows from Eq. (2.2).

A. Anomalies related by Poincaré supersymmetry

The exactly marginal operators of the N ¼ 2 SCFT are
of the form17

Φi ∝ Q4 ·OIδ
I
i ; Φ̄i ∝ Q̄4 · ŌIδ

I
i : ð3:1Þ

In the conformal phase it is straightforward to relate the
anomaly of the Δ ¼ 2 operators OI to the anomaly of the
exactly marginal operators Φi by looking at the corre-
sponding two-point functions (1.2). The Ward identity for
Poincaré supercharges,

Xn
k¼1

hφ1ðx1Þ…Q · φkðxkÞ…φnðxnÞi ¼ 0; ð3:2Þ

can be used to move the supercharges around so as to
arrive at [15]

hOIðx1ÞŌJðx2Þi ∝ □
2
x2hΦiðx2ÞΦ̄jðx2ÞiδiIδjJ; ð3:3Þ

where the constant of proportionality depends on conven-
tions and will be fixed momentarily.
In a general phase, the type-B anomaly of interest is

captured by a particular contact term in the three-point
function (1.3)

hTðxÞOIðx1ÞŌJðx2Þi; ð3:4Þ

where T ≡ Tμ
μ is the trace of the energy-momentum tensor.

The energy-momentum tensor of the N ¼ 2 SCFT
belongs to a superconformal multiplet with a scalar
superconformal primary T that obeys the shortening
conditions ðQIÞ2 · T ¼ 0, ðQ̄IÞ2 · T ¼ 0 (for I ¼ 1, 2
the SUð2ÞR R-symmetry index), and is of the form
(suppressing spacetime indices, spinor indices and sigma
matrices on the rhs)

Tμν ¼ Q1 ·Q2 · Q̄1 · Q̄2 · T þ c1Q1 · Q̄1 · ∂T

þ c2Q2 · Q̄2 · ∂T þ c3∂2T : ð3:5Þ

In phases with spontaneously broken conformal sym-
metry it is less straightforward to relate (3.4) to
hTðxÞΦiðx1ÞΦ̄jðx2Þi by applying Ward identities. In vacua,
where Poincaré supersymmetry is unbroken, as, e.g., on the

17We use shorthand notation to denote the usual adjoint action
of the supersymmetry generators.
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Coulomb or Higgs branch of N ¼ 2 SCFTs, one can still
use the integrated form of theWard identities (3.2), but their
application on three-point functions of the form (3.4) is
complicated. However, since we only care about a contact
term in the limit of vanishing momentum for the energy-
momentum tensor, it may be natural to anticipate that terms
in Tμν with explicit spacetime derivatives [like the c1, c2, c3
terms in (3.5)] will not contribute to the anomaly.
Assuming such terms can be dropped, in the three-point
function

hTðxÞðQ4 ·OIÞðx1ÞðQ̄4 · ŌJÞðx2Þi ð3:6Þ

with two exactly marginal operators, only

hðQ1 ·Q2 · Q̄1 · Q̄2 · T ÞðxÞðQ4 ·OIÞðx1ÞðQ̄4 · ŌJÞðx2Þi
ð3:7Þ

contributes to the type-B anomaly. Then, as one imple-
ments the supersymmetric Ward identity (3.2) and starts
moving the supercharges Q around from the x1 insertion
in (3.6), there are terms where the Qs land on the x2
insertion and terms where the Qs land on the x insertion.
Up to x derivatives the latter terms vanish. Assuming once
again that we can ignore the x derivatives, we drop all terms
where some Qs were moved on the x insertion of the
energy-momentum tensor. This suggests that we can recast
the anomalous term of (3.6) as the anomalous term of (3.4),
up to a proportionality constant that coincides with the one
in the unbroken phase (3.3), i.e.,

hTðxÞOIðx1ÞŌJðx2Þi ∝ □
2
x2hTðxÞΦiðx2ÞΦ̄jðx2ÞiδiIδjJ:

ð3:8Þ

To summarize, under the assumption that we can drop
terms with x derivatives, Poincaré supersymmetry guaran-
tees that the anomalies of Φi ∝ Q4 ·OIδ

I
i and OI are

proportional to each other in all phases through a constant
of proportionality, which is independent of the exactly
marginal couplings. Consequently, since Gij is covariantly
constant in both the unbroken and broken phases, the same
must be true for the GIJ anomaly of the Δ ¼ 2 operators.
Notice that the holomorphic part of the tangent bundle
(which houses the holomorphic part of the exactly marginal
deformations) is a product L4 ⊗ V2 of four copies of the
bundle of the left-moving supercharges L and the bundle
of Δ ¼ 2 chiral primary operators V2.

18 Accordingly, the

connection on the tangent bundle is a direct sum of
the connection on L4 and V2, [15,19,22]. However, on
the anomalies Gij and GIJ only the part of the connection
on V2 contributes.

B. Perturbative checks

As further evidence for the validity of the relation (3.8)
in phases with spontaneously broken conformal sym-
metry, we present an explicit test at leading order in
perturbation theory on the Higgs branch of the 4D
N ¼ 2 superconformal QCD (SCQCD) theory. We com-
pute at tree-level the anomalies for Δ ¼ 2 CBOs in the

CFT and Higgs-branch phases ðGðCFTÞ
2 ; GðHiggsÞ

2 Þ and relate
them to the anomalies of exactly marginal operators

ðGðCFTÞ
4 ; GðHiggsÞ

4 Þ via the series of equalities

GðHiggsÞ
2 ¼ GðCFTÞ

2 ¼ 1

192
GðCFTÞ

4 ¼ GðCFTÞ
2 : ð3:9Þ

The relation GðHiggsÞ
2 ¼ GðCFTÞ

2 is a special case of (3.8).
In 4D SCQCD there is a single Δ ¼ 2 CBO O and a

single exactly marginal operator Φ. In terms of the
elementary fields that appear in the SCQCD Lagrangian
(see, e.g., [5] for a more detailed discussion on notation and
conventions)

O ¼ Trφ2;

Φ ¼ 2Tr

�
∂μφ∂

μφ̄þ iλσμ∂μλ̄þ
1

4
FμνFμν þOðgÞ

�
: ð3:10Þ

These operators are related by supersymmetry as
in (3.1). In our conventions, the normalization of the
superalgebra is

fQI
α ; Q̄J _αg ¼ 2δIJPα _α; ð3:11Þ

with α; _α the 4D Lorentz spinor indices. We will perform a
perturbative computation in SCQCD with arbitrary color
group GC.
The broken-phase computations that we will present are

performed in the Higgs-branch vacuum that was analyzed
in [5], where

hQa
Iii ¼ vδI1δai ð3:12Þ

with v ∈ R. For v ≠ 0 the dilatation symmetry is sponta-
neously broken and a real massless dilaton σ appears in the
spectrum. This couples linearly to the energy-momentum
tensor of the unbroken phase. By expanding the Lagrangian
of N ¼ 2 SCQCD around the vacuum (3.12), one can
determine how the dilaton interacts with the elementary

18Analogous statements apply obviously to antiholomorphic
exactly marginal deformations, right-moving supercharges and
Δ ¼ 2 antichiral superconformal primaries.
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fields of the theory. In the following, we will be primarily interested in its couplings with the Aμ and φ fields, which acquire
a mass m ¼ gv; these are

ð3:13Þ

All computations will be performed directly in Euclidean space and the integrals will be evaluated using dimensional
regularization with (μ has the dimensions of a mass and ϵ > 0)

Z
ddl
ð2πÞd ↦ μ2ϵ

Z
d2ð2−ϵÞl
ð2πÞ2ð2−ϵÞ : ð3:14Þ

1. Δ= 2 anomaly in conformal phase

The tree level two-point function of O in the CFT phase is obtained via simple Wick contraction of the scalar fields φ
(which can be carried out in two ways) [5]

ð3:15Þ

Here C is the color factor

C ¼ Tr½TATB�Tr½TATB�; ð3:16Þ

with A;B ¼ 1;…; rankðGcÞ, while the integral I1ðpÞ is the kinematic factor

I1ðpÞ ¼
Z

ddl
ð2πÞd

1

l2

1

ðl − pÞ2 ¼
1

ð4πÞ2
�
1

ϵ
− γ þ 3 − log

�
p2
1

4πμ2

��
: ð3:17Þ

According to (1.2), one then reads off

GðCFTÞ
2 ¼ 2

C
ð2πÞ4 : ð3:18Þ

2. Δ= 4 anomaly in conformal phase

At tree level, the two-point function of the exactly marginal operators receives only two contributions:

ð3:19Þ

The two individual diagrams

ð3:20Þ
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ð3:21Þ

are equally contributing Feynman processes, since the kinematic integrals I2ðpÞ, I3ðpÞ are given by

I2ðpÞ ¼
Z

ddl
ð2πÞd

1

l2

1

ðl − pÞ2 ½lμlνðl − pÞμðl − pÞν� ¼
p4

4
I1ðpÞ; ð3:22Þ

I3ðpÞ ¼
Z

ddl
ð2πÞd

1

l2
1

ðl − pÞ2 × l½μl½ρδσ�ν� × ½ðl − pÞ½μðl − pÞ½ρδν�σ�� ¼
p4

8
I1ðpÞ: ð3:23Þ

Applying (1.2) one extracts

GðCFTÞ
4 ¼ 192GðCFTÞ

2 : ð3:24Þ

The factor 192 is part of our conventions. This relation is an explicit tree-level check of the well-known general
result (3.3) [15].

3. Δ= 2 anomaly in Higgs phase

Following [5], we compute in the Higgs phase the three-point function of O; Ō with the trace of the energy-momentum
tensor T ¼ Tμ

μ. At tree level, this three-point function receives a contribution due to the dilaton field σ

ð3:25Þ

The combinatorial factor originates from the four possible Wick contractions between the φφ̄ coming out of the dilaton
vertex and the two operators Tr½φφ�, Tr½φ̄ φ̄�. The kinematic integral I4ðq; p1; p2Þ is given by

I4ðq; p1; p2Þ ¼ v2g2
Z

ddl
ð2πÞd

1

l2 þm2

1

ðp1 þ lÞ2 þm2

1

ðl − qÞ2 þm2
!q→0 1

2

1

ð4πÞ2 ; ð3:26Þ

where the mass in the broken phase is proportional to the Higgs vacuum expectation value v,m2 ¼ g2v2. From (1.3) one can
read off the anomaly in the Higgs phase, as already discussed in [5], which is

GðHiggsÞ
2 ¼ GðCFTÞ

2 : ð3:27Þ

4. Δ= 4 anomaly in Higgs phase

As in the conformal phase, in the Higgs phase the tree-level anomaly also arises from two equally contributing Feynman
processes, with a φ and Aμ field running, respectively, inside the loops,
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ð3:28Þ

The two Feynman diagrams above evaluate to

ð3:29Þ

ð3:30Þ

with the kinematical integrals I5ðq; p1; p2Þ and I6ðq; p1; p2Þ given by

I5ðq; p1; p2Þ ¼ v2g2
Z

ddl
ð2πÞd

lμ

l2 þm2

ðp1 þ lÞμðp1 þ lÞν
ðp1 þ lÞ2 þm2

ðl − qÞν
ðl − qÞ2 þm2

!q→0 1

ð4πÞ2
�
1

8
p4
1 þ � � �

�
; ð3:31Þ

I6ðq; p1; p2Þ ¼
1

2
g2v2

Z
ddl
ð2πÞd

l½μδν�α
l2 þm2

ðp1 þ lÞ½μδν�½σðp1 þ lÞρ�
ðp1 þ lÞ2 þm2

ðl − qÞ½ρδσ�α
ðl − qÞ2 þm2

!q→0 1

ð4πÞ2
�
1

32
p4
1 þ � � �

�
: ð3:32Þ

Therefore, according to (1.3), the anomaly for the marginal operators in the Higgs phase is given by

GðHiggsÞ
4 ¼ GðCFTÞ

4 : ð3:33Þ

Equations (3.27), (3.24), (3.33) establish the announced sequence of relations in (3.9).
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IV. CONCLUSIONS AND OUTLOOK

In this paper we investigated the properties of type-B
Weyl anomalies of integer-dimension operators on con-
formal manifolds. We presented evidence that such anoma-
lies are covariantly constant on conformal manifolds in
general phases of the theory, where conformal symmetry
may be spontaneously broken. By explicitly constructing
the corresponding anomaly functionals for operators of
dimension Δ ¼ 3, 4, 5, and without relying on super-
symmetry, we showed that ∇G ¼ 0 is a condition that
guarantees WZ consistency. The anomaly functional for
Δ ¼ 2 operators was automatically WZ consistent, but
we presented an independent argument in N ¼ 2 SCFTs
using Poincaré supersymmetry that also implies ∇G ¼ 0.
This argument was explicitly checked to leading order in
perturbation theory. It would be useful to examine if there
is a more general, supersymmetry-independent argument
that proves ∇G ¼ 0 for Δ ¼ 2 anomalies.
One of the interesting features of the WZ-consistency

analysis is that it implies ∇G ¼ 0 in all phases of the
theory, even when conformal symmetry is spontaneously
broken. The implications of ∇G ¼ 0 in different phases are
nontrivial as explained in [6] and reviewed in [1]. We
expect the WZ-consistency argument to hold for arbitrary-
dimension integer operators, as a consequence of using
integration by parts, but, as we showed, the cases of
increasing scaling dimension involve increasingly compli-
cated anomaly functionals where the curvature of the
bundle of the integer-dimension operators plays a cru-
cial role.
It is important to investigate further the stability of

our WZ consistent anomaly functionals under possible
deformations, e.g., under turning on nontrivial beta functions

for sources/couplings. For instance, one such deformation
can arise by having nontrivial beta functions for the exactly
marginal couplings.19 New terms would then enter the
computation of the WZ consistency condition through
the anomaly functional for exactly marginal operators (2.1).
The simple option of having the standard beta function
δσλ

i ∝ ciJKλ
JλK, where ciJK is directly related to the three-

point function coefficient of hOiOJOKi, is not realized in
our case, because the operators we consider have (by
construction) fixed integer scaling dimensions along the
conformal manifold and therefore vanishing coefficients
ciJK ¼ 0. However, we cannot rule out the existence of
more general beta functions for marginal couplings that may
receive contributions from the curvature on the vector bundle
of operators. We hope to return to this point in the future.
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