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We study numerically the 6D (2,0) superconformal bootstrap using the soft-actor-critic (SAC) algorithm
as a stochastic optimizer. We focus on the four-point functions of scalar superconformal primaries in the
energy-momentum multiplet. Starting from the supergravity limit, we perform searches for adiabatically
varied central charges and derive two curves for a collection of 80 conformal field theory (CFT) data (70 of
these data correspond to unprotected long multiplets and 10 to protected short multiplets). We conjecture
that the two curves capture the A- andD-series (2,0) theories. Our results are competitive when compared to
the existing bounds coming from standard numerical bootstrap methods, and data obtained using the OPE
inversion formula. With this paper we are also releasing our PYTHON implementation of the SAC algorithm,
BootSTOP. The paper discusses the main functionality features of this package.
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I. INTRODUCTION AND SUMMARY

In a recent paper, [1], we proposed that stochastic
optimization methods could be a useful new tool in the
arsenal of the conformal bootstrap program. More specifi-
cally, in the context of truncation methods (where one looks
for approximate solutions to the crossing equations with a
truncated spectrum; see e.g., [2]) one can view the
conformal bootstrap as a large-scale, nonconvex, continu-
ous optimization problem. Such complex nonlinear pro-
gramming problems are ubiquitous in many scientific areas
and applications, and are commonly treated by stochastic
algorithms.
In [1] we used an optimization method based on a

popular soft-actor-critic (SAC) Reinforcement-Learning
(RL) algorithm, first developed and employed in the
context of robotics, [3], where it was primarily geared
toward continuous control tasks. The use of RL in
optimization problems is not typical. In fact, there is a
vast number of stochastic algorithms and metaheuristics in
the market designed to attack large scale optimization
problems that do not employ machine learning (ML)
techniques. Depending on the problem, some algorithms

may outperform others, but there is no single general-
purpose algorithm that dominates. The development of new
(hybrid) optimization algorithms and their improvement
with the use of ML methods is an active research direction.
In our opinion, the use of RL in this general context has
promising features and deserves further study.
In this paper we present the results of a very specific

exercise: We study the crossing equation of the 4-point
function for the superconformal primary in the energy-
momentum multiplet of interacting 6D (2,0) supercon-
formal field theories (SCFTs). These theories, which do
not have a known Lagrangian description, play a central
role in M theory (they capture the low-energy dynamics
of multiple M5 branes) and provide canonical examples
of the AdS=CFT correspondence in string theory.
Even though we study a single-correlator conformal
bootstrap problem, the superconformal algebra combined
with known facts from chiral–algebra techniques [4,5]
leads to a crossing equation, which is expected to admit
a constrained set of solutions describing known 6D
(2,0) SCFTs.
Throughout the paper we employ a fixed truncation on

the spectrum of superconformal primaries that can appear
in the conformal block decomposition of the above
crossing equation with 45 operators (10 protected up to
spin 17, and 35 unprotected up to spin 12). This yields
a continuous, nonconvex optimization problem in an
80-dimensional configuration space, where the algorithm
aims to maximize a reward. We have chosen the reward
as the inverse of a cost function that measures the violation
of the truncated crossing equation on a uniform grid of
180 points in cross-ratio space. The coordinates in the

*g.kantor@qmul.ac.uk
†niarchos@physics.uoc.gr
‡c.papageorgakis@qmul.ac.uk
§p.richmond@qmul.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 025005 (2023)

2470-0010=2023=107(2)=025005(18) 025005-1 Published by the American Physical Society

https://orcid.org/0000-0002-1045-9558
https://orcid.org/0000-0002-3826-4314
https://orcid.org/0000-0001-6760-5942
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.025005&domain=pdf&date_stamp=2023-01-10
https://doi.org/10.1103/PhysRevD.107.025005
https://doi.org/10.1103/PhysRevD.107.025005
https://doi.org/10.1103/PhysRevD.107.025005
https://doi.org/10.1103/PhysRevD.107.025005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


configuration search space include 35 scaling dimensions
of nonprotected operators (in leading and subleading
Regge trajectories),1 and 45 unknown OPE-squared coef-
ficients. We do not solve for the OPE-squared coefficients
at each step of the computation to reduce the dimension-
ality of the search space for reasons that are explained in
Sec. III.
Our 80-dimensional search signifies a factor of 2

increase in search-space dimensionality compared to
our previously published study cases, in examples of
2D CFTs [1]. It is also, as far as we know, one of the
largest searches in truncated crossing equations to-date.
However, it is still very far from our ultimate goal of
truncations with thousands of operators. The latter would
constitute a truly large scale optimization problem, power-
ful enough to start attacking with good accuracy a wide
range of situations, including the bootstrap of multiple
correlators. Nevertheless, the fixed truncation used in this
paper allows us to demonstrate clearly a particularly
interesting implementation of our approach that produces
very promising results in a demanding context, where
traditional Lagrangian methods are inapplicable and other
conformal bootstrap methods have produced relatively
few results.
For the purposes of our application, we first fixed the

structure of the unknown2 truncated spectrum (namely, the
number of operators at each spin) in the supergravity limit

(at c ¼ ∞) where the spectrum is generalized-free (see
Fig. 1). We then checked that optimizing around the
analytic generalized-free configuration at c ¼ ∞, our
algorithm recovers a slightly modified configuration with
high reward.3 That is a reassuring sign that this particular
truncation is an acceptable approximation in the super-
gravity regime.4 Then, by adiabatically changing the value
of c while keeping the number of operators fixed, we
tracked the evolution of the supergravity spectrum of
scaling dimensions and OPE-squared coefficients and
produced curves for the 80 CFT data as a function of
the central charge c. At the level of the single crossing
equation that we are studying it is impossible to detect the
discrete nature of c, so throughout our computation the
latter is treated as a continuous parameter.5

We would like to note that in our approach the spin-
partition of Fig. 1 provides crucial, additional information
beyond that used to obtain the bootstrap bounds of [5].
Roughly, our method combined with a specific spin-
partition determines dynamically the gap assumptions
that are known to whittle down the space of allowed
solutions to the crossing equations in the standard
numerical bootstrap approach. Therefore, the spin-
partition limits the scope of the search of solutions and
singles out the configurations with minimal violation of
the crossing equations. A well-informed spin-partition

FIG. 1. This figure depicts the chosen spectrum of 45 operators in the supergravity limit, where the operators are generalized-free with
known scaling dimensions and OPE-squared coefficients. The blue dots represent nonprotected operators in L½0; 0� superconformal
multiplets—see Sec. II. The red dots along the lowest diagonal represent protected operators in the D½0; 4� (at spin 0 and scaling
dimension 8) and B½0; 2� multiplets (at odd spin).

1The scaling dimensions of the remaining 10 protected
operators in short superconformal multiplets are fixed by super-
conformal symmetry, and therefore remain constant throughout
our search.

2We emphasize that this truncation refers specifically to the
crossing equation after the use of superconformal algebra
relations and the known analytic results from chiral–algebra
techniques [4,5]. The full crossing equation involves additional
operators whose CFT data are known and have been already
incorporated—see Sec. II for details.

3The slight deviation of the obtained configuration from the
exact generalized-free result is the expected effect of the
truncation.

4This does not guarantee, however, that the truncation remains
a good approximation for all values of c. One of our goals is to
probe this aspect.

5A recent, very interesting, study of the Ising CFT using a
different adiabatic deformation in spacetime dimension appeared
in [6]. This work combined the standard numerical conformal
bootstrap technology with the navigator method [7] and the
extremal functional method [8].
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can be used to achieve a good approximation of a
theory. A badly informed, or a randomly chosen, spin-
partition yields a landscape of the reward function with
optima that are typically harder to interpret as bona fide
CFTs. Our adiabatic protocols are designed to address
this difficulty.
The most prominent and encouraging features of the

results obtained in this manner are the following:
(1) Adopting a process that is outlined in Sec. III,

we managed to produce two distinct sets of curves
of high reward. We conjecture that they correspond
to the A- and D-series of the 6D (2,0) theories. In
previous applications of the numerical conformal
bootstrap to 6D (2,0) SCFTs, [5,9], it had been
impossible to make a distinction between the two
series. This distinction was unclear even in [9],
where a very interesting attempt was made to go
beyond the rigorous bounds by employing an
iterative procedure based on the OPE-inversion
formula [10].

(2) The overall comparison of the CFT data that we
produced against the known results from the liter-
ature is very promising. Most notably, we demon-
strate that the data of the lowest-lying protected and
unprotected scalar operators in Figs 3–4, are within
the known numerical conformal bootstrap bounds,
and compare well with the results obtained using
the OPE-inversion formula in [9]. For CFT data at
higher spin, some data behave worse compared to
the results of [5,9], but the overall emerging picture
supports the message that our approach produces
competitive results for a wide range of central charge
values (even with a fixed truncation of only 45
operators).

(3) In total, we obtained two sets of curves as a
function of c for 80 CFT data. Most of these data
refer to operators of unprotected long multiplets in
subleading Regge trajectories. It is the first time
that predictions have been made for these data.
However, the obvious word of caution applies here:
As one goes higher in scaling dimension some of
these predictions are less reliable. This reflects
clearly in, e.g., the statistical standard deviations
of our searches.

In our opinion, these results are very encouraging and
motivate further work in this direction. With improved
algorithms and better implementation one should be able to
achieve more reliable, higher-quality numerics. These can
then be fed back to the standard numerical bootstrap
methods to produce even better results. Along the same
lines, for the 6D (2,0) numerical bootstrap, the results
presented in this paper are merely a first step toward a more
complete investigation and should not be viewed as our
final best answer to this problem. As an immediate next
step, an enlargement of the truncation by tens of operators
is already possible with the current algorithm. We have

made our PYTHON code, BootSTOP, public and encourage
the interested reader to explore the many possibilities. The
broader question of scalability for the present algorithm,
or the development of a different more efficient one is
currently under investigation.
The rest of this article is organized as follows. In

Sec. II we review the key features of the 6D (2,0) crossing
equation that we analyze in our computations. In Sec. III
we outline the details of the BootSTOP package, detail the
improvements made compared to [1], and highlight some
of the potential alternatives that we have not yet explored.
Section IV contains the main results of the paper on the
adiabatic evolution of the truncated spectrum as a function
of the central charge c. We conclude with a summary and
brief comments on future directions in Sec. V. In Appendix
we present a blind run of the SAC algorithm with 10 k
agents, to demonstrate how it performs in a very wide
search (starting with search windows of size 10 in scaling
dimensions, and 20 in OPE-squared coefficients).

II. 6D (2,0) CROSSING EQUATIONS

Our main purpose in this section is to set up the language
needed to follow our numerical approach. For a more
complete review of the pertinent details of 6D (2,0) SCFTs
in the context of the conformal bootstrap, we refer the
reader to the excellent presentation of Ref. [5].
In the conformal bootstrap analysis of 4-point functions,

in any dimension, one needs to solve crossing equations of
the general form

X
I

CIFΔI
ðz; z̄Þ ¼ 0; ð2:1Þ

where CI are OPE-squared coefficients for the Ith operator
that runs in the conformal block decomposition and
FΔI

ðz; z̄Þ a conformal block (combination) for the corre-
sponding operator, the scaling dimension of which is
denoted as ΔI .

6 The unknowns of the problem are the
CFT data fΔI;CIg. Equation (2.1) gets contributions from
two channels and depends on the complex conjugate
parameters ðz; z̄Þ, which express the conformal cross ratios
of the four operator insertions. It has to be satisfied at all
values of the z parameters where the conformal block
expansion (in both channels) is convergent.
To set up the exact crossing equations of the 6D (2,0)

theory, we follow closely the Refs. [5,9]. We focus on the
crossing equations arising from the 4-point function of
superconformal primaries in the energy-momentum multi-
plet. We remind the reader that unitary representations of
the 6D (2,0) superconformal algebra are characterized

6In superconformal theories, like the 6D (2,0) theory in this
paper, it is convenient to work with the full superconformal
blocks, which are then used to express the functions FΔI

ðz; z̄Þ.
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by linear relations between the quantum numbers of the
superconformal primaries. They can be classified as [11]7:

L∶ Δ> h1 þ h2 − h3 þ 2ðd1 þ d2Þ þ 6; h1 ≥ h2 ≥ h3

A∶ Δ¼ h1 þ h2 − h3 þ 2ðd1 þ d2Þ þ 6; h1 ≥ h2 ≥ h3

B∶ Δ¼ h1 þ 2ðd1 þ d2Þ þ 4; h1 ≥ h2 ¼ h3

C∶ Δ¼ h1 þ 2ðd1 þ d2Þ þ 2; h1 ¼ h2 ¼ h3

D∶ Δ¼ 2ðd1 þ d2Þ; h1 ¼ h2 ¼ h3 ¼ 0; ð2:2Þ

where the quantum numbers of a state are given by
½h1; h2; h3; d1; d2;Δ�. These correspond to eigenvalues of
the soð6Þ generators of rotations in three orthogonal planes
inR6, generators of a Cartan subalgebra of the R-symmetry
soð5ÞR, and the dilatation generator respectively. The
conformal dimensions of the short (BPS) multiplets are
fixed in terms of the other quantum numbers, while the
spin of a state is related to the soð6Þ quantum numbers
through l ¼ h1 þ h2 − h3. The energy-momentum multi-
plet is denoted D½2; 0�≡D½0; 0; 0; 2; 0; 4�, the supercon-
formal primary of which is a spacetime scalar ΦIJ,
I; J ¼ 1;…; 5, of conformal dimension Δ ¼ 4, transform-
ing in the symmetric-traceless representation of soð5ÞR.
The OPE selection rules for two energy-momentum

multiplets in an interacting 6D (2,0) theory include [13,14]

D½2; 0� ×D½2; 0� ¼ 1þD½4; 0� þD½2; 0� þD½0; 4�
þ

X
l¼0;2;…

ðB½2; 0�l þ B½0; 2�lþ1Þ

þ
X
l¼0;2;…
Δ>6þl

L½0; 0�Δ;l: ð2:3Þ

With this information, the corresponding exact crossing
equations boil down to an expression of the form [5]

cðz; z̄Þ − cð1 − z; 1 − z̄Þ ¼ 0; ð2:4Þ

where ðz; z̄Þ are complex coordinates on the cross-ratio
plane, and

cðz; z̄Þ ¼ zz̄ðauðz; z̄Þ þ aχðz; z̄ÞÞ þ Chðz; z̄Þ: ð2:5Þ

The function Ch is known exactly:

Chðz; z̄Þ ¼
1

ðz − z̄Þ3
hðzÞ − hðz̄Þ

zz̄
ð2:6Þ

with

hðzÞ ¼ −
�
z3

3
−

1

z − 1
−

1

ðz − 1Þ2 −
1

3ðz − 1Þ3 −
1

z

�

−
8

c

�
z −

1

z − 1
þ logð1 − zÞ

�
−
1

6
þ 8

c
ð2:7Þ

and c is the central charge of the 6D (2,0) theory, whose
value for the AN−1=DN-series is respectively

cAN−1
¼ 4N3−3N−1; cDN

¼ 16N3−24N2þ9N: ð2:8Þ

To complete the definition of (2.4), consider the “atomic”
function

aatΔ;lðz; z̄Þ¼
4

z6z̄6ðΔ−l−2ÞðΔþlþ2ÞG
ðlÞ
Δþ4ð0;−2;z; z̄Þ;

ð2:9Þ

where GðlÞ
Δ ðΔ1 − Δ2;Δ3 − Δ4; z; z̄Þ are the 6D nonsuper-

symmetric conformal blocks [15].8 Then in (2.5) the piece

aχðz; z̄Þ ¼
X

l¼0;2;…
l even

2lblaatlþ4;lðz; z̄Þ ð2:10Þ

represents the contributions from the identity, D½2; 0�,
D½4; 0� and B½2; 0�l−2 superconformal multiplets appearing
in the self-OPE of ΦIJ from (2.3). The OPE coefficients bl
can be fixed through the associated 2D chiral algebra [4,5]
and read

bl ¼
ðlþ 1Þðlþ 3Þðlþ 2Þ2 l

2
!ðl

2
þ 2Þ!!ðl

2
þ 3Þ!!ðlþ 5Þ!!

18ðlþ 2Þ!!ð2lþ 5Þ!!

þ 8

c

ð2−l
2
−1ðlðlþ 7Þþ 11Þðlþ 3Þ!!Γðl

2
þ 2ÞÞ

ð2lþ 5Þ!! : ð2:11Þ

The remaining piece in (2.5), auðz; z̄Þ, contains the
unknown data that one hopes to constrain through the
crossing equations. These include the conformal dimension
and OPE-squared coefficients corresponding to the long
multiplets L½0; 0�Δ;l, and the OPE-squared coefficients
corresponding to the shortD½0; 4� and B½0; 2�l−1 multiplets.
In full,

auðz; z̄Þ ¼
X
Δ≥lþ6

l≥0;l even

λ2Δ;la
at
Δ;lðz; z̄Þ: ð2:12Þ

The conformal dimensions of the D½0; 4� and B½0; 2�l−1
(with l > 0) multiplets are fixed via (2.2) and given by 8
and lþ 7 respectively (l is always an even integer).
For the purposes of truncating the 6D (2,0) crossing

equations to the spin partition displayed in Fig. 1, we

7See also [12] for the explicit multiplet construction. 8These can also be explicitly found in Appendix B of [5].
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specifically used in place of Eqs (2.10), (2.12), the
truncated versions

aχtrðz; z̄Þ ¼
X30
l¼0

2lblaatlþ4;lðz; z̄Þ ð2:13Þ

and

autrðz; z̄Þ ¼ ðλD½0;4�
8;0 Þ2aat6;0ðz; z̄Þ þ

X18
l¼2

ðλB½0;2�l−1lþ7;l Þ2aatlþ6;lðz; z̄Þ

þ
X12
l¼0

Δ>lþ6

ðλL½0;0�Δ;lΔ;l Þ2aatΔ;lðz; z̄Þ; ð2:14Þ

where aatΔ;lðz; z̄Þ is given in (2.9).

III. BootSTOP: REMARKS ON SAC
IMPLEMENTATION

Throughout this paper we make use of the soft-actor-
critic (SAC) reinforcement learning algorithm as a con-
tinuous optimizer, as already outlined in the context of the
conformal bootstrap in [1]. We will not review the details of
the SAC algorithm here, but instead refer the reader to [1]
and [16] for further details and useful references. We are
also making our PYTHON implementation, BootSTOP, avail-
able on GitHub at this link. The README file in that
repository contains additional information. In this section
we summarize the main components of the package, its
functionalities, and highlight the key improvements
included in BootSTOP compared to our earlier work [1].
These improvements extend beyond the current application
of BootSTOP to the 6D (2,0) theory, and we plan on
upgrading its functionality in the near future to incorporate
CFTs in diverse dimensions, as well as a choice of different
continuous optimizers, in addition to SAC.
When the sum over the intermediate operators I in (2.1)

is truncated, the crossing equations cannot be satisfied
exactly. Instead, one attempts to minimize an associated
semi-positive-definite cost function C. The choice of this
function is not unique. In this paper, we have chosen to
discretize the z-plane using a uniform grid of 180 points
(following the multipoint scheme of [17]); these are
detailed in a file called data z sample:py. We have also
chosen to define C as the Euclidean quadratic norm of a
vector, the components of which are given by the left-hand
side (lhs) of (2.1),

Xcutoff
I

CIFΔI
ðzi; z̄iÞ; ð3:1Þ

evaluated at each point zi on the grid. It is straightforward to
implement other possibilities, e.g., use Taylor-expansion
coefficients around the z ¼ 1

2
point (which is common

practice in the numerical conformal bootstrap), or define a
different cost function. Once the cost function is specified,
we define the reward function as R ¼ C−1, which the
algorithm aims to maximize.

A. PYTHON libraries, numerical accuracy,
and speed-up techniques

BootSTOP has been implemented using the PyTorch pack-
age for PYTHON 3.7. One of the main factors affecting the
speed of the code is the evaluation of the conformal blocks,
which takes place at every cycle of the algorithm. The
conformal blocks contain several hypergeometric func-
tions, the numerical evaluation of which is subtle and
costs time. Two commonly used mathematical libraries in
PYTHON are “MPMATH” and “SciPy.” The former is slower,
but offers greater accuracy (including the possibility of
arbitrary numerical precision). The latter is considerably
faster, but exhibits known inaccuracies in the evaluation of
the hypergeometric functions at specific arguments. We
have chosen to employ the SciPy library in BootSTOP and
have avoided the evaluation inaccuracies by carefully
selecting the points on the z-grid.
An additional and considerable speed-up (typically by a

factor of 10) can be obtained by computing the conformal
blocks only once outside the main loop. This was carried
out by performing a discretization in the space of the
unknown scaling dimensions with 60 k lattice points,
evaluating the conformal blocks and storing them in a
separate set of CSV files.9 When BootSTOP starts running, it
pre-loads all the conformal blocks before the initialization
of the main loop. Once the main loop starts, the agent
explores continuously the space of scaling dimensions, but
the code rounds them to the closest value on the pre-
evaluated scaling-dimension lattice to obtain information
about the reward. This procedure limits numerical accuracy
but offers a significant speed-up compared to the original
implementation in [1].
Another possibility in the implementation of the SAC

algorithm is the following. When using a quadratic
Euclidean norm cost function it is in principle straightfor-
ward to take advantage of the fact that the OPE-squared
coefficients appear quadratically: one could solve the
corresponding extremization equations to obtain the
OPE-squared coefficients at each step as a function of
the unknown scaling dimensions. Inserting the answer back
into the cost function, results into a new cost function that
depends only on the scaling dimensions. The obvious
benefit of this method is that it allows one to reduce the
dimensionality of the search space significantly. However,
there are also considerable disadvantages.

9For the runs presented in this paper this amounts to a lattice
separation of 5 × 10−4 in the scaling dimensions that enter the
hypergeometric functions in the conformal blocks.
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First, by employing this intermediate extremization, one
changes the optimization problem and finds different
solutions at finite truncation. As the size of the truncation
grows and one approximates the exact solutions better and
better, one expects the global minima of the cost functions
in both approaches to converge to each other. It is not,
however, obvious how the search is affected by the
intermediate extremization at finite truncation (especially,
if there are multiple extrema of interest, which are not
global minima). Second, the solution of the extremization
equations for the OPE-squared coefficients involves the
inversion of a matrix, the size of which is set by the number
of unknown scaling dimensions. This inversion becomes
increasingly computationally expensive as the dimension
of the search space grows. Moreover, it can become quite
unstable if some scaling dimensions are almost degenerate.
Third, this approach is harder to implement with non-
quadratic cost functions, which can be useful for some
problems. For all these reasons, we have chosen to treat the
OPE-squared coefficients as independent unknowns in
BootSTOP, over which we optimize. Nevertheless, the option
of intermediate extremization can be incorporated into our
code with the obvious modifications.

B. Summary of parameters and BootSTOP functionalities

We now dive a little deeper into the options built into
BootSTOP. The code has several sets of parameters which
we broadly describe as: neural network hyperparameters,
learning loop, automation and environment parameters. In
this section we briefly summarize the functionality of each
set, and highlight them in bold for easy reference. The
reader can find the values that were used in our searches on
GitHub.
Neural network hyperparameters: These control the

behavior of the neural networks employed in the SAC
algorithm. The relevant details on the architecture of the
SACalgorithmcan be found in [1,16] and references therein.
Learning loop and automation parameters: These con-

trol how the code handles the quenching of the size of the
search windows and the reinitialization of the SAC
algorithm during a run. When a run is initialized, the
agent moves through the environment and continuously
updates the memory buffer, optimizing the SAC neural
networks and the stochastic policies of the associated
Markov decision process. After a number of iterations the
reward stops improving and the result saturates. Before
quenching the size of the search windows, it is useful to
repeat the search anew, with the same search windows
but retaining knowledge of the previous highest reward
configuration. During such a re-initialization, the memory
buffer is flushed and the agent starts learning from
scratch. Typically, this leads to immediate improvement.
The parameter controlling the maximum time spent
without improving before re-initialization is called
faff max. Another parameter, pc max, controls how

many re-initializations without improvement in the
reward are made before the sizes of the search windows
are quenched. Once pc max is saturated, the search
windows are quenched by some percentage, which is
controlled by the window rate parameter. The parameter
max window exp specifies how many window
quenches are carried out before the run ends. We note
that this automation was missing in [1], where all reported
results were the outcome of single runs on a laptop
computer, and with the user manually performing the
re-initializations and search-window quenches. BootSTOP

on the other hand, does not require user supervision and
can be run in parallel on a computing cluster.
Environment parameters: This set comprises parameters

that specify the environment and how the agent interacts
with it. In the former class are parameters like the central
charge, which enters explicitly the 6D crossing equations
that we are analyzing in this paper. The latter class gives the
user control over several functionalities. There are two
arrays of Booleans, called guessing run list deltas and
guessing run list opes, which specify for each CFT
datum if the run starts in “guessing mode.” In this mode,
every subsequent value in the search is generated stochas-
tically within a fixed range of values specified by the search
windows. In nonguessing mode, instead, every next value
is generated stochastically around the previous best result.
The latter gives the algorithm the capacity to move
dynamically over an arbitrarily large, in principle, region
even if the search windows are small. The guessing mode is
ideal for blind searches with little prior knowledge of where
to look. This mode was applied in the blind-search example
of Appendix. The nonguessing mode is suitable for
searches focused in a particular region of configuration
space. This mode was employed in the adiabatic searches of
Sec. IV. In BootSTOP a search that starts in guessing mode
reverts automatically to nonguessing mode after the first
pc max is reached.
The initial sizes of the searchwindows are specified by the

arrays guess sizes deltas and guess sizes opes. The
user can also specify the lower bounds of each CFT datum
using two arrays: shifts deltas and shifts opecoeffs.
This is useful as an option that enforces the unitarity bounds
in unitary CFTs. Additionally, BootSTOP can impose a
minimum separation of scaling dimension between
operators of the same spin through use of the flag
same spin hierarchy. In this context, the uniform gap
is set with the parameter dyn shift.

C. Statistics, parallel runs, and the search
for basins of attraction

The SAC algorithm is in principle able to navigate
continuous search spaces and escape local minima through
a carefully balanced explore/exploit strategy. However,
for high-dimensional, continuous search spaces, where
there can be many local minima and the number of saddles
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increases exponentially [18], this approach is not feasible
in finite time and can be affected by the choice of
parameters. For this reason, and in order to improve
performance, we took advantage of the automation intro-
duced in the previous subsection, and ran BootSTOP in
parallel on a computing cluster.
In stochastic searches the collection of statistics with a

large number of independent searches is very important,
because every run produces a different result. BootSTOP can
easily run in parallel on computing clusters (with each run
being completely independent). For instance, the results in
Appendix were obtained using 10 k parallel runs. For the
adiabatic results in Sec. IV we had to perform a rather large
number of sequential runs at different values of c, which
imposed practical restrictions on our running times on the
computing cluster. As a result, we ended up performing a
parallel run of 200 agents for each value of c, which still
produced useful statistics.10

It is well known that global-search algorithms can
perform well at locating the basin of the optimal solution,
but are less efficient at identifying the unique, most optimal
solution within that basin. The problem becomes harder in
high-dimensional searches even when stochastic algo-
rithms are combined with local-search gradient-descent
methods. For that reason, we would like to put emphasis on
a strategy that focuses primarily on the identification of
basins of attraction, and secondarily on the exploration of
the small-scale structure within such basins, which can
typically be very spiky.
The results of Appendix illustrate how such a strategy

would work for the 6D (2,0) SCFT at c ¼ 25 in a blind
search without any additional, prior, theory-dependent
information. In that search, which begins in guessing
mode, large arbitrary search windows were chosen for
the CFT data (10 for scaling dimensions and 20 for OPE-
squared coefficients). The SAC algorithm proves quite
effective in identifying basins of attraction in this manner,
albeit with significant width. We refer the reader to
Appendix for a more detailed discussion of this example
and how this run performed against independent expect-
ations. We note that the initial search, and the correspond-
ing identification of the basin, can improve by suitable
choices of parameters. Subsequent runs in nonguessing
modes around the initial statistical average will further
improve the reward and decrease the statistical spread of
the results. This, however, can be a delicate and time-
consuming process without any guarantees that the global
minimum will be identified. In general, the quality of the
results arising from this process depend on the specifics
of the problem and the corresponding complexity of the
search. There are also situations, where the global

minimum may not be the only minimum of physical
interest. The 6D bootstrap problem that we analyze in this
paper poses such a situation.
An alternative approach is based on a guided, adiabatic

implementation of SAC starting from the known results for
the CFT data in a convenient limit of parameters (in this
paper, this is the supergravity limit) and gradually changing
the parameters to explore the theory in a general parametric
region. In our 6D context, this process involves the
adiabatic decrease of the value of the central charge, which
appears explicitly in the crossing equation. This procedure
can be applied in many different situations. It avoids the
pitfalls of having to navigate the full high-dimensional
potential, leading to much narrower basins of attraction. We
implemented this approach using BootSTOP in Sec. IV to
obtain very promising results in the 6D (2,0) theory
exhibiting two separate basins of attraction.

D. Protocols for adiabatic searches

As already noted, in Sec. IV we present results for
adiabatic searches starting from the supergravity limit at
large c and gradually flowing toward smaller values up to
c ¼ 25, where one expects to find the A1 (2,0) theory. This
theory is expected to be the (2,0) SCFT with the smallest
possible value of central charge. Anticipating two distinct
sets of solutions (one corresponding to the AN−1-series and
the other to the DN-series 6D (2,0) SCFTs), we performed
the adiabatic search using two distinct protocols. In both
protocols, and for each value of c, we executed two
sequential 8 hr runs with 200 parallel agents in nonguessing
mode with large faff max.11 This process is especially
subtle in the supergravity limit where the two series are
expected to be very close. Nevertheless, both protocols
worked surprisingly well producing two distinct curves of
comparable reward. In Fig. 2 we present the corresponding
values of the reward function in each of the two curves. The
details of each protocol are as follows.
Protocol 1: The first protocol is the most natural one in

an adiabatic search: after changing the value of c by a small
amount, the next run is performed around the statistical
average of the previous one.12 During the first run for each
new value of c, the guess sizes deltas parameter was set
uniformly at the value 0.01, while the guess sizes opes
was set uniformly at the value 0.001. In the second run at
each value of c, these parameters were set at the 1σ standard
deviation of the statistics collected during the first run. We
conjecture in Sec. IV that this protocol produces a curve for
the DN-series (2,0) SCFTs.
Protocol 2: The second protocol, which is less obvious

and more subtle to implement, is motivated by the

10These searches were implemented on the Queen Mary
University of London High Performance Compute cluster Apoc-
rita [19]. Each run utilized 1 core and 5 GB of memory.

11We used the parameters: faff max ¼ 10000, pc max ¼ 5
and window rate ¼ 0.7.

12The configuration around which a run is performed can be
defined in BootSTOP by suitably setting the array global best.
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following observations. The OPE-squared coefficient of the
single scalar superconformal primary in the D½0; 4� multi-
plet, λ2D½0;4�, has the distinguishing characteristic that it

vanishes exactly in the A1 theory. Therefore, one might
suspect that the value of λ2D½0;4� is smaller in the AN−1-series

compared to the DN-series, and that the same happens in
the corresponding basins of attraction that represent these
solutions in our optimization problem.13 This was, indeed,
also the expectation in [20].14 As a result, the second
protocol was set up in a manner that would potentially
allow us to identify the basin with the smaller value of
λ2D½0;4�. In Sec. IV we will provide further supporting

evidence for the conjecture that the second protocol
captures the AN−1-series (2,0) SCFTs. The two runs of
Protocol 2 involved the same guess sizes as in Protocol 1,
but all runs were performed around a point with compa-
ratively high reward and smaller value of λ2D½0;4�. Prior to
each run, this point was selected after the inspection of the
full set of configurations obtained during the previous 200
independent runs. It was chosen as the highest-reward
configuration in this set that fit the above criteria on λ2D½0;4�.
In many cases, a suitable configuration immediately stood
out in the dataset.

IV. RESULTS: ADIABATIC RUNS FROM
THE SUPERGRAVITY LIMIT

We will now present and analyze the CFT data produced
by the SAC algorithm when used to perform adiabatic
deformations of the truncation given in Fig. 1. For this
task we employed the two distinct protocols outlined in
Sec. III D while slowly varying the central charge from the
supergravity limit, c ¼ ∞, down to c ¼ 25. This section
contains the main results of the paper.
We begin with a discussion of the CFT data analyzed in

Refs [5,9] using standard numerical conformal bootstrap
techniques and the OPE inversion formula. The comparison
with [5,9] is useful as a performance check and toward
building a consistent interpretation of our results. We
conclude with results on CFT data that have not appeared
previously in the literature and are new predictions.

A. Lowest protected and unprotected operators

In this subsection we focus on the shortD½0; 4�multiplet,
and the first scalar in the long L½0; 0� multiplet. Let us first
discuss the results on the D½0; 4� multiplet outlined
in Fig. 3.
The scaling dimension of theD½0; 4�multiplet is fixed by

superconformal symmetry at the valueΔ ¼ 8, but the OPE-
squared coefficient between this multiplet and the energy-
momentum multiplet depends nontrivially on the central
charge c. The left plot in Fig. 3 depicts the results obtained
with Protocol 2, while the right plot depicts the results
obtained with Protocol 1. There are two sets of data points
in each plot. The green points represent statistical averages
of the 200 parallel runs, and the purple dots the result with
the highest reward. The error bars are determined by the 1σ
standard deviation of the statistics obtained on the second
8 hr run at each value of c. In most cases, the result of
highest reward is inside the error bars. We observe that in
both cases the errors are relatively small, which reflects the

FIG. 2. A plot of the rewards obtained in the adiabatic searches of Sec. IV with the two distinct protocols described in Sec. III D The
blue data are conjectured in Sec. IV to capture the A-series (2,0) SCFTs, while the red data the D-series (2,0) SCFTs.

13Recall that for the purposes of the single-correlator con-
formal bootstrap exercise that we are performing, c is viewed as a
continuous parameter that can be extended to possibly unphysical
values. For each c one is, therefore, looking for both a potential
A- and D-series extremum. In accordance with these expect-
ations, in independent blind searches with the SAC algorithm at
low values of c, we identified frequently two distinct types of
basins—one at a higher value of λ2D½0;4� and another at a lower
value.

14We note that in [21] it was conjectured that the bootstrap
bounds for the physical values of c are saturated by AdS7
maximal supergravity.

GERGELY KÁNTOR et al. PHYS. REV. D 107, 025005 (2023)

025005-8



fact that the 200 parallel agents concentrated naturally
inside a small region for the specific datum during the
second run. The blue and orange curves are local regression
curves produced using the locally weighted scatterplot
smoothing (LOWESS) method. The dashed red curve
represents the numerical bootstrap upper bounds obtained
in Ref. [5]. Anything above this red curve is expected to be
inconsistent in an exact (2,0) SCFT.
Comparing with the brown curve obtained using the

OPE-inversion formula in [9], we notice a strong similarity
with the Protocol-2 curve and the corresponding data
points. Both stay closely below the numerical bootstrap
bound and the long-inverted value at c ¼ 25 from [9] is
also very close to our result, slightly above 0.8.15 In
summary, similar to [9], we have produced a curve below
the numerical bootstrap bound, which has not achieved at
this level of approximation the expected analytic result of
λ2D½0;4� ¼ 0 at c ¼ 25. The agreement with [9] is our first

strong indication that the SAC algorithm with Protocol 2
has identified a sensible approximation of a family of (2,0)
SCFTs. Since the values of the blue curve are consistently
below the ones of the orange curve (in the right plot of
Fig. 3) we are tempted to conjecture (using intuition from
the known supergravity results [13,20] and the related
discussion in [20]) that the blue curve represents the
A-series (2,0) theories and the orange curve the D-series
(2,0) theories. But would such an interpretation be con-
sistent with the existing expectations about the behavior of
the D-series curve?
At first sight, the data points on the right plot (fitted by

the orange LOWESS curve) appear to behave rather badly
compared to the numerical bootstrap bounds. They remain
close to the bounds up to roughly c−1=3 ∼ 0.11 and then

gradually start diverging significantly from the bound-
curve. The error bars are also increasing toward the small
c region and for the last few points close to c ¼ 25 the
highest-reward values are significantly outside the 1σ
error bars. In other words, several features of these data
demonstrate that the quality of these results deteriorates at
lower values of c. The same qualitative feature is also
present in the values of the best reward as a function
of c, as depicted in Fig. 2. In that figure the Protocol 1
curve is the red curve. There is an apparent peak around
c−1=3 ∼ 0.15 beyond which the reward gradually falls.
Interestingly, the smallest central charge for a nontrivial
(2,0) SCFT in theD-series is c ¼ 676, the central charge of
the D4 theory. The D3 theory (at c ¼ 243) is dual to the A3

theory, while the D2 theory (at c ¼ 50) is equivalent to the
A1 × A1 theory. The central charge of the D4 theory has
c−1=3 ∼ 0.11, which is tantalizingly close to the region of
0.11 where we notice the deviation of the orange curve
from the bootstrap bound curve. Hence, if we were to
terminate the orange curve at c ¼ 676 (as an exact analysis
of the D-series theories would suggest), the remaining set
of data would be satisfyingly close to the numerical
bootstrap bounds. Similar observations can be made in
all the other CFT data that we have collected, reinforcing
the conjecture that the orange curve is consistent with the
D-series interpretation.
Consider next the results on the CFT data for the lowest

L½0; 0� multiplet, which are displayed in Fig. 4. The two
top-row plots depict the Protocol 2 (conjectured A-series)
results for the scaling dimension and OPE-squared coef-
ficient, while the two bottom-row plots the corresponding
Protocol 1 (conjectured D-series) results. Repeating the
cautionary comment of Footnote 27 in Ref. [9], we point
out that the dashed-red numerical bootstrap bounds for the
OPE-squared coefficient on the right plots were obtained
under the assumption that the corresponding conformal

FIG. 3. Plots of the A- and D-series curves for the OPE-squared coefficient of the lowest protected operator in the D½0; 4� multiplet
with fixed scaling dimension Δ ¼ 8. The dashed red curve represents the numerical conformal bootstrap upper bound obtained in [5]
and the brown curve on the left plot the long-inverted curve of [9]. Regression fits to our data (blue and orange curves) are obtained with
the LOWESS method.

15The long-inverted-corrected result at c ¼ 25 quoted in [9] is
a bit lower, approximately at 0.65.
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FIG. 4. Plots of the A- andD-series curves for the scaling dimension and OPE-squared coefficient of the lowest nonprotected operator
in the L½0; 0� multiplet. The plots on the left depict the scaling-dimension results and the plots on the right the OPE-squared coefficient
results. The brown curves on the top two plots exhibit the long-inverted curves of [9].

FIG. 5. Plots of the A- and D-series curves for the scaling dimension and OPE-squared coefficient of the leading nonprotected spin-2
operators in the L½0; 0� multiplet. The plots on the left depict the scaling-dimension results and the plots on the right the OPE-squared
coefficient results. The brown curves on the top two plots exhibit the long-inverted curves in [9].
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dimensions saturate their own bounds, which is not directly
applicable here. As in [9], we depict these bounds under the
expectation that they are a decent estimate to the actual
bounds.
The plots in Fig. 4 reveal a picture consistent with the

observations of the previous paragraphs. The A-series data
are consistently below the numerical bootstrap bounds for
all values of c both for the scaling dimension and OPE-
squared coefficient. In fact, when compared to the brown
curve obtained using the OPE inversion formula in [9], we
see that our results are behaving slightly better in relation to
the known numerical bootstrap bounds. For the D-series
data we observe that they exhibit the same qualitative
features that were noted in the context of the D½0; 4�
multiplet above. Their quality deteriorates beyond the
region of c−1=3 ∼ 0.15, and a violation of the numerical
bootstrap bounds for the scaling dimension starts in the
vicinity of c−1=3 ∼ 0.11. Hence, if one were to terminate the
curve at c ¼ 676, the agreement with the bounds would be
very good both for the scaling dimension and OPE-squared
coefficient.
We believe that all these results, collectively, are very

suggestive for the efficiency of the SAC algorithm in this
particular context, and the conjectured interpretation of
the results.

B. Comparison with the remaining previously
analyzed CFT data

We continue with the presentation of results for higher-
spin operators for which certain predictions have already
been made in [5,9]. More specifically, we discuss scaling
dimensions and OPE-squared coefficients for long L½0; 0�
multiplets at spin l ¼ 2, 4, 6 and OPE-squared coefficients
for short B½0; 2� multiplets at spin l ¼ 1, 3, 5. For the
depicted numerical bootstrap bounds of the OPE-squared
coefficients of the long multiplets the comment of Footnote
27 in [9] still applies.

1. L½0;0� for spin l = 2, 4, 6

Based on the above interpretation, the A- and D-series
data of the leading spin-2 operators in the L½0; 0� multiplet
appear in Fig. 5. The A-series curve for the scaling
dimension (top-left plot) violates the known numerical
bootstrap bounds for most values of c. It behaves signifi-
cantly worse than the corresponding OPE inversion curve
of Ref. [9], which also violates the numerical bootstrap
bounds, but with a violation that occurs at much smaller
values of c. For the OPE-squared coefficient (right-top plot)
the situation is reversed. The (indicative) bootstrap bounds
are respected throughout our A-series curve, but are
violated significantly by the corresponding OPE inversion

FIG. 6. Plots of the A- and D-series curves for the scaling dimension and OPE-squared coefficient of the leading nonprotected spin-4
operators in the L½0; 0� multiplet. The plots on the left depict the scaling-dimension results and the plots on the right the OPE-squared
coefficient results. The brown curves on the top two plots exhibit the long-inverted curves in [9].
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curve of Ref. [9]. For the D-series scaling-dimension curve
(bottom-left plot) we observe the same effect as in previous
data: a significant violation occurs only for values of c−1=3

above ∼0.11. The OPE-squared curve (bottom-right plot)
remains everywhere below the bound.
The corresponding data of the leading spin-4 operators in

the L½0; 0� multiplet exhibit comparable features (see
Fig. 6). The A-series curve for the scaling dimension
(left-top plot) violates the bound significantly for low
enough values of c, but the D-series scaling dimensions
do not, if the curve is terminated around c−1=3 ∼ 0.11. In
comparison, the corresponding OPE-inversion scaling-
dimension curve in [9] (see brown curve in the left-top
plot) does not violate the bootstrap bounds. Finally, both of
our OPE-squared curves are well within the (indicative)
allowed regions at slightly lower values compared to the
corresponding brown OPE-inversion curve (see brown
curve in the right-top plot).
For the leading spin-6 operators in the L½0; 0� multiplet

we are not aware of any published numerical bootstrap
bounds. Our A- and D-series results appear in Fig. 7.
Compared with the corresponding curves derived using the
OPE-inversion formula, our A-series data evolve in the
same neighborhood of values (with visible differences in
the shape of the curves). The scaling dimensions are in the

neighborhood of 13.9 and 14 and the OPE-squared coef-
ficients in the neighborhood 5.35 and 5.45. Once again, we
observe that the error bars of the D-series curves exhibit a
visible increase around the point c−1=3 ∼ 0.15.

2. B½0;2� for spin l= 1, 3, 5

To complete the comparison with the data obtained in
Ref. [9], we exhibit in Fig. 8 the A and D versions of the
curves for the OPE-squared coefficients of the B½0; 2�
multiplets at spin l ¼ 1, 3, 5. The A-series curves appear
on the left column while the D-series curves on the right
column. Violations of the numerical bootstrap bounds are
observed in the spin-1 and spin-3 cases for the A-series. For
spin 5 our results are comparable with the results of [9],
with the most significant deviation in the rough region of
c−1=3 between 0.2 and 0.25. Once again, the D-series
curves confirm the pattern observed in previous data.

3. Summary of the comparison with known
bootstrap results

In summary, so far in this section we presented two
versions of 12 CFT data. In 9 of them we could compare
with known numerical bootstrap bounds. When terminated
in the vicinity of c ¼ 676, the D-series curves did not

FIG. 7. Plots of the A- and D-series curves for the scaling dimension and OPE-squared coefficient of the leading nonprotected spin-6
operators in the L½0; 0� multiplet. The plots on the left depict the scaling-dimension results and the plots on the right the OPE-squared
coefficient results. The brown curves on the top two plots exhibit the long-inverted curves in [9].
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exhibit any significant violations of these bounds. The
A-series curves extended all the way down to c ¼ 25 and
violated the bounds for sufficiently low values of c in 4
cases: the spin-2 and spin-4 scaling dimensions of L½0; 0�
multiplets in Figs. 5, 6 and the spin-1 and spin-3 OPE-
squared coefficients of the B½0; 2� multiplets in the corre-
sponding plots of Fig. 8. These violations reflect the
limitations of the specific truncation of 45 operators that
we used throughout the computation. It would be very
interesting to increase significantly the number of operators
and determine the extent to which these violations persist.
We have not explored this very important aspect of the

problem in the present work, because we want to treat it
separately elsewhere within a more focused investigation of
systematic errors.

C. More results beyond the leading
Regge trajectory

In total, the above application of the SAC algorithm has
provided an A and a D-series version of 80 CFT data. Most
of these data are new predictions that have not appeared
previously in the literature. We expect the quality of these
predictions to be worse for operators that are closer to the

FIG. 8. Plots of the A- and D-series curves for the OPE-squared coefficients of the protected operators in the B½0; 2� multiplets at spin
l ¼ 1, 3, 5. The brown curves on the left three plots exhibit the long-inverted curves in [9].
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FIG. 9. Plots of the A- and D-series curves for the scaling dimensions and OPE-squared coefficients of the first subleading
nonprotected operators at spin l ¼ 0, 2, 4, 6.
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upper bound (in scaling dimension) of the truncation. In
our case, the truncation contained long operators up to
spin 12 and short operators up to spin 17. In the previous
subsections we observed that the results for the lowest-
lying operators are consistent with known bounds, but
some higher spin data in leading Regge trajectories
exhibit violations of known bounds. We expect such
potential violations for other higher-dimension data in
leading and subleading Regge trajectories. Nevertheless,
for future reference we present in Fig. 9 data for the first
subleading long operators at spin l ¼ 0, 2, 4, 6. PDF files
with all the plots presented in this paper, and more
plots that were not included here, can be found at this
GitHub folder.

V. CONCLUSIONS AND OUTLOOK

In this paper we employed the SAC algorithm as a
stochastic optimizer to obtain 80 CFT data for protected
and unprotected operators in interacting 6D (2,0) theories.
These data appear in the truncated superconformal block
expansion of the 4-point function of superconformal
primaries in the energy-momentum multiplet. The compu-
tations were carried out using our BootSTOP package. Our
best results were achieved via an adiabatic strategy, where-
upon starting from the analytic supergravity values for the
CFT data, the central charge was gradually changed to
c ¼ 25, the lowest expected value corresponding to a
physical theory. We were able to identify two curves for
each datum. There is evidence that suggests that each of
these curves corresponds to the A- and D-series (2,0)
SCFTs. On the whole, these results are competitive when
compared to numerical bootstrap bounds [5] and more
recent approaches using the OPE inversion formula [9],
even with a truncation of only 45 unknown operators (a
number which is still low compared to our ultimate target
for large-scale optimization searches). We expect that the
accuracy of the reported results will be improved upon
increasing the size of the truncation. The rate and limit of
improvement are important open questions, which are part
of our general on-going investigation. The addition of tens
of extra operators can be explored immediately with the
current version of BootSTOP. We encourage the interested
reader to do so.
Although BootSTOP is currently using SAC exclusively to

optimize the 6D (2,0) crossing equations, we intend to
enlarge its functionality in the very near future. This will
include more traditional stochastic-optimization algo-
rithms, such as Metropolis–Hastings Monte–Carlo that
was recently used in a similar context [22], and will allow
it to serve as a benchmarking tool. Similarly, we will
incorporate conformal blocks for a number of dimensions,
so that BootSTOP can be used by the inquisitive reader to
attack a number of interesting CFTs.

This research utilized Queen Mary’s Apocrita HPC
facility, supported by QMUL Research-IT [19].

BootSTOP can be publicly accessed on GitHub at [23].
The specific values that we used in our adiabatic runs can
be found at [24].
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APPENDIX: EXAMPLE OF A WIDE SEARCH
FROM SCRATCH AT c= 25

In this appendix we showcase the results of a blind
search without any additional, theory-dependent prior
information, at c ¼ 25. The parameters used for this search
were: guess sizes deltas ¼ 10 for all scaling dimen-
sions, guess sizes opes ¼ 20 for all OPE-squared coef-
ficients, while choosing faff max¼ 12000, pc max ¼ 5
and window rate ¼ 0.5, to allow the SAC algorithm
enough time to explore the search space. Each search
started in guessing mode, the functionality of which was
detailed in Sec. III B. We ran 10k agents on the computing
cluster, with each run terminating after 24 hrs.
A small sample of our results is collected in Fig. 10,

where we display the CFT data for the D½0; 4� and spin-1
B½0; 2� protected operators, as well as for the spin-0 and
spin-2 L½0; 0� unprotected operators in the leading Regge
trajectory. The plots contain distributions of CFT-data
values, for the top 100 k reward improvements achieved
by any agent among the 10 k runs. Note that this is not the
final, best reward for each run, so there could be imbal-
anced contributions from a small number of particularly
lucky agents.16 For the rewards of data thus selected within
a given bin, a corresponding weighted average is computed,
where the weight was chosen as the square of the reward
normalized by the overall best reward. The resulting heat
map exhibits the formation of basins of attraction, with the
highest concentrations of weighted-average reward denoted
as deeper red on the plots. Although the basins of attraction

16We experimented with many blind-search runs in different
contexts and with different parameters. Another way to plot the
results is with heat maps that record the 5 best rewards of each
agent. Typically, these maps exhibit very similar qualitative
features to the heat maps presented here.
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exist in the full 80-dimensional search space, we find it
natural to portray a two-dimensional projection involving
the scaling dimension and OPE-squared coefficient for
each operator. It is also useful to include the statistical mean
and 1σ standard deviation.
Overall, the SAC algorithm proves quite effective in

identifying basins of attraction. We observe that the values
expected from bootstrap bounds, the OPE inversion for-
mula or our adiabatic searches are in general within the
blind-search basins.
For example, for the OPE-squared coefficient of the

D½0; 4�multiplet, we observe that the basin in the top-left of
plot of Fig. 10 contains both the A-series value at λ2D½0;4� ∼
0.8 and the D-series value at λ2D½0;4� ∼ 1.4 obtained in the

adiabatic search of Sec. IV. For the spin-1 B½0; 2� multiplet
the conformal bootstrap bound gives a value λ2B½0;2�1 ∼ 10.3

and our adiabatic searches λ2B½0;2�1 ∼ 10.75. Both values are

contained within the upper part of the region of interest
identified by the basin in the top-right plot of Fig. 10.

The plots for the unprotected L½0; 0� operators exhibit a
similar clustering. The expected values for the scaling
dimensions and OPE-squared coefficients for spin 0 are
ΔL½0;0�0 ∼ 7 and λ2L½0;0�0 ∼ 1.1 from the A-series adiabatic

search and the numerical bootstrap bounds, and ΔL½0;0�0 ∼
8.4 and λ2L½0;0�0 ∼ 0.8 from the D-series adiabatic search.

The 1σ regions of the bottom-left plot in Fig. 10 favors the
D-series result. The clustering is more pronounced in the
spin-2 case. The expected values from the bootstrap bounds
(ΔL½0;0�2 ∼ 9.6 and λ2L½0;0�2 ∼ 3.5) are within the 1σ region.

The scaling dimension expected from the adiabatic
searches is higher at ΔL½0;0�2 ∼ 10.2 and lies in the upper
part of the distribution, slightly above the 1σ boundary.
The rest of our results exhibit similar qualitative fea-

tures.17 In these results, one can also observe that there are

FIG. 10. Sample heat-map plots for the blind-search results of 10 k agents for D½0; 4�, l ¼ 1 B½0; 2� and l ¼ 0, 2 L½0; 0� multiplets in
the leading Regge trajectory. In the two top plots the scaling dimension is fixed at the value denoted by the vertical line. We plot the heat
map with uniform color intensity on the horizontal axis for visual effect. The shaded region, which is more clearly visible in the two
bottom plots, represents the 1σ standard deviation spread of the results.

17Plots of the remaining CFT data can be made available upon
request.
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cases like the OPE-squared coefficient of the spin-5 B½0; 2�
multiplet, where although the original region of search in
the guessing mode was between 0 and 20, the subsequent
search in the nonguessing mode dynamically evolved to
explore values above 20, where one anticipates to find the
expected result.
The blind-search results should be understood as the

first step in a longer process. One should perform addi-
tional iterations around the initial statistical averages
obtained here, with the search windows adjusted, for
example, to the 1σ ranges for each unknown. This typically
improves the reward, makes the basins of attraction
immediately more pronounced and further reduces the
statistical spread. It can also be accompanied by a

corresponding tuning of other parameters. Unfortunately,
as we also stressed in Sec. III C, due to the generically
complicated nature of high-dimensional search spaces
there is no guarantee that the global minimum will be
reached in this fashion, without an additional delicate and
time-consuming fine tuning of parameters. Moreover,
there can be situations where there are multiple minima
corresponding to physical theories that this approach will
not be able to distinguish. For these reasons, we find the
adiabatic method of Sec. IV far more promising as a tool
toward reaching the final more accurate answer. Blind
searches with large windows will be less accurate in
general, but can still be useful at providing further intuition
about the problem at hand.
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