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Operators with integer scaling dimensions in even-dimensional conformal field theories exhibit
well-known type-B Weyl anomalies. In general, these anomalies depend nontrivially on exactly marginal
couplings. We study the corresponding fully covariantized anomaly functional on conformal manifolds in
several examples. We show that a natural consequence of the Wess-Zumino consistency condition is
that the anomalies are covariantly constant with respect to the exactly marginal couplings. The argument
is general and applies even when the conformal symmetry is spontaneously broken on moduli spaces

of vacua.
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I. INTRODUCTION AND SUMMARY OF RESULTS

The study of Weyl anomalies under deformations is an
interesting subject in its own right. One can consider
deformations that preserve the conformal symmetry, or
break it explicitly or spontaneously. In principle, these
properties can be used to constrain nonperturbative quantum
field theory (QFT) dynamics. For a recent review see [1].

In this paper, we will focus exclusively on four-
dimensional conformal field theories (CFTs). The ques-
tion of whether conformal anomalies match in different
phases of a 4D CFT was answered in the affirmative in [2]
for type-A anomalies, and put to great use in the proof of
the a-theorem [3]. In general, it is not possible to obtain
similar results for type-B Weyl anomalies.'

The nonperturbative properties of type-B Weyl anoma-
lies associated with Coulomb-branch operators (CBOs) on
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'The division between type-A and type-B conformal anomalies
was introduced in [4]. The specific anomalies we are considering
in this paper can be identified in the conformally invariant phase
by noting the presence of a logarithmic divergence in the
momentum-space two-point function of integer-dimension oper-
ators, which necessitates the introduction of a scale characteristic
of type B.
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the Higgs-branch vacuum moduli space of 4D N =2
superconformal field theories (SCFTs) were discussed in
[5,6]. These papers presented examples, where the CBO
type-B Weyl anomalies matched across the Higgs branch,
and other examples where the matching between the
conformally symmetric and spontaneously broken phase
does not occur. A complete understanding of the dynamics
responsible for these disparate behaviors is still missing,
but the existing results have led to a number of non-
perturbative conjectures, which were postulated in [6].

In the present work, we elaborate further on the properties
of the CBO type-B Weyl anomalies, and point out that
one of the crucial elements in the discussion of Refs [5,6]—
the fact that these anomalies are covariantly constant on
conformal manifolds—can be understood in many cases as
a natural consequence of the Wess-Zumino consistency
conditions of the corresponding anomaly functionals. This
alternative perspective is useful for reasons that we will
explain. The existence of covariantly constant type-B
anomalies in different phases of the theory has nontrivial
implications as explained in Ref. [6] and reviewed in [1].

The main elements of the argument are as follows. For an
operator O with scaling dimension A =2 +n (n € Ny),
the anomaly of interest can be identified (in all phases of the
CFT) as a specific contact term in the integrated three-point
function of the trace of the energy-momentum tensor
T=T1",

[ T010:@050) « T3, (1)

In the unbroken conformal phase, the Ward identities of
diffeomorphism and Weyl transformations can be used to
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relate the corresponding anomaly coefficient G<ACFT), to the

two-point function coefficient of the operator O. In
momentum space, the anomaly appears in the logarithmi-
cally divergent piece of the two-point function

. 26 CFD
(Os(P)Os =) = D™ S D)

2
x p**log (/];_2> + -

In a phase with spontaneous breaking of the conformal
symmetry, the Ward identities do not provide a similar
relation between the corresponding type-B conformal
anomaly and some datum in the two-point function of
the operator O. In that case, the broken-phase anomaly,

G(Abr(’ken), must be extracted directly from the three-point

function (1.1). In momentum space this reads

(1.2)

im(7T(q)Oa(p1)Oa(p2))

-0

= (-1

broken
7 G<A )

2°"T(n+ 1)['(n +2) (13)

()4

On the rhs of (1.2) and (1.3) a Dirac-delta imposing
momentum conservation is left implicit; in particular,
the ¢ —» 0 limit in (1.3) is equivalent to taking the
pr = —p; limit.

As an explicit example, let us consider the case of 4D
N = 2 SCFTs with a nontrivial chiral ring of CBOs O,, an
antichiral ring of conjugate operators O,, and a nonempty
conformal manifold M. The latter means that the N = 2
SCFTs of interest possess exactly marginal opelrators.2 The
CBOs, which are charged by default under the U(1), part of
the full U(1), x SU(2)g R symmetry of the theory, have
integer scaling dimensions, and the corresponding type-B
Weyl anomalies can be obtained as contact terms in the
U(1),-preserving three-point functions (7'(y)O;(x)O,(0)).
In the conformally symmetric phase we will denote the

corresponding anomaly coefficients as GE(]:FD. On the Higgs

branch’ the SU(2), part of the R symmetry is sponta-
neously broken along with conformal symmetry by the
nonvanishing vacuum expectation values of Higgs-branch
superconformal primary operators. We will denote the

(Higgs)
o

corresponding anomaly coefficients in this phase G

“These are necessarily supersymmetric descendants of scaling-
dimension-two CBOs.

*Four-dimensional A = 2 SCFTs typically have both Higgs
and Coulomb branch moduli spaces of vacua. Here we consider
only the case of Higgs moduli spaces to make contact with the
discussion in Refs. [5,6].

In this context, we are mainly interested in the properties
of G\S™ and G\, but we will soon indicate which
arguments of the paper can be generalized beyond these
specific cases. Both quantities are, in general, complicated
functions of the exactly marginal couplings (see [5,6] and
references therein).

A crucial ingredient in the discussion of [5,6] was the
proposal that the anomaly coefficients G,; are covariantly
constant on the conformal manifold M in both phases
of the theory. Namely, both anomalies obey equations of
the form VGE?FT) =0, VG?;h‘ggS> = 0, where V is a phase-
independent connection on the vector bundles of the
CBOs. It is straightforward to derive this condition in
the conformally symmetric phase as a consequence of
superconformal Ward identities. However, as pointed out
in [5], a similar argument in the Higgs phase needs to take
into account potential contributions from the dilatino.
In [5] it was anticipated that such contributions do not
affect the contact term that accounts for the anomaly, but it
is not straightforward to demonstrate this explicitly. As a
result, it would be very useful to have an independent

argument that VGE;ﬁggs) = 0. Our main purpose in this

note is to find such an argument. As a bonus, the argument
we will present is very general and applies to any CFT with
a conformal manifold that has operators with integer-
valued scaling dimension; it is not restricted to CBOs in
N =2 SCFTs or to Higgs-branch phases.

It is well known (see, e.g., [7]) that conformal anomalies
can be conveniently packaged into a local anomaly func-
tional that expresses the Weyl variation of the generating
functional of correlation functions W*

5, W / d*x\/ysc A. (1.4)

W is a nonlocal functional of the sources of the CFT, but
the Weyl anomaly A is a local term reflecting the above-
mentioned fact that in correlation functions it appears as a
contact term. The J, variation in (1.4) denotes infinitesimal
local Weyl transformations with parameter So(x) that
vanish at the boundary of spacetime [2], and y,, is the
background spacetime metric. The locality of do(x) guar-
antees, among other things, that the Ward identities retain
the same form in all phases of the theory, irrespective of
whether or not conformal symmetry is spontaneously
broken (they are operatorial relations). This fact will be
crucial for our upcoming discussion of the structure of the
anomaly functional in different phases. In order to encode
the CBO type-B anomalies of interest in the anomaly
functional one needs to add to the action spacetime-
dependent sources for the operators O;, O,

*See also Ref. [8].
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55 — / TR0 x) + P, (x).  (15)

The anomaly functional must satisfy certain conditions.
It must be invariant under diffeomorphisms or any other
unbroken symmetries of the theory. In addition, it must
obey the Wess-Zumino (WZ) consistency condition

80,60y W = 0, (1.6)

which encodes the fact that the action of the Weyl group is
Abelian. Finally, terms in .4 that are Weyl variations of a
local functional express the addition of local counterterms
in W [9], which simply correspond to a change in the
regularization scheme. Such terms are considered trivial
and can be dropped from 6, W. This reflects the fact that the
anomaly is a scheme-independent quantity.

As emphasized already in Ref. [10], on a conformal
manifold M one should also require that the anomaly
functional is suitably invariant under coupling-constant
redefinitions. This can be achieved by utilizing a connection
V on the bundle of operators. For exactly marginal couplings,
the WZ consistency condition on the M-covariantized
version of the anomaly implies that the connection V is
compatible with the Zamolodchikov metric [10]. In this
paper, we examine whether this argument can be extended
beyond the case of the exactly marginal operators.

Since the presence of a contact term like the one in (1.3),
in any phase of the theory, has been established independ-
ently by the analysis of Ward identities, in all phases the
anomaly functional includes a term of the form

5, W / d*x\/736[G T + .., (1.7)

where G;; are the corresponding anomaly coefficients.
This term should be covariantized on the corresponding
vector bundle of operators over M. We perform this
covariantization for operators of scaling dimension
A =3,4,5 in Sec. Il and show that the WZ consistency
condition (1.6) requires that the anomaly is covariantly
constant. In the case of scaling-dimension-four operators
the arguments of Refs. [8,10] are modified to capture the
properties of marginal, but not necessarily exactly mar-
ginal operators. Our analysis is completely general and
does not employ supersymmetry at any stage. We expect
that similar arguments can be applied to all higher values
of integer scaling dimension A, but the anomaly functional
becomes significantly more complicated with increasing
A. Indeed, already at A =5 we present WZ-consistent
anomaly functionals, which contain hundreds of terms in
the flat-space limit. We notice that in both the cases of
A =4, 5 anomalies, new terms in the anomaly functional
that involve the curvature of the corresponding operator

bundles are crucial in order to satisfy the WZ consistency
conditions.

The case of A =2 operators is special and requires a
separate discussion: the anomaly functional is automatically
WZ consistent and (1.6) does not lead to further restrictions.
To make a nontrivial statement, we need to use the N/ = 2
supersymmetry to relate the A = 2 anomaly to the anomaly
of the exactly marginal operators. An argument in favor
of this relation is sketched in Sec. III alongside an explicit
tree-level check for AV =2 SCQCD in the conformal and
Higgs phases.

II. WZ CONSISTENCY CONDITIONS IN 4D CFTS

We follow closely the discussion and notation of
references [11,12].° W = log Z is the generating functional
of correlation functions. It is a functional of the spacetime-
dependent sources (couplings). In this section, we focus on
four spacetime dimensions and type-B conformal anoma-
lies of scalar operators. Such anomalies exist when the
operators have scaling dimensions A = 2 + n with n € N,.

We will denote the operators of interest as O; and their
corresponding sources as A/. Note that although we
ultimately have N = 2 applications in mind, we will use
areal basis of operators and will not require supersymmetry
for any of the arguments presented in this section. When the
operators are exactly marginal they will be denoted as @;
and their corresponding couplings as A’. Clearly, the index i
takes values up to the dimension of the conformal manifold
M. The more general indices / label conformal primary
operators in a subbundle of operators of fixed integer
dimension and the corresponding conformal anomalies will
be denoted Gy;. The background spacetime metric will be
denoted y,, with greek letters reserved for the spacetime
coordinate indices. Vector bundles over the conformal
manifold can be equipped with a connection. For a
discussion of this connection in the context of conformal
perturbation theory, see [14,15]. For a related discussion
in radial quantization see [16]. The components of the
connection on the subbundle of O; operators will be
denoted as (A;)}, whereas the connection on the tangent
space of @, operators as Ffj The corresponding covariant
derivative on the conformal manifold will be denoted as V.

In this section we follow the general strategy of [8,10],
where the basic ansatz for the Weyl variation of W was
covariantized not only in spacetime but also in the tangent
bundle of the conformal manifold 7M. Accordingly, for
the type-B Weyl anomalies of exactly marginal operators
[8,10] proposed the anomaly functional®:

An early application of the cohomological analysis to
conformal anomalies can be found in [13].

®For the case of a single coupling, this expression is related
to the Fradkin-Tseytlin-Paneitz-Riegert operator [17]. A six-
dimensional generalization of this operator was presented in [18].
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5,W / d*x\ /766G, ((Dﬂ" +T,04240,40)
X (O + Thnd? A0, 2")

. 1 .
~ 20,4 (R/“’ -3 y’“’R) ay,1!> , (2.1)

with R,, and R the spacetime Ricci tensor and scalar,
respectively. Clearly, this functional is sensitive only to the
symmetric part Fékl) of the connection. The WZ-condition

identifies it to be the Levi-Civita connection on M, and
under the further assumption that the connection is torsion
free [14] one obtains that the anomaly is covariantly
constant on M,

This approach can be generalized to generic operators O,
where covariantization on the conformal manifold translates
into the invariance of 6,W under a change of basis in the
vector space of O;s. We discover that imposing the WZ
consistency condition will typically lead to V,G;; = 0.

We emphasize that this result is independent of the phase
of the theory. The anomaly functional can be understood as
the local Weyl variation of the generating functional W with
appropriate boundary conditions for the fields. The infini-
tesimal local Weyl parameters, 5o (x), by definition vanish
at the boundary of spacetime and parametrize transforma-
tions that are valid both in the conformally symmetric and
broken phases [2]. Moreover, the asymptotic behavior of
So(x) also guarantees that any boundary terms that involve
do(x) (obtained after integration by parts) can be safely
ignored in the upcoming discussion.

We will now summarize the key ingredients of the
calculation before specializing to type-B anomalies for
operators with A =3, 4, 5. The A =2 case cannot be
constrained with a simple analysis of the Wess-Zumino
consistency condition and will be treated separately in
Sec. I1I. The expressions J, W for cases with a single source
can be found in [12] and form the starting point of our
discussion. We study the WZ consistency conditions after
we covariantize the expressions in Ref. [12] with respect to
the conformal manifold. In the process we discover that a
fully covariant anomaly functional requires new terms that
have not appeared previously in the literature.

A. Covariantization on the conformal manifold

In what follows we will make an important distinction
between the exactly marginal couplings A' that parametrize
the conformal manifold and the remaining nonexactly

"Here the A = 4 case refers exclusively to Weyl anomalies for
marginal operators that are not exactly marginal—they can be
marginally relevant or irrelevant.

marginal sources A/. Geometrically, the couplings A’ are,
in general, nonlinear coordinates on the curved conformal
manifold, which are allowed to also depend nontrivially
on the spacetime coordinates. Equivalently, we view the
spacetime derivatives dﬂ/li as components on the tensor
product of the spacetime cotagent bundle and the conformal
manifold tangent bundle. The couplings A/ are viewed,
instead, as sections of a vector bundle. They can depend
both on the spacetime and conformal manifold coordinates.

Accordingly, under a change of basis on the tangent
bundle of the conformal manifold

. oA )
6”/1‘ - Wa”/vj . (23)

On the other hand, under a change of basis on each fiber of
the A vector bundle

oM

I __
A _6/1/1’

Vi (2.4)

where the transformation matrix ail/;’ depends on the A7 (x*)

only. As a result, we define covariant derivatives on
the conformal manifold in terms of the connection com-

ponents (A;)! as

Vil = 0,47 + (A)52. (2.5)
The generalized covariant derivative is then naturally
given by8

@”ﬂl = V”livill + V/l/11|/1i:ﬁxed = aﬂﬂiviﬂl + aﬂj'1|/1i:fixed’
(2.6)

with V,, as the standard spacetime-covariant derivative.

Compared to the unhatted differential operators used
in [12], commutators of our hatted operators can lead to
curvature terms on M. The latter can be easily evaluated by
using the definition of the generalized covariant derivative
and the fact that d,(A;)}|;i_fixea = 0, i.€.,

(Fu )i =V, V) = 0,200,M(F )L, (2.7)
where (Fij); = 0;(A;)} — 0;(A))] + (A)k(A))] — (A;)f %
(A))J-

Under the change of basis (2.3)-(2.4), the connection
transforms inhomogeneously as

(A = oX'" o i

Y AL YA 2y
J— i J 7 (Ai’)lf
oA oA gNT

o o e OV

*Here we are explicitly stressing that V,, and d, have to be
understood at fixed A', but later this will be left implicit.

025006-4



COVARIANTLY CONSTANT ANOMALIES ON CONFORMAL ...

PHYS. REV. D 107, 025006 (2023)

such that
oN'" oAl :
Vil = ———=V, AT, 2.9
A=, 29)
which in turn implies
v i oA’ v
A= AT WA (2.10)

Therefore, standard differential operators can be covarian-
tized on M by upgrading the usual spacetime-covariant

A

derivative V, to V,.

Laplacian [, which reads

For example, the M-covariant

O =V, V¥,
= 02V, (V, ) 4 VH e VA
= a”i@ﬁﬂ/v + (Ai)ﬂﬁ;/y) =+ a”|,1fﬁxed®u/11

o YA (2.11)

transforms as

(2.12)

As a result, to get anomaly functionals invariant under a
change of basis in the space of Os, one can consider the
ones written in [12] and simply replace all spacetime
covariant derivatives with their hatted versions. However,
because of (2.7) this minimal prescription is, in general,
sensitive to ordering choices and does not guarantee WZ
consistency.

We conclude this section with some remarks on A and by
explicitly stressing how our framework is compatible with
the one of [8,10]. As the exactly marginal coupling A’ is not
a tensor (it is a coordinate on the conformal manifold), the
generating functional cannot display an explicit A’ depend-
ence. Instead, the anomaly can depend on it only through its
infinitesimal variation, i.e.,

Ay =0, =V, Al (2.13)
This object serves as a pullback from the conformal
manifold to spacetime, which could have been appreciated
already at the level of formula (2.6). It has good trans-
formation properties (2.3) and can then be acted upon by
the generalized covariant derivative:
VA, =V, + /l,fll"}ki’;. (2.14)
Thus, within our framework, (2.1) can be more succinctly
recast into the form

56Wo</d4x\/7756Gij
A A . 1 ;
X <V”/1”‘VD/IJ” =24, <R"” —gy””R) /1,],)

PO . 1
= / d*x\/yéc (Vﬂwvy/lg—z,l;, <Rﬂ”—§yﬂ”R> ,lw>.
(2.15)

In the second line we have implicitly used the fact that F;k

is given by the Christoffel symbol (so that @M Gjr = 0). The
fact that F;k is symmetric yields many simplifications, e.g.,

Vidi =0, XVl =0, (2.16)

where the first equation guarantees that the Bianchi identity

V(i(F )} = 0 gets pulled back onto @b,(FW,])ﬁ =0.

B. Weyl transformations

In four spacetime dimensions, an infinitesimal local
Weyl transformation acts on the spacetime metric y,, as

8o¥w = 2607, (2.17)
The Christoffel symbols, the Ricci tensor R, and the Ricci
scalar R transform accordingly
8500 = 77 (7050,60 + 7,50,60 — 7,,0,60),
o,R,, = -2V ,V b0 -y, Uéo,
S,R = =250R — 6lJ60. (2.18)

For an operator of conformal scaling dimension A, one has
classically 6,0; = —AO,éc. Thus,

5,1 = (A —4)60A!, 5,41 = 0. (2.19)
Being a number, the anomaly has vanishing classical
dimension, so

0,Gr; =0, (2.20)
while the uniform Weyl variation of V;A! leads to
5,(A;)5 =0. (2.21)
One then finds that standard equations such as
5,0,A1 = (A —4)0,4'66 + (A —4)0,66/", (2.22)
5,04 = (A — 6)66002" + 2(A — 3)9,600" !
+ (A = 42066 (2.23)

can be straightforwardly extended to

025006-5
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5,V A1 = (A = 4)V, 66 + (A —4)d,600, (2.24)
8,021 = (A = 6)860I4 +2(A - 3)9,56V* 2!
+ (A - 4)A' 06, (2.25)

and accordingly for quantities with raised spacetime
indices. These expressions will be useful in the calculations
that we will be performing below.

C. A =3 operators

We begin the construction of fully covariant and WZ-
consistent anomaly functionals with the case of A = 3.
According to the discussion around Eq. (1.7), the ansatz for
this case should contain two derivatives. In order to address
the Weyl-cohomological problem, we will first characterize
terms in the anomaly functional that are cohomologically
trivial. We start with the following expression for the
generating functional of connected correlation functions

wexact — / d*x /1[G VAN 2+ AT Gy

+ AYG A R+ AN AN Gy 4+ AT TG
(2.26)

By computing its Weyl variation, and after integrating by
parts, we find that the most general exact (i.e., cohomo-
logically trivial) anomaly functional is

56W6xacto</d4x\/]756[2(—1 + Ay + 645)G VF AV )

+2(=1+ A, + 6A)ATIV Gy + 2(—1 + 24,
124, — A3 + 2A) VIV, G,

+ (A} 4 6A, — Ay + 24, TIG,). (2.27)

From the above one can deduce the following:
(i) An anomalous Weyl generating functional contain-
ing 66G;;A'A’ R cannot be cohomologically trivial.

(i) The term A’2’C1G,; is cohomologically equivalent
to V¥V, Gy;.

(iii) The term A/V*2/ @MGU is cohomologically equiv-
alent to G”@”AI@MN + A'CJA’G,; and by going to
momentum space, one sees that the latter does not
contribute to the anomaly.

Hence, modulo cohomologically trivial terms and up to
integration by parts, the most general Weyl anomalous
functional is given by

S, W = / d*x\ /766G [CV* IV A/

+ CAI0A + C AR, (2.28)

with C; # C,. Imposing the WZ consistency condition
leads to the following independent solutions for the
anomaly functional:

PR 1
s,w) = / d*x\/y86G; V' IV 2/ +6/1WR], (2.29)

[ A 1
S,W = /d4x\/}756GU A0 —EAI/IJR} (2.30)

For 6, W) one needs to impose V,G;; = 0, while 5, W is
automatically WZ consistent.” It is interesting to observe
that (2.29) and (2.30) are equivalent upon integration by
parts when V,;G;; = 0, leading to a self-consistent picture.

D. A =4 operators

The classical Weyl variations (2.24) do not distinguish
between the exactly marginal couplings A’ and the margin-
ally relevant or irrelevant A’. However, in our formalism
these two sets of couplings are treated differently—the A’ are
nonlinear coordinates on the conformal manifold but the A/
are linear coordinates on a vector bundle. Accordingly, in the
conformal phase, we can interpret the anomalies G;; as a
Zamolodchikov metric on the conformal manifold, but the
anomalies Gy; do not have such an interpretation. This will
soon translate to a different type of anomaly functional for
the anomalies G;;, which is sensitive to the curvature of the
corresponding operator bundles. Examples of theories with
nonexactly marginal A = 4 operators, whose curvature is
nontrivial, are abundant in 4D N = 2 SCFTs, see, e.g., [19].

It is sensible to start with an anomaly functional, which is
similar to (2.15) for the exactly marginal operators

5, W x / d*x\/766G/, [mmﬂ -2V,

x <Rl‘” —% ””R) i ] .

For exactly marginal operators @Mi] =0 from (2.16).

(2.31)

Instead, for nonexactly marginal A =4 operators
[V, VAT = (F,,)}4. As a result, we expect that terms
containing either (F,,)¥ or explicit (F;;)} contributions
will mark a distinctive difference compared to the exactly
marginal case. Indeed, when checking the WZ-consistency
condition for (2.31), one finds that

The WZ consistency condition imposes C; = £H(C=Cy) s0
the most general anomaly functional is given by J,W =
C,6,W 4 C,8, W with C; # C,. Terms with C; = C, can-
not capture the anomaly, see point iii. above.

025006-6
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85y By W / d*x\/7861,0* 56, VA [-4V .G,V .2

+2V,G VA —AG k2 (F,,)K). (2.32)

The expression on the rhs does not vanish automatically
even after imposing V;G;; = 0: extra terms need to be
added to (2.31) to cancel the last term in (2.32). One can
exhaustively prove that terms constructed out of (F, )} are
closed with respect to the Weyl-cohomology and cannot
achieve the desired goal. We are thus forced to use terms
where (F; 1)5 appears explicitly and does not combine with

pullbacks to give (F,,)} = (F;;)} 4. We notice, using
the first equation in (2.18), that 56(@[,/1};) ~ 0,604, and as
a result

S8, (Fi) kN 2) = (Fi))k2p6,(V,20) ~ (F ) %0,0.
(2.33)

We are thus led to consider terms with the schematic
structure: Gy (F,;)k4)A%V A,V 2’ . By taking into account
all possible contractions for the spacetime indices, we
arrive at the generating functional

A A A 1
5,W o / d*x\ /766Gy, {Dﬂ’Dﬂ —2V, (R/‘” - §WR>
x V, 27 + (Fij))k(E3¢"°g*" + E2 g ¢°

+E, gﬂ”gﬂv)zﬁﬂzm@aﬂ] , (2.34)

where E, E,, E5 are free constants. The WZ consistency
condition can be satisfied by setting V;G;; =0 and
E| + E, + E5 = —2. The fact that only the combination
E, + E, + E5 = =2 survives the WZ condition suggests
a relation between the three terms in the second line
of (2.34). Indeed, the terms parametrized by E, and E; are

identical as a consequence of the identity @[ﬂ/li] = 0. This

leaves a single combination in (2.34)—the difference
between the terms parametrized by E; and E, being
closed, but not exact. The resultant anomaly functional
(2.34) is the WZ-consistent functional that captures the
type-B anomalies G;; for non-exactly-marginal A =4
operators.

We can draw two lessons from this discussion. First, we
verify once again that the condition V;G;; = 0 is neces-
sary to obtain WZ consistency. Second, and on a more
technical level, we notice that in order to cancel F, terms
in the WZ consistency condition (2.32), one needs to add
to the generating functional terms where F;; factors come

contracted with (differentiated) pullbacks. The specific
terms added in (2.34) contributed to the WZ condition only
with F,,, combinations. It turns out that this is a special

feature of A = 4 operators (for which both 8,4’ and §,VA!
vanish). In the next section, we will see that F ij terms
provide contributions to the WZ condition of A =35
anomalies that do not combine to produce F,,. This
feature will add to the complexity of the A =5 anomaly
functionals.

E. A =5 operators

The Osborn equation for type-B anomalies of irrelevant
operators in even spacetime dimensions is subtle. Its
intricacies were discussed in [12], the main lesson being
that in order to ensure the consistency of the anomalous
part, one has to introduce a beta function for the spacetime
metric. We will generalize the analysis of [12] to the case of
multiple irrelevant sources A/, starting with the most
general ansatz for the spacetime Weyl variation J,y,, that

is quadratic in the sources A’. One needs to first impose that
06,05,17w = 0 and then remove the cohomologically trivial
terms from 567/w'10 The outcome of this analysis, at
quadratic order in the sources, is that the variation of the
metric d,7,, is essentially the covariantized version of the
one proposed by [12], i.e.,

85V = 2607, + adoG (R, A2 + leﬁwﬁy)lj
— 3y, VAV 2 4y, A0
+ BS6y,, (RAIX 4 621127 — 12721V 3)

+00%), (2.35)

where a and f are free parameters. Here we have
neglected—already at O(1?)—terms that vanish when
V:G;; = 0; one can prove that they sit in a cohomology
class different to that of the ones proportional to G;;, hence
their presence would not modify (2.35). Moreover, such
terms will not play a role in the computations that we will
display below.

As a starting point for the analysis of the A = 5 anomaly
functional, we consider the covariantized version of the
expression derived in [12], which to quadratic order in the
irrelevant sources reads'’

""The latter are those solutions (86 wivial 10 01,0617 = 0
that can be written as (8,7, ) yivial = 057 — 2667, for a metric
7~ Therefore the redefined metric, y,,, = 7,, — 7,,, continues to
transform classically.

We thank M. Broccoli for pointing out a missing factor of %
between the C,,,,,C**7° and 2% terms in [12]. This factor can also
be confirmed by an independent holographic computation [20].
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A A 13 53 4 1
A = CC”DPO.CWJPU + E(XG[J{D/{lDzAJ - §RRWJRWJAIAJ + ERBAIXJ + ERIWRAGRIMUO./{I&J —_ gRRﬂwlaR”M”ﬂvllj

43 25 A 1 167 Aa

+ —ZR”,,MR””“/}R foplp) — RZ/V A + == 21 WMR””"/V A — %V”RV”RA’/V + ER/‘”RWV“/I’ vV, A’
1012(11 719 i as] J_ =g g0 _ 10 130 4 ! IAvAA vl

R2VAIV 2 — 4wa Ryus VAV 1 RDV’% Vit =5 RV, VR + SRRV,

1 A 16~ . a A A 1 A IS 37 A

+ 36 ORATIY — ) RUIITIA + V”RV”/V A7 + ER/II P4 — 4R””Vﬂil 0ov, A — I—SRWV”R/V i

£y 116 £y oy 5 PN 5 a4 o ana
— 22R%R, V' AV A + TRWRV*‘A’V”,V — 13RPR 0 s VAV 2 — 8 VHVYRMV, NV, 2 - §Rvﬂvy1’V"VW

- 8 PSRN 10 A S & 2 5 Ao 22 Aa A
= SRUV, RV H S RIRDIV V2 + = RNV, 0000+ 2OR0, 0,20 + R0, 2100
5
-2 wRaﬁv,,RaﬁM} + O, (2.36)

where c is the central charge of the system. From this expression it is apparent that the a parameter entering (2.35) is the
normalization of (TOQ) which, in the unbroken phase, can be related to the normalization of (OO). However, there is no
information about f3, since the part of 5,7, that it parametrizes does not contribute to 6,(C,,,,,C***°) 2 The WZ consistency
condition for the anomaly (2.36) is satisfied up to terms that vanish when V;G;; = 0 and up to bundle-curvature terms
(F terms), since in their absence our expression then reverts to the one of [12].13 Our next goal will be to introduce new
terms A" to the anomaly (2.36) that remove the F terms in the WZ consistency condition.

For the purposes of this paper, it will be enough to determine the new terms that are needed to make A + Af WZ
consistent to leading order around flat spacetime, y,, ~J,, + ---. We will therefore ignore in A, AP terms quadratic
(or higher) in the spacetime curvature, like the Weyl-tensor squared. However, terms linear in the spacetime curvature must
be taken into account, as the flat spacetime limit of §,R,,,, does not vanish, cf. (2.18). Accordingly, we will work with the
classical Weyl variation of the spacetime metric and up to quadratic order in the As. In summary, we want to identify the terms

Al that can remove all F terms from the flat-spacetime limit of the WZ condition for Ag,, which reads

aian s Ao 1 A 16 A A R
Apa & Gy |OAT2H - ngvm’v,,M +— DRMDM - 3Rm’mf + VRV, A0V + ERA’DW — 4RV ATV,

5 - 10 5 2
— VRV, - O R, AV SRV, L ORI, + RV, |

(2.37)
The F terms that enter the flat spacetime limit of the WZ consistency condition for Ag,, are'

4 u J I/PIKAL40PIJ KXV J ZOKALAPI 4 L7V 1JX7 el
d xﬁéa[lv 562]G1] SFDpL /1 Vﬂ/l _?FﬂKFI/pL/I V /1 3 ﬂ D/l VFﬂK +§vyﬂ V ﬂ, VFML

300k e 4 20 P KL Y IR AICIEL  —28FL TIKCIY S FL KEI A
+? u vK +? ukK ptuL + vk = uvk +§ uvk

PN - 32 P 8 PN

+ 16V/IJV,,F,IMLVP/1L —?FI{;,KV VPN 2 _gF,Iva VIAVAVAVEA R (2.38)

“Note that when computing 55(CW,6
\Y% 5(7%//} =V 5071//)
By F terms we denote contributions that vanish when F;; = 0, but do not vanish when V,G,; = 0.

“To simplify our expressions, we will denote F* o = (F”,,)Q, F"bP = (F*™)g, and F”P (F)g- Analogous definitions will apply
to F;;.

7)), all the V,, operators hitting &,y,, can be promoted to their hatted versions, i.e.,
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One arrives at this expression by making use of the Bianchi identity for F,, and rearranging the order of the \Y operators
into terms of the type V"2 G,,."

To cancel the terms in (2.38), we start with the most general linear ansatz that is quadratic in the sources 4, that vanishes
when F;; = 0, and that is at most linear in the spacetime curvature. Moreover, since (2.38) involves only F,, = /1,",/1,{F .
each F;; must come contracted with corresponding factors of /1/"4. Without any additional algebraic simplifications, nor
through identifying redundancies due to Weyl-cohomologically trivial terms, we have determined using the xAct
Mathematica package [21] that such an ansatz comprises ~1500 terms. These contribute to the WZ consistency condition
with two classes of terms: those that can be rewritten solely in terms of the combination F,, = ﬂ,’;l{;F ij and those where
the curvature components F;; of the 1 bundle necessarily appear explicitly. We require that the former cancel out the terms
in (2.38) and the latter cancel out by themselves. This yields a solution that fixes some of the coefficients of the linear ansatz
and leaves the remaining undetermined. By setting the undetermined coefficients to zero the resulting expression has the

following 126 terms'®:

A 359 4 s 23 - 35 ~
FP KON 4 1 FL RAWA KV, NV 20 — 3 FPIEY R, VA — > A AP

19

Agat = G” _EFW’L

49 !

+€FW)

3591 iJKA‘89KAJAAy1 95JAKAA1/1 215iJKAAIAA'1/

—mFUKR/U‘/l A D/I{,—i—ﬁ/l A\ quFﬂK+E/1 \ VUDF”K+?1”/1 A V”V/,F[jKVUV”/V

255 AAA A 395 N Aa A 2519 N AaA A

+ = it/ AV VNV PV Qi 4 S AN FL VN NI 4 =S Flp dRV, VN 0V
1139

2509 AU S .
+ g Fhch! Va8V N VA — 2 L d iV LN 2 4 S FLy A ARV RV 2

96
35 e s ATS e a0 D519 e
R A A e L R A A e e N L A AP LA

96
- %M%@ FL VNV PV — 2039 FLdakN OGN + % FLA 2N, CINVY 2K

K 96
2509 9 2029
+ o5 S ARV AV Zi’”/lJVﬂFf KV V00V K — T FlL AV, OV 28

+ 11F FL NPIRVAAE — FIcF!
40

. 241
+3 WPl ANV S
L 623

24

22 e i 14 e e 83 ke ol
+ 5 AR NNV Nl ROV Iy 57 REASENI AN Fl o+ 2F 225V, O, 200

~ ~ 151 . A A A A 1 . N A . N A
vpJ i v i v i v
LFEN AN 4 i AR NV N Fly = S L RAMAKS AN, 0 4 Fly RAVAIY, 4KV, 20

O R AT A FURES A P R O

. ce 89 o
HARN,JN FL VN 00— 220 ARV, FL VU

T3 e e e 175 e o
A A A I L A A A A e KR A A

o+ 2F ] i IR EIIN 07— 2 0KV F Ly NN 40 4 20N ARV, F VY 10 1

77 o e
+ g FlixRu A KN AN 300 4 2600475V, V

e e e w247 s c iy o 295 e e
= 8F AWV, NV IV AN 00 — = AN N F L VAR A0 = 2 AN NNV B

LNV N Q00— AFL R, AN AR 200

For example, one can rewrite expressions of the type G K( 1@(") (F ”,,)f) solely in terms of G KIW”’) (F,,)% with m < n —2, and terms
that vanish when V,;G;; = 0. In particular, for n = 0 we have that F,;; = 0 when V,G;; = 0, with F,;; == Gg;(F,,)¥.
"®Our Mathematica notebook with the full solution can be made available upon request.
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" 215 "
24 24

25 e e 337 e e e e I
T AR AP A A A A L A N A ALY

151 A oA A A A A A A D S G
DLy 29K, 05,5, 20 — % FL A3, 218,030 — %F{ AN KN NN

24

151 e s 205
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215 i vAY v 47 i v v iU EVAY 7V jur
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35 .
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497 .

+ ﬁﬂlﬂﬂu’fﬁﬁﬁf VIV + 12F! (VIR — —R

41
8

In particular, one can prove using Mathematica that it is
impossible to cancel out the contributions in (2.38) using
new terms that contain exclusively the combination F,.

The flat-spacetime limit is sufficient for the purposes of
this paper. Nevertheless, it is interesting to ask how (2.39)
would be modified in the case of arbitrary spacetime
curvature. In such a case, one should also add to the ansatz
terms that are at least quadratic in the Riemann tensor
and linear in the vector-bundle curvature. Dimensional
analysis suggests that the only possibility is of the type
GgrpF fbeRabcdRe A" 12; however, by taking into account
all possible spacetime contractions, all such terms vanish.
Consequently, our original ansatz should be sufficient
towards determining the anomaly functional for any
curved (spacetime and vector-bundle) background. This
is a well-defined but computationally challenging prob-
lem, to which we hope to return in the future.

F. A =2 operators

We have left the case of A = 2 operators for last as it is
trivial. The anomaly is encoded in

5, W / d*x\ /756G ;A1) . (2.40)

The above automatically satisfies the WZ consistency
condition and does not involve the connection A. Hence,
one cannot infer anything about V;G;; from this expres-
sion. In the next section, we will return to the case of A = 2
type-B conformal anomalies in the context of 4D N =2
SCFTs, where supersymmetry will allow us to say more.

III. A=2 CBOS IN 4D N =2 SCFTs

In this section we will focus on CBOs O, (and their
complex conjugates O,) with scaling dimension A = 2 in
4D N =2 SCFTs. We will argue using Poincaré super-
symmetry that the A =2 type-B Weyl anomalies are the
same as the type-B Weyl anomalies of the exactly marginal
A =4 operators. This is obvious in the conformally
symmetric phase (see, e.g., [5]), but requires a less
straightforward argument in phases with spontaneously
broken conformal symmetry. We will outline the argument
in Sec. IIT A and provide tree-level supporting evidence for
its validity in Sec. III B. Once the relation with the exactly
marginal Weyl anomalies is established, the result VG = 0
for A =2 anomalies follows from Eq. (2.2).

e e 22 ey ko
~ g FliRupm AV NN — =2 Fly R B 2N V20 .

71 v &0 pupl
T woupht VAN

(2.39)

A. Anomalies related by Poincaré supersymmetry

The exactly marginal operators of the AV = 2 SCFT are
of the form'’
®; x Q- 0,8, @, x 0 0,8, (3.1)
In the conformal phase it is straightforward to relate the
anomaly of the A = 2 operators O, to the anomaly of the
exactly marginal operators @®; by looking at the corre-
sponding two-point functions (1.2). The Ward identity for
Poincaré supercharges,

n

D (91(x1) Q- @r(x0) - (x)) = O,

k=1

(3.2)

can be used to move the supercharges around so as to
arrive at [15]

(01(x1) 04 (x3)) D)%z <q)i(xz)q_)j(x2)>555§7 (3.3)
where the constant of proportionality depends on conven-
tions and will be fixed momentarily.

In a general phase, the type-B anomaly of interest is
captured by a particular contact term in the three-point
function (1.3)

(T(x)0;(x1)0;(x2)), (3.4)
where T'= T, is the trace of the energy-momentum tensor.
The energy-momentum tensor of the N =2 SCFT
belongs to a superconformal multiplet with a scalar
superconformal primary 7 that obeys the shortening
conditions (Q¥)?-7 =0, (Q7)*>-7 =0 (for T=1, 2
the SU(2);x R-symmetry index), and is of the form

(suppressing spacetime indices, spinor indices and sigma
matrices on the rhs)

T, =0 0% 010, T +¢,0"-0Q,-0T
+ C2Q2 . Q2 0T + C362'T. (35)

In phases with spontaneously broken conformal sym-
metry it is less straightforward to relate (3.4) to
(T (x)®;(x;)®;(x,)) by applying Ward identities. In vacua,
where Poincaré supersymmetry is unbroken, as, e.g., on the

"We use shorthand notation to denote the usual adjoint action
of the supersymmetry generators.
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Coulomb or Higgs branch of A/ = 2 SCFTs, one can still
use the integrated form of the Ward identities (3.2), but their
application on three-point functions of the form (3.4) is
complicated. However, since we only care about a contact
term in the limit of vanishing momentum for the energy-
momentum tensor, it may be natural to anticipate that terms
in T, with explicit spacetime derivatives [like the ¢y, ¢,, c3
terms in (3.5)] will not contribute to the anomaly.
Assuming such terms can be dropped, in the three-point
function

(T(x)(Q*- On)(x1)(Q* O))(x2)) (3.6)

with two exactly marginal operators, only

((Q"-0%-01- 02 T)(¥)(Q*- O (x1)(Q* - O))(x2))
(3.7)

contributes to the type-B anomaly. Then, as one imple-
ments the supersymmetric Ward identity (3.2) and starts
moving the supercharges Q around from the x; insertion
in (3.6), there are terms where the Qs land on the x,
insertion and terms where the Qs land on the x insertion.
Up to x derivatives the latter terms vanish. Assuming once
again that we can ignore the x derivatives, we drop all terms
where some Qs were moved on the x insertion of the
energy-momentum tensor. This suggests that we can recast
the anomalous term of (3.6) as the anomalous term of (3.4),
up to a proportionality constant that coincides with the one
in the unbroken phase (3.3), i.e.,

(T(x)0;(x1) O (x)) o O, (T (x)®; (x2) D (x2)) 8.
(3.8)

To summarize, under the assumption that we can drop
terms with x derivatives, Poincaré supersymmetry guaran-
tees that the anomalies of ®; x Q*- ;8! and O; are
proportional to each other in all phases through a constant
of proportionality, which is independent of the exactly
marginal couplings. Consequently, since G;; is covariantly
constant in both the unbroken and broken phases, the same
must be true for the G;; anomaly of the A = 2 operators.
Notice that the holomorphic part of the tangent bundle
(which houses the holomorphic part of the exactly marginal
deformations) is a product £* ® V), of four copies of the
bundle of the left-moving supercharges £ and the bundle
of A =2 chiral primary operators Vz.lg Accordingly, the

18Analogous statements apply obviously to antiholomorphic
exactly marginal deformations, right-moving supercharges and
A = 2 antichiral superconformal primaries.

connection on the tangent bundle is a direct sum of
the connection on £* and V,, [15,19,22]. However, on
the anomalies G;; and G/, only the part of the connection
on ), contributes.

B. Perturbative checks

As further evidence for the validity of the relation (3.8)
in phases with spontaneously broken conformal sym-
metry, we present an explicit test at leading order in
perturbation theory on the Higgs branch of the 4D
N = 2 superconformal QCD (SCQCD) theory. We com-

pute at tree-level the anomalies for A =2 CBOs in the

CFT and Higgs-branch phases (GECFT), G(zHiggs>) and relate

them to the anomalies of exactly marginal operators

CFT Higgs
(G( )G‘(1 ggs)

PR ) via the series of equalities

GgHiggs) _ GgCFT) _ LGECFT) _ G(ZCFT)' (3.9)
192

The relation G;H'ggs) = G;CFT) is a special case of (3.8).
In 4D SCQCD there is a single A =2 CBO O and a

single exactly marginal operator ®. In terms of the

elementary fields that appear in the SCQCD Lagrangian

(see, e.g., [5] for a more detailed discussion on notation and

conventions)

O = Trg?,

o1
® = 2Tr|0,p'p + ido"d, 0+ L F,,F* + 0(g)|. (3.10)

These operators are related by supersymmetry as
in (3.1). In our conventions, the normalization of the
superalgebra is

{0%. 074} =265 Py (3.11)
with a, @ the 4D Lorentz spinor indices. We will perform a
perturbative computation in SCQCD with arbitrary color
group Gc.

The broken-phase computations that we will present are
performed in the Higgs-branch vacuum that was analyzed
in [5], where

(Qfi) = von67 (3.12)
with v € R. For v # 0 the dilatation symmetry is sponta-
neously broken and a real massless dilaton ¢ appears in the
spectrum. This couples linearly to the energy-momentum
tensor of the unbroken phase. By expanding the Lagrangian

of N'=2 SCQCD around the vacuum (3.12), one can
determine how the dilaton interacts with the elementary
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fields of the theory. In the following, we will be primarily interested in its couplings with the A, and ¢ fields, which acquire
a mass m = gv; these are

" Ay

k 2k

@B A;LB

2 2
: _; 9 Ysan 7 9 YsaB (3.13)

All computations will be performed directly in Euclidean space and the integrals will be evaluated using dimensional
regularization with (¢ has the dimensions of a mass and € > 0)

d’l . [ POl
/ G / e (3.14)

1. A=2 anomaly in conformal phase

The tree level two-point function of O in the CFT phase is obtained via simple Wick contraction of the scalar fields ¢
(which can be carried out in two ways) [5]

_ p p
(O(p)O(-p)) = > > = 2Cx L(p). (3.15)
Tr[¢?] Tr[g?]

Here C is the color factor
C= Tr[TATB]Tr[TATB}, (3.16)

with A, B =1, ..., rank(G,), while the integral 7,(p) is the kinematic factor

1) = [ e =y 73 sl 317

According to (1.2), one then reads off

(CFT)
G =2 3.18
2 (2r)* ( )
2. A=4 anomaly in conformal phase
At tree level, the two-point function of the exactly marginal operators receives only two contributions:
1 1
\p 1/7 p p
O(p)®d(—p)) = 4x 7 < + 4x —— > (3.19)
< (p) ( p)> Tr[0,p0" @] Tr[D, 0" @) Tr[0), A, 0" AY] Tr[0), A0 A7)
t—p {—p
The two individual diagrams
14
p b
—— S = C x I(p) (3.20)
Tr[0, po*¢] Tr[d, 0" @)
t—p
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P
é = 2C x I;(p) (3.21)

Tr [G[HAI,] A'j]} Tr[ [I,Aa] 8[”14”]]

{—p

are equally contributing Feynman processes, since the kinematic integrals /,(p), I3(p) are given by

b= [ Sk e - pre-pa =2 ni) 62
it 11 - ’ g P
Ii(p) = 2 (= p) 2808, x [(€ = p)*(€ = )51 =5 1i(p)- (3.23)
Applying (1.2) one extracts
G\ = 1926, (3.24)

The factor 192 is part of our conventions. This relation is an explicit tree-level check of the well-known general
result (3.3) [15].

3. A=2 anomaly in Higgs phase

Following [5], we compute in the Higgs phase the three-point function of @, @ with the trace of the energy-momentum
tensor 7 = T#,. At tree level, this three-point function receives a contribution due to the dilaton field ¢

Tr[pe]
K
P
_ T o
(T(q)O(p1)O(p2)) = AAAF-+ (+p = 4C x Iy(q,p1,p2) - (3.25)
q q
a4 P2
Tr[p]

The combinatorial factor originates from the four possible Wick contractions between the @@ coming out of the dilaton
vertex and the two operators Tr[pg], Tr[® @]. The kinematic integral 14(q, p;, p;) is given by

ddf 1 1 1 q—>01 1
I~ 2
20)4 % +m? (py + ) +m? (€ —q)* +m?>  2(4n)*’

Ly(q. 1. p2) = vzgz/( (3.26)

where the mass in the broken phase is proportional to the Higgs vacuum expectation value v, m> = g>v*. From (1.3) one can
read off the anomaly in the Higgs phase, as already discussed in [5], which is

G(ZHiggs) _ GgCFT) ) (3.27)

4. A=4 anomaly in Higgs phase

As in the conformal phase, in the Higgs phase the tree-level anomaly also arises from two equally contributing Feynman
processes, with a ¢ and A* field running, respectively, inside the loops,
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1[0, 00" p]

(T(q)®(p1)®(p2)) = 4 x W\r + (+p + 4 X MW— + (4m (3.28)
p2
a[p

W@“«p

The two Feynman diagrams above evaluate to

Tr[0,0" ]
K
l
T o
AAAS - > {+p = 26><[5(Q7p17p2)7
q q
%
Tr[0,,p0" |
Tr[a[,,,Au]a[f‘A”]}
P1
14
T o
AAAS - - (+p = 8C x Is(g, p1,p2)
q q
—q+ P2
Tr[(r)[pAg] (?[pA”]]

with the kinematical integrals I5(q, p;, p») and Is(q, p1, p») given by

S " v - S0 1 (1
IS(q’pl’pZ) _Uzng il £ (pl +f) (p1+f) (f Q)y q_)O < 4_|_...>’

QR+ m (pr+ o) +m (—qPf+m?  (4n)? \87

46 by (P1+OVSL(PIH )y (£ = b5 gmo 1 <1

1
I ’ ’ Py ’ 2/
o(4:-P1-p2) = 3970 Qi +m (p O +mt (f—qf+m® (4m)? \327

Therefore, according to (1.3), the anomaly for the marginal operators in the Higgs phase is given by

Higg: CFT
Gf‘ ggs) _ GE; )

Equations (3.27), (3.24), (3.33) establish the announced sequence of relations in (3.9).
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IV. CONCLUSIONS AND OUTLOOK

In this paper we investigated the properties of type-B
Weyl anomalies of integer-dimension operators on con-
formal manifolds. We presented evidence that such anoma-
lies are covariantly constant on conformal manifolds in
general phases of the theory, where conformal symmetry
may be spontaneously broken. By explicitly constructing
the corresponding anomaly functionals for operators of
dimension A =3, 4, 5, and without relying on super-
symmetry, we showed that VG = 0 is a condition that
guarantees WZ consistency. The anomaly functional for
A =2 operators was automatically WZ consistent, but
we presented an independent argument in ANV = 2 SCFTs
using Poincaré supersymmetry that also implies VG = 0.
This argument was explicitly checked to leading order in
perturbation theory. It would be useful to examine if there
is a more general, supersymmetry-independent argument
that proves VG = 0 for A = 2 anomalies.

One of the interesting features of the WZ-consistency
analysis is that it implies VG = 0 in all phases of the
theory, even when conformal symmetry is spontaneously
broken. The implications of VG = 0 in different phases are
nontrivial as explained in [6] and reviewed in [1]. We
expect the WZ-consistency argument to hold for arbitrary-
dimension integer operators, as a consequence of using
integration by parts, but, as we showed, the cases of
increasing scaling dimension involve increasingly compli-
cated anomaly functionals where the curvature of the
bundle of the integer-dimension operators plays a cru-
cial role.

It is important to investigate further the stability of
our WZ consistent anomaly functionals under possible
deformations, e.g., under turning on nontrivial beta functions

for sources/couplings. For instance, one such deformation
can arise by having nontrivial beta functions for the exactly
marginal couplings.19 New terms would then enter the
computation of the WZ consistency condition through
the anomaly functional for exactly marginal operators (2.1).
The simple option of having the standard beta function
8,40 o ¢ 12K, where ¢l is directly related to the three-
point function coefficient of (O;0,;Ok), is not realized in
our case, because the operators we consider have (by
construction) fixed integer scaling dimensions along the
conformal manifold and therefore vanishing coefficients
chx = 0. However, we cannot rule out the existence of
more general beta functions for marginal couplings that may
receive contributions from the curvature on the vector bundle
of operators. We hope to return to this point in the future.
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